1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/journal.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Generic filesystem journal-writing code; part of the ext2fs 10 * journaling system. 11 * 12 * This file manages journals: areas of disk reserved for logging 13 * transactional updates. This includes the kernel journaling thread 14 * which is responsible for scheduling updates to the log. 15 * 16 * We do not actually manage the physical storage of the journal in this 17 * file: that is left to a per-journal policy function, which allows us 18 * to store the journal within a filesystem-specified area for ext2 19 * journaling (ext2 can use a reserved inode for storing the log). 20 */ 21 22 #include <linux/module.h> 23 #include <linux/time.h> 24 #include <linux/fs.h> 25 #include <linux/jbd2.h> 26 #include <linux/errno.h> 27 #include <linux/slab.h> 28 #include <linux/init.h> 29 #include <linux/mm.h> 30 #include <linux/freezer.h> 31 #include <linux/pagemap.h> 32 #include <linux/kthread.h> 33 #include <linux/poison.h> 34 #include <linux/proc_fs.h> 35 #include <linux/seq_file.h> 36 #include <linux/math64.h> 37 #include <linux/hash.h> 38 #include <linux/log2.h> 39 #include <linux/vmalloc.h> 40 #include <linux/backing-dev.h> 41 #include <linux/bitops.h> 42 #include <linux/ratelimit.h> 43 #include <linux/sched/mm.h> 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/jbd2.h> 47 48 #include <linux/uaccess.h> 49 #include <asm/page.h> 50 51 #ifdef CONFIG_JBD2_DEBUG 52 static ushort jbd2_journal_enable_debug __read_mostly; 53 54 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644); 55 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2"); 56 #endif 57 58 EXPORT_SYMBOL(jbd2_journal_extend); 59 EXPORT_SYMBOL(jbd2_journal_stop); 60 EXPORT_SYMBOL(jbd2_journal_lock_updates); 61 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 62 EXPORT_SYMBOL(jbd2_journal_get_write_access); 63 EXPORT_SYMBOL(jbd2_journal_get_create_access); 64 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 65 EXPORT_SYMBOL(jbd2_journal_set_triggers); 66 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 67 EXPORT_SYMBOL(jbd2_journal_forget); 68 EXPORT_SYMBOL(jbd2_journal_flush); 69 EXPORT_SYMBOL(jbd2_journal_revoke); 70 71 EXPORT_SYMBOL(jbd2_journal_init_dev); 72 EXPORT_SYMBOL(jbd2_journal_init_inode); 73 EXPORT_SYMBOL(jbd2_journal_check_used_features); 74 EXPORT_SYMBOL(jbd2_journal_check_available_features); 75 EXPORT_SYMBOL(jbd2_journal_set_features); 76 EXPORT_SYMBOL(jbd2_journal_load); 77 EXPORT_SYMBOL(jbd2_journal_destroy); 78 EXPORT_SYMBOL(jbd2_journal_abort); 79 EXPORT_SYMBOL(jbd2_journal_errno); 80 EXPORT_SYMBOL(jbd2_journal_ack_err); 81 EXPORT_SYMBOL(jbd2_journal_clear_err); 82 EXPORT_SYMBOL(jbd2_log_wait_commit); 83 EXPORT_SYMBOL(jbd2_journal_start_commit); 84 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 85 EXPORT_SYMBOL(jbd2_journal_wipe); 86 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 87 EXPORT_SYMBOL(jbd2_journal_invalidate_folio); 88 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 89 EXPORT_SYMBOL(jbd2_journal_force_commit); 90 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write); 91 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait); 92 EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers); 93 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 94 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 95 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 96 EXPORT_SYMBOL(jbd2_inode_cache); 97 98 static int jbd2_journal_create_slab(size_t slab_size); 99 100 #ifdef CONFIG_JBD2_DEBUG 101 void __jbd2_debug(int level, const char *file, const char *func, 102 unsigned int line, const char *fmt, ...) 103 { 104 struct va_format vaf; 105 va_list args; 106 107 if (level > jbd2_journal_enable_debug) 108 return; 109 va_start(args, fmt); 110 vaf.fmt = fmt; 111 vaf.va = &args; 112 printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf); 113 va_end(args); 114 } 115 #endif 116 117 /* Checksumming functions */ 118 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb) 119 { 120 if (!jbd2_journal_has_csum_v2or3_feature(j)) 121 return 1; 122 123 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM; 124 } 125 126 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb) 127 { 128 __u32 csum; 129 __be32 old_csum; 130 131 old_csum = sb->s_checksum; 132 sb->s_checksum = 0; 133 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t)); 134 sb->s_checksum = old_csum; 135 136 return cpu_to_be32(csum); 137 } 138 139 /* 140 * Helper function used to manage commit timeouts 141 */ 142 143 static void commit_timeout(struct timer_list *t) 144 { 145 journal_t *journal = from_timer(journal, t, j_commit_timer); 146 147 wake_up_process(journal->j_task); 148 } 149 150 /* 151 * kjournald2: The main thread function used to manage a logging device 152 * journal. 153 * 154 * This kernel thread is responsible for two things: 155 * 156 * 1) COMMIT: Every so often we need to commit the current state of the 157 * filesystem to disk. The journal thread is responsible for writing 158 * all of the metadata buffers to disk. If a fast commit is ongoing 159 * journal thread waits until it's done and then continues from 160 * there on. 161 * 162 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 163 * of the data in that part of the log has been rewritten elsewhere on 164 * the disk. Flushing these old buffers to reclaim space in the log is 165 * known as checkpointing, and this thread is responsible for that job. 166 */ 167 168 static int kjournald2(void *arg) 169 { 170 journal_t *journal = arg; 171 transaction_t *transaction; 172 173 /* 174 * Set up an interval timer which can be used to trigger a commit wakeup 175 * after the commit interval expires 176 */ 177 timer_setup(&journal->j_commit_timer, commit_timeout, 0); 178 179 set_freezable(); 180 181 /* Record that the journal thread is running */ 182 journal->j_task = current; 183 wake_up(&journal->j_wait_done_commit); 184 185 /* 186 * Make sure that no allocations from this kernel thread will ever 187 * recurse to the fs layer because we are responsible for the 188 * transaction commit and any fs involvement might get stuck waiting for 189 * the trasn. commit. 190 */ 191 memalloc_nofs_save(); 192 193 /* 194 * And now, wait forever for commit wakeup events. 195 */ 196 write_lock(&journal->j_state_lock); 197 198 loop: 199 if (journal->j_flags & JBD2_UNMOUNT) 200 goto end_loop; 201 202 jbd2_debug(1, "commit_sequence=%u, commit_request=%u\n", 203 journal->j_commit_sequence, journal->j_commit_request); 204 205 if (journal->j_commit_sequence != journal->j_commit_request) { 206 jbd2_debug(1, "OK, requests differ\n"); 207 write_unlock(&journal->j_state_lock); 208 del_timer_sync(&journal->j_commit_timer); 209 jbd2_journal_commit_transaction(journal); 210 write_lock(&journal->j_state_lock); 211 goto loop; 212 } 213 214 wake_up(&journal->j_wait_done_commit); 215 if (freezing(current)) { 216 /* 217 * The simpler the better. Flushing journal isn't a 218 * good idea, because that depends on threads that may 219 * be already stopped. 220 */ 221 jbd2_debug(1, "Now suspending kjournald2\n"); 222 write_unlock(&journal->j_state_lock); 223 try_to_freeze(); 224 write_lock(&journal->j_state_lock); 225 } else { 226 /* 227 * We assume on resume that commits are already there, 228 * so we don't sleep 229 */ 230 DEFINE_WAIT(wait); 231 int should_sleep = 1; 232 233 prepare_to_wait(&journal->j_wait_commit, &wait, 234 TASK_INTERRUPTIBLE); 235 if (journal->j_commit_sequence != journal->j_commit_request) 236 should_sleep = 0; 237 transaction = journal->j_running_transaction; 238 if (transaction && time_after_eq(jiffies, 239 transaction->t_expires)) 240 should_sleep = 0; 241 if (journal->j_flags & JBD2_UNMOUNT) 242 should_sleep = 0; 243 if (should_sleep) { 244 write_unlock(&journal->j_state_lock); 245 schedule(); 246 write_lock(&journal->j_state_lock); 247 } 248 finish_wait(&journal->j_wait_commit, &wait); 249 } 250 251 jbd2_debug(1, "kjournald2 wakes\n"); 252 253 /* 254 * Were we woken up by a commit wakeup event? 255 */ 256 transaction = journal->j_running_transaction; 257 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 258 journal->j_commit_request = transaction->t_tid; 259 jbd2_debug(1, "woke because of timeout\n"); 260 } 261 goto loop; 262 263 end_loop: 264 del_timer_sync(&journal->j_commit_timer); 265 journal->j_task = NULL; 266 wake_up(&journal->j_wait_done_commit); 267 jbd2_debug(1, "Journal thread exiting.\n"); 268 write_unlock(&journal->j_state_lock); 269 return 0; 270 } 271 272 static int jbd2_journal_start_thread(journal_t *journal) 273 { 274 struct task_struct *t; 275 276 t = kthread_run(kjournald2, journal, "jbd2/%s", 277 journal->j_devname); 278 if (IS_ERR(t)) 279 return PTR_ERR(t); 280 281 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 282 return 0; 283 } 284 285 static void journal_kill_thread(journal_t *journal) 286 { 287 write_lock(&journal->j_state_lock); 288 journal->j_flags |= JBD2_UNMOUNT; 289 290 while (journal->j_task) { 291 write_unlock(&journal->j_state_lock); 292 wake_up(&journal->j_wait_commit); 293 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 294 write_lock(&journal->j_state_lock); 295 } 296 write_unlock(&journal->j_state_lock); 297 } 298 299 /* 300 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 301 * 302 * Writes a metadata buffer to a given disk block. The actual IO is not 303 * performed but a new buffer_head is constructed which labels the data 304 * to be written with the correct destination disk block. 305 * 306 * Any magic-number escaping which needs to be done will cause a 307 * copy-out here. If the buffer happens to start with the 308 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 309 * magic number is only written to the log for descripter blocks. In 310 * this case, we copy the data and replace the first word with 0, and we 311 * return a result code which indicates that this buffer needs to be 312 * marked as an escaped buffer in the corresponding log descriptor 313 * block. The missing word can then be restored when the block is read 314 * during recovery. 315 * 316 * If the source buffer has already been modified by a new transaction 317 * since we took the last commit snapshot, we use the frozen copy of 318 * that data for IO. If we end up using the existing buffer_head's data 319 * for the write, then we have to make sure nobody modifies it while the 320 * IO is in progress. do_get_write_access() handles this. 321 * 322 * The function returns a pointer to the buffer_head to be used for IO. 323 * 324 * 325 * Return value: 326 * <0: Error 327 * >=0: Finished OK 328 * 329 * On success: 330 * Bit 0 set == escape performed on the data 331 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 332 */ 333 334 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 335 struct journal_head *jh_in, 336 struct buffer_head **bh_out, 337 sector_t blocknr) 338 { 339 int need_copy_out = 0; 340 int done_copy_out = 0; 341 int do_escape = 0; 342 char *mapped_data; 343 struct buffer_head *new_bh; 344 struct page *new_page; 345 unsigned int new_offset; 346 struct buffer_head *bh_in = jh2bh(jh_in); 347 journal_t *journal = transaction->t_journal; 348 349 /* 350 * The buffer really shouldn't be locked: only the current committing 351 * transaction is allowed to write it, so nobody else is allowed 352 * to do any IO. 353 * 354 * akpm: except if we're journalling data, and write() output is 355 * also part of a shared mapping, and another thread has 356 * decided to launch a writepage() against this buffer. 357 */ 358 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 359 360 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL); 361 362 /* keep subsequent assertions sane */ 363 atomic_set(&new_bh->b_count, 1); 364 365 spin_lock(&jh_in->b_state_lock); 366 repeat: 367 /* 368 * If a new transaction has already done a buffer copy-out, then 369 * we use that version of the data for the commit. 370 */ 371 if (jh_in->b_frozen_data) { 372 done_copy_out = 1; 373 new_page = virt_to_page(jh_in->b_frozen_data); 374 new_offset = offset_in_page(jh_in->b_frozen_data); 375 } else { 376 new_page = jh2bh(jh_in)->b_page; 377 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 378 } 379 380 mapped_data = kmap_atomic(new_page); 381 /* 382 * Fire data frozen trigger if data already wasn't frozen. Do this 383 * before checking for escaping, as the trigger may modify the magic 384 * offset. If a copy-out happens afterwards, it will have the correct 385 * data in the buffer. 