xref: /openbmc/linux/fs/jbd2/journal.c (revision 1d7a0395)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/journal.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem journal-writing code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages journals: areas of disk reserved for logging
13  * transactional updates.  This includes the kernel journaling thread
14  * which is responsible for scheduling updates to the log.
15  *
16  * We do not actually manage the physical storage of the journal in this
17  * file: that is left to a per-journal policy function, which allows us
18  * to store the journal within a filesystem-specified area for ext2
19  * journaling (ext2 can use a reserved inode for storing the log).
20  */
21 
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47 
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50 
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
54 
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
58 
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 EXPORT_SYMBOL(jbd2_journal_flush);
70 EXPORT_SYMBOL(jbd2_journal_revoke);
71 
72 EXPORT_SYMBOL(jbd2_journal_init_dev);
73 EXPORT_SYMBOL(jbd2_journal_init_inode);
74 EXPORT_SYMBOL(jbd2_journal_check_used_features);
75 EXPORT_SYMBOL(jbd2_journal_check_available_features);
76 EXPORT_SYMBOL(jbd2_journal_set_features);
77 EXPORT_SYMBOL(jbd2_journal_load);
78 EXPORT_SYMBOL(jbd2_journal_destroy);
79 EXPORT_SYMBOL(jbd2_journal_abort);
80 EXPORT_SYMBOL(jbd2_journal_errno);
81 EXPORT_SYMBOL(jbd2_journal_ack_err);
82 EXPORT_SYMBOL(jbd2_journal_clear_err);
83 EXPORT_SYMBOL(jbd2_log_wait_commit);
84 EXPORT_SYMBOL(jbd2_log_start_commit);
85 EXPORT_SYMBOL(jbd2_journal_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
87 EXPORT_SYMBOL(jbd2_journal_wipe);
88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
89 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
91 EXPORT_SYMBOL(jbd2_journal_force_commit);
92 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
93 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
94 EXPORT_SYMBOL(jbd2_journal_submit_inode_data_buffers);
95 EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers);
96 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
97 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
98 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
99 EXPORT_SYMBOL(jbd2_inode_cache);
100 
101 static int jbd2_journal_create_slab(size_t slab_size);
102 
103 #ifdef CONFIG_JBD2_DEBUG
104 void __jbd2_debug(int level, const char *file, const char *func,
105 		  unsigned int line, const char *fmt, ...)
106 {
107 	struct va_format vaf;
108 	va_list args;
109 
110 	if (level > jbd2_journal_enable_debug)
111 		return;
112 	va_start(args, fmt);
113 	vaf.fmt = fmt;
114 	vaf.va = &args;
115 	printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
116 	va_end(args);
117 }
118 EXPORT_SYMBOL(__jbd2_debug);
119 #endif
120 
121 /* Checksumming functions */
122 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
123 {
124 	if (!jbd2_journal_has_csum_v2or3_feature(j))
125 		return 1;
126 
127 	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
128 }
129 
130 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
131 {
132 	__u32 csum;
133 	__be32 old_csum;
134 
135 	old_csum = sb->s_checksum;
136 	sb->s_checksum = 0;
137 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
138 	sb->s_checksum = old_csum;
139 
140 	return cpu_to_be32(csum);
141 }
142 
143 /*
144  * Helper function used to manage commit timeouts
145  */
146 
147 static void commit_timeout(struct timer_list *t)
148 {
149 	journal_t *journal = from_timer(journal, t, j_commit_timer);
150 
151 	wake_up_process(journal->j_task);
152 }
153 
154 /*
155  * kjournald2: The main thread function used to manage a logging device
156  * journal.
157  *
158  * This kernel thread is responsible for two things:
159  *
160  * 1) COMMIT:  Every so often we need to commit the current state of the
161  *    filesystem to disk.  The journal thread is responsible for writing
162  *    all of the metadata buffers to disk. If a fast commit is ongoing
163  *    journal thread waits until it's done and then continues from
164  *    there on.
165  *
166  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
167  *    of the data in that part of the log has been rewritten elsewhere on
168  *    the disk.  Flushing these old buffers to reclaim space in the log is
169  *    known as checkpointing, and this thread is responsible for that job.
170  */
171 
172 static int kjournald2(void *arg)
173 {
174 	journal_t *journal = arg;
175 	transaction_t *transaction;
176 
177 	/*
178 	 * Set up an interval timer which can be used to trigger a commit wakeup
179 	 * after the commit interval expires
180 	 */
181 	timer_setup(&journal->j_commit_timer, commit_timeout, 0);
182 
183 	set_freezable();
184 
185 	/* Record that the journal thread is running */
186 	journal->j_task = current;
187 	wake_up(&journal->j_wait_done_commit);
188 
189 	/*
190 	 * Make sure that no allocations from this kernel thread will ever
191 	 * recurse to the fs layer because we are responsible for the
192 	 * transaction commit and any fs involvement might get stuck waiting for
193 	 * the trasn. commit.
194 	 */
195 	memalloc_nofs_save();
196 
197 	/*
198 	 * And now, wait forever for commit wakeup events.
199 	 */
200 	write_lock(&journal->j_state_lock);
201 
202 loop:
203 	if (journal->j_flags & JBD2_UNMOUNT)
204 		goto end_loop;
205 
206 	jbd_debug(1, "commit_sequence=%u, commit_request=%u\n",
207 		journal->j_commit_sequence, journal->j_commit_request);
208 
209 	if (journal->j_commit_sequence != journal->j_commit_request) {
210 		jbd_debug(1, "OK, requests differ\n");
211 		write_unlock(&journal->j_state_lock);
212 		del_timer_sync(&journal->j_commit_timer);
213 		jbd2_journal_commit_transaction(journal);
214 		write_lock(&journal->j_state_lock);
215 		goto loop;
216 	}
217 
218 	wake_up(&journal->j_wait_done_commit);
219 	if (freezing(current)) {
220 		/*
221 		 * The simpler the better. Flushing journal isn't a
222 		 * good idea, because that depends on threads that may
223 		 * be already stopped.
224 		 */
225 		jbd_debug(1, "Now suspending kjournald2\n");
226 		write_unlock(&journal->j_state_lock);
227 		try_to_freeze();
228 		write_lock(&journal->j_state_lock);
229 	} else {
230 		/*
231 		 * We assume on resume that commits are already there,
232 		 * so we don't sleep
233 		 */
234 		DEFINE_WAIT(wait);
235 		int should_sleep = 1;
236 
237 		prepare_to_wait(&journal->j_wait_commit, &wait,
238 				TASK_INTERRUPTIBLE);
239 		if (journal->j_commit_sequence != journal->j_commit_request)
240 			should_sleep = 0;
241 		transaction = journal->j_running_transaction;
242 		if (transaction && time_after_eq(jiffies,
243 						transaction->t_expires))
244 			should_sleep = 0;
245 		if (journal->j_flags & JBD2_UNMOUNT)
246 			should_sleep = 0;
247 		if (should_sleep) {
248 			write_unlock(&journal->j_state_lock);
249 			schedule();
250 			write_lock(&journal->j_state_lock);
251 		}
252 		finish_wait(&journal->j_wait_commit, &wait);
253 	}
254 
255 	jbd_debug(1, "kjournald2 wakes\n");
256 
257 	/*
258 	 * Were we woken up by a commit wakeup event?
259 	 */
260 	transaction = journal->j_running_transaction;
261 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
262 		journal->j_commit_request = transaction->t_tid;
263 		jbd_debug(1, "woke because of timeout\n");
264 	}
265 	goto loop;
266 
267 end_loop:
268 	del_timer_sync(&journal->j_commit_timer);
269 	journal->j_task = NULL;
270 	wake_up(&journal->j_wait_done_commit);
271 	jbd_debug(1, "Journal thread exiting.\n");
272 	write_unlock(&journal->j_state_lock);
273 	return 0;
274 }
275 
276 static int jbd2_journal_start_thread(journal_t *journal)
277 {
278 	struct task_struct *t;
279 
280 	t = kthread_run(kjournald2, journal, "jbd2/%s",
281 			journal->j_devname);
282 	if (IS_ERR(t))
283 		return PTR_ERR(t);
284 
285 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
286 	return 0;
287 }
288 
289 static void journal_kill_thread(journal_t *journal)
290 {
291 	write_lock(&journal->j_state_lock);
292 	journal->j_flags |= JBD2_UNMOUNT;
293 
294 	while (journal->j_task) {
295 		write_unlock(&journal->j_state_lock);
296 		wake_up(&journal->j_wait_commit);
297 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
298 		write_lock(&journal->j_state_lock);
299 	}
300 	write_unlock(&journal->j_state_lock);
301 }
302 
303 /*
304  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
305  *
306  * Writes a metadata buffer to a given disk block.  The actual IO is not
307  * performed but a new buffer_head is constructed which labels the data
308  * to be written with the correct destination disk block.
309  *
310  * Any magic-number escaping which needs to be done will cause a
311  * copy-out here.  If the buffer happens to start with the
312  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
313  * magic number is only written to the log for descripter blocks.  In
314  * this case, we copy the data and replace the first word with 0, and we
315  * return a result code which indicates that this buffer needs to be
316  * marked as an escaped buffer in the corresponding log descriptor
317  * block.  The missing word can then be restored when the block is read
318  * during recovery.
319  *
320  * If the source buffer has already been modified by a new transaction
321  * since we took the last commit snapshot, we use the frozen copy of
322  * that data for IO. If we end up using the existing buffer_head's data
323  * for the write, then we have to make sure nobody modifies it while the
324  * IO is in progress. do_get_write_access() handles this.
325  *
326  * The function returns a pointer to the buffer_head to be used for IO.
327  *
328  *
329  * Return value:
330  *  <0: Error
331  * >=0: Finished OK
332  *
333  * On success:
334  * Bit 0 set == escape performed on the data
335  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
336  */
337 
338 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
339 				  struct journal_head  *jh_in,
340 				  struct buffer_head **bh_out,
341 				  sector_t blocknr)
342 {
343 	int need_copy_out = 0;
344 	int done_copy_out = 0;
345 	int do_escape = 0;
346 	char *mapped_data;
347 	struct buffer_head *new_bh;
348 	struct page *new_page;
349 	unsigned int new_offset;
350 	struct buffer_head *bh_in = jh2bh(jh_in);
351 	journal_t *journal = transaction->t_journal;
352 
353 	/*
354 	 * The buffer really shouldn't be locked: only the current committing
355 	 * transaction is allowed to write it, so nobody else is allowed
356 	 * to do any IO.
357 	 *
358 	 * akpm: except if we're journalling data, and write() output is
359 	 * also part of a shared mapping, and another thread has
360 	 * decided to launch a writepage() against this buffer.
361 	 */
362 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
363 
364 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
365 
366 	/* keep subsequent assertions sane */
367 	atomic_set(&new_bh->b_count, 1);
368 
369 	spin_lock(&jh_in->b_state_lock);
370 repeat:
371 	/*
372 	 * If a new transaction has already done a buffer copy-out, then
373 	 * we use that version of the data for the commit.
374 	 */
375 	if (jh_in->b_frozen_data) {
376 		done_copy_out = 1;
377 		new_page = virt_to_page(jh_in->b_frozen_data);
378 		new_offset = offset_in_page(jh_in->b_frozen_data);
379 	} else {
380 		new_page = jh2bh(jh_in)->b_page;
381 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
382 	}
383 
384 	mapped_data = kmap_atomic(new_page);
385 	/*
386 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
387 	 * before checking for escaping, as the trigger may modify the magic
388 	 * offset.  If a copy-out happens afterwards, it will have the correct
389 	 * data in the buffer.