386 */ 387 if (!done_copy_out) 388 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset, 389 jh_in->b_triggers); 390 391 /* 392 * Check for escaping 393 */ 394 if (*((__be32 *)(mapped_data + new_offset)) == 395 cpu_to_be32(JBD2_MAGIC_NUMBER)) { 396 need_copy_out = 1; 397 do_escape = 1; 398 } 399 kunmap_atomic(mapped_data); 400 401 /* 402 * Do we need to do a data copy? 403 */ 404 if (need_copy_out && !done_copy_out) { 405 char *tmp; 406 407 spin_unlock(&jh_in->b_state_lock); 408 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS); 409 if (!tmp) { 410 brelse(new_bh); 411 return -ENOMEM; 412 } 413 spin_lock(&jh_in->b_state_lock); 414 if (jh_in->b_frozen_data) { 415 jbd2_free(tmp, bh_in->b_size); 416 goto repeat; 417 } 418 419 jh_in->b_frozen_data = tmp; 420 mapped_data = kmap_atomic(new_page); 421 memcpy(tmp, mapped_data + new_offset, bh_in->b_size); 422 kunmap_atomic(mapped_data); 423 424 new_page = virt_to_page(tmp); 425 new_offset = offset_in_page(tmp); 426 done_copy_out = 1; 427 428 /* 429 * This isn't strictly necessary, as we're using frozen 430 * data for the escaping, but it keeps consistency with 431 * b_frozen_data usage. 432 */ 433 jh_in->b_frozen_triggers = jh_in->b_triggers; 434 } 435 436 /* 437 * Did we need to do an escaping? Now we've done all the 438 * copying, we can finally do so. 439 */ 440 if (do_escape) { 441 mapped_data = kmap_atomic(new_page); 442 *((unsigned int *)(mapped_data + new_offset)) = 0; 443 kunmap_atomic(mapped_data); 444 } 445 446 set_bh_page(new_bh, new_page, new_offset); 447 new_bh->b_size = bh_in->b_size; 448 new_bh->b_bdev = journal->j_dev; 449 new_bh->b_blocknr = blocknr; 450 new_bh->b_private = bh_in; 451 set_buffer_mapped(new_bh); 452 set_buffer_dirty(new_bh); 453 454 *bh_out = new_bh; 455 456 /* 457 * The to-be-written buffer needs to get moved to the io queue, 458 * and the original buffer whose contents we are shadowing or 459 * copying is moved to the transaction's shadow queue. 460 */ 461 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 462 spin_lock(&journal->j_list_lock); 463 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 464 spin_unlock(&journal->j_list_lock); 465 set_buffer_shadow(bh_in); 466 spin_unlock(&jh_in->b_state_lock); 467 468 return do_escape | (done_copy_out << 1); 469 } 470 471 /* 472 * Allocation code for the journal file. Manage the space left in the 473 * journal, so that we can begin checkpointing when appropriate. 474 */ 475 476 /* 477 * Called with j_state_lock locked for writing. 478 * Returns true if a transaction commit was started. 479 */ 480 static int __jbd2_log_start_commit(journal_t *journal, tid_t target) 481 { 482 /* Return if the txn has already requested to be committed */ 483 if (journal->j_commit_request == target) 484 return 0; 485 486 /* 487 * The only transaction we can possibly wait upon is the 488 * currently running transaction (if it exists). Otherwise, 489 * the target tid must be an old one. 490 */ 491 if (journal->j_running_transaction && 492 journal->j_running_transaction->t_tid == target) { 493 /* 494 * We want a new commit: OK, mark the request and wakeup the 495 * commit thread. We do _not_ do the commit ourselves. 496 */ 497 498 journal->j_commit_request = target; 499 jbd2_debug(1, "JBD2: requesting commit %u/%u\n", 500 journal->j_commit_request, 501 journal->j_commit_sequence); 502 journal->j_running_transaction->t_requested = jiffies; 503 wake_up(&journal->j_wait_commit); 504 return 1; 505 } else if (!tid_geq(journal->j_commit_request, target)) 506 /* This should never happen, but if it does, preserve 507 the evidence before kjournald goes into a loop and 508 increments j_commit_sequence beyond all recognition. */ 509 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n", 510 journal->j_commit_request, 511 journal->j_commit_sequence, 512 target, journal->j_running_transaction ? 513 journal->j_running_transaction->t_tid : 0); 514 return 0; 515 } 516 517 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 518 { 519 int ret; 520 521 write_lock(&journal->j_state_lock); 522 ret = __jbd2_log_start_commit(journal, tid); 523 write_unlock(&journal->j_state_lock); 524 return ret; 525 } 526 527 /* 528 * Force and wait any uncommitted transactions. We can only force the running 529 * transaction if we don't have an active handle, otherwise, we will deadlock. 530 * Returns: <0 in case of error, 531 * 0 if nothing to commit, 532 * 1 if transaction was successfully committed. 533 */ 534 static int __jbd2_journal_force_commit(journal_t *journal) 535 { 536 transaction_t *transaction = NULL; 537 tid_t tid; 538 int need_to_start = 0, ret = 0; 539 540 read_lock(&journal->j_state_lock); 541 if (journal->j_running_transaction && !current->journal_info) { 542 transaction = journal->j_running_transaction; 543 if (!tid_geq(journal->j_commit_request, transaction->t_tid)) 544 need_to_start = 1; 545 } else if (journal->j_committing_transaction) 546 transaction = journal->j_committing_transaction; 547 548 if (!transaction) { 549 /* Nothing to commit */ 550 read_unlock(&journal->j_state_lock); 551 return 0; 552 } 553 tid = transaction->t_tid; 554 read_unlock(&journal->j_state_lock); 555 if (need_to_start) 556 jbd2_log_start_commit(journal, tid); 557 ret = jbd2_log_wait_commit(journal, tid); 558 if (!ret) 559 ret = 1; 560 561 return ret; 562 } 563 564 /** 565 * jbd2_journal_force_commit_nested - Force and wait upon a commit if the 566 * calling process is not within transaction. 567 * 568 * @journal: journal to force 569 * Returns true if progress was made. 570 * 571 * This is used for forcing out undo-protected data which contains 572 * bitmaps, when the fs is running out of space. 573 */ 574 int jbd2_journal_force_commit_nested(journal_t *journal) 575 { 576 int ret; 577 578 ret = __jbd2_journal_force_commit(journal); 579 return ret > 0; 580 } 581 582 /** 583 * jbd2_journal_force_commit() - force any uncommitted transactions 584 * @journal: journal to force 585 * 586 * Caller want unconditional commit. We can only force the running transaction 587 * if we don't have an active handle, otherwise, we will deadlock. 588 */ 589 int jbd2_journal_force_commit(journal_t *journal) 590 { 591 int ret; 592 593 J_ASSERT(!current->journal_info); 594 ret = __jbd2_journal_force_commit(journal); 595 if (ret > 0) 596 ret = 0; 597 return ret; 598 } 599 600 /* 601 * Start a commit of the current running transaction (if any). Returns true 602 * if a transaction is going to be committed (or is currently already 603 * committing), and fills its tid in at *ptid 604 */ 605 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 606 { 607 int ret = 0; 608 609 write_lock(&journal->j_state_lock); 610 if (journal->j_running_transaction) { 611 tid_t tid = journal->j_running_transaction->t_tid; 612 613 __jbd2_log_start_commit(journal, tid); 614 /* There's a running transaction and we've just made sure 615 * it's commit has been scheduled. */ 616 if (ptid) 617 *ptid = tid; 618 ret = 1; 619 } else if (journal->j_committing_transaction) { 620 /* 621 * If commit has been started, then we have to wait for 622 * completion of that transaction. 623 */ 624 if (ptid) 625 *ptid = journal->j_committing_transaction->t_tid; 626 ret = 1; 627 } 628 write_unlock(&journal->j_state_lock); 629 return ret; 630 } 631 632 /* 633 * Return 1 if a given transaction has not yet sent barrier request 634 * connected with a transaction commit. If 0 is returned, transaction 635 * may or may not have sent the barrier. Used to avoid sending barrier 636 * twice in common cases. 637 */ 638 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid) 639 { 640 int ret = 0; 641 transaction_t *commit_trans; 642 643 if (!(journal->j_flags & JBD2_BARRIER)) 644 return 0; 645 read_lock(&journal->j_state_lock); 646 /* Transaction already committed? */ 647 if (tid_geq(journal->j_commit_sequence, tid)) 648 goto out; 649 commit_trans = journal->j_committing_transaction; 650 if (!commit_trans || commit_trans->t_tid != tid) { 651 ret = 1; 652 goto out; 653 } 654 /* 655 * Transaction is being committed and we already proceeded to 656 * submitting a flush to fs partition? 657 */ 658 if (journal->j_fs_dev != journal->j_dev) { 659 if (!commit_trans->t_need_data_flush || 660 commit_trans->t_state >= T_COMMIT_DFLUSH) 661 goto out; 662 } else { 663 if (commit_trans->t_state >= T_COMMIT_JFLUSH) 664 goto out; 665 } 666 ret = 1; 667 out: 668 read_unlock(&journal->j_state_lock); 669 return ret; 670 } 671 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier); 672 673 /* 674 * Wait for a specified commit to complete. 675 * The caller may not hold the journal lock. 676 */ 677 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 678 { 679 int err = 0; 680 681 read_lock(&journal->j_state_lock); 682 #ifdef CONFIG_PROVE_LOCKING 683 /* 684 * Some callers make sure transaction is already committing and in that 685 * case we cannot block on open handles anymore. So don't warn in that 686 * case. 687 */ 688 if (tid_gt(tid, journal->j_commit_sequence) && 689 (!journal->j_committing_transaction || 690 journal->j_committing_transaction->t_tid != tid)) { 691 read_unlock(&journal->j_state_lock); 692 jbd2_might_wait_for_commit(journal); 693 read_lock(&journal->j_state_lock); 694 } 695 #endif 696 #ifdef CONFIG_JBD2_DEBUG 697 if (!tid_geq(journal->j_commit_request, tid)) { 698 printk(KERN_ERR 699 "%s: error: j_commit_request=%u, tid=%u\n", 700 __func__, journal->j_commit_request, tid); 701 } 702 #endif 703 while (tid_gt(tid, journal->j_commit_sequence)) { 704 jbd2_debug(1, "JBD2: want %u, j_commit_sequence=%u\n", 705 tid, journal->j_commit_sequence); 706 read_unlock(&journal->j_state_lock); 707 wake_up(&journal->j_wait_commit); 708 wait_event(journal->j_wait_done_commit, 709 !tid_gt(tid, journal->j_commit_sequence)); 710 read_lock(&journal->j_state_lock); 711 } 712 read_unlock(&journal->j_state_lock); 713 714 if (unlikely(is_journal_aborted(journal))) 715 err = -EIO; 716 return err; 717 } 718 719 /* 720 * Start a fast commit. If there's an ongoing fast or full commit wait for 721 * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY 722 * if a fast commit is not needed, either because there's an already a commit 723 * going on or this tid has already been committed. Returns -EINVAL if no jbd2 724 * commit has yet been performed. 725 */ 726 int jbd2_fc_begin_commit(journal_t *journal, tid_t tid) 727 { 728 if (unlikely(is_journal_aborted(journal))) 729 return -EIO; 730 /* 731 * Fast commits only allowed if at least one full commit has 732 * been processed. 733 */ 734 if (!journal->j_stats.ts_tid) 735 return -EINVAL; 736 737 write_lock(&journal->j_state_lock); 738 if (tid <= journal->j_commit_sequence) { 739 write_unlock(&journal->j_state_lock); 740 return -EALREADY; 741 } 742 743 if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING || 744 (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) { 745 DEFINE_WAIT(wait); 746 747 prepare_to_wait(&journal->j_fc_wait, &wait, 748 TASK_UNINTERRUPTIBLE); 749 write_unlock(&journal->j_state_lock); 750 schedule(); 751 finish_wait(&journal->j_fc_wait, &wait); 752 return -EALREADY; 753 } 754 journal->j_flags |= JBD2_FAST_COMMIT_ONGOING; 755 write_unlock(&journal->j_state_lock); 756 jbd2_journal_lock_updates(journal); 757 758 return 0; 759 } 760 EXPORT_SYMBOL(jbd2_fc_begin_commit); 761 762 /* 763 * Stop a fast commit. If fallback is set, this function starts commit of 764 * TID tid before any other fast commit can start. 765 */ 766 static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback) 767 { 768 jbd2_journal_unlock_updates(journal); 769 if (journal->j_fc_cleanup_callback) 770 journal->j_fc_cleanup_callback(journal, 0, tid); 771 write_lock(&journal->j_state_lock); 772 journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING; 773 if (fallback) 774 journal->j_flags |= JBD2_FULL_COMMIT_ONGOING; 775 write_unlock(&journal->j_state_lock); 776 wake_up(&journal->j_fc_wait); 777 if (fallback) 778 return jbd2_complete_transaction(journal, tid); 779 return 0; 780 } 781 782 int jbd2_fc_end_commit(journal_t *journal) 783 { 784 return __jbd2_fc_end_commit(journal, 0, false); 785 } 786 EXPORT_SYMBOL(jbd2_fc_end_commit); 787 788 int jbd2_fc_end_commit_fallback(journal_t *journal) 789 { 790 tid_t tid; 791 792 read_lock(&journal->j_state_lock); 793 tid = journal->j_running_transaction ? 794 journal->j_running_transaction->t_tid : 0; 795 read_unlock(&journal->j_state_lock); 796 return __jbd2_fc_end_commit(journal, tid, true); 797 } 798 EXPORT_SYMBOL(jbd2_fc_end_commit_fallback); 799 800 /* Return 1 when transaction with given tid has already committed. */ 801 int jbd2_transaction_committed(journal_t *journal, tid_t tid) 802 { 803 int ret = 1; 804 805 read_lock(&journal->j_state_lock); 806 if (journal->j_running_transaction && 807 journal->j_running_transaction->t_tid == tid) 808 ret = 0; 809 if (journal->j_committing_transaction && 810 journal->j_committing_transaction->t_tid == tid) 811 ret = 0; 812 read_unlock(&journal->j_state_lock); 813 return ret; 814 } 815 EXPORT_SYMBOL(jbd2_transaction_committed); 816 817 /* 818 * When this function returns the transaction corresponding to tid 819 * will be completed. If the transaction has currently running, start 820 * committing that transaction before waiting for it to complete. If 821 * the transaction id is stale, it is by definition already completed, 822 * so just return SUCCESS. 823 */ 824 int jbd2_complete_transaction(journal_t *journal, tid_t tid) 825 { 826 int need_to_wait = 1; 827 828 read_lock(&journal->j_state_lock); 829 if (journal->j_running_transaction && 830 journal->j_running_transaction->t_tid == tid) { 831 if (journal->j_commit_request != tid) { 832 /* transaction not yet started, so request it */ 833 read_unlock(&journal->j_state_lock); 834 jbd2_log_start_commit(journal, tid); 835 goto wait_commit; 836 } 837 } else if (!(journal->j_committing_transaction && 838 journal->j_committing_transaction->t_tid == tid)) 839 need_to_wait = 0; 840 read_unlock(&journal->j_state_lock); 841 if (!need_to_wait) 842 return 0; 843 wait_commit: 844 return jbd2_log_wait_commit(journal, tid); 845 } 846 EXPORT_SYMBOL(jbd2_complete_transaction); 847 848 /* 849 * Log buffer allocation routines: 850 */ 851 852 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 853 { 854 unsigned long blocknr; 855 856 write_lock(&journal->j_state_lock); 857 J_ASSERT(journal->j_free > 1); 858 859 blocknr = journal->j_head; 860 journal->j_head++; 861 journal->j_free--; 862 if (journal->j_head == journal->j_last) 863 journal->j_head = journal->j_first; 864 write_unlock(&journal->j_state_lock); 865 return jbd2_journal_bmap(journal, blocknr, retp); 866 } 867 868 /* Map one fast commit buffer for use by the file system */ 869 int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out) 870 { 871 unsigned long long pblock; 872 unsigned long blocknr; 873 int ret = 0; 874 struct buffer_head *bh; 875 int fc_off; 876 877 *bh_out = NULL; 878 879 if (journal->j_fc_off + journal->j_fc_first < journal->j_fc_last) { 880 fc_off = journal->j_fc_off; 881 blocknr = journal->j_fc_first + fc_off; 882 journal->j_fc_off++; 883 } else { 884 ret = -EINVAL; 885 } 886 887 if (ret) 888 return ret; 889 890 ret = jbd2_journal_bmap(journal, blocknr, &pblock); 891 if (ret) 892 return ret; 893 894 bh = __getblk(journal->j_dev, pblock, journal->j_blocksize); 895 if (!bh) 896 return -ENOMEM; 897 898 899 journal->j_fc_wbuf[fc_off] = bh; 900 901 *bh_out = bh; 902 903 return 0; 904 } 905 EXPORT_SYMBOL(jbd2_fc_get_buf); 906 907 /* 908 * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf 909 * for completion. 910 */ 911 int jbd2_fc_wait_bufs(journal_t *journal, int num_blks) 912 { 913 struct buffer_head *bh; 914 int i, j_fc_off; 915 916 j_fc_off = journal->j_fc_off; 917 918 /* 919 * Wait in reverse order to minimize chances of us being woken up before 920 * all IOs have completed 921 */ 922 for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) { 923 bh = journal->j_fc_wbuf[i]; 924 wait_on_buffer(bh); 925 /* 926 * Update j_fc_off so jbd2_fc_release_bufs can release remain 927 * buffer head. 928 */ 929 if (unlikely(!buffer_uptodate(bh))) { 930 journal->j_fc_off = i + 1; 931 return -EIO; 932 } 933 put_bh(bh); 934 journal->j_fc_wbuf[i] = NULL; 935 } 936 937 return 0; 938 } 939 EXPORT_SYMBOL(jbd2_fc_wait_bufs); 940 941 int jbd2_fc_release_bufs(journal_t *journal) 942 { 943 struct buffer_head *bh; 944 int i, j_fc_off; 945 946 j_fc_off = journal->j_fc_off; 947 948 for (i = j_fc_off - 1; i >= 0; i--) { 949 bh = journal->j_fc_wbuf[i]; 950 if (!bh) 951 break; 952 put_bh(bh); 953 journal->j_fc_wbuf[i] = NULL; 954 } 955 956 return 0; 957 } 958 EXPORT_SYMBOL(jbd2_fc_release_bufs); 959 960 /* 961 * Conversion of logical to physical block numbers for the journal 962 * 963 * On external journals the journal blocks are identity-mapped, so 964 * this is a no-op. If needed, we can use j_blk_offset - everything is 965 * ready. 966 */ 967 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 968 unsigned long long *retp) 969 { 970 int err = 0; 971 unsigned long long ret; 972 sector_t block = blocknr; 973 974 if (journal->j_bmap) { 975 err = journal->j_bmap(journal, &block); 976 if (err == 0) 977 *retp = block; 978 } else if (journal->j_inode) { 979 ret = bmap(journal->j_inode, &block); 980 981 if (ret || !block) { 982 printk(KERN_ALERT "%s: journal block not found " 983 "at offset %lu on %s\n", 984 __func__, blocknr, journal->j_devname); 985 err = -EIO; 986 jbd2_journal_abort(journal, err); 987 } else { 988 *retp = block; 989 } 990 991 } else { 992 *retp = blocknr; /* +journal->j_blk_offset */ 993 } 994 return err; 995 } 996 997 /* 998 * We play buffer_head aliasing tricks to write data/metadata blocks to 999 * the journal without copying their contents, but for journal 1000 * descriptor blocks we do need to generate bona fide buffers. 1001 * 1002 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 1003 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 1004 * But we don't bother doing that, so there will be coherency problems with 1005 * mmaps of blockdevs which hold live JBD-controlled filesystems. 1006 */ 1007 struct buffer_head * 1008 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type) 1009 { 1010 journal_t *journal = transaction->t_journal; 1011 struct buffer_head *bh; 1012 unsigned long long blocknr; 1013 journal_header_t *header; 1014 int err; 1015 1016 err = jbd2_journal_next_log_block(journal, &blocknr); 1017 1018 if (err) 1019 return NULL; 1020 1021 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 1022 if (!bh) 1023 return NULL; 1024 atomic_dec(&transaction->t_outstanding_credits); 1025 lock_buffer(bh); 1026 memset(bh->b_data, 0, journal->j_blocksize); 1027 header = (journal_header_t *)bh->b_data; 1028 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER); 1029 header->h_blocktype = cpu_to_be32(type); 1030 header->h_sequence = cpu_to_be32(transaction->t_tid); 1031 set_buffer_uptodate(bh); 1032 unlock_buffer(bh); 1033 BUFFER_TRACE(bh, "return this buffer"); 1034 return bh; 1035 } 1036 1037 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh) 1038 { 1039 struct jbd2_journal_block_tail *tail; 1040 __u32 csum; 1041 1042 if (!jbd2_journal_has_csum_v2or3(j)) 1043 return; 1044 1045 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize - 1046 sizeof(struct jbd2_journal_block_tail)); 1047 tail->t_checksum = 0; 1048 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize); 1049 tail->t_checksum = cpu_to_be32(csum); 1050 } 1051 1052 /* 1053 * Return tid of the oldest transaction in the journal and block in the journal 1054 * where the transaction starts. 1055 * 1056 * If the journal is now empty, return which will be the next transaction ID 1057 * we will write and where will that transaction start. 1058 * 1059 * The return value is 0 if journal tail cannot be pushed any further, 1 if 1060 * it can. 1061 */ 1062 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid, 1063 unsigned long *block) 1064 { 1065 transaction_t *transaction; 1066 int ret; 1067 1068 read_lock(&journal->j_state_lock); 1069 spin_lock(&journal->j_list_lock); 1070 transaction = journal->j_checkpoint_transactions; 1071 if (transaction) { 1072 *tid = transaction->t_tid; 1073 *block = transaction->t_log_start; 1074 } else if ((transaction = journal->j_committing_transaction) != NULL) { 1075 *tid = transaction->t_tid; 1076 *block = transaction->t_log_start; 1077 } else if ((transaction = journal->j_running_transaction) != NULL) { 1078 *tid = transaction->t_tid; 1079 *block = journal->j_head; 1080 } else { 1081 *tid = journal->j_transaction_sequence; 1082 *block = journal->j_head; 1083 } 1084 ret = tid_gt(*tid, journal->j_tail_sequence); 1085 spin_unlock(&journal->j_list_lock); 1086 read_unlock(&journal->j_state_lock); 1087 1088 return ret; 1089 } 1090 1091 /* 1092 * Update information in journal structure and in on disk journal superblock 1093 * about log tail. This function does not check whether information passed in 1094 * really pushes log tail further. It's responsibility of the caller to make 1095 * sure provided log tail information is valid (e.g. by holding 1096 * j_checkpoint_mutex all the time between computing log tail and calling this 1097 * function as is the case with jbd2_cleanup_journal_tail()). 1098 * 1099 * Requires j_checkpoint_mutex 1100 */ 1101 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 1102 { 1103 unsigned long freed; 1104 int ret; 1105 1106 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1107 1108 /* 1109 * We cannot afford for write to remain in drive's caches since as 1110 * soon as we update j_tail, next transaction can start reusing journal 1111 * space and if we lose sb update during power failure we'd replay 1112 * old transaction with possibly newly overwritten data. 1113 */ 1114 ret = jbd2_journal_update_sb_log_tail(journal, tid, block, 1115 REQ_SYNC | REQ_FUA); 1116 if (ret) 1117 goto out; 1118 1119 write_lock(&journal->j_state_lock); 1120 freed = block - journal->j_tail; 1121 if (block < journal->j_tail) 1122 freed += journal->j_last - journal->j_first; 1123 1124 trace_jbd2_update_log_tail(journal, tid, block, freed); 1125 jbd2_debug(1, 1126 "Cleaning journal tail from %u to %u (offset %lu), " 1127 "freeing %lu\n", 1128 journal->j_tail_sequence, tid, block, freed); 1129 1130 journal->j_free += freed; 1131 journal->j_tail_sequence = tid; 1132 journal->j_tail = block; 1133 write_unlock(&journal->j_state_lock); 1134 1135 out: 1136 return ret; 1137 } 1138 1139 /* 1140 * This is a variation of __jbd2_update_log_tail which checks for validity of 1141 * provided log tail and locks j_checkpoint_mutex. So it is safe against races 1142 * with other threads updating log tail. 1143 */ 1144 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 1145 { 1146 mutex_lock_io(&journal->j_checkpoint_mutex); 1147 if (tid_gt(tid, journal->j_tail_sequence)) 1148 __jbd2_update_log_tail(journal, tid, block); 1149 mutex_unlock(&journal->j_checkpoint_mutex); 1150 } 1151 1152 struct jbd2_stats_proc_session { 1153 journal_t *journal; 1154 struct transaction_stats_s *stats; 1155 int start; 1156 int max; 1157 }; 1158 1159 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 1160 { 1161 return *pos ? NULL : SEQ_START_TOKEN; 1162 } 1163 1164 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 1165 { 1166 (*pos)++; 1167 return NULL; 1168 } 1169 1170 static int jbd2_seq_info_show(struct seq_file *seq, void *v) 1171 { 1172 struct jbd2_stats_proc_session *s = seq->private; 1173 1174 if (v != SEQ_START_TOKEN) 1175 return 0; 1176 seq_printf(seq, "%lu transactions (%lu requested), " 1177 "each up to %u blocks\n", 1178 s->stats->ts_tid, s->stats->ts_requested, 1179 s->journal->j_max_transaction_buffers); 1180 if (s->stats->ts_tid == 0) 1181 return 0; 1182 seq_printf(seq, "average: \n %ums waiting for transaction\n", 1183 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); 1184 seq_printf(seq, " %ums request delay\n", 1185 (s->stats->ts_requested == 0) ? 