390 	 */
391 	if (!done_copy_out)
392 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
393 					   jh_in->b_triggers);
394 
395 	/*
396 	 * Check for escaping
397 	 */
398 	if (*((__be32 *)(mapped_data + new_offset)) ==
399 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
400 		need_copy_out = 1;
401 		do_escape = 1;
402 	}
403 	kunmap_atomic(mapped_data);
404 
405 	/*
406 	 * Do we need to do a data copy?
407 	 */
408 	if (need_copy_out && !done_copy_out) {
409 		char *tmp;
410 
411 		spin_unlock(&jh_in->b_state_lock);
412 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
413 		if (!tmp) {
414 			brelse(new_bh);
415 			return -ENOMEM;
416 		}
417 		spin_lock(&jh_in->b_state_lock);
418 		if (jh_in->b_frozen_data) {
419 			jbd2_free(tmp, bh_in->b_size);
420 			goto repeat;
421 		}
422 
423 		jh_in->b_frozen_data = tmp;
424 		mapped_data = kmap_atomic(new_page);
425 		memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
426 		kunmap_atomic(mapped_data);
427 
428 		new_page = virt_to_page(tmp);
429 		new_offset = offset_in_page(tmp);
430 		done_copy_out = 1;
431 
432 		/*
433 		 * This isn't strictly necessary, as we're using frozen
434 		 * data for the escaping, but it keeps consistency with
435 		 * b_frozen_data usage.
436 		 */
437 		jh_in->b_frozen_triggers = jh_in->b_triggers;
438 	}
439 
440 	/*
441 	 * Did we need to do an escaping?  Now we've done all the
442 	 * copying, we can finally do so.
443 	 */
444 	if (do_escape) {
445 		mapped_data = kmap_atomic(new_page);
446 		*((unsigned int *)(mapped_data + new_offset)) = 0;
447 		kunmap_atomic(mapped_data);
448 	}
449 
450 	set_bh_page(new_bh, new_page, new_offset);
451 	new_bh->b_size = bh_in->b_size;
452 	new_bh->b_bdev = journal->j_dev;
453 	new_bh->b_blocknr = blocknr;
454 	new_bh->b_private = bh_in;
455 	set_buffer_mapped(new_bh);
456 	set_buffer_dirty(new_bh);
457 
458 	*bh_out = new_bh;
459 
460 	/*
461 	 * The to-be-written buffer needs to get moved to the io queue,
462 	 * and the original buffer whose contents we are shadowing or
463 	 * copying is moved to the transaction's shadow queue.
464 	 */
465 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
466 	spin_lock(&journal->j_list_lock);
467 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
468 	spin_unlock(&journal->j_list_lock);
469 	set_buffer_shadow(bh_in);
470 	spin_unlock(&jh_in->b_state_lock);
471 
472 	return do_escape | (done_copy_out << 1);
473 }
474 
475 /*
476  * Allocation code for the journal file.  Manage the space left in the
477  * journal, so that we can begin checkpointing when appropriate.
478  */
479 
480 /*
481  * Called with j_state_lock locked for writing.
482  * Returns true if a transaction commit was started.
483  */
484 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
485 {
486 	/* Return if the txn has already requested to be committed */
487 	if (journal->j_commit_request == target)
488 		return 0;
489 
490 	/*
491 	 * The only transaction we can possibly wait upon is the
492 	 * currently running transaction (if it exists).  Otherwise,
493 	 * the target tid must be an old one.
494 	 */
495 	if (journal->j_running_transaction &&
496 	    journal->j_running_transaction->t_tid == target) {
497 		/*
498 		 * We want a new commit: OK, mark the request and wakeup the
499 		 * commit thread.  We do _not_ do the commit ourselves.
500 		 */
501 
502 		journal->j_commit_request = target;
503 		jbd_debug(1, "JBD2: requesting commit %u/%u\n",
504 			  journal->j_commit_request,
505 			  journal->j_commit_sequence);
506 		journal->j_running_transaction->t_requested = jiffies;
507 		wake_up(&journal->j_wait_commit);
508 		return 1;
509 	} else if (!tid_geq(journal->j_commit_request, target))
510 		/* This should never happen, but if it does, preserve
511 		   the evidence before kjournald goes into a loop and
512 		   increments j_commit_sequence beyond all recognition. */
513 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
514 			  journal->j_commit_request,
515 			  journal->j_commit_sequence,
516 			  target, journal->j_running_transaction ?
517 			  journal->j_running_transaction->t_tid : 0);
518 	return 0;
519 }
520 
521 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
522 {
523 	int ret;
524 
525 	write_lock(&journal->j_state_lock);
526 	ret = __jbd2_log_start_commit(journal, tid);
527 	write_unlock(&journal->j_state_lock);
528 	return ret;
529 }
530 
531 /*
532  * Force and wait any uncommitted transactions.  We can only force the running
533  * transaction if we don't have an active handle, otherwise, we will deadlock.
534  * Returns: <0 in case of error,
535  *           0 if nothing to commit,
536  *           1 if transaction was successfully committed.
537  */
538 static int __jbd2_journal_force_commit(journal_t *journal)
539 {
540 	transaction_t *transaction = NULL;
541 	tid_t tid;
542 	int need_to_start = 0, ret = 0;
543 
544 	read_lock(&journal->j_state_lock);
545 	if (journal->j_running_transaction && !current->journal_info) {
546 		transaction = journal->j_running_transaction;
547 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
548 			need_to_start = 1;
549 	} else if (journal->j_committing_transaction)
550 		transaction = journal->j_committing_transaction;
551 
552 	if (!transaction) {
553 		/* Nothing to commit */
554 		read_unlock(&journal->j_state_lock);
555 		return 0;
556 	}
557 	tid = transaction->t_tid;
558 	read_unlock(&journal->j_state_lock);
559 	if (need_to_start)
560 		jbd2_log_start_commit(journal, tid);
561 	ret = jbd2_log_wait_commit(journal, tid);
562 	if (!ret)
563 		ret = 1;
564 
565 	return ret;
566 }
567 
568 /**
569  * jbd2_journal_force_commit_nested - Force and wait upon a commit if the
570  * calling process is not within transaction.
571  *
572  * @journal: journal to force
573  * Returns true if progress was made.
574  *
575  * This is used for forcing out undo-protected data which contains
576  * bitmaps, when the fs is running out of space.
577  */
578 int jbd2_journal_force_commit_nested(journal_t *journal)
579 {
580 	int ret;
581 
582 	ret = __jbd2_journal_force_commit(journal);
583 	return ret > 0;
584 }
585 
586 /**
587  * jbd2_journal_force_commit() - force any uncommitted transactions
588  * @journal: journal to force
589  *
590  * Caller want unconditional commit. We can only force the running transaction
591  * if we don't have an active handle, otherwise, we will deadlock.
592  */
593 int jbd2_journal_force_commit(journal_t *journal)
594 {
595 	int ret;
596 
597 	J_ASSERT(!current->journal_info);
598 	ret = __jbd2_journal_force_commit(journal);
599 	if (ret > 0)
600 		ret = 0;
601 	return ret;
602 }
603 
604 /*
605  * Start a commit of the current running transaction (if any).  Returns true
606  * if a transaction is going to be committed (or is currently already
607  * committing), and fills its tid in at *ptid
608  */
609 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
610 {
611 	int ret = 0;
612 
613 	write_lock(&journal->j_state_lock);
614 	if (journal->j_running_transaction) {
615 		tid_t tid = journal->j_running_transaction->t_tid;
616 
617 		__jbd2_log_start_commit(journal, tid);
618 		/* There's a running transaction and we've just made sure
619 		 * it's commit has been scheduled. */
620 		if (ptid)
621 			*ptid = tid;
622 		ret = 1;
623 	} else if (journal->j_committing_transaction) {
624 		/*
625 		 * If commit has been started, then we have to wait for
626 		 * completion of that transaction.
627 		 */
628 		if (ptid)
629 			*ptid = journal->j_committing_transaction->t_tid;
630 		ret = 1;
631 	}
632 	write_unlock(&journal->j_state_lock);
633 	return ret;
634 }
635 
636 /*
637  * Return 1 if a given transaction has not yet sent barrier request
638  * connected with a transaction commit. If 0 is returned, transaction
639  * may or may not have sent the barrier. Used to avoid sending barrier
640  * twice in common cases.
641  */
642 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
643 {
644 	int ret = 0;
645 	transaction_t *commit_trans;
646 
647 	if (!(journal->j_flags & JBD2_BARRIER))
648 		return 0;
649 	read_lock(&journal->j_state_lock);
650 	/* Transaction already committed? */
651 	if (tid_geq(journal->j_commit_sequence, tid))
652 		goto out;
653 	commit_trans = journal->j_committing_transaction;
654 	if (!commit_trans || commit_trans->t_tid != tid) {
655 		ret = 1;
656 		goto out;
657 	}
658 	/*
659 	 * Transaction is being committed and we already proceeded to
660 	 * submitting a flush to fs partition?
661 	 */
662 	if (journal->j_fs_dev != journal->j_dev) {
663 		if (!commit_trans->t_need_data_flush ||
664 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
665 			goto out;
666 	} else {
667 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
668 			goto out;
669 	}
670 	ret = 1;
671 out:
672 	read_unlock(&journal->j_state_lock);
673 	return ret;
674 }
675 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
676 
677 /*
678  * Wait for a specified commit to complete.
679  * The caller may not hold the journal lock.
680  */
681 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
682 {
683 	int err = 0;
684 
685 	read_lock(&journal->j_state_lock);
686 #ifdef CONFIG_PROVE_LOCKING
687 	/*
688 	 * Some callers make sure transaction is already committing and in that
689 	 * case we cannot block on open handles anymore. So don't warn in that
690 	 * case.
691 	 */
692 	if (tid_gt(tid, journal->j_commit_sequence) &&
693 	    (!journal->j_committing_transaction ||
694 	     journal->j_committing_transaction->t_tid != tid)) {
695 		read_unlock(&journal->j_state_lock);
696 		jbd2_might_wait_for_commit(journal);
697 		read_lock(&journal->j_state_lock);
698 	}
699 #endif
700 #ifdef CONFIG_JBD2_DEBUG
701 	if (!tid_geq(journal->j_commit_request, tid)) {
702 		printk(KERN_ERR
703 		       "%s: error: j_commit_request=%u, tid=%u\n",
704 		       __func__, journal->j_commit_request, tid);
705 	}
706 #endif
707 	while (tid_gt(tid, journal->j_commit_sequence)) {
708 		jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
709 				  tid, journal->j_commit_sequence);
710 		read_unlock(&journal->j_state_lock);
711 		wake_up(&journal->j_wait_commit);
712 		wait_event(journal->j_wait_done_commit,
713 				!tid_gt(tid, journal->j_commit_sequence));
714 		read_lock(&journal->j_state_lock);
715 	}
716 	read_unlock(&journal->j_state_lock);
717 
718 	if (unlikely(is_journal_aborted(journal)))
719 		err = -EIO;
720 	return err;
721 }
722 
723 /*
724  * Start a fast commit. If there's an ongoing fast or full commit wait for
725  * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY
726  * if a fast commit is not needed, either because there's an already a commit
727  * going on or this tid has already been committed. Returns -EINVAL if no jbd2
728  * commit has yet been performed.
729  */
730 int jbd2_fc_begin_commit(journal_t *journal, tid_t tid)
731 {
732 	if (unlikely(is_journal_aborted(journal)))
733 		return -EIO;
734 	/*
735 	 * Fast commits only allowed if at least one full commit has
736 	 * been processed.