0 : 1186 jiffies_to_msecs(s->stats->run.rs_request_delay / 1187 s->stats->ts_requested)); 1188 seq_printf(seq, " %ums running transaction\n", 1189 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); 1190 seq_printf(seq, " %ums transaction was being locked\n", 1191 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); 1192 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 1193 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); 1194 seq_printf(seq, " %ums logging transaction\n", 1195 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); 1196 seq_printf(seq, " %lluus average transaction commit time\n", 1197 div_u64(s->journal->j_average_commit_time, 1000)); 1198 seq_printf(seq, " %lu handles per transaction\n", 1199 s->stats->run.rs_handle_count / s->stats->ts_tid); 1200 seq_printf(seq, " %lu blocks per transaction\n", 1201 s->stats->run.rs_blocks / s->stats->ts_tid); 1202 seq_printf(seq, " %lu logged blocks per transaction\n", 1203 s->stats->run.rs_blocks_logged / s->stats->ts_tid); 1204 return 0; 1205 } 1206 1207 static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 1208 { 1209 } 1210 1211 static const struct seq_operations jbd2_seq_info_ops = { 1212 .start = jbd2_seq_info_start, 1213 .next = jbd2_seq_info_next, 1214 .stop = jbd2_seq_info_stop, 1215 .show = jbd2_seq_info_show, 1216 }; 1217 1218 static int jbd2_seq_info_open(struct inode *inode, struct file *file) 1219 { 1220 journal_t *journal = pde_data(inode); 1221 struct jbd2_stats_proc_session *s; 1222 int rc, size; 1223 1224 s = kmalloc(sizeof(*s), GFP_KERNEL); 1225 if (s == NULL) 1226 return -ENOMEM; 1227 size = sizeof(struct transaction_stats_s); 1228 s->stats = kmalloc(size, GFP_KERNEL); 1229 if (s->stats == NULL) { 1230 kfree(s); 1231 return -ENOMEM; 1232 } 1233 spin_lock(&journal->j_history_lock); 1234 memcpy(s->stats, &journal->j_stats, size); 1235 s->journal = journal; 1236 spin_unlock(&journal->j_history_lock); 1237 1238 rc = seq_open(file, &jbd2_seq_info_ops); 1239 if (rc == 0) { 1240 struct seq_file *m = file->private_data; 1241 m->private = s; 1242 } else { 1243 kfree(s->stats); 1244 kfree(s); 1245 } 1246 return rc; 1247 1248 } 1249 1250 static int jbd2_seq_info_release(struct inode *inode, struct file *file) 1251 { 1252 struct seq_file *seq = file->private_data; 1253 struct jbd2_stats_proc_session *s = seq->private; 1254 kfree(s->stats); 1255 kfree(s); 1256 return seq_release(inode, file); 1257 } 1258 1259 static const struct proc_ops jbd2_info_proc_ops = { 1260 .proc_open = jbd2_seq_info_open, 1261 .proc_read = seq_read, 1262 .proc_lseek = seq_lseek, 1263 .proc_release = jbd2_seq_info_release, 1264 }; 1265 1266 static struct proc_dir_entry *proc_jbd2_stats; 1267 1268 static void jbd2_stats_proc_init(journal_t *journal) 1269 { 1270 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 1271 if (journal->j_proc_entry) { 1272 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 1273 &jbd2_info_proc_ops, journal); 1274 } 1275 } 1276 1277 static void jbd2_stats_proc_exit(journal_t *journal) 1278 { 1279 remove_proc_entry("info", journal->j_proc_entry); 1280 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 1281 } 1282 1283 /* Minimum size of descriptor tag */ 1284 static int jbd2_min_tag_size(void) 1285 { 1286 /* 1287 * Tag with 32-bit block numbers does not use last four bytes of the 1288 * structure 1289 */ 1290 return sizeof(journal_block_tag_t) - 4; 1291 } 1292 1293 /** 1294 * jbd2_journal_shrink_scan() 1295 * @shrink: shrinker to work on 1296 * @sc: reclaim request to process 1297 * 1298 * Scan the checkpointed buffer on the checkpoint list and release the 1299 * journal_head. 1300 */ 1301 static unsigned long jbd2_journal_shrink_scan(struct shrinker *shrink, 1302 struct shrink_control *sc) 1303 { 1304 journal_t *journal = container_of(shrink, journal_t, j_shrinker); 1305 unsigned long nr_to_scan = sc->nr_to_scan; 1306 unsigned long nr_shrunk; 1307 unsigned long count; 1308 1309 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count); 1310 trace_jbd2_shrink_scan_enter(journal, sc->nr_to_scan, count); 1311 1312 nr_shrunk = jbd2_journal_shrink_checkpoint_list(journal, &nr_to_scan); 1313 1314 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count); 1315 trace_jbd2_shrink_scan_exit(journal, nr_to_scan, nr_shrunk, count); 1316 1317 return nr_shrunk; 1318 } 1319 1320 /** 1321 * jbd2_journal_shrink_count() 1322 * @shrink: shrinker to work on 1323 * @sc: reclaim request to process 1324 * 1325 * Count the number of checkpoint buffers on the checkpoint list. 1326 */ 1327 static unsigned long jbd2_journal_shrink_count(struct shrinker *shrink, 1328 struct shrink_control *sc) 1329 { 1330 journal_t *journal = container_of(shrink, journal_t, j_shrinker); 1331 unsigned long count; 1332 1333 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count); 1334 trace_jbd2_shrink_count(journal, sc->nr_to_scan, count); 1335 1336 return count; 1337 } 1338 1339 /* 1340 * Management for journal control blocks: functions to create and 1341 * destroy journal_t structures, and to initialise and read existing 1342 * journal blocks from disk. */ 1343 1344 /* First: create and setup a journal_t object in memory. We initialise 1345 * very few fields yet: that has to wait until we have created the 1346 * journal structures from from scratch, or loaded them from disk. */ 1347 1348 static journal_t *journal_init_common(struct block_device *bdev, 1349 struct block_device *fs_dev, 1350 unsigned long long start, int len, int blocksize) 1351 { 1352 static struct lock_class_key jbd2_trans_commit_key; 1353 journal_t *journal; 1354 int err; 1355 struct buffer_head *bh; 1356 int n; 1357 1358 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 1359 if (!journal) 1360 return NULL; 1361 1362 init_waitqueue_head(&journal->j_wait_transaction_locked); 1363 init_waitqueue_head(&journal->j_wait_done_commit); 1364 init_waitqueue_head(&journal->j_wait_commit); 1365 init_waitqueue_head(&journal->j_wait_updates); 1366 init_waitqueue_head(&journal->j_wait_reserved); 1367 init_waitqueue_head(&journal->j_fc_wait); 1368 mutex_init(&journal->j_abort_mutex); 1369 mutex_init(&journal->j_barrier); 1370 mutex_init(&journal->j_checkpoint_mutex); 1371 spin_lock_init(&journal->j_revoke_lock); 1372 spin_lock_init(&journal->j_list_lock); 1373 rwlock_init(&journal->j_state_lock); 1374 1375 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 1376 journal->j_min_batch_time = 0; 1377 journal->j_max_batch_time = 15000; /* 15ms */ 1378 atomic_set(&journal->j_reserved_credits, 0); 1379 1380 /* The journal is marked for error until we succeed with recovery! */ 1381 journal->j_flags = JBD2_ABORT; 1382 1383 /* Set up a default-sized revoke table for the new mount. */ 1384 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 1385 if (err) 1386 goto err_cleanup; 1387 1388 spin_lock_init(&journal->j_history_lock); 1389 1390 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle", 1391 &jbd2_trans_commit_key, 0); 1392 1393 /* journal descriptor can store up to n blocks -bzzz */ 1394 journal->j_blocksize = blocksize; 1395 journal->j_dev = bdev; 1396 journal->j_fs_dev = fs_dev; 1397 journal->j_blk_offset = start; 1398 journal->j_total_len = len; 1399 /* We need enough buffers to write out full descriptor block. */ 1400 n = journal->j_blocksize / jbd2_min_tag_size(); 1401 journal->j_wbufsize = n; 1402 journal->j_fc_wbuf = NULL; 1403 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *), 1404 GFP_KERNEL); 1405 if (!journal->j_wbuf) 1406 goto err_cleanup; 1407 1408 bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize); 1409 if (!bh) { 1410 pr_err("%s: Cannot get buffer for journal superblock\n", 1411 __func__); 1412 goto err_cleanup; 1413 } 1414 journal->j_sb_buffer = bh; 1415 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1416 1417 journal->j_shrink_transaction = NULL; 1418 journal->j_shrinker.scan_objects = jbd2_journal_shrink_scan; 1419 journal->j_shrinker.count_objects = jbd2_journal_shrink_count; 1420 journal->j_shrinker.seeks = DEFAULT_SEEKS; 1421 journal->j_shrinker.batch = journal->j_max_transaction_buffers; 1422 1423 if (percpu_counter_init(&journal->j_checkpoint_jh_count, 0, GFP_KERNEL)) 1424 goto err_cleanup; 1425 1426 if (register_shrinker(&journal->j_shrinker, "jbd2-journal:(%u:%u)", 1427 MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev))) { 1428 percpu_counter_destroy(&journal->j_checkpoint_jh_count); 1429 goto err_cleanup; 1430 } 1431 return journal; 1432 1433 err_cleanup: 1434 brelse(journal->j_sb_buffer); 1435 kfree(journal->j_wbuf); 1436 jbd2_journal_destroy_revoke(journal); 1437 kfree(journal); 1438 return NULL; 1439 } 1440 1441 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 1442 * 1443 * Create a journal structure assigned some fixed set of disk blocks to 1444 * the journal. We don't actually touch those disk blocks yet, but we 1445 * need to set up all of the mapping information to tell the journaling 1446 * system where the journal blocks are. 1447 * 1448 */ 1449 1450 /** 1451 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 1452 * @bdev: Block device on which to create the journal 1453 * @fs_dev: Device which hold journalled filesystem for this journal. 1454 * @start: Block nr Start of journal. 1455 * @len: Length of the journal in blocks. 1456 * @blocksize: blocksize of journalling device 1457 * 1458 * Returns: a newly created journal_t * 1459 * 1460 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 1461 * range of blocks on an arbitrary block device. 1462 * 1463 */ 1464 journal_t *jbd2_journal_init_dev(struct block_device *bdev, 1465 struct block_device *fs_dev, 1466 unsigned long long start, int len, int blocksize) 1467 { 1468 journal_t *journal; 1469 1470 journal = journal_init_common(bdev, fs_dev, start, len, blocksize); 1471 if (!journal) 1472 return NULL; 1473 1474 snprintf(journal->j_devname, sizeof(journal->j_devname), 1475 "%pg", journal->j_dev); 1476 strreplace(journal->j_devname, '/', '!'); 1477 jbd2_stats_proc_init(journal); 1478 1479 return journal; 1480 } 1481 1482 /** 1483 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 1484 * @inode: An inode to create the journal in 1485 * 1486 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 1487 * the journal. The inode must exist already, must support bmap() and 1488 * must have all data blocks preallocated. 1489 */ 1490 journal_t *jbd2_journal_init_inode(struct inode *inode) 1491 { 1492 journal_t *journal; 1493 sector_t blocknr; 1494 char *p; 1495 int err = 0; 1496 1497 blocknr = 0; 1498 err = bmap(inode, &blocknr); 1499 1500 if (err || !blocknr) { 1501 pr_err("%s: Cannot locate journal superblock\n", 1502 __func__); 1503 return NULL; 1504 } 1505 1506 jbd2_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n", 1507 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size, 1508 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 1509 1510 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev, 1511 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits, 1512 inode->i_sb->s_blocksize); 1513 if (!journal) 1514 return NULL; 1515 1516 journal->j_inode = inode; 1517 snprintf(journal->j_devname, sizeof(journal->j_devname), 1518 "%pg", journal->j_dev); 1519 p = strreplace(journal->j_devname, '/', '!'); 1520 sprintf(p, "-%lu", journal->j_inode->i_ino); 1521 jbd2_stats_proc_init(journal); 1522 1523 return journal; 1524 } 1525 1526 /* 1527 * If the journal init or create aborts, we need to mark the journal 1528 * superblock as being NULL to prevent the journal destroy from writing 1529 * back a bogus superblock. 1530 */ 1531 static void journal_fail_superblock(journal_t *journal) 1532 { 1533 struct buffer_head *bh = journal->j_sb_buffer; 1534 brelse(bh); 1535 journal->j_sb_buffer = NULL; 1536 } 1537 1538 /* 1539 * Given a journal_t structure, initialise the various fields for 1540 * startup of a new journaling session. We use this both when creating 1541 * a journal, and after recovering an old journal to reset it for 1542 * subsequent use. 1543 */ 1544 1545 static int journal_reset(journal_t *journal) 1546 { 1547 journal_superblock_t *sb = journal->j_superblock; 1548 unsigned long long first, last; 1549 1550 first = be32_to_cpu(sb->s_first); 1551 last = be32_to_cpu(sb->s_maxlen); 1552 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1553 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n", 1554 first, last); 1555 journal_fail_superblock(journal); 1556 return -EINVAL; 1557 } 1558 1559 journal->j_first = first; 1560 journal->j_last = last; 1561 1562 journal->j_head = journal->j_first; 1563 journal->j_tail = journal->j_first; 1564 journal->j_free = journal->j_last - journal->j_first; 1565 1566 journal->j_tail_sequence = journal->j_transaction_sequence; 1567 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1568 journal->j_commit_request = journal->j_commit_sequence; 1569 1570 journal->j_max_transaction_buffers = jbd2_journal_get_max_txn_bufs(journal); 1571 1572 /* 1573 * Now that journal recovery is done, turn fast commits off here. This 1574 * way, if fast commit was enabled before the crash but if now FS has 1575 * disabled it, we don't enable fast commits. 1576 */ 1577 jbd2_clear_feature_fast_commit(journal); 1578 1579 /* 1580 * As a special case, if the on-disk copy is already marked as needing 1581 * no recovery (s_start == 0), then we can safely defer the superblock 1582 * update until the next commit by setting JBD2_FLUSHED. This avoids 1583 * attempting a write to a potential-readonly device. 