737 	 */
738 	if (!journal->j_stats.ts_tid)
739 		return -EINVAL;
740 
741 	write_lock(&journal->j_state_lock);
742 	if (tid <= journal->j_commit_sequence) {
743 		write_unlock(&journal->j_state_lock);
744 		return -EALREADY;
745 	}
746 
747 	if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
748 	    (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) {
749 		DEFINE_WAIT(wait);
750 
751 		prepare_to_wait(&journal->j_fc_wait, &wait,
752 				TASK_UNINTERRUPTIBLE);
753 		write_unlock(&journal->j_state_lock);
754 		schedule();
755 		finish_wait(&journal->j_fc_wait, &wait);
756 		return -EALREADY;
757 	}
758 	journal->j_flags |= JBD2_FAST_COMMIT_ONGOING;
759 	write_unlock(&journal->j_state_lock);
760 
761 	return 0;
762 }
763 EXPORT_SYMBOL(jbd2_fc_begin_commit);
764 
765 /*
766  * Stop a fast commit. If fallback is set, this function starts commit of
767  * TID tid before any other fast commit can start.
768  */
769 static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback)
770 {
771 	if (journal->j_fc_cleanup_callback)
772 		journal->j_fc_cleanup_callback(journal, 0);
773 	write_lock(&journal->j_state_lock);
774 	journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING;
775 	if (fallback)
776 		journal->j_flags |= JBD2_FULL_COMMIT_ONGOING;
777 	write_unlock(&journal->j_state_lock);
778 	wake_up(&journal->j_fc_wait);
779 	if (fallback)
780 		return jbd2_complete_transaction(journal, tid);
781 	return 0;
782 }
783 
784 int jbd2_fc_end_commit(journal_t *journal)
785 {
786 	return __jbd2_fc_end_commit(journal, 0, false);
787 }
788 EXPORT_SYMBOL(jbd2_fc_end_commit);
789 
790 int jbd2_fc_end_commit_fallback(journal_t *journal)
791 {
792 	tid_t tid;
793 
794 	read_lock(&journal->j_state_lock);
795 	tid = journal->j_running_transaction ?
796 		journal->j_running_transaction->t_tid : 0;
797 	read_unlock(&journal->j_state_lock);
798 	return __jbd2_fc_end_commit(journal, tid, true);
799 }
800 EXPORT_SYMBOL(jbd2_fc_end_commit_fallback);
801 
802 /* Return 1 when transaction with given tid has already committed. */
803 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
804 {
805 	int ret = 1;
806 
807 	read_lock(&journal->j_state_lock);
808 	if (journal->j_running_transaction &&
809 	    journal->j_running_transaction->t_tid == tid)
810 		ret = 0;
811 	if (journal->j_committing_transaction &&
812 	    journal->j_committing_transaction->t_tid == tid)
813 		ret = 0;
814 	read_unlock(&journal->j_state_lock);
815 	return ret;
816 }
817 EXPORT_SYMBOL(jbd2_transaction_committed);
818 
819 /*
820  * When this function returns the transaction corresponding to tid
821  * will be completed.  If the transaction has currently running, start
822  * committing that transaction before waiting for it to complete.  If
823  * the transaction id is stale, it is by definition already completed,
824  * so just return SUCCESS.
825  */
826 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
827 {
828 	int	need_to_wait = 1;
829 
830 	read_lock(&journal->j_state_lock);
831 	if (journal->j_running_transaction &&
832 	    journal->j_running_transaction->t_tid == tid) {
833 		if (journal->j_commit_request != tid) {
834 			/* transaction not yet started, so request it */
835 			read_unlock(&journal->j_state_lock);
836 			jbd2_log_start_commit(journal, tid);
837 			goto wait_commit;
838 		}
839 	} else if (!(journal->j_committing_transaction &&
840 		     journal->j_committing_transaction->t_tid == tid))
841 		need_to_wait = 0;
842 	read_unlock(&journal->j_state_lock);
843 	if (!need_to_wait)
844 		return 0;
845 wait_commit:
846 	return jbd2_log_wait_commit(journal, tid);
847 }
848 EXPORT_SYMBOL(jbd2_complete_transaction);
849 
850 /*
851  * Log buffer allocation routines:
852  */
853 
854 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
855 {
856 	unsigned long blocknr;
857 
858 	write_lock(&journal->j_state_lock);
859 	J_ASSERT(journal->j_free > 1);
860 
861 	blocknr = journal->j_head;
862 	journal->j_head++;
863 	journal->j_free--;
864 	if (journal->j_head == journal->j_last)
865 		journal->j_head = journal->j_first;
866 	write_unlock(&journal->j_state_lock);
867 	return jbd2_journal_bmap(journal, blocknr, retp);
868 }
869 
870 /* Map one fast commit buffer for use by the file system */
871 int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out)
872 {
873 	unsigned long long pblock;
874 	unsigned long blocknr;
875 	int ret = 0;
876 	struct buffer_head *bh;
877 	int fc_off;
878 
879 	*bh_out = NULL;
880 
881 	if (journal->j_fc_off + journal->j_fc_first < journal->j_fc_last) {
882 		fc_off = journal->j_fc_off;
883 		blocknr = journal->j_fc_first + fc_off;
884 		journal->j_fc_off++;
885 	} else {
886 		ret = -EINVAL;
887 	}
888 
889 	if (ret)
890 		return ret;
891 
892 	ret = jbd2_journal_bmap(journal, blocknr, &pblock);
893 	if (ret)
894 		return ret;
895 
896 	bh = __getblk(journal->j_dev, pblock, journal->j_blocksize);
897 	if (!bh)
898 		return -ENOMEM;
899 
900 
901 	journal->j_fc_wbuf[fc_off] = bh;
902 
903 	*bh_out = bh;
904 
905 	return 0;
906 }
907 EXPORT_SYMBOL(jbd2_fc_get_buf);
908 
909 /*
910  * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf
911  * for completion.
912  */
913 int jbd2_fc_wait_bufs(journal_t *journal, int num_blks)
914 {
915 	struct buffer_head *bh;
916 	int i, j_fc_off;
917 
918 	j_fc_off = journal->j_fc_off;
919 
920 	/*
921 	 * Wait in reverse order to minimize chances of us being woken up before
922 	 * all IOs have completed
923 	 */
924 	for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) {
925 		bh = journal->j_fc_wbuf[i];
926 		wait_on_buffer(bh);
927 		put_bh(bh);
928 		journal->j_fc_wbuf[i] = NULL;
929 		if (unlikely(!buffer_uptodate(bh)))
930 			return -EIO;
931 	}
932 
933 	return 0;
934 }
935 EXPORT_SYMBOL(jbd2_fc_wait_bufs);
936 
937 int jbd2_fc_release_bufs(journal_t *journal)
938 {
939 	struct buffer_head *bh;
940 	int i, j_fc_off;
941 
942 	j_fc_off = journal->j_fc_off;
943 
944 	for (i = j_fc_off - 1; i >= 0; i--) {
945 		bh = journal->j_fc_wbuf[i];
946 		if (!bh)
947 			break;
948 		put_bh(bh);
949 		journal->j_fc_wbuf[i] = NULL;
950 	}
951 
952 	return 0;
953 }
954 EXPORT_SYMBOL(jbd2_fc_release_bufs);
955 
956 /*
957  * Conversion of logical to physical block numbers for the journal
958  *
959  * On external journals the journal blocks are identity-mapped, so
960  * this is a no-op.  If needed, we can use j_blk_offset - everything is
961  * ready.
962  */
963 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
964 		 unsigned long long *retp)
965 {
966 	int err = 0;
967 	unsigned long long ret;
968 	sector_t block = 0;
969 
970 	if (journal->j_inode) {
971 		block = blocknr;
972 		ret = bmap(journal->j_inode, &block);
973 
974 		if (ret || !block) {
975 			printk(KERN_ALERT "%s: journal block not found "
976 					"at offset %lu on %s\n",
977 			       __func__, blocknr, journal->j_devname);
978 			err = -EIO;
979 			jbd2_journal_abort(journal, err);
980 		} else {
981 			*retp = block;
982 		}
983 
984 	} else {
985 		*retp = blocknr; /* +journal->j_blk_offset */
986 	}
987 	return err;
988 }
989 
990 /*
991  * We play buffer_head aliasing tricks to write data/metadata blocks to
992  * the journal without copying their contents, but for journal
993  * descriptor blocks we do need to generate bona fide buffers.
994  *
995  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
996  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
997  * But we don't bother doing that, so there will be coherency problems with
998  * mmaps of blockdevs which hold live JBD-controlled filesystems.
999  */
1000 struct buffer_head *
1001 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
1002 {
1003 	journal_t *journal = transaction->t_journal;
1004 	struct buffer_head *bh;
1005 	unsigned long long blocknr;
1006 	journal_header_t *header;
1007 	int err;
1008 
1009 	err = jbd2_journal_next_log_block(journal, &blocknr);
1010 
1011 	if (err)
1012 		return NULL;
1013 
1014 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1015 	if (!bh)
1016 		return NULL;
1017 	atomic_dec(&transaction->t_outstanding_credits);
1018 	lock_buffer(bh);
1019 	memset(bh->b_data, 0, journal->j_blocksize);
1020 	header = (journal_header_t *)bh->b_data;
1021 	header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
1022 	header->h_blocktype = cpu_to_be32(type);
1023 	header->h_sequence = cpu_to_be32(transaction->t_tid);
1024 	set_buffer_uptodate(bh);
1025 	unlock_buffer(bh);
1026 	BUFFER_TRACE(bh, "return this buffer");
1027 	return bh;
1028 }
1029 
1030 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
1031 {
1032 	struct jbd2_journal_block_tail *tail;
1033 	__u32 csum;
1034 
1035 	if (!jbd2_journal_has_csum_v2or3(j))
1036 		return;
1037 
1038 	tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
1039 			sizeof(struct jbd2_journal_block_tail));
1040 	tail->t_checksum = 0;
1041 	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
1042 	tail->t_checksum = cpu_to_be32(csum);
1043 }
1044 
1045 /*
1046  * Return tid of the oldest transaction in the journal and block in the journal
1047  * where the transaction starts.
1048  *
1049  * If the journal is now empty, return which will be the next transaction ID
1050  * we will write and where will that transaction start.
1051  *
1052  * The return value is 0 if journal tail cannot be pushed any further, 1 if
1053  * it can.
1054  */
1055 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
1056 			      unsigned long *block)
1057 {
1058 	transaction_t *transaction;
1059 	int ret;
1060 
1061 	read_lock(&journal->j_state_lock);
1062 	spin_lock(&journal->j_list_lock);
1063 	transaction = journal->j_checkpoint_transactions;
1064 	if (transaction) {
1065 		*tid = transaction->t_tid;
1066 		*block = transaction->t_log_start;
1067 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
1068 		*tid = transaction->t_tid;
1069 		*block = transaction->t_log_start;
1070 	} else if ((transaction = journal->j_running_transaction) != NULL) {
1071 		*tid = transaction->t_tid;
1072 		*block = journal->j_head;
1073 	} else {
1074 		*tid = journal->j_transaction_sequence;
1075 		*block = journal->j_head;
1076 	}
1077 	ret = tid_gt(*tid, journal->j_tail_sequence);
1078 	spin_unlock(&journal->j_list_lock);
1079 	read_unlock(&journal->j_state_lock);
1080 
1081 	return ret;
1082 }
1083 
1084 /*
1085  * Update information in journal structure and in on disk journal superblock
1086  * about log tail. This function does not check whether information passed in
1087  * really pushes log tail further. It's responsibility of the caller to make
1088  * sure provided log tail information is valid (e.g. by holding
1089  * j_checkpoint_mutex all the time between computing log tail and calling this
1090  * function as is the case with jbd2_cleanup_journal_tail()).
1091  *
1092  * Requires j_checkpoint_mutex
1093  */
1094 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1095 {
1096 	unsigned long freed;
1097 	int ret;
1098 
1099 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1100 
1101 	/*
1102 	 * We cannot afford for write to remain in drive's caches since as
1103 	 * soon as we update j_tail, next transaction can start reusing journal
1104 	 * space and if we lose sb update during power failure we'd replay
1105 	 * old transaction with possibly newly overwritten data.
1106 	 */
1107 	ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
1108 					      REQ_SYNC | REQ_FUA);
1109 	if (ret)
1110 		goto out;
1111 
1112 	write_lock(&journal->j_state_lock);
1113 	freed = block - journal->j_tail;
1114 	if (block < journal->j_tail)
1115 		freed += journal->j_last - journal->j_first;
1116 
1117 	trace_jbd2_update_log_tail(journal, tid, block, freed);
1118 	jbd_debug(1,
1119 		  "Cleaning journal tail from %u to %u (offset %lu), "
1120 		  "freeing %lu\n",
1121 		  journal->j_tail_sequence, tid, block, freed);
1122 
1123 	journal->j_free += freed;
1124 	journal->j_tail_sequence = tid;
1125 	journal->j_tail = block;
1126 	write_unlock(&journal->j_state_lock);
1127 
1128 out:
1129 	return ret;
1130 }
1131 
1132 /*
1133  * This is a variation of __jbd2_update_log_tail which checks for validity of
1134  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
1135  * with other threads updating log tail.
1136  */
1137 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1138 {
1139 	mutex_lock_io(&journal->j_checkpoint_mutex);
1140 	if (tid_gt(tid, journal->j_tail_sequence))
1141 		__jbd2_update_log_tail(journal, tid, block);
1142 	mutex_unlock(&journal->j_checkpoint_mutex);
1143 }
1144 
1145 struct jbd2_stats_proc_session {
1146 	journal_t *journal;
1147 	struct transaction_stats_s *stats;
1148 	int start;
1149 	int max;
1150 };
1151 
1152 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
1153 {
1154 	return *pos ? NULL : SEQ_START_TOKEN;
1155 }
1156 
1157 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
1158 {
1159 	(*pos)++;
1160 	return NULL;
1161 }
1162 
1163 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
1164 {
1165 	struct jbd2_stats_proc_session *s = seq->private;
1166 
1167 	if (v != SEQ_START_TOKEN)
1168 		return 0;
1169 	seq_printf(seq, "%lu transactions (%lu requested), "
1170 		   "each up to %u blocks\n",
1171 		   s->stats->ts_tid, s->stats->ts_requested,
1172 		   s->journal->j_max_transaction_buffers);
1173 	if (s->stats->ts_tid == 0)
1174 		return 0;
1175 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1176 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1177 	seq_printf(seq, "  %ums request delay\n",
1178 	    (s->stats->ts_requested == 0) ? 0 :
1179 	    jiffies_to_msecs(s->stats->run.rs_request_delay /
1180 			     s->stats->ts_requested));
1181 	seq_printf(seq, "  %ums running transaction\n",
1182 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1183 	seq_printf(seq, "  %ums transaction was being locked\n",
1184 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1185 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1186 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1187 	seq_printf(seq, "  %ums logging transaction\n",
1188 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1189 	seq_printf(seq, "  %lluus average transaction commit time\n",
1190 		   div_u64(s->journal->j_average_commit_time, 1000));
1191 	seq_printf(seq, "  %lu handles per transaction\n",
1192 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
1193 	seq_printf(seq, "  %lu blocks per transaction\n",
1194 	    s->stats->run.rs_blocks / s->stats->ts_tid);
1195 	seq_printf(seq, "  %lu logged blocks per transaction\n",
1196 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1197 	return 0;
1198 }
1199 
1200 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1201 {
1202 }
1203 
1204 static const struct seq_operations jbd2_seq_info_ops = {
1205 	.start  = jbd2_seq_info_start,
1206 	.next   = jbd2_seq_info_next,
1207 	.stop   = jbd2_seq_info_stop,
1208 	.show   = jbd2_seq_info_show,
1209 };
1210 
1211 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1212 {
1213 	journal_t *journal = PDE_DATA(inode);
1214 	struct jbd2_stats_proc_session *s;
1215 	int rc, size;
1216 
1217 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1218 	if (s == NULL)
1219 		return -ENOMEM;
1220 	size = sizeof(struct transaction_stats_s);
1221 	s->stats = kmalloc(size, GFP_KERNEL);
1222 	if (s->stats == NULL) {
1223 		kfree(s);
1224 		return -ENOMEM;
1225 	}
1226 	spin_lock(&journal->j_history_lock);
1227 	memcpy(s->stats, &journal->j_stats, size);
1228 	s->journal = journal;
1229 	spin_unlock(&journal->j_history_lock);
1230 
1231 	rc = seq_open(file, &jbd2_seq_info_ops);
1232 	if (rc == 0) {
1233 		struct seq_file *m = file->private_data;
1234 		m->private = s;
1235 	} else {
1236 		kfree(s->stats);
1237 		kfree(s);
1238 	}
1239 	return rc;
1240 
1241 }
1242 
1243 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1244 {
1245 	struct seq_file *seq = file->private_data;
1246 	struct jbd2_stats_proc_session *s = seq->private;
1247 	kfree(s->stats);
1248 	kfree(s);
1249 	return seq_release(inode, file);
1250 }
1251 
1252 static const struct proc_ops jbd2_info_proc_ops = {
1253 	.proc_open	= jbd2_seq_info_open,
1254 	.proc_read	= seq_read,
1255 	.proc_lseek	= seq_lseek,
1256 	.proc_release	= jbd2_seq_info_release,
1257 };
1258 
1259 static struct proc_dir_entry *proc_jbd2_stats;
1260 
1261 static void jbd2_stats_proc_init(journal_t *journal)
1262 {
1263 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1264 	if (journal->j_proc_entry) {
1265 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1266 				 &jbd2_info_proc_ops, journal);
1267 	}
1268 }
1269 
1270 static void jbd2_stats_proc_exit(journal_t *journal)
1271 {
1272 	remove_proc_entry("info", journal->j_proc_entry);
1273 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1274 }
1275 
1276 /* Minimum size of descriptor tag */
1277 static int jbd2_min_tag_size(void)
1278 {
1279 	/*
1280 	 * Tag with 32-bit block numbers does not use last four bytes of the
1281 	 * structure
1282 	 */
1283 	return sizeof(journal_block_tag_t) - 4;
1284 }
1285 
1286 /*
1287  * Management for journal control blocks: functions to create and
1288  * destroy journal_t structures, and to initialise and read existing
1289  * journal blocks from disk.  */
1290 
1291 /* First: create and setup a journal_t object in memory.  We initialise
1292  * very few fields yet: that has to wait until we have created the
1293  * journal structures from from scratch, or loaded them from disk. */
1294 
1295 static journal_t *journal_init_common(struct block_device *bdev,
1296 			struct block_device *fs_dev,
1297 			unsigned long long start, int len, int blocksize)
1298 {
1299 	static struct lock_class_key jbd2_trans_commit_key;
1300 	journal_t *journal;
1301 	int err;
1302 	struct buffer_head *bh;
1303 	int n;
1304 
1305 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1306 	if (!journal)
1307 		return NULL;
1308 
1309 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1310 	init_waitqueue_head(&journal->j_wait_done_commit);
1311 	init_waitqueue_head(&journal->j_wait_commit);
1312 	init_waitqueue_head(&journal->j_wait_updates);
1313 	init_waitqueue_head(&journal->j_wait_reserved);
1314 	init_waitqueue_head(&journal->j_fc_wait);
1315 	mutex_init(&journal->j_abort_mutex);
1316 	mutex_init(&journal->j_barrier);
1317 	mutex_init(&journal->j_checkpoint_mutex);
1318 	spin_lock_init(&journal->j_revoke_lock);
1319 	spin_lock_init(&journal->j_list_lock);
1320 	rwlock_init(&journal->j_state_lock);
1321 
1322 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1323 	journal->j_min_batch_time = 0;
1324 	journal->j_max_batch_time = 15000; /* 15ms */
1325 	atomic_set(&journal->j_reserved_credits, 0);
1326 
1327 	/* The journal is marked for error until we succeed with recovery! */
1328 	journal->j_flags = JBD2_ABORT;
1329 
1330 	/* Set up a default-sized revoke table for the new mount. */
1331 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1332 	if (err)
1333 		goto err_cleanup;
1334 
1335 	spin_lock_init(&journal->j_history_lock);
1336 
1337 	lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1338 			 &jbd2_trans_commit_key, 0);
1339 
1340 	/* journal descriptor can store up to n blocks -bzzz */
1341 	journal->j_blocksize = blocksize;
1342 	journal->j_dev = bdev;
1343 	journal->j_fs_dev = fs_dev;
1344 	journal->j_blk_offset = start;
1345 	journal->j_total_len = len;
1346 	/* We need enough buffers to write out full descriptor block. */
1347 	n = journal->j_blocksize / jbd2_min_tag_size();
1348 	journal->j_wbufsize = n;
1349 	journal->j_fc_wbuf = NULL;
1350 	journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1351 					GFP_KERNEL);
1352 	if (!journal->j_wbuf)
1353 		goto err_cleanup;
1354 
1355 	bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1356 	if (!bh) {
1357 		pr_err("%s: Cannot get buffer for journal superblock\n",
1358 			__func__);
1359 		goto err_cleanup;
1360 	}
1361 	journal->j_sb_buffer = bh;
1362 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1363 
1364 	return journal;
1365 
1366 err_cleanup:
1367 	kfree(journal->j_wbuf);
1368 	jbd2_journal_destroy_revoke(journal);
1369 	kfree(journal);
1370 	return NULL;
1371 }
1372 
1373 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1374  *
1375  * Create a journal structure assigned some fixed set of disk blocks to
1376  * the journal.  We don't actually touch those disk blocks yet, but we
1377  * need to set up all of the mapping information to tell the journaling
1378  * system where the journal blocks are.
1379  *
1380  */
1381 
1382 /**
1383  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1384  *  @bdev: Block device on which to create the journal
1385  *  @fs_dev: Device which hold journalled filesystem for this journal.
1386  *  @start: Block nr Start of journal.
1387  *  @len:  Length of the journal in blocks.
1388  *  @blocksize: blocksize of journalling device
1389  *
1390  *  Returns: a newly created journal_t *
1391  *
1392  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1393  *  range of blocks on an arbitrary block device.
1394  *
1395  */
1396 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1397 			struct block_device *fs_dev,
1398 			unsigned long long start, int len, int blocksize)
1399 {
1400 	journal_t *journal;
1401 
1402 	journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1403 	if (!journal)
1404 		return NULL;
1405 
1406 	bdevname(journal->j_dev, journal->j_devname);
1407 	strreplace(journal->j_devname, '/', '!');
1408 	jbd2_stats_proc_init(journal);
1409 
1410 	return journal;
1411 }
1412 
1413 /**
1414  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1415  *  @inode: An inode to create the journal in
1416  *
1417  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1418  * the journal.  The inode must exist already, must support bmap() and
1419  * must have all data blocks preallocated.