1584 */ 1585 if (sb->s_start == 0) { 1586 jbd2_debug(1, "JBD2: Skipping superblock update on recovered sb " 1587 "(start %ld, seq %u, errno %d)\n", 1588 journal->j_tail, journal->j_tail_sequence, 1589 journal->j_errno); 1590 journal->j_flags |= JBD2_FLUSHED; 1591 } else { 1592 /* Lock here to make assertions happy... */ 1593 mutex_lock_io(&journal->j_checkpoint_mutex); 1594 /* 1595 * Update log tail information. We use REQ_FUA since new 1596 * transaction will start reusing journal space and so we 1597 * must make sure information about current log tail is on 1598 * disk before that. 1599 */ 1600 jbd2_journal_update_sb_log_tail(journal, 1601 journal->j_tail_sequence, 1602 journal->j_tail, 1603 REQ_SYNC | REQ_FUA); 1604 mutex_unlock(&journal->j_checkpoint_mutex); 1605 } 1606 return jbd2_journal_start_thread(journal); 1607 } 1608 1609 /* 1610 * This function expects that the caller will have locked the journal 1611 * buffer head, and will return with it unlocked 1612 */ 1613 static int jbd2_write_superblock(journal_t *journal, blk_opf_t write_flags) 1614 { 1615 struct buffer_head *bh = journal->j_sb_buffer; 1616 journal_superblock_t *sb = journal->j_superblock; 1617 int ret = 0; 1618 1619 /* Buffer got discarded which means block device got invalidated */ 1620 if (!buffer_mapped(bh)) { 1621 unlock_buffer(bh); 1622 return -EIO; 1623 } 1624 1625 trace_jbd2_write_superblock(journal, write_flags); 1626 if (!(journal->j_flags & JBD2_BARRIER)) 1627 write_flags &= ~(REQ_FUA | REQ_PREFLUSH); 1628 if (buffer_write_io_error(bh)) { 1629 /* 1630 * Oh, dear. A previous attempt to write the journal 1631 * superblock failed. This could happen because the 1632 * USB device was yanked out. Or it could happen to 1633 * be a transient write error and maybe the block will 1634 * be remapped. Nothing we can do but to retry the 1635 * write and hope for the best. 1636 */ 1637 printk(KERN_ERR "JBD2: previous I/O error detected " 1638 "for journal superblock update for %s.\n", 1639 journal->j_devname); 1640 clear_buffer_write_io_error(bh); 1641 set_buffer_uptodate(bh); 1642 } 1643 if (jbd2_journal_has_csum_v2or3(journal)) 1644 sb->s_checksum = jbd2_superblock_csum(journal, sb); 1645 get_bh(bh); 1646 bh->b_end_io = end_buffer_write_sync; 1647 submit_bh(REQ_OP_WRITE | write_flags, bh); 1648 wait_on_buffer(bh); 1649 if (buffer_write_io_error(bh)) { 1650 clear_buffer_write_io_error(bh); 1651 set_buffer_uptodate(bh); 1652 ret = -EIO; 1653 } 1654 if (ret) { 1655 printk(KERN_ERR "JBD2: I/O error when updating journal superblock for %s.\n", 1656 journal->j_devname); 1657 if (!is_journal_aborted(journal)) 1658 jbd2_journal_abort(journal, ret); 1659 } 1660 1661 return ret; 1662 } 1663 1664 /** 1665 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk. 1666 * @journal: The journal to update. 1667 * @tail_tid: TID of the new transaction at the tail of the log 1668 * @tail_block: The first block of the transaction at the tail of the log 1669 * @write_flags: Flags for the journal sb write operation 1670 * 1671 * Update a journal's superblock information about log tail and write it to 1672 * disk, waiting for the IO to complete. 1673 */ 1674 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid, 1675 unsigned long tail_block, 1676 blk_opf_t write_flags) 1677 { 1678 journal_superblock_t *sb = journal->j_superblock; 1679 int ret; 1680 1681 if (is_journal_aborted(journal)) 1682 return -EIO; 1683 if (test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags)) { 1684 jbd2_journal_abort(journal, -EIO); 1685 return -EIO; 1686 } 1687 1688 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1689 jbd2_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n", 1690 tail_block, tail_tid); 1691 1692 lock_buffer(journal->j_sb_buffer); 1693 sb->s_sequence = cpu_to_be32(tail_tid); 1694 sb->s_start = cpu_to_be32(tail_block); 1695 1696 ret = jbd2_write_superblock(journal, write_flags); 1697 if (ret) 1698 goto out; 1699 1700 /* Log is no longer empty */ 1701 write_lock(&journal->j_state_lock); 1702 WARN_ON(!sb->s_sequence); 1703 journal->j_flags &= ~JBD2_FLUSHED; 1704 write_unlock(&journal->j_state_lock); 1705 1706 out: 1707 return ret; 1708 } 1709 1710 /** 1711 * jbd2_mark_journal_empty() - Mark on disk journal as empty. 1712 * @journal: The journal to update. 1713 * @write_flags: Flags for the journal sb write operation 1714 * 1715 * Update a journal's dynamic superblock fields to show that journal is empty. 1716 * Write updated superblock to disk waiting for IO to complete. 1717 */ 1718 static void jbd2_mark_journal_empty(journal_t *journal, blk_opf_t write_flags) 1719 { 1720 journal_superblock_t *sb = journal->j_superblock; 1721 bool had_fast_commit = false; 1722 1723 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1724 lock_buffer(journal->j_sb_buffer); 1725 if (sb->s_start == 0) { /* Is it already empty? */ 1726 unlock_buffer(journal->j_sb_buffer); 1727 return; 1728 } 1729 1730 jbd2_debug(1, "JBD2: Marking journal as empty (seq %u)\n", 1731 journal->j_tail_sequence); 1732 1733 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1734 sb->s_start = cpu_to_be32(0); 1735 if (jbd2_has_feature_fast_commit(journal)) { 1736 /* 1737 * When journal is clean, no need to commit fast commit flag and 1738 * make file system incompatible with older kernels. 1739 */ 1740 jbd2_clear_feature_fast_commit(journal); 1741 had_fast_commit = true; 1742 } 1743 1744 jbd2_write_superblock(journal, write_flags); 1745 1746 if (had_fast_commit) 1747 jbd2_set_feature_fast_commit(journal); 1748 1749 /* Log is no longer empty */ 1750 write_lock(&journal->j_state_lock); 1751 journal->j_flags |= JBD2_FLUSHED; 1752 write_unlock(&journal->j_state_lock); 1753 } 1754 1755 /** 1756 * __jbd2_journal_erase() - Discard or zeroout journal blocks (excluding superblock) 1757 * @journal: The journal to erase. 1758 * @flags: A discard/zeroout request is sent for each physically contigous 1759 * region of the journal. Either JBD2_JOURNAL_FLUSH_DISCARD or 1760 * JBD2_JOURNAL_FLUSH_ZEROOUT must be set to determine which operation 1761 * to perform. 1762 * 1763 * Note: JBD2_JOURNAL_FLUSH_ZEROOUT attempts to use hardware offload. Zeroes 1764 * will be explicitly written if no hardware offload is available, see 1765 * blkdev_issue_zeroout for more details. 1766 */ 1767 static int __jbd2_journal_erase(journal_t *journal, unsigned int flags) 1768 { 1769 int err = 0; 1770 unsigned long block, log_offset; /* logical */ 1771 unsigned long long phys_block, block_start, block_stop; /* physical */ 1772 loff_t byte_start, byte_stop, byte_count; 1773 1774 /* flags must be set to either discard or zeroout */ 1775 if ((flags & ~JBD2_JOURNAL_FLUSH_VALID) || !flags || 1776 ((flags & JBD2_JOURNAL_FLUSH_DISCARD) && 1777 (flags & JBD2_JOURNAL_FLUSH_ZEROOUT))) 1778 return -EINVAL; 1779 1780 if ((flags & JBD2_JOURNAL_FLUSH_DISCARD) && 1781 !bdev_max_discard_sectors(journal->j_dev)) 1782 return -EOPNOTSUPP; 1783 1784 /* 1785 * lookup block mapping and issue discard/zeroout for each 1786 * contiguous region 1787 */ 1788 log_offset = be32_to_cpu(journal->j_superblock->s_first); 1789 block_start = ~0ULL; 1790 for (block = log_offset; block < journal->j_total_len; block++) { 1791 err = jbd2_journal_bmap(journal, block, &phys_block); 1792 if (err) { 1793 pr_err("JBD2: bad block at offset %lu", block); 1794 return err; 1795 } 1796 1797 if (block_start == ~0ULL) { 1798 block_start = phys_block; 1799 block_stop = block_start - 1; 1800 } 1801 1802 /* 1803 * last block not contiguous with current block, 1804 * process last contiguous region and return to this block on 1805 * next loop 1806 */ 1807 if (phys_block != block_stop + 1) { 1808 block--; 1809 } else { 1810 block_stop++; 1811 /* 1812 * if this isn't the last block of journal, 1813 * no need to process now because next block may also 1814 * be part of this contiguous region 1815 */ 1816 if (block != journal->j_total_len - 1) 1817 continue; 1818 } 1819 1820 /* 1821 * end of contiguous region or this is last block of journal, 1822 * take care of the region 1823 */ 1824 byte_start = block_start * journal->j_blocksize; 1825 byte_stop = block_stop * journal->j_blocksize; 1826 byte_count = (block_stop - block_start + 1) * 1827 journal->j_blocksize; 1828 1829 truncate_inode_pages_range(journal->j_dev->bd_inode->i_mapping, 1830 byte_start, byte_stop); 1831 1832 if (flags & JBD2_JOURNAL_FLUSH_DISCARD) { 1833 err = blkdev_issue_discard(journal->j_dev, 1834 byte_start >> SECTOR_SHIFT, 1835 byte_count >> SECTOR_SHIFT, 1836 GFP_NOFS); 1837 } else if (flags & JBD2_JOURNAL_FLUSH_ZEROOUT) { 1838 err = blkdev_issue_zeroout(journal->j_dev, 1839 byte_start >> SECTOR_SHIFT, 1840 byte_count >> SECTOR_SHIFT, 1841 GFP_NOFS, 0); 1842 } 1843 1844 if (unlikely(err != 0)) { 1845 pr_err("JBD2: (error %d) unable to wipe journal at physical blocks %llu - %llu", 1846 err, block_start, block_stop); 1847 return err; 1848 } 1849 1850 /* reset start and stop after processing a region */ 1851 block_start = ~0ULL; 1852 } 1853 1854 return blkdev_issue_flush(journal->j_dev); 1855 } 1856 1857 /** 1858 * jbd2_journal_update_sb_errno() - Update error in the journal. 1859 * @journal: The journal to update. 1860 * 1861 * Update a journal's errno. Write updated superblock to disk waiting for IO 1862 * to complete. 1863 */ 1864 void jbd2_journal_update_sb_errno(journal_t *journal) 1865 { 1866 journal_superblock_t *sb = journal->j_superblock; 1867 int errcode; 1868 1869 lock_buffer(journal->j_sb_buffer); 1870 errcode = journal->j_errno; 1871 if (errcode == -ESHUTDOWN) 1872 errcode = 0; 1873 jbd2_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode); 1874 sb->s_errno = cpu_to_be32(errcode); 1875 1876 jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA); 1877 } 1878 EXPORT_SYMBOL(jbd2_journal_update_sb_errno); 1879 1880 static int journal_revoke_records_per_block(journal_t *journal) 1881 { 1882 int record_size; 1883 int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t); 1884 1885 if (jbd2_has_feature_64bit(journal)) 1886 record_size = 8; 1887 else 1888 record_size = 4; 1889 1890 if (jbd2_journal_has_csum_v2or3(journal)) 1891 space -= sizeof(struct jbd2_journal_block_tail); 1892 return space / record_size; 1893 } 1894 1895 /* 1896 * Read the superblock for a given journal, performing initial 1897 * validation of the format. 1898 */ 1899 static int journal_get_superblock(journal_t *journal) 1900 { 1901 struct buffer_head *bh; 1902 journal_superblock_t *sb; 1903 int err; 1904 1905 bh = journal->j_sb_buffer; 1906 1907 J_ASSERT(bh != NULL); 1908 err = bh_read(bh, 0); 1909 if (err < 0) { 1910 printk(KERN_ERR 1911 "JBD2: IO error reading journal superblock\n"); 1912 goto out; 1913 } 1914 1915 if (buffer_verified(bh)) 1916 return 0; 1917 1918 sb = journal->j_superblock; 1919 1920 err = -EINVAL; 1921 1922 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1923 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1924 printk(KERN_WARNING "JBD2: no valid journal superblock found\n"); 1925 goto out; 1926 } 1927 1928 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1929 case JBD2_SUPERBLOCK_V1: 1930 journal->j_format_version = 1; 1931 break; 1932 case JBD2_SUPERBLOCK_V2: 1933 journal->j_format_version = 2; 1934 break; 1935 default: 1936 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n"); 1937 goto out; 1938 } 1939 1940 if (be32_to_cpu(sb->s_maxlen) < journal->j_total_len) 1941 journal->j_total_len = be32_to_cpu(sb->s_maxlen); 1942 else if (be32_to_cpu(sb->s_maxlen) > journal->j_total_len) { 1943 printk(KERN_WARNING "JBD2: journal file too short\n"); 1944 goto out; 1945 } 1946 1947 if (be32_to_cpu(sb->s_first) == 0 || 1948 be32_to_cpu(sb->s_first) >= journal->j_total_len) { 1949 printk(KERN_WARNING 1950 "JBD2: Invalid start block of journal: %u\n", 1951 be32_to_cpu(sb->s_first)); 1952 goto out; 1953 } 1954 1955 if (jbd2_has_feature_csum2(journal) && 1956 jbd2_has_feature_csum3(journal)) { 1957 /* Can't have checksum v2 and v3 at the same time! */ 1958 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 " 1959 "at the same time!\n"); 1960 goto out; 1961 } 1962 1963 if (jbd2_journal_has_csum_v2or3_feature(journal) && 1964 jbd2_has_feature_checksum(journal)) { 1965 /* Can't have checksum v1 and v2 on at the same time! */ 1966 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 " 1967 "at the same time!