1420  */
1421 journal_t *jbd2_journal_init_inode(struct inode *inode)
1422 {
1423 	journal_t *journal;
1424 	sector_t blocknr;
1425 	char *p;
1426 	int err = 0;
1427 
1428 	blocknr = 0;
1429 	err = bmap(inode, &blocknr);
1430 
1431 	if (err || !blocknr) {
1432 		pr_err("%s: Cannot locate journal superblock\n",
1433 			__func__);
1434 		return NULL;
1435 	}
1436 
1437 	jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1438 		  inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1439 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1440 
1441 	journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1442 			blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1443 			inode->i_sb->s_blocksize);
1444 	if (!journal)
1445 		return NULL;
1446 
1447 	journal->j_inode = inode;
1448 	bdevname(journal->j_dev, journal->j_devname);
1449 	p = strreplace(journal->j_devname, '/', '!');
1450 	sprintf(p, "-%lu", journal->j_inode->i_ino);
1451 	jbd2_stats_proc_init(journal);
1452 
1453 	return journal;
1454 }
1455 
1456 /*
1457  * If the journal init or create aborts, we need to mark the journal
1458  * superblock as being NULL to prevent the journal destroy from writing
1459  * back a bogus superblock.
1460  */
1461 static void journal_fail_superblock(journal_t *journal)
1462 {
1463 	struct buffer_head *bh = journal->j_sb_buffer;
1464 	brelse(bh);
1465 	journal->j_sb_buffer = NULL;
1466 }
1467 
1468 /*
1469  * Given a journal_t structure, initialise the various fields for
1470  * startup of a new journaling session.  We use this both when creating
1471  * a journal, and after recovering an old journal to reset it for
1472  * subsequent use.
1473  */
1474 
1475 static int journal_reset(journal_t *journal)
1476 {
1477 	journal_superblock_t *sb = journal->j_superblock;
1478 	unsigned long long first, last;
1479 
1480 	first = be32_to_cpu(sb->s_first);
1481 	last = be32_to_cpu(sb->s_maxlen);
1482 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1483 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1484 		       first, last);
1485 		journal_fail_superblock(journal);
1486 		return -EINVAL;
1487 	}
1488 
1489 	journal->j_first = first;
1490 	journal->j_last = last;
1491 
1492 	journal->j_head = journal->j_first;
1493 	journal->j_tail = journal->j_first;
1494 	journal->j_free = journal->j_last - journal->j_first;
1495 
1496 	journal->j_tail_sequence = journal->j_transaction_sequence;
1497 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1498 	journal->j_commit_request = journal->j_commit_sequence;
1499 
1500 	journal->j_max_transaction_buffers = jbd2_journal_get_max_txn_bufs(journal);
1501 
1502 	/*
1503 	 * Now that journal recovery is done, turn fast commits off here. This
1504 	 * way, if fast commit was enabled before the crash but if now FS has
1505 	 * disabled it, we don't enable fast commits.
1506 	 */
1507 	jbd2_clear_feature_fast_commit(journal);
1508 
1509 	/*
1510 	 * As a special case, if the on-disk copy is already marked as needing
1511 	 * no recovery (s_start == 0), then we can safely defer the superblock
1512 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1513 	 * attempting a write to a potential-readonly device.
1514 	 */
1515 	if (sb->s_start == 0) {
1516 		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1517 			"(start %ld, seq %u, errno %d)\n",
1518 			journal->j_tail, journal->j_tail_sequence,
1519 			journal->j_errno);
1520 		journal->j_flags |= JBD2_FLUSHED;
1521 	} else {
1522 		/* Lock here to make assertions happy... */
1523 		mutex_lock_io(&journal->j_checkpoint_mutex);
1524 		/*
1525 		 * Update log tail information. We use REQ_FUA since new
1526 		 * transaction will start reusing journal space and so we
1527 		 * must make sure information about current log tail is on
1528 		 * disk before that.
1529 		 */
1530 		jbd2_journal_update_sb_log_tail(journal,
1531 						journal->j_tail_sequence,
1532 						journal->j_tail,
1533 						REQ_SYNC | REQ_FUA);
1534 		mutex_unlock(&journal->j_checkpoint_mutex);
1535 	}
1536 	return jbd2_journal_start_thread(journal);
1537 }
1538 
1539 /*
1540  * This function expects that the caller will have locked the journal
1541  * buffer head, and will return with it unlocked
1542  */
1543 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1544 {
1545 	struct buffer_head *bh = journal->j_sb_buffer;
1546 	journal_superblock_t *sb = journal->j_superblock;
1547 	int ret;
1548 
1549 	/* Buffer got discarded which means block device got invalidated */
1550 	if (!buffer_mapped(bh)) {
1551 		unlock_buffer(bh);
1552 		return -EIO;
1553 	}
1554 
1555 	trace_jbd2_write_superblock(journal, write_flags);
1556 	if (!(journal->j_flags & JBD2_BARRIER))
1557 		write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1558 	if (buffer_write_io_error(bh)) {
1559 		/*
1560 		 * Oh, dear.  A previous attempt to write the journal
1561 		 * superblock failed.  This could happen because the
1562 		 * USB device was yanked out.  Or it could happen to
1563 		 * be a transient write error and maybe the block will
1564 		 * be remapped.  Nothing we can do but to retry the
1565 		 * write and hope for the best.
1566 		 */
1567 		printk(KERN_ERR "JBD2: previous I/O error detected "
1568 		       "for journal superblock update for %s.\n",
1569 		       journal->j_devname);
1570 		clear_buffer_write_io_error(bh);
1571 		set_buffer_uptodate(bh);
1572 	}
1573 	if (jbd2_journal_has_csum_v2or3(journal))
1574 		sb->s_checksum = jbd2_superblock_csum(journal, sb);
1575 	get_bh(bh);
1576 	bh->b_end_io = end_buffer_write_sync;
1577 	ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1578 	wait_on_buffer(bh);
1579 	if (buffer_write_io_error(bh)) {
1580 		clear_buffer_write_io_error(bh);
1581 		set_buffer_uptodate(bh);
1582 		ret = -EIO;
1583 	}
1584 	if (ret) {
1585 		printk(KERN_ERR "JBD2: Error %d detected when updating "
1586 		       "journal superblock for %s.\n", ret,
1587 		       journal->j_devname);
1588 		if (!is_journal_aborted(journal))
1589 			jbd2_journal_abort(journal, ret);
1590 	}
1591 
1592 	return ret;
1593 }
1594 
1595 /**
1596  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1597  * @journal: The journal to update.
1598  * @tail_tid: TID of the new transaction at the tail of the log
1599  * @tail_block: The first block of the transaction at the tail of the log
1600  * @write_op: With which operation should we write the journal sb
1601  *
1602  * Update a journal's superblock information about log tail and write it to
1603  * disk, waiting for the IO to complete.
1604  */
1605 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1606 				     unsigned long tail_block, int write_op)
1607 {
1608 	journal_superblock_t *sb = journal->j_superblock;
1609 	int ret;
1610 
1611 	if (is_journal_aborted(journal))
1612 		return -EIO;
1613 	if (test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags)) {
1614 		jbd2_journal_abort(journal, -EIO);
1615 		return -EIO;
1616 	}
1617 
1618 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1619 	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1620 		  tail_block, tail_tid);
1621 
1622 	lock_buffer(journal->j_sb_buffer);
1623 	sb->s_sequence = cpu_to_be32(tail_tid);
1624 	sb->s_start    = cpu_to_be32(tail_block);
1625 
1626 	ret = jbd2_write_superblock(journal, write_op);
1627 	if (ret)
1628 		goto out;
1629 
1630 	/* Log is no longer empty */
1631 	write_lock(&journal->j_state_lock);
1632 	WARN_ON(!sb->s_sequence);
1633 	journal->j_flags &= ~JBD2_FLUSHED;
1634 	write_unlock(&journal->j_state_lock);
1635 
1636 out:
1637 	return ret;
1638 }
1639 
1640 /**
1641  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1642  * @journal: The journal to update.
1643  * @write_op: With which operation should we write the journal sb
1644  *
1645  * Update a journal's dynamic superblock fields to show that journal is empty.
1646  * Write updated superblock to disk waiting for IO to complete.
1647  */
1648 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1649 {
1650 	journal_superblock_t *sb = journal->j_superblock;
1651 	bool had_fast_commit = false;
1652 
1653 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1654 	lock_buffer(journal->j_sb_buffer);
1655 	if (sb->s_start == 0) {		/* Is it already empty? */
1656 		unlock_buffer(journal->j_sb_buffer);
1657 		return;
1658 	}
1659 
1660 	jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1661 		  journal->j_tail_sequence);
1662 
1663 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1664 	sb->s_start    = cpu_to_be32(0);
1665 	if (jbd2_has_feature_fast_commit(journal)) {
1666 		/*
1667 		 * When journal is clean, no need to commit fast commit flag and
1668 		 * make file system incompatible with older kernels.
1669 		 */
1670 		jbd2_clear_feature_fast_commit(journal);
1671 		had_fast_commit = true;
1672 	}
1673 
1674 	jbd2_write_superblock(journal, write_op);
1675 
1676 	if (had_fast_commit)
1677 		jbd2_set_feature_fast_commit(journal);
1678 
1679 	/* Log is no longer empty */
1680 	write_lock(&journal->j_state_lock);
1681 	journal->j_flags |= JBD2_FLUSHED;
1682 	write_unlock(&journal->j_state_lock);
1683 }
1684 
1685 /**
1686  * __jbd2_journal_erase() - Discard or zeroout journal blocks (excluding superblock)
1687  * @journal: The journal to erase.
1688  * @flags: A discard/zeroout request is sent for each physically contigous
1689  *	region of the journal. Either JBD2_JOURNAL_FLUSH_DISCARD or
1690  *	JBD2_JOURNAL_FLUSH_ZEROOUT must be set to determine which operation
1691  *	to perform.
1692  *
1693  * Note: JBD2_JOURNAL_FLUSH_ZEROOUT attempts to use hardware offload. Zeroes
1694  * will be explicitly written if no hardware offload is available, see
1695  * blkdev_issue_zeroout for more details.
1696  */
1697 static int __jbd2_journal_erase(journal_t *journal, unsigned int flags)
1698 {
1699 	int err = 0;
1700 	unsigned long block, log_offset; /* logical */
1701 	unsigned long long phys_block, block_start, block_stop; /* physical */
1702 	loff_t byte_start, byte_stop, byte_count;
1703 	struct request_queue *q = bdev_get_queue(journal->j_dev);
1704 
1705 	/* flags must be set to either discard or zeroout */
1706 	if ((flags & ~JBD2_JOURNAL_FLUSH_VALID) || !flags ||
1707 			((flags & JBD2_JOURNAL_FLUSH_DISCARD) &&
1708 			(flags & JBD2_JOURNAL_FLUSH_ZEROOUT)))
1709 		return -EINVAL;
1710 
1711 	if (!q)
1712 		return -ENXIO;
1713 
1714 	if ((flags & JBD2_JOURNAL_FLUSH_DISCARD) && !blk_queue_discard(q))
1715 		return -EOPNOTSUPP;
1716 
1717 	/*
1718 	 * lookup block mapping and issue discard/zeroout for each
1719 	 * contiguous region
1720 	 */
1721 	log_offset = be32_to_cpu(journal->j_superblock->s_first);
1722 	block_start =  ~0ULL;
1723 	for (block = log_offset; block < journal->j_total_len; block++) {
1724 		err = jbd2_journal_bmap(journal, block, &phys_block);
1725 		if (err) {
1726 			pr_err("JBD2: bad block at offset %lu", block);
1727 			return err;
1728 		}
1729 
1730 		if (block_start == ~0ULL) {
1731 			block_start = phys_block;
1732 			block_stop = block_start - 1;
1733 		}
1734 
1735 		/*
1736 		 * last block not contiguous with current block,
1737 		 * process last contiguous region and return to this block on
1738 		 * next loop
1739 		 */
1740 		if (phys_block != block_stop + 1) {
1741 			block--;
1742 		} else {
1743 			block_stop++;
1744 			/*
1745 			 * if this isn't the last block of journal,
1746 			 * no need to process now because next block may also
1747 			 * be part of this contiguous region
1748 			 */
1749 			if (block != journal->j_total_len - 1)
1750 				continue;
1751 		}
1752 
1753 		/*
1754 		 * end of contiguous region or this is last block of journal,
1755 		 * take care of the region
1756 		 */
1757 		byte_start = block_start * journal->j_blocksize;
1758 		byte_stop = block_stop * journal->j_blocksize;
1759 		byte_count = (block_stop - block_start + 1) *
1760 				journal->j_blocksize;
1761 
1762 		truncate_inode_pages_range(journal->j_dev->bd_inode->i_mapping,
1763 				byte_start, byte_stop);
1764 
1765 		if (flags & JBD2_JOURNAL_FLUSH_DISCARD) {
1766 			err = blkdev_issue_discard(journal->j_dev,
1767 					byte_start >> SECTOR_SHIFT,
1768 					byte_count >> SECTOR_SHIFT,
1769 					GFP_NOFS, 0);
1770 		} else if (flags & JBD2_JOURNAL_FLUSH_ZEROOUT) {
1771 			err = blkdev_issue_zeroout(journal->j_dev,
1772 					byte_start >> SECTOR_SHIFT,
1773 					byte_count >> SECTOR_SHIFT,
1774 					GFP_NOFS, 0);
1775 		}
1776 
1777 		if (unlikely(err != 0)) {
1778 			pr_err("JBD2: (error %d) unable to wipe journal at physical blocks %llu - %llu",
1779 					err, block_start, block_stop);
1780 			return err;
1781 		}
1782 
1783 		/* reset start and stop after processing a region */
1784 		block_start = ~0ULL;
1785 	}
1786 
1787 	return blkdev_issue_flush(journal->j_dev);
1788 }
1789 
1790 /**
1791  * jbd2_journal_update_sb_errno() - Update error in the journal.
1792  * @journal: The journal to update.
1793  *
1794  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1795  * to complete.
1796  */
1797 void jbd2_journal_update_sb_errno(journal_t *journal)
1798 {
1799 	journal_superblock_t *sb = journal->j_superblock;
1800 	int errcode;
1801 
1802 	lock_buffer(journal->j_sb_buffer);
1803 	errcode = journal->j_errno;
1804 	if (errcode == -ESHUTDOWN)
1805 		errcode = 0;
1806 	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1807 	sb->s_errno    = cpu_to_be32(errcode);
1808 
1809 	jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1810 }
1811 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1812 
1813 static int journal_revoke_records_per_block(journal_t *journal)
1814 {
1815 	int record_size;
1816 	int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t);
1817 
1818 	if (jbd2_has_feature_64bit(journal))
1819 		record_size = 8;
1820 	else
1821 		record_size = 4;
1822 
1823 	if (jbd2_journal_has_csum_v2or3(journal))
1824 		space -= sizeof(struct jbd2_journal_block_tail);
1825 	return space / record_size;
1826 }
1827 
1828 /*
1829  * Read the superblock for a given journal, performing initial
1830  * validation of the format.
1831  */
1832 static int journal_get_superblock(journal_t *journal)
1833 {
1834 	struct buffer_head *bh;
1835 	journal_superblock_t *sb;
1836 	int err = -EIO;
1837 
1838 	bh = journal->j_sb_buffer;
1839 
1840 	J_ASSERT(bh != NULL);
1841 	if (!buffer_uptodate(bh)) {
1842 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1843 		wait_on_buffer(bh);
1844 		if (!buffer_uptodate(bh)) {
1845 			printk(KERN_ERR
1846 				"JBD2: IO error reading journal superblock\n");
1847 			goto out;
1848 		}
1849 	}
1850 
1851 	if (buffer_verified(bh))
1852 		return 0;
1853 
1854 	sb = journal->j_superblock;
1855 
1856 	err = -EINVAL;
1857 
1858 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1859 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1860 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1861 		goto out;
1862 	}
1863 
1864 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1865 	case JBD2_SUPERBLOCK_V1:
1866 		journal->j_format_version = 1;
1867 		break;
1868 	case JBD2_SUPERBLOCK_V2:
1869 		journal->j_format_version = 2;
1870 		break;
1871 	default:
1872 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1873 		goto out;
1874 	}
1875 
1876 	if (be32_to_cpu(sb->s_maxlen) < journal->j_total_len)
1877 		journal->j_total_len = be32_to_cpu(sb->s_maxlen);
1878 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_total_len) {
1879 		printk(KERN_WARNING "JBD2: journal file too short\n");
1880 		goto out;
1881 	}
1882 
1883 	if (be32_to_cpu(sb->s_first) == 0 ||
1884 	    be32_to_cpu(sb->s_first) >= journal->j_total_len) {
1885 		printk(KERN_WARNING
1886 			"JBD2: Invalid start block of journal: %u\n",
1887 			be32_to_cpu(sb->s_first));
1888 		goto out;
1889 	}
1890 
1891 	if (jbd2_has_feature_csum2(journal) &&
1892 	    jbd2_has_feature_csum3(journal)) {
1893 		/* Can't have checksum v2 and v3 at the same time! */
1894 		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1895 		       "at the same time!\n");
1896 		goto out;
1897 	}
1898 
1899 	if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1900 	    jbd2_has_feature_checksum(journal)) {
1901 		/* Can't have checksum v1 and v2 on at the same time! */
1902 		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1903 		       "at the same time!\n");
1904 		goto out;
1905 	}
1906 
1907 	if (!jbd2_verify_csum_type(journal, sb)) {
1908 		printk(KERN_ERR "JBD2: Unknown checksum type\n");
1909 		goto out;
1910 	}
1911 
1912 	/* Load the checksum driver */
1913 	if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1914 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1915 		if (IS_ERR(journal->j_chksum_driver)) {
1916 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1917 			err = PTR_ERR(journal->j_chksum_driver);
1918 			journal->j_chksum_driver = NULL;
1919 			goto out;
1920 		}
1921 	}
1922 
1923 	if (jbd2_journal_has_csum_v2or3(journal)) {
1924 		/* Check superblock checksum */
1925 		if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1926 			printk(KERN_ERR "JBD2: journal checksum error\n");
1927 			err = -EFSBADCRC;
1928 			goto out;
1929 		}
1930 
1931 		/* Precompute checksum seed for all metadata */
1932 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1933 						   sizeof(sb->s_uuid));
1934 	}
1935 
1936 	journal->j_revoke_records_per_block =
1937 				journal_revoke_records_per_block(journal);
1938 	set_buffer_verified(bh);
1939 
1940 	return 0;
1941 
1942 out:
1943 	journal_fail_superblock(journal);
1944 	return err;
1945 }
1946 
1947 /*
1948  * Load the on-disk journal superblock and read the key fields into the
1949  * journal_t.
1950  */
1951 
1952 static int load_superblock(journal_t *journal)
1953 {
1954 	int err;
1955 	journal_superblock_t *sb;
1956 	int num_fc_blocks;
1957 
1958 	err = journal_get_superblock(journal);
1959 	if (err)
1960 		return err;
1961 
1962 	sb = journal->j_superblock;
1963 
1964 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1965 	journal->j_tail = be32_to_cpu(sb->s_start);
1966 	journal->j_first = be32_to_cpu(sb->s_first);
1967 	journal->j_errno = be32_to_cpu(sb->s_errno);
1968 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1969 
1970 	if (jbd2_has_feature_fast_commit(journal)) {
1971 		journal->j_fc_last = be32_to_cpu(sb->s_maxlen);
1972 		num_fc_blocks = jbd2_journal_get_num_fc_blks(sb);
1973 		if (journal->j_last - num_fc_blocks >= JBD2_MIN_JOURNAL_BLOCKS)
1974 			journal->j_last = journal->j_fc_last - num_fc_blocks;
1975 		journal->j_fc_first = journal->j_last + 1;
1976 		journal->j_fc_off = 0;
1977 	}
1978 
1979 	return 0;
1980 }
1981 
1982 
1983 /**
1984  * jbd2_journal_load() - Read journal from disk.
1985  * @journal: Journal to act on.
1986  *
1987  * Given a journal_t structure which tells us which disk blocks contain
1988  * a journal, read the journal from disk to initialise the in-memory
1989  * structures.
1990  */
1991 int jbd2_journal_load(journal_t *journal)
1992 {
1993 	int err;
1994 	journal_superblock_t *sb;
1995 
1996 	err = load_superblock(journal);
1997 	if (err)
1998 		return err;
1999 
2000 	sb = journal->j_superblock;
2001 	/* If this is a V2 superblock, then we have to check the
2002 	 * features flags on it. */
2003 
2004 	if (journal->j_format_version >= 2) {
2005 		if ((sb->s_feature_ro_compat &
2006 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
2007 		    (sb->s_feature_incompat &
2008 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
2009 			printk(KERN_WARNING
2010 				"JBD2: Unrecognised features on journal\n");
2011 			return -EINVAL;
2012 		}
2013 	}
2014 
2015 	/*
2016 	 * Create a slab for this blocksize
2017 	 */
2018 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
2019 	if (err)
2020 		return err;
2021 
2022 	/* Let the recovery code check whether it needs to recover any
2023 	 * data from the journal. */
2024 	if (jbd2_journal_recover(journal))
2025 		goto recovery_error;
2026 
2027 	if (journal->j_failed_commit) {
2028 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
2029 		       "is corrupt.\n", journal->j_failed_commit,
2030 		       journal->j_devname);
2031 		return -EFSCORRUPTED;
2032 	}
2033 	/*
2034 	 * clear JBD2_ABORT flag initialized in journal_init_common
2035 	 * here to update log tail information with the newest seq.
2036 	 */
2037 	journal->j_flags &= ~JBD2_ABORT;
2038 
2039 	/* OK, we've finished with the dynamic journal bits:
2040 	 * reinitialise the dynamic contents of the superblock in memory
2041 	 * and reset them on disk. */
2042 	if (journal_reset(journal))
2043 		goto recovery_error;
2044 
2045 	journal->j_flags |= JBD2_LOADED;
2046 	return 0;
2047 
2048 recovery_error:
2049 	printk(KERN_WARNING "JBD2: recovery failed\n");
2050 	return -EIO;
2051 }
2052 
2053 /**
2054  * jbd2_journal_shrink_scan()
2055  *
2056  * Scan the checkpointed buffer on the checkpoint list and release the
2057  * journal_head.
2058  */
2059 static unsigned long jbd2_journal_shrink_scan(struct shrinker *shrink,
2060 					      struct shrink_control *sc)
2061 {
2062 	journal_t *journal = container_of(shrink, journal_t, j_shrinker);
2063 	unsigned long nr_to_scan = sc->nr_to_scan;
2064 	unsigned long nr_shrunk;
2065 	unsigned long count;
2066 
2067 	count = percpu_counter_read_positive(&journal->j_jh_shrink_count);
2068 	trace_jbd2_shrink_scan_enter(journal, sc->nr_to_scan, count);
2069 
2070 	nr_shrunk = jbd2_journal_shrink_checkpoint_list(journal, &nr_to_scan);
2071 
2072 	count = percpu_counter_read_positive(&journal->j_jh_shrink_count);
2073 	trace_jbd2_shrink_scan_exit(journal, nr_to_scan, nr_shrunk, count);
2074 
2075 	return nr_shrunk;
2076 }
2077 
2078 /**
2079  * jbd2_journal_shrink_count()
2080  *
2081  * Count the number of checkpoint buffers on the checkpoint list.