\n"); 1968 goto out; 1969 } 1970 1971 if (!jbd2_verify_csum_type(journal, sb)) { 1972 printk(KERN_ERR "JBD2: Unknown checksum type\n"); 1973 goto out; 1974 } 1975 1976 /* Load the checksum driver */ 1977 if (jbd2_journal_has_csum_v2or3_feature(journal)) { 1978 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 1979 if (IS_ERR(journal->j_chksum_driver)) { 1980 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 1981 err = PTR_ERR(journal->j_chksum_driver); 1982 journal->j_chksum_driver = NULL; 1983 goto out; 1984 } 1985 } 1986 1987 if (jbd2_journal_has_csum_v2or3(journal)) { 1988 /* Check superblock checksum */ 1989 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) { 1990 printk(KERN_ERR "JBD2: journal checksum error\n"); 1991 err = -EFSBADCRC; 1992 goto out; 1993 } 1994 1995 /* Precompute checksum seed for all metadata */ 1996 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 1997 sizeof(sb->s_uuid)); 1998 } 1999 2000 journal->j_revoke_records_per_block = 2001 journal_revoke_records_per_block(journal); 2002 set_buffer_verified(bh); 2003 2004 return 0; 2005 2006 out: 2007 journal_fail_superblock(journal); 2008 return err; 2009 } 2010 2011 /* 2012 * Load the on-disk journal superblock and read the key fields into the 2013 * journal_t. 2014 */ 2015 2016 static int load_superblock(journal_t *journal) 2017 { 2018 int err; 2019 journal_superblock_t *sb; 2020 int num_fc_blocks; 2021 2022 err = journal_get_superblock(journal); 2023 if (err) 2024 return err; 2025 2026 sb = journal->j_superblock; 2027 2028 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 2029 journal->j_tail = be32_to_cpu(sb->s_start); 2030 journal->j_first = be32_to_cpu(sb->s_first); 2031 journal->j_errno = be32_to_cpu(sb->s_errno); 2032 journal->j_last = be32_to_cpu(sb->s_maxlen); 2033 2034 if (jbd2_has_feature_fast_commit(journal)) { 2035 journal->j_fc_last = be32_to_cpu(sb->s_maxlen); 2036 num_fc_blocks = jbd2_journal_get_num_fc_blks(sb); 2037 if (journal->j_last - num_fc_blocks >= JBD2_MIN_JOURNAL_BLOCKS) 2038 journal->j_last = journal->j_fc_last - num_fc_blocks; 2039 journal->j_fc_first = journal->j_last + 1; 2040 journal->j_fc_off = 0; 2041 } 2042 2043 return 0; 2044 } 2045 2046 2047 /** 2048 * jbd2_journal_load() - Read journal from disk. 2049 * @journal: Journal to act on. 2050 * 2051 * Given a journal_t structure which tells us which disk blocks contain 2052 * a journal, read the journal from disk to initialise the in-memory 2053 * structures. 2054 */ 2055 int jbd2_journal_load(journal_t *journal) 2056 { 2057 int err; 2058 journal_superblock_t *sb; 2059 2060 err = load_superblock(journal); 2061 if (err) 2062 return err; 2063 2064 sb = journal->j_superblock; 2065 /* If this is a V2 superblock, then we have to check the 2066 * features flags on it. */ 2067 2068 if (journal->j_format_version >= 2) { 2069 if ((sb->s_feature_ro_compat & 2070 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 2071 (sb->s_feature_incompat & 2072 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 2073 printk(KERN_WARNING 2074 "JBD2: Unrecognised features on journal\n"); 2075 return -EINVAL; 2076 } 2077 } 2078 2079 /* 2080 * Create a slab for this blocksize 2081 */ 2082 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize)); 2083 if (err) 2084 return err; 2085 2086 /* Let the recovery code check whether it needs to recover any 2087 * data from the journal. */ 2088 if (jbd2_journal_recover(journal)) 2089 goto recovery_error; 2090 2091 if (journal->j_failed_commit) { 2092 printk(KERN_ERR "JBD2: journal transaction %u on %s " 2093 "is corrupt.\n", journal->j_failed_commit, 2094 journal->j_devname); 2095 return -EFSCORRUPTED; 2096 } 2097 /* 2098 * clear JBD2_ABORT flag initialized in journal_init_common 2099 * here to update log tail information with the newest seq. 2100 */ 2101 journal->j_flags &= ~JBD2_ABORT; 2102 2103 /* OK, we've finished with the dynamic journal bits: 2104 * reinitialise the dynamic contents of the superblock in memory 2105 * and reset them on disk. */ 2106 if (journal_reset(journal)) 2107 goto recovery_error; 2108 2109 journal->j_flags |= JBD2_LOADED; 2110 return 0; 2111 2112 recovery_error: 2113 printk(KERN_WARNING "JBD2: recovery failed\n"); 2114 return -EIO; 2115 } 2116 2117 /** 2118 * jbd2_journal_destroy() - Release a journal_t structure. 2119 * @journal: Journal to act on. 2120 * 2121 * Release a journal_t structure once it is no longer in use by the 2122 * journaled object. 2123 * Return <0 if we couldn't clean up the journal. 2124 */ 2125 int jbd2_journal_destroy(journal_t *journal) 2126 { 2127 int err = 0; 2128 2129 /* Wait for the commit thread to wake up and die. */ 2130 journal_kill_thread(journal); 2131 2132 /* Force a final log commit */ 2133 if (journal->j_running_transaction) 2134 jbd2_journal_commit_transaction(journal); 2135 2136 /* Force any old transactions to disk */ 2137 2138 /* Totally anal locking here... */ 2139 spin_lock(&journal->j_list_lock); 2140 while (journal->j_checkpoint_transactions != NULL) { 2141 spin_unlock(&journal->j_list_lock); 2142 mutex_lock_io(&journal->j_checkpoint_mutex); 2143 err = jbd2_log_do_checkpoint(journal); 2144 mutex_unlock(&journal->j_checkpoint_mutex); 2145 /* 2146 * If checkpointing failed, just free the buffers to avoid 2147 * looping forever 2148 */ 2149 if (err) { 2150 jbd2_journal_destroy_checkpoint(journal); 2151 spin_lock(&journal->j_list_lock); 2152 break; 2153 } 2154 spin_lock(&journal->j_list_lock); 2155 } 2156 2157 J_ASSERT(journal->j_running_transaction == NULL); 2158 J_ASSERT(journal->j_committing_transaction == NULL); 2159 J_ASSERT(journal->j_checkpoint_transactions == NULL); 2160 spin_unlock(&journal->j_list_lock); 2161 2162 /* 2163 * OK, all checkpoint transactions have been checked, now check the 2164 * write out io error flag and abort the journal if some buffer failed 2165 * to write back to the original location, otherwise the filesystem 2166 * may become inconsistent. 2167 */ 2168 if (!is_journal_aborted(journal) && 2169 test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags)) 2170 jbd2_journal_abort(journal, -EIO); 2171 2172 if (journal->j_sb_buffer) { 2173 if (!is_journal_aborted(journal)) { 2174 mutex_lock_io(&journal->j_checkpoint_mutex); 2175 2176 write_lock(&journal->j_state_lock); 2177 journal->j_tail_sequence = 2178 ++journal->j_transaction_sequence; 2179 write_unlock(&journal->j_state_lock); 2180 2181 jbd2_mark_journal_empty(journal, 2182 REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 2183 mutex_unlock(&journal->j_checkpoint_mutex); 2184 } else 2185 err = -EIO; 2186 brelse(journal->j_sb_buffer); 2187 } 2188 2189 if (journal->j_shrinker.flags & SHRINKER_REGISTERED) { 2190 percpu_counter_destroy(&journal->j_checkpoint_jh_count); 2191 unregister_shrinker(&journal->j_shrinker); 2192 } 2193 if (journal->j_proc_entry) 2194 jbd2_stats_proc_exit(journal); 2195 iput(journal->j_inode); 2196 if (journal->j_revoke) 2197 jbd2_journal_destroy_revoke(journal); 2198 if (journal->j_chksum_driver) 2199 crypto_free_shash(journal->j_chksum_driver); 2200 kfree(journal->j_fc_wbuf); 2201 kfree(journal->j_wbuf); 2202 kfree(journal); 2203 2204 return err; 2205 } 2206 2207 2208 /** 2209 * jbd2_journal_check_used_features() - Check if features specified are used. 2210 * @journal: Journal to check. 2211 * @compat: bitmask of compatible features 2212 * @ro: bitmask of features that force read-only mount 2213 * @incompat: bitmask of incompatible features 2214 * 2215 * Check whether the journal uses all of a given set of 2216 * features. Return true (non-zero) if it does. 2217 **/ 2218 2219 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat, 2220 unsigned long ro, unsigned long incompat) 2221 { 2222 journal_superblock_t *sb; 2223 2224 if (!compat && !ro && !incompat) 2225 return 1; 2226 /* Load journal superblock if it is not loaded yet. */ 2227 if (journal->j_format_version == 0 && 2228 journal_get_superblock(journal) != 0) 2229 return 0; 2230 if (journal->j_format_version == 1) 2231 return 0; 2232 2233 sb = journal->j_superblock; 2234 2235 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 2236 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 2237 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 2238 return 1; 2239 2240 return 0; 2241 } 2242 2243 /** 2244 * jbd2_journal_check_available_features() - Check feature set in journalling layer 2245 * @journal: Journal to check. 2246 * @compat: bitmask of compatible features 2247 * @ro: bitmask of features that force read-only mount 2248 * @incompat: bitmask of incompatible features 2249 * 2250 * Check whether the journaling code supports the use of 2251 * all of a given set of features on this journal. Return true 2252 * (non-zero) if it can. */ 2253 2254 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat, 2255 unsigned long ro, unsigned long incompat) 2256 { 2257 if (!compat && !ro && !incompat) 2258 return 1; 2259 2260 /* We can support any known requested features iff the 2261 * superblock is in version 2. Otherwise we fail to support any 2262 * extended sb features. */ 2263 2264 if (journal->j_format_version != 2) 2265 return 0; 2266 2267 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 2268 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 2269 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 2270 return 1; 2271 2272 return 0; 2273 } 2274 2275 static int 2276 jbd2_journal_initialize_fast_commit(journal_t *journal) 2277 { 2278 journal_superblock_t *sb = journal->j_superblock; 2279 unsigned long long num_fc_blks; 2280 2281 num_fc_blks = jbd2_journal_get_num_fc_blks(sb); 2282 if (journal->j_last - num_fc_blks < JBD2_MIN_JOURNAL_BLOCKS) 2283 return -ENOSPC; 2284 2285 /* Are we called twice? */ 2286 WARN_ON(journal->j_fc_wbuf != NULL); 2287 journal->j_fc_wbuf = kmalloc_array(num_fc_blks, 2288 sizeof(struct buffer_head *), GFP_KERNEL); 2289 if (!journal->j_fc_wbuf) 2290 return -ENOMEM; 2291 2292 journal->j_fc_wbufsize = num_fc_blks; 2293 journal->j_fc_last = journal->j_last; 2294 journal->j_last = journal->j_fc_last - num_fc_blks; 2295 journal->j_fc_first = journal->j_last + 1; 2296 journal->j_fc_off = 0; 2297 journal->j_free = journal->j_last - journal->j_first; 2298 journal->j_max_transaction_buffers = 2299 jbd2_journal_get_max_txn_bufs(journal); 2300 2301 return 0; 2302 } 2303 2304 /** 2305 * jbd2_journal_set_features() - Mark a given journal feature in the superblock 2306 * @journal: Journal to act on. 2307 * @compat: bitmask of compatible features 2308 * @ro: bitmask of features that force read-only mount 2309 * @incompat: bitmask of incompatible features 2310 * 2311 * Mark a given journal feature as present on the 2312 * superblock. Returns true if the requested features could be set. 2313 * 2314 */ 2315 2316 int jbd2_journal_set_features(journal_t *journal, unsigned long compat, 2317 unsigned long ro, unsigned long incompat) 2318 { 2319 #define INCOMPAT_FEATURE_ON(f) \ 2320 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f))) 2321 #define COMPAT_FEATURE_ON(f) \ 2322 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f))) 2323 journal_superblock_t *sb; 2324 2325 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 2326 return 1; 2327 2328 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 2329 return 0; 2330 2331 /* If enabling v2 checksums, turn on v3 instead */ 2332 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) { 2333 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2; 2334 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3; 2335 } 2336 2337 /* Asking for checksumming v3 and v1? Only give them v3. */ 2338 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 && 2339 compat & JBD2_FEATURE_COMPAT_CHECKSUM) 2340 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM; 2341 2342 jbd2_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 2343 compat, ro, incompat); 2344 2345 sb = journal->j_superblock; 2346 2347 if (incompat & JBD2_FEATURE_INCOMPAT_FAST_COMMIT) { 2348 if (jbd2_journal_initialize_fast_commit(journal)) { 2349 pr_err("JBD2: Cannot enable fast commits.\n"); 2350 return 0; 2351 } 2352 } 2353 2354 /* Load the checksum driver if necessary */ 2355 if ((journal->j_chksum_driver == NULL) && 2356 INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 2357 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 2358 if (IS_ERR(journal->j_chksum_driver)) { 2359 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 2360 journal->j_chksum_driver = NULL; 2361 return 0; 2362 } 2363 /* Precompute checksum seed for all metadata */ 2364 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 2365 sizeof(sb->s_uuid)); 2366 } 2367 2368 lock_buffer(journal->j_sb_buffer); 2369 2370 /* If enabling v3 checksums, update superblock */ 2371 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 2372 sb->s_checksum_type = JBD2_CRC32C_CHKSUM; 2373 sb->s_feature_compat &= 2374 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM); 2375 } 2376 2377 /* If enabling v1 checksums, downgrade superblock */ 2378 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM)) 2379 sb->s_feature_incompat &= 2380 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 | 2381 JBD2_FEATURE_INCOMPAT_CSUM_V3); 2382 2383 sb->s_feature_compat |= cpu_to_be32(compat); 2384 sb->s_feature_ro_compat |= cpu_to_be32(ro); 2385 sb->s_feature_incompat |= cpu_to_be32(incompat); 2386 unlock_buffer(journal->j_sb_buffer); 2387 journal->j_revoke_records_per_block = 2388 journal_revoke_records_per_block(journal); 2389 2390 return 1; 2391 #undef COMPAT_FEATURE_ON 2392 #undef INCOMPAT_FEATURE_ON 2393 } 2394 2395 /* 2396 * jbd2_journal_clear_features() - Clear a given journal feature in the 2397 * superblock 2398 * @journal: Journal to act on. 2399 * @compat: bitmask of compatible features 2400 * @ro: bitmask of features that force read-only mount 2401 * @incompat: bitmask of incompatible features 2402 * 2403 * Clear a given journal feature as present on the 2404 * superblock. 