2082  */
2083 static unsigned long jbd2_journal_shrink_count(struct shrinker *shrink,
2084 					       struct shrink_control *sc)
2085 {
2086 	journal_t *journal = container_of(shrink, journal_t, j_shrinker);
2087 	unsigned long count;
2088 
2089 	count = percpu_counter_read_positive(&journal->j_jh_shrink_count);
2090 	trace_jbd2_shrink_count(journal, sc->nr_to_scan, count);
2091 
2092 	return count;
2093 }
2094 
2095 /**
2096  * jbd2_journal_register_shrinker()
2097  * @journal: Journal to act on.
2098  *
2099  * Init a percpu counter to record the checkpointed buffers on the checkpoint
2100  * list and register a shrinker to release their journal_head.
2101  */
2102 int jbd2_journal_register_shrinker(journal_t *journal)
2103 {
2104 	int err;
2105 
2106 	journal->j_shrink_transaction = NULL;
2107 
2108 	err = percpu_counter_init(&journal->j_jh_shrink_count, 0, GFP_KERNEL);
2109 	if (err)
2110 		return err;
2111 
2112 	journal->j_shrinker.scan_objects = jbd2_journal_shrink_scan;
2113 	journal->j_shrinker.count_objects = jbd2_journal_shrink_count;
2114 	journal->j_shrinker.seeks = DEFAULT_SEEKS;
2115 	journal->j_shrinker.batch = journal->j_max_transaction_buffers;
2116 
2117 	err = register_shrinker(&journal->j_shrinker);
2118 	if (err) {
2119 		percpu_counter_destroy(&journal->j_jh_shrink_count);
2120 		return err;
2121 	}
2122 
2123 	return 0;
2124 }
2125 EXPORT_SYMBOL(jbd2_journal_register_shrinker);
2126 
2127 /**
2128  * jbd2_journal_unregister_shrinker()
2129  * @journal: Journal to act on.
2130  *
2131  * Unregister the checkpointed buffer shrinker and destroy the percpu counter.
2132  */
2133 void jbd2_journal_unregister_shrinker(journal_t *journal)
2134 {
2135 	percpu_counter_destroy(&journal->j_jh_shrink_count);
2136 	unregister_shrinker(&journal->j_shrinker);
2137 }
2138 EXPORT_SYMBOL(jbd2_journal_unregister_shrinker);
2139 
2140 /**
2141  * jbd2_journal_destroy() - Release a journal_t structure.
2142  * @journal: Journal to act on.
2143  *
2144  * Release a journal_t structure once it is no longer in use by the
2145  * journaled object.
2146  * Return <0 if we couldn't clean up the journal.
2147  */
2148 int jbd2_journal_destroy(journal_t *journal)
2149 {
2150 	int err = 0;
2151 
2152 	/* Wait for the commit thread to wake up and die. */
2153 	journal_kill_thread(journal);
2154 
2155 	/* Force a final log commit */
2156 	if (journal->j_running_transaction)
2157 		jbd2_journal_commit_transaction(journal);
2158 
2159 	/* Force any old transactions to disk */
2160 
2161 	/* Totally anal locking here... */
2162 	spin_lock(&journal->j_list_lock);
2163 	while (journal->j_checkpoint_transactions != NULL) {
2164 		spin_unlock(&journal->j_list_lock);
2165 		mutex_lock_io(&journal->j_checkpoint_mutex);
2166 		err = jbd2_log_do_checkpoint(journal);
2167 		mutex_unlock(&journal->j_checkpoint_mutex);
2168 		/*
2169 		 * If checkpointing failed, just free the buffers to avoid
2170 		 * looping forever
2171 		 */
2172 		if (err) {
2173 			jbd2_journal_destroy_checkpoint(journal);
2174 			spin_lock(&journal->j_list_lock);
2175 			break;
2176 		}
2177 		spin_lock(&journal->j_list_lock);
2178 	}
2179 
2180 	J_ASSERT(journal->j_running_transaction == NULL);
2181 	J_ASSERT(journal->j_committing_transaction == NULL);
2182 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
2183 	spin_unlock(&journal->j_list_lock);
2184 
2185 	/*
2186 	 * OK, all checkpoint transactions have been checked, now check the
2187 	 * write out io error flag and abort the journal if some buffer failed
2188 	 * to write back to the original location, otherwise the filesystem
2189 	 * may become inconsistent.
2190 	 */
2191 	if (!is_journal_aborted(journal) &&
2192 	    test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags))
2193 		jbd2_journal_abort(journal, -EIO);
2194 
2195 	if (journal->j_sb_buffer) {
2196 		if (!is_journal_aborted(journal)) {
2197 			mutex_lock_io(&journal->j_checkpoint_mutex);
2198 
2199 			write_lock(&journal->j_state_lock);
2200 			journal->j_tail_sequence =
2201 				++journal->j_transaction_sequence;
2202 			write_unlock(&journal->j_state_lock);
2203 
2204 			jbd2_mark_journal_empty(journal,
2205 					REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2206 			mutex_unlock(&journal->j_checkpoint_mutex);
2207 		} else
2208 			err = -EIO;
2209 		brelse(journal->j_sb_buffer);
2210 	}
2211 
2212 	jbd2_journal_unregister_shrinker(journal);
2213 
2214 	if (journal->j_proc_entry)
2215 		jbd2_stats_proc_exit(journal);
2216 	iput(journal->j_inode);
2217 	if (journal->j_revoke)
2218 		jbd2_journal_destroy_revoke(journal);
2219 	if (journal->j_chksum_driver)
2220 		crypto_free_shash(journal->j_chksum_driver);
2221 	kfree(journal->j_fc_wbuf);
2222 	kfree(journal->j_wbuf);
2223 	kfree(journal);
2224 
2225 	return err;
2226 }
2227 
2228 
2229 /**
2230  * jbd2_journal_check_used_features() - Check if features specified are used.
2231  * @journal: Journal to check.
2232  * @compat: bitmask of compatible features
2233  * @ro: bitmask of features that force read-only mount
2234  * @incompat: bitmask of incompatible features
2235  *
2236  * Check whether the journal uses all of a given set of
2237  * features.  Return true (non-zero) if it does.
2238  **/
2239 
2240 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat,
2241 				 unsigned long ro, unsigned long incompat)
2242 {
2243 	journal_superblock_t *sb;
2244 
2245 	if (!compat && !ro && !incompat)
2246 		return 1;
2247 	/* Load journal superblock if it is not loaded yet. */
2248 	if (journal->j_format_version == 0 &&
2249 	    journal_get_superblock(journal) != 0)
2250 		return 0;
2251 	if (journal->j_format_version == 1)
2252 		return 0;
2253 
2254 	sb = journal->j_superblock;
2255 
2256 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
2257 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
2258 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
2259 		return 1;
2260 
2261 	return 0;
2262 }
2263 
2264 /**
2265  * jbd2_journal_check_available_features() - Check feature set in journalling layer
2266  * @journal: Journal to check.
2267  * @compat: bitmask of compatible features
2268  * @ro: bitmask of features that force read-only mount
2269  * @incompat: bitmask of incompatible features
2270  *
2271  * Check whether the journaling code supports the use of
2272  * all of a given set of features on this journal.  Return true
2273  * (non-zero) if it can. */
2274 
2275 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat,
2276 				      unsigned long ro, unsigned long incompat)
2277 {
2278 	if (!compat && !ro && !incompat)
2279 		return 1;
2280 
2281 	/* We can support any known requested features iff the
2282 	 * superblock is in version 2.  Otherwise we fail to support any
2283 	 * extended sb features. */
2284 
2285 	if (journal->j_format_version != 2)
2286 		return 0;
2287 
2288 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
2289 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
2290 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
2291 		return 1;
2292 
2293 	return 0;
2294 }
2295 
2296 static int
2297 jbd2_journal_initialize_fast_commit(journal_t *journal)
2298 {
2299 	journal_superblock_t *sb = journal->j_superblock;
2300 	unsigned long long num_fc_blks;
2301 
2302 	num_fc_blks = jbd2_journal_get_num_fc_blks(sb);
2303 	if (journal->j_last - num_fc_blks < JBD2_MIN_JOURNAL_BLOCKS)
2304 		return -ENOSPC;
2305 
2306 	/* Are we called twice? */
2307 	WARN_ON(journal->j_fc_wbuf != NULL);
2308 	journal->j_fc_wbuf = kmalloc_array(num_fc_blks,
2309 				sizeof(struct buffer_head *), GFP_KERNEL);
2310 	if (!journal->j_fc_wbuf)
2311 		return -ENOMEM;
2312 
2313 	journal->j_fc_wbufsize = num_fc_blks;
2314 	journal->j_fc_last = journal->j_last;
2315 	journal->j_last = journal->j_fc_last - num_fc_blks;
2316 	journal->j_fc_first = journal->j_last + 1;
2317 	journal->j_fc_off = 0;
2318 	journal->j_free = journal->j_last - journal->j_first;
2319 	journal->j_max_transaction_buffers =
2320 		jbd2_journal_get_max_txn_bufs(journal);
2321 
2322 	return 0;
2323 }
2324 
2325 /**
2326  * jbd2_journal_set_features() - Mark a given journal feature in the superblock
2327  * @journal: Journal to act on.
2328  * @compat: bitmask of compatible features
2329  * @ro: bitmask of features that force read-only mount
2330  * @incompat: bitmask of incompatible features
2331  *
2332  * Mark a given journal feature as present on the
2333  * superblock.  Returns true if the requested features could be set.
2334  *
2335  */
2336 
2337 int jbd2_journal_set_features(journal_t *journal, unsigned long compat,
2338 			  unsigned long ro, unsigned long incompat)
2339 {
2340 #define INCOMPAT_FEATURE_ON(f) \
2341 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
2342 #define COMPAT_FEATURE_ON(f) \
2343 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
2344 	journal_superblock_t *sb;
2345 
2346 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
2347 		return 1;
2348 
2349 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
2350 		return 0;
2351 
2352 	/* If enabling v2 checksums, turn on v3 instead */
2353 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
2354 		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
2355 		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
2356 	}
2357 
2358 	/* Asking for checksumming v3 and v1?  Only give them v3. */
2359 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
2360 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
2361 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
2362 
2363 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
2364 		  compat, ro, incompat);
2365 
2366 	sb = journal->j_superblock;
2367 
2368 	if (incompat & JBD2_FEATURE_INCOMPAT_FAST_COMMIT) {
2369 		if (jbd2_journal_initialize_fast_commit(journal)) {
2370 			pr_err("JBD2: Cannot enable fast commits.\n");
2371 			return 0;
2372 		}
2373 	}
2374 
2375 	/* Load the checksum driver if necessary */
2376 	if ((journal->j_chksum_driver == NULL) &&
2377 	    INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2378 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
2379 		if (IS_ERR(journal->j_chksum_driver)) {
2380 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
2381 			journal->j_chksum_driver = NULL;
2382 			return 0;
2383 		}
2384 		/* Precompute checksum seed for all metadata */
2385 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
2386 						   sizeof(sb->s_uuid));
2387 	}
2388 
2389 	lock_buffer(journal->j_sb_buffer);
2390 
2391 	/* If enabling v3 checksums, update superblock */
2392 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2393 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
2394 		sb->s_feature_compat &=
2395 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
2396 	}
2397 
2398 	/* If enabling v1 checksums, downgrade superblock */
2399 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
2400 		sb->s_feature_incompat &=
2401 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
2402 				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
2403 
2404 	sb->s_feature_compat    |= cpu_to_be32(compat);
2405 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
2406 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
2407 	unlock_buffer(journal->j_sb_buffer);
2408 	journal->j_revoke_records_per_block =
2409 				journal_revoke_records_per_block(journal);
2410 
2411 	return 1;
2412 #undef COMPAT_FEATURE_ON
2413 #undef INCOMPAT_FEATURE_ON
2414 }
2415 
2416 /*
2417  * jbd2_journal_clear_features() - Clear a given journal feature in the
2418  * 				    superblock
2419  * @journal: Journal to act on.