2405 */ 2406 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 2407 unsigned long ro, unsigned long incompat) 2408 { 2409 journal_superblock_t *sb; 2410 2411 jbd2_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 2412 compat, ro, incompat); 2413 2414 sb = journal->j_superblock; 2415 2416 sb->s_feature_compat &= ~cpu_to_be32(compat); 2417 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 2418 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 2419 journal->j_revoke_records_per_block = 2420 journal_revoke_records_per_block(journal); 2421 } 2422 EXPORT_SYMBOL(jbd2_journal_clear_features); 2423 2424 /** 2425 * jbd2_journal_flush() - Flush journal 2426 * @journal: Journal to act on. 2427 * @flags: optional operation on the journal blocks after the flush (see below) 2428 * 2429 * Flush all data for a given journal to disk and empty the journal. 2430 * Filesystems can use this when remounting readonly to ensure that 2431 * recovery does not need to happen on remount. Optionally, a discard or zeroout 2432 * can be issued on the journal blocks after flushing. 2433 * 2434 * flags: 2435 * JBD2_JOURNAL_FLUSH_DISCARD: issues discards for the journal blocks 2436 * JBD2_JOURNAL_FLUSH_ZEROOUT: issues zeroouts for the journal blocks 2437 */ 2438 int jbd2_journal_flush(journal_t *journal, unsigned int flags) 2439 { 2440 int err = 0; 2441 transaction_t *transaction = NULL; 2442 2443 write_lock(&journal->j_state_lock); 2444 2445 /* Force everything buffered to the log... */ 2446 if (journal->j_running_transaction) { 2447 transaction = journal->j_running_transaction; 2448 __jbd2_log_start_commit(journal, transaction->t_tid); 2449 } else if (journal->j_committing_transaction) 2450 transaction = journal->j_committing_transaction; 2451 2452 /* Wait for the log commit to complete... */ 2453 if (transaction) { 2454 tid_t tid = transaction->t_tid; 2455 2456 write_unlock(&journal->j_state_lock); 2457 jbd2_log_wait_commit(journal, tid); 2458 } else { 2459 write_unlock(&journal->j_state_lock); 2460 } 2461 2462 /* ...and flush everything in the log out to disk. */ 2463 spin_lock(&journal->j_list_lock); 2464 while (!err && journal->j_checkpoint_transactions != NULL) { 2465 spin_unlock(&journal->j_list_lock); 2466 mutex_lock_io(&journal->j_checkpoint_mutex); 2467 err = jbd2_log_do_checkpoint(journal); 2468 mutex_unlock(&journal->j_checkpoint_mutex); 2469 spin_lock(&journal->j_list_lock); 2470 } 2471 spin_unlock(&journal->j_list_lock); 2472 2473 if (is_journal_aborted(journal)) 2474 return -EIO; 2475 2476 mutex_lock_io(&journal->j_checkpoint_mutex); 2477 if (!err) { 2478 err = jbd2_cleanup_journal_tail(journal); 2479 if (err < 0) { 2480 mutex_unlock(&journal->j_checkpoint_mutex); 2481 goto out; 2482 } 2483 err = 0; 2484 } 2485 2486 /* Finally, mark the journal as really needing no recovery. 2487 * This sets s_start==0 in the underlying superblock, which is 2488 * the magic code for a fully-recovered superblock. Any future 2489 * commits of data to the journal will restore the current 2490 * s_start value. */ 2491 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA); 2492 2493 if (flags) 2494 err = __jbd2_journal_erase(journal, flags); 2495 2496 mutex_unlock(&journal->j_checkpoint_mutex); 2497 write_lock(&journal->j_state_lock); 2498 J_ASSERT(!journal->j_running_transaction); 2499 J_ASSERT(!journal->j_committing_transaction); 2500 J_ASSERT(!journal->j_checkpoint_transactions); 2501 J_ASSERT(journal->j_head == journal->j_tail); 2502 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 2503 write_unlock(&journal->j_state_lock); 2504 out: 2505 return err; 2506 } 2507 2508 /** 2509 * jbd2_journal_wipe() - Wipe journal contents 2510 * @journal: Journal to act on. 2511 * @write: flag (see below) 2512 * 2513 * Wipe out all of the contents of a journal, safely. This will produce 2514 * a warning if the journal contains any valid recovery information. 2515 * Must be called between journal_init_*() and jbd2_journal_load(). 2516 * 2517 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 2518 * we merely suppress recovery. 2519 */ 2520 2521 int jbd2_journal_wipe(journal_t *journal, int write) 2522 { 2523 int err = 0; 2524 2525 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 2526 2527 err = load_superblock(journal); 2528 if (err) 2529 return err; 2530 2531 if (!journal->j_tail) 2532 goto no_recovery; 2533 2534 printk(KERN_WARNING "JBD2: %s recovery information on journal\n", 2535 write ? "Clearing" : "Ignoring"); 2536 2537 err = jbd2_journal_skip_recovery(journal); 2538 if (write) { 2539 /* Lock to make assertions happy... */ 2540 mutex_lock_io(&journal->j_checkpoint_mutex); 2541 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA); 2542 mutex_unlock(&journal->j_checkpoint_mutex); 2543 } 2544 2545 no_recovery: 2546 return err; 2547 } 2548 2549 /** 2550 * jbd2_journal_abort () - Shutdown the journal immediately. 2551 * @journal: the journal to shutdown. 2552 * @errno: an error number to record in the journal indicating 2553 * the reason for the shutdown. 2554 * 2555 * Perform a complete, immediate shutdown of the ENTIRE 2556 * journal (not of a single transaction). This operation cannot be 2557 * undone without closing and reopening the journal. 2558 * 2559 * The jbd2_journal_abort function is intended to support higher level error 2560 * recovery mechanisms such as the ext2/ext3 remount-readonly error 2561 * mode. 2562 * 2563 * Journal abort has very specific semantics. Any existing dirty, 2564 * unjournaled buffers in the main filesystem will still be written to 2565 * disk by bdflush, but the journaling mechanism will be suspended 2566 * immediately and no further transaction commits will be honoured. 2567 * 2568 * Any dirty, journaled buffers will be written back to disk without 2569 * hitting the journal. Atomicity cannot be guaranteed on an aborted 2570 * filesystem, but we _do_ attempt to leave as much data as possible 2571 * behind for fsck to use for cleanup. 2572 * 2573 * Any attempt to get a new transaction handle on a journal which is in 2574 * ABORT state will just result in an -EROFS error return. A 2575 * jbd2_journal_stop on an existing handle will return -EIO if we have 2576 * entered abort state during the update. 2577 * 2578 * Recursive transactions are not disturbed by journal abort until the 2579 * final jbd2_journal_stop, which will receive the -EIO error. 2580 * 2581 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 2582 * which will be recorded (if possible) in the journal superblock. This 2583 * allows a client to record failure conditions in the middle of a 2584 * transaction without having to complete the transaction to record the 2585 * failure to disk. ext3_error, for example, now uses this 2586 * functionality. 2587 * 2588 */ 2589 2590 void jbd2_journal_abort(journal_t *journal, int errno) 2591 { 2592 transaction_t *transaction; 2593 2594 /* 2595 * Lock the aborting procedure until everything is done, this avoid 2596 * races between filesystem's error handling flow (e.g. ext4_abort()), 2597 * ensure panic after the error info is written into journal's 2598 * superblock. 2599 */ 2600 mutex_lock(&journal->j_abort_mutex); 2601 /* 2602 * ESHUTDOWN always takes precedence because a file system check 2603 * caused by any other journal abort error is not required after 2604 * a shutdown triggered. 2605 */ 2606 write_lock(&journal->j_state_lock); 2607 if (journal->j_flags & JBD2_ABORT) { 2608 int old_errno = journal->j_errno; 2609 2610 write_unlock(&journal->j_state_lock); 2611 if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) { 2612 journal->j_errno = errno; 2613 jbd2_journal_update_sb_errno(journal); 2614 } 2615 mutex_unlock(&journal->j_abort_mutex); 2616 return; 2617 } 2618 2619 /* 2620 * Mark the abort as occurred and start current running transaction 2621 * to release all journaled buffer. 2622 */ 2623 pr_err("Aborting journal on device %s.\n", journal->j_devname); 2624 2625 journal->j_flags |= JBD2_ABORT; 2626 journal->j_errno = errno; 2627 transaction = journal->j_running_transaction; 2628 if (transaction) 2629 __jbd2_log_start_commit(journal, transaction->t_tid); 2630 write_unlock(&journal->j_state_lock); 2631 2632 /* 2633 * Record errno to the journal super block, so that fsck and jbd2 2634 * layer could realise that a filesystem check is needed. 2635 */ 2636 jbd2_journal_update_sb_errno(journal); 2637 mutex_unlock(&journal->j_abort_mutex); 2638 } 2639 2640 /** 2641 * jbd2_journal_errno() - returns the journal's error state. 2642 * @journal: journal to examine. 2643 * 2644 * This is the errno number set with jbd2_journal_abort(), the last 2645 * time the journal was mounted - if the journal was stopped 2646 * without calling abort this will be 0. 2647 * 2648 * If the journal has been aborted on this mount time -EROFS will 2649 * be returned. 2650 */ 2651 int jbd2_journal_errno(journal_t *journal) 2652 { 2653 int err; 2654 2655 read_lock(&journal->j_state_lock); 2656 if (journal->j_flags & JBD2_ABORT) 2657 err = -EROFS; 2658 else 2659 err = journal->j_errno; 2660 read_unlock(&journal->j_state_lock); 2661 return err; 2662 } 2663 2664 /** 2665 * jbd2_journal_clear_err() - clears the journal's error state 2666 * @journal: journal to act on. 2667 * 2668 * An error must be cleared or acked to take a FS out of readonly 2669 * mode. 2670 */ 2671 int jbd2_journal_clear_err(journal_t *journal) 2672 { 2673 int err = 0; 2674 2675 write_lock(&journal->j_state_lock); 2676 if (journal->j_flags & JBD2_ABORT) 2677 err = -EROFS; 2678 else 2679 journal->j_errno = 0; 2680 write_unlock(&journal->j_state_lock); 2681 return err; 2682 } 2683 2684 /** 2685 * jbd2_journal_ack_err() - Ack journal err. 2686 * @journal: journal to act on. 2687 * 2688 * An error must be cleared or acked to take a FS out of readonly 2689 * mode. 2690 */ 2691 void jbd2_journal_ack_err(journal_t *journal) 2692 { 2693 write_lock(&journal->j_state_lock); 2694 if (journal->j_errno) 2695 journal->j_flags |= JBD2_ACK_ERR; 2696 write_unlock(&journal->j_state_lock); 2697 } 2698 2699 int jbd2_journal_blocks_per_page(struct inode *inode) 2700 { 2701 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 2702 } 2703 2704 /* 2705 * helper functions to deal with 32 or 64bit block numbers. 2706 */ 2707 size_t journal_tag_bytes(journal_t *journal) 2708 { 2709 size_t sz; 2710 2711 if (jbd2_has_feature_csum3(journal)) 2712 return sizeof(journal_block_tag3_t); 2713 2714 sz = sizeof(journal_block_tag_t); 2715 2716 if (jbd2_has_feature_csum2(journal)) 2717 sz += sizeof(__u16); 2718 2719 if (jbd2_has_feature_64bit(journal)) 2720 return sz; 2721 else 2722 return sz - sizeof(__u32); 2723 } 2724 2725 /* 2726 * JBD memory management 2727 * 2728 * These functions are used to allocate block-sized chunks of memory 2729 * used for making copies of buffer_head data. Very often it will be 2730 * page-sized chunks of data, but sometimes it will be in 2731 * sub-page-size chunks. (For example, 16k pages on Power systems 2732 * with a 4k block file system.) For blocks smaller than a page, we 2733 * use a SLAB allocator. There are slab caches for each block size, 2734 * which are allocated at mount time, if necessary, and we only free 2735 * (all of) the slab caches when/if the jbd2 module is unloaded. For 2736 * this reason we don't need to a mutex to protect access to 2737 * jbd2_slab[] allocating or releasing memory; only in 2738 * jbd2_journal_create_slab(). 2739 */ 2740 #define JBD2_MAX_SLABS 8 2741 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS]; 2742 2743 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = { 2744 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k", 2745 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k" 2746 }; 2747 2748 2749 static void jbd2_journal_destroy_slabs(void) 2750 { 2751 int i; 2752 2753 for (i = 0; i < JBD2_MAX_SLABS; i++) { 2754 kmem_cache_destroy(jbd2_slab[i]); 2755 jbd2_slab[i] = NULL; 2756 } 2757 } 2758 2759 static int jbd2_journal_create_slab(size_t size) 2760 { 2761 static DEFINE_MUTEX(jbd2_slab_create_mutex); 2762 int i = order_base_2(size) - 10; 2763 size_t slab_size; 2764 2765 if (size == PAGE_SIZE) 2766 return 0; 2767 2768 if (i >= JBD2_MAX_SLABS) 2769 return -EINVAL; 2770 2771 if (unlikely(i < 0)) 2772 i = 0; 2773 mutex_lock(&jbd2_slab_create_mutex); 2774 if (jbd2_slab[i]) { 2775 mutex_unlock(&jbd2_slab_create_mutex); 2776 return 0; /* Already created */ 2777 } 2778 2779 slab_size = 1 << (i+10); 2780 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size, 2781 slab_size, 0, NULL); 2782 mutex_unlock(&jbd2_slab_create_mutex); 2783 if (!jbd2_slab[i]) { 2784 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n"); 2785 return -ENOMEM; 2786 } 2787 return 0; 2788 } 2789 2790 static struct kmem_cache *get_slab(size_t size) 2791 { 2792 int i = order_base_2(size) - 10; 2793 2794 BUG_ON(i >= JBD2_MAX_SLABS); 2795 if (unlikely(i < 0)) 2796 i = 0; 2797 BUG_ON(jbd2_slab[i] == NULL); 2798 return jbd2_slab[i]; 2799 } 2800 2801 void *jbd2_alloc(size_t size, gfp_t flags) 2802 { 2803 void *ptr; 2804 2805 BUG_ON(size & (size-1)); /* Must be a power of 2 */ 2806 2807 if (size < PAGE_SIZE) 2808 ptr = kmem_cache_alloc(get_slab(size), flags); 2809 else 2810 ptr = (void *)__get_free_pages(flags, get_order(size)); 2811 2812 /* Check alignment; SLUB has gotten this wrong in the past, 2813 * and this can lead to user data corruption! */ 2814 BUG_ON(((unsigned long) ptr) & (size-1)); 2815 2816 return ptr; 2817 } 2818 2819 void jbd2_free(void *ptr, size_t size) 2820 { 2821 if (size < PAGE_SIZE) 2822 kmem_cache_free(get_slab(size), ptr); 2823 else 2824 free_pages((unsigned long)ptr, get_order(size)); 2825 }; 2826 2827 /* 2828 * Journal_head storage management 2829 */ 2830 static struct kmem_cache *jbd2_journal_head_cache; 2831 #ifdef CONFIG_JBD2_DEBUG 2832 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 2833 #endif 2834 2835 static int __init jbd2_journal_init_journal_head_cache(void) 2836 { 2837 J_ASSERT(!jbd2_journal_head_cache); 2838 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 2839 sizeof(struct journal_head), 2840 0, /* offset */ 2841 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU, 2842 NULL); /* ctor */ 2843 if (!jbd2_journal_head_cache) { 2844 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n"); 2845 return -ENOMEM; 2846 } 2847 return 0; 2848 } 2849 2850 static void jbd2_journal_destroy_journal_head_cache(void) 2851 { 2852 kmem_cache_destroy(jbd2_journal_head_cache); 2853 jbd2_journal_head_cache = NULL; 2854 } 2855 2856 /* 2857 * journal_head splicing and dicing 2858 */ 2859 static struct journal_head *journal_alloc_journal_head(void) 2860 { 2861 struct journal_head *ret; 2862 2863 #ifdef CONFIG_JBD2_DEBUG 2864 atomic_inc(&nr_journal_heads); 2865 #endif 2866 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS); 2867 if (!ret) { 2868 jbd2_debug(1, "out of memory for journal_head\n"); 2869 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__); 2870 ret = kmem_cache_zalloc(jbd2_journal_head_cache, 2871 GFP_NOFS | __GFP_NOFAIL); 2872 } 2873 if (ret) 2874 spin_lock_init(&ret->b_state_lock); 2875 return ret; 2876 } 2877 2878 static void journal_free_journal_head(struct journal_head *jh) 2879 { 2880 #ifdef CONFIG_JBD2_DEBUG 2881 atomic_dec(&nr_journal_heads); 2882 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 2883 #endif 2884 kmem_cache_free(jbd2_journal_head_cache, jh); 2885 } 2886 2887 /* 2888 * A journal_head is attached to a buffer_head whenever JBD has an 2889 * interest in the buffer. 2890 * 2891 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 2892 * is set. This bit is tested in core kernel code where we need to take 2893 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 2894 * there. 2895 * 2896 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 2897 * 2898 * When a buffer has its BH_JBD bit set it is immune from being released by 2899 * core kernel code, mainly via ->b_count. 2900 * 2901 * A journal_head is detached from its buffer_head when the journal_head's 2902 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint 2903 * transaction (b_cp_transaction) hold their references to b_jcount. 2904 * 2905 * Various places in the kernel want to attach a journal_head to a buffer_head 2906 * _before_ attaching the journal_head to a transaction. To protect the 2907 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 2908 * journal_head's b_jcount refcount by one. The caller must call 2909 * jbd2_journal_put_journal_head() to undo this. 2910 * 2911 * So the typical usage would be: 2912 * 2913 * (Attach a journal_head if needed. Increments b_jcount) 2914 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 2915 * ... 2916 * (Get another reference for transaction) 2917 * jbd2_journal_grab_journal_head(bh); 2918 * jh->b_transaction = xxx; 2919 * (Put original reference) 2920 * jbd2_journal_put_journal_head(jh); 2921 */ 2922 2923 /* 2924 * Give a buffer_head a journal_head. 2925 * 2926 * May sleep. 2927 */ 2928 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 2929 { 2930 struct journal_head *jh; 2931 struct journal_head *new_jh = NULL; 2932 2933 repeat: 2934 if (!buffer_jbd(bh)) 2935 new_jh = journal_alloc_journal_head(); 2936 2937 jbd_lock_bh_journal_head(bh); 2938 if (buffer_jbd(bh)) { 2939 jh = bh2jh(bh); 2940 } else { 2941 J_ASSERT_BH(bh, 2942 (atomic_read(&bh->b_count) > 0) || 2943 (bh->b_folio && bh->b_folio->mapping)); 2944 2945 if (!new_jh) { 2946 jbd_unlock_bh_journal_head(bh); 2947 goto repeat; 2948 } 2949 2950 jh = new_jh; 2951 new_jh = NULL; /* We consumed it */ 2952 set_buffer_jbd(bh); 2953 bh->b_private = jh; 2954 jh->b_bh = bh; 2955 get_bh(bh); 2956 BUFFER_TRACE(bh, "added journal_head"); 2957 } 2958 jh->b_jcount++; 2959 jbd_unlock_bh_journal_head(bh); 2960 if (new_jh) 2961 journal_free_journal_head(new_jh); 2962 return bh->b_private; 2963 } 2964 2965 /* 2966 * Grab a ref against this buffer_head's journal_head. If it ended up not 2967 * having a journal_head, return NULL 2968 */ 2969 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 2970 { 2971 struct journal_head *jh = NULL; 2972 2973 jbd_lock_bh_journal_head(bh); 2974 if (buffer_jbd(bh)) { 2975 jh = bh2jh(bh); 2976 jh->b_jcount++; 2977 } 2978 jbd_unlock_bh_journal_head(bh); 2979 return jh; 2980 } 2981 EXPORT_SYMBOL(jbd2_journal_grab_journal_head); 2982 2983 static void __journal_remove_journal_head(struct buffer_head *bh) 2984 { 2985 struct journal_head *jh = bh2jh(bh); 2986 2987 J_ASSERT_JH(jh, jh->b_transaction == NULL); 2988 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2989 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL); 2990 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 2991 J_ASSERT_BH(bh, buffer_jbd(bh)); 2992 J_ASSERT_BH(bh, jh2bh(jh) == bh); 2993 BUFFER_TRACE(bh, "remove journal_head"); 2994 2995 /* Unlink before dropping the lock */ 2996 bh->b_private = NULL; 2997 jh->b_bh = NULL; /* debug, really */ 2998 clear_buffer_jbd(bh); 2999 } 3000 3001 static void journal_release_journal_head(struct journal_head *jh, size_t b_size) 3002 { 3003 if (jh->b_frozen_data) { 3004 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__); 3005 jbd2_free(jh->b_frozen_data, b_size); 3006 } 3007 if (jh->b_committed_data) { 3008 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__); 3009 jbd2_free(jh->b_committed_data, b_size); 3010 } 3011 journal_free_journal_head(jh); 3012 } 3013 3014 /* 3015 * Drop a reference on the passed journal_head. If it fell to zero then 3016 * release the journal_head from the buffer_head. 3017 */ 3018 void jbd2_journal_put_journal_head(struct journal_head *jh) 3019 { 3020 struct buffer_head *bh = jh2bh(jh); 3021 3022 jbd_lock_bh_journal_head(bh); 3023 J_ASSERT_JH(jh, jh->b_jcount > 0); 3024 --jh->b_jcount; 3025 if (!jh->b_jcount) { 3026 __journal_remove_journal_head(bh); 3027 jbd_unlock_bh_journal_head(bh); 3028 journal_release_journal_head(jh, bh->b_size); 3029 __brelse(bh); 3030 } else { 3031 jbd_unlock_bh_journal_head(bh); 3032 } 3033 } 3034 EXPORT_SYMBOL(jbd2_journal_put_journal_head); 3035 3036 /* 3037 * Initialize jbd inode head 3038 */ 3039 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 3040 { 3041 jinode->i_transaction = NULL; 3042 jinode->i_next_transaction = NULL; 3043 jinode->i_vfs_inode = inode; 3044 jinode->i_flags = 0; 3045 jinode->i_dirty_start = 0; 3046 jinode->i_dirty_end = 0; 3047 INIT_LIST_HEAD(&jinode->i_list); 3048 } 3049 3050 /* 3051 * Function to be called before we start removing inode from memory (i.e., 3052 * clear_inode() is a fine place to be called from). It removes inode from 3053 * transaction's lists. 3054 */ 3055 void jbd2_journal_release_jbd_inode(journal_t *journal, 3056 struct jbd2_inode *jinode) 3057 { 3058 if (!journal) 3059 return; 3060 restart: 3061 spin_lock(&journal->j_list_lock); 3062 /* Is commit writing out inode - we have to wait */ 3063 if (jinode->i_flags & JI_COMMIT_RUNNING) { 3064 wait_queue_head_t *wq; 3065 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 3066 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 3067 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 3068 spin_unlock(&journal->j_list_lock); 3069 schedule(); 3070 finish_wait(wq, &wait.wq_entry); 3071 goto restart; 3072 } 3073 3074 if (jinode->i_transaction) { 3075 list_del(&jinode->i_list); 3076 jinode->i_transaction = NULL; 3077 } 3078 spin_unlock(&journal->j_list_lock); 3079 } 3080 3081 3082 #ifdef CONFIG_PROC_FS 3083 3084 #define JBD2_STATS_PROC_NAME "fs/jbd2" 3085 3086 static void __init jbd2_create_jbd_stats_proc_entry(void) 3087 { 3088 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 3089 } 3090 3091 static void __exit jbd2_remove_jbd_stats_proc_entry(void) 3092 { 3093 if (proc_jbd2_stats) 3094 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 3095 } 3096 3097 #else 3098 3099 #define jbd2_create_jbd_stats_proc_entry() do {} while (0) 3100 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 3101 3102 #endif 3103 3104 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache; 3105 3106 static int __init jbd2_journal_init_inode_cache(void) 3107 { 3108 J_ASSERT(!jbd2_inode_cache); 3109 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0); 3110 if (!jbd2_inode_cache) { 3111 pr_emerg("JBD2: failed to create inode cache\n"); 3112 return -ENOMEM; 3113 } 3114 return 0; 3115 } 3116 3117 static int __init jbd2_journal_init_handle_cache(void) 3118 { 3119 J_ASSERT(!jbd2_handle_cache); 3120 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY); 3121 if (!jbd2_handle_cache) { 3122 printk(KERN_EMERG "JBD2: failed to create handle cache\n"); 3123 return -ENOMEM; 3124 } 3125 return 0; 3126 } 3127 3128 static void jbd2_journal_destroy_inode_cache(void) 3129 { 3130 kmem_cache_destroy(jbd2_inode_cache); 3131 jbd2_inode_cache = NULL; 3132 } 3133 3134 static void jbd2_journal_destroy_handle_cache(void) 3135 { 3136 kmem_cache_destroy(jbd2_handle_cache); 3137 jbd2_handle_cache = NULL; 3138 } 3139 3140 /* 3141 * Module startup and shutdown 3142 */ 3143 3144 static int __init journal_init_caches(void) 3145 { 3146 int ret; 3147 3148 ret = jbd2_journal_init_revoke_record_cache(); 3149 if (ret == 0) 3150 ret = jbd2_journal_init_revoke_table_cache(); 3151 if (ret == 0) 3152 ret = jbd2_journal_init_journal_head_cache(); 3153 if (ret == 0) 3154 ret = jbd2_journal_init_handle_cache(); 3155 if (ret == 0) 3156 ret = jbd2_journal_init_inode_cache(); 3157 if (ret == 0) 3158 ret = jbd2_journal_init_transaction_cache(); 3159 return ret; 3160 } 3161 3162 static void jbd2_journal_destroy_caches(void) 3163 { 3164 jbd2_journal_destroy_revoke_record_cache(); 3165 jbd2_journal_destroy_revoke_table_cache(); 3166 jbd2_journal_destroy_journal_head_cache(); 3167 jbd2_journal_destroy_handle_cache(); 3168 jbd2_journal_destroy_inode_cache(); 3169 jbd2_journal_destroy_transaction_cache(); 3170 jbd2_journal_destroy_slabs(); 3171 } 3172 3173 static int __init journal_init(void) 3174 { 3175 int ret; 3176 3177 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 3178 3179 ret = journal_init_caches(); 3180 if (ret == 0) { 3181 jbd2_create_jbd_stats_proc_entry(); 3182 } else { 3183 jbd2_journal_destroy_caches(); 3184 } 3185 return ret; 3186 } 3187 3188 static void __exit journal_exit(void) 3189 { 3190 #ifdef CONFIG_JBD2_DEBUG 3191 int n = atomic_read(&nr_journal_heads); 3192 if (n) 3193 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n); 3194 #endif 3195 jbd2_remove_jbd_stats_proc_entry(); 3196 jbd2_journal_destroy_caches(); 3197 } 3198 3199 MODULE_LICENSE("GPL"); 3200 module_init(journal_init); 3201 module_exit(journal_exit); 3202 3203