2420  * @compat: bitmask of compatible features
2421  * @ro: bitmask of features that force read-only mount
2422  * @incompat: bitmask of incompatible features
2423  *
2424  * Clear a given journal feature as present on the
2425  * superblock.
2426  */
2427 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
2428 				unsigned long ro, unsigned long incompat)
2429 {
2430 	journal_superblock_t *sb;
2431 
2432 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
2433 		  compat, ro, incompat);
2434 
2435 	sb = journal->j_superblock;
2436 
2437 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
2438 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
2439 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
2440 	journal->j_revoke_records_per_block =
2441 				journal_revoke_records_per_block(journal);
2442 }
2443 EXPORT_SYMBOL(jbd2_journal_clear_features);
2444 
2445 /**
2446  * jbd2_journal_flush() - Flush journal
2447  * @journal: Journal to act on.
2448  * @flags: optional operation on the journal blocks after the flush (see below)
2449  *
2450  * Flush all data for a given journal to disk and empty the journal.
2451  * Filesystems can use this when remounting readonly to ensure that
2452  * recovery does not need to happen on remount. Optionally, a discard or zeroout
2453  * can be issued on the journal blocks after flushing.
2454  *
2455  * flags:
2456  *	JBD2_JOURNAL_FLUSH_DISCARD: issues discards for the journal blocks
2457  *	JBD2_JOURNAL_FLUSH_ZEROOUT: issues zeroouts for the journal blocks
2458  */
2459 int jbd2_journal_flush(journal_t *journal, unsigned int flags)
2460 {
2461 	int err = 0;
2462 	transaction_t *transaction = NULL;
2463 
2464 	write_lock(&journal->j_state_lock);
2465 
2466 	/* Force everything buffered to the log... */
2467 	if (journal->j_running_transaction) {
2468 		transaction = journal->j_running_transaction;
2469 		__jbd2_log_start_commit(journal, transaction->t_tid);
2470 	} else if (journal->j_committing_transaction)
2471 		transaction = journal->j_committing_transaction;
2472 
2473 	/* Wait for the log commit to complete... */
2474 	if (transaction) {
2475 		tid_t tid = transaction->t_tid;
2476 
2477 		write_unlock(&journal->j_state_lock);
2478 		jbd2_log_wait_commit(journal, tid);
2479 	} else {
2480 		write_unlock(&journal->j_state_lock);
2481 	}
2482 
2483 	/* ...and flush everything in the log out to disk. */
2484 	spin_lock(&journal->j_list_lock);
2485 	while (!err && journal->j_checkpoint_transactions != NULL) {
2486 		spin_unlock(&journal->j_list_lock);
2487 		mutex_lock_io(&journal->j_checkpoint_mutex);
2488 		err = jbd2_log_do_checkpoint(journal);
2489 		mutex_unlock(&journal->j_checkpoint_mutex);
2490 		spin_lock(&journal->j_list_lock);
2491 	}
2492 	spin_unlock(&journal->j_list_lock);
2493 
2494 	if (is_journal_aborted(journal))
2495 		return -EIO;
2496 
2497 	mutex_lock_io(&journal->j_checkpoint_mutex);
2498 	if (!err) {
2499 		err = jbd2_cleanup_journal_tail(journal);
2500 		if (err < 0) {
2501 			mutex_unlock(&journal->j_checkpoint_mutex);
2502 			goto out;
2503 		}
2504 		err = 0;
2505 	}
2506 
2507 	/* Finally, mark the journal as really needing no recovery.
2508 	 * This sets s_start==0 in the underlying superblock, which is
2509 	 * the magic code for a fully-recovered superblock.  Any future
2510 	 * commits of data to the journal will restore the current
2511 	 * s_start value. */
2512 	jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2513 
2514 	if (flags)
2515 		err = __jbd2_journal_erase(journal, flags);
2516 
2517 	mutex_unlock(&journal->j_checkpoint_mutex);
2518 	write_lock(&journal->j_state_lock);
2519 	J_ASSERT(!journal->j_running_transaction);
2520 	J_ASSERT(!journal->j_committing_transaction);
2521 	J_ASSERT(!journal->j_checkpoint_transactions);
2522 	J_ASSERT(journal->j_head == journal->j_tail);
2523 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2524 	write_unlock(&journal->j_state_lock);
2525 out:
2526 	return err;
2527 }
2528 
2529 /**
2530  * jbd2_journal_wipe() - Wipe journal contents
2531  * @journal: Journal to act on.
2532  * @write: flag (see below)
2533  *
2534  * Wipe out all of the contents of a journal, safely.  This will produce
2535  * a warning if the journal contains any valid recovery information.
2536  * Must be called between journal_init_*() and jbd2_journal_load().
2537  *
2538  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2539  * we merely suppress recovery.
2540  */
2541 
2542 int jbd2_journal_wipe(journal_t *journal, int write)
2543 {
2544 	int err = 0;
2545 
2546 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2547 
2548 	err = load_superblock(journal);
2549 	if (err)
2550 		return err;
2551 
2552 	if (!journal->j_tail)
2553 		goto no_recovery;
2554 
2555 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2556 		write ? "Clearing" : "Ignoring");
2557 
2558 	err = jbd2_journal_skip_recovery(journal);
2559 	if (write) {
2560 		/* Lock to make assertions happy... */
2561 		mutex_lock_io(&journal->j_checkpoint_mutex);
2562 		jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2563 		mutex_unlock(&journal->j_checkpoint_mutex);
2564 	}
2565 
2566  no_recovery:
2567 	return err;
2568 }
2569 
2570 /**
2571  * jbd2_journal_abort () - Shutdown the journal immediately.
2572  * @journal: the journal to shutdown.
2573  * @errno:   an error number to record in the journal indicating
2574  *           the reason for the shutdown.
2575  *
2576  * Perform a complete, immediate shutdown of the ENTIRE
2577  * journal (not of a single transaction).  This operation cannot be
2578  * undone without closing and reopening the journal.
2579  *
2580  * The jbd2_journal_abort function is intended to support higher level error
2581  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2582  * mode.
2583  *
2584  * Journal abort has very specific semantics.  Any existing dirty,
2585  * unjournaled buffers in the main filesystem will still be written to
2586  * disk by bdflush, but the journaling mechanism will be suspended
2587  * immediately and no further transaction commits will be honoured.
2588  *
2589  * Any dirty, journaled buffers will be written back to disk without
2590  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2591  * filesystem, but we _do_ attempt to leave as much data as possible
2592  * behind for fsck to use for cleanup.
2593  *
2594  * Any attempt to get a new transaction handle on a journal which is in
2595  * ABORT state will just result in an -EROFS error return.  A
2596  * jbd2_journal_stop on an existing handle will return -EIO if we have
2597  * entered abort state during the update.
2598  *
2599  * Recursive transactions are not disturbed by journal abort until the
2600  * final jbd2_journal_stop, which will receive the -EIO error.
2601  *
2602  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2603  * which will be recorded (if possible) in the journal superblock.  This
2604  * allows a client to record failure conditions in the middle of a
2605  * transaction without having to complete the transaction to record the
2606  * failure to disk.  ext3_error, for example, now uses this
2607  * functionality.
2608  *
2609  */
2610 
2611 void jbd2_journal_abort(journal_t *journal, int errno)
2612 {
2613 	transaction_t *transaction;
2614 
2615 	/*
2616 	 * Lock the aborting procedure until everything is done, this avoid
2617 	 * races between filesystem's error handling flow (e.g. ext4_abort()),
2618 	 * ensure panic after the error info is written into journal's
2619 	 * superblock.
2620 	 */
2621 	mutex_lock(&journal->j_abort_mutex);
2622 	/*
2623 	 * ESHUTDOWN always takes precedence because a file system check
2624 	 * caused by any other journal abort error is not required after
2625 	 * a shutdown triggered.
2626 	 */
2627 	write_lock(&journal->j_state_lock);
2628 	if (journal->j_flags & JBD2_ABORT) {
2629 		int old_errno = journal->j_errno;
2630 
2631 		write_unlock(&journal->j_state_lock);
2632 		if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) {
2633 			journal->j_errno = errno;
2634 			jbd2_journal_update_sb_errno(journal);
2635 		}
2636 		mutex_unlock(&journal->j_abort_mutex);
2637 		return;
2638 	}
2639 
2640 	/*
2641 	 * Mark the abort as occurred and start current running transaction
2642 	 * to release all journaled buffer.
2643 	 */
2644 	pr_err("Aborting journal on device %s.\n", journal->j_devname);
2645 
2646 	journal->j_flags |= JBD2_ABORT;
2647 	journal->j_errno = errno;
2648 	transaction = journal->j_running_transaction;
2649 	if (transaction)
2650 		__jbd2_log_start_commit(journal, transaction->t_tid);
2651 	write_unlock(&journal->j_state_lock);
2652 
2653 	/*
2654 	 * Record errno to the journal super block, so that fsck and jbd2
2655 	 * layer could realise that a filesystem check is needed.
2656 	 */
2657 	jbd2_journal_update_sb_errno(journal);
2658 	mutex_unlock(&journal->j_abort_mutex);
2659 }
2660 
2661 /**
2662  * jbd2_journal_errno() - returns the journal's error state.
2663  * @journal: journal to examine.
2664  *
2665  * This is the errno number set with jbd2_journal_abort(), the last
2666  * time the journal was mounted - if the journal was stopped
2667  * without calling abort this will be 0.
2668  *
2669  * If the journal has been aborted on this mount time -EROFS will
2670  * be returned.
2671  */
2672 int jbd2_journal_errno(journal_t *journal)
2673 {
2674 	int err;
2675 
2676 	read_lock(&journal->j_state_lock);
2677 	if (journal->j_flags & JBD2_ABORT)
2678 		err = -EROFS;
2679 	else
2680 		err = journal->j_errno;
2681 	read_unlock(&journal->j_state_lock);
2682 	return err;
2683 }
2684 
2685 /**
2686  * jbd2_journal_clear_err() - clears the journal's error state
2687  * @journal: journal to act on.
2688  *
2689  * An error must be cleared or acked to take a FS out of readonly
2690  * mode.
2691  */
2692 int jbd2_journal_clear_err(journal_t *journal)
2693 {
2694 	int err = 0;
2695 
2696 	write_lock(&journal->j_state_lock);
2697 	if (journal->j_flags & JBD2_ABORT)
2698 		err = -EROFS;
2699 	else
2700 		journal->j_errno = 0;
2701 	write_unlock(&journal->j_state_lock);
2702 	return err;
2703 }
2704 
2705 /**
2706  * jbd2_journal_ack_err() - Ack journal err.
2707  * @journal: journal to act on.
2708  *
2709  * An error must be cleared or acked to take a FS out of readonly
2710  * mode.
2711  */
2712 void jbd2_journal_ack_err(journal_t *journal)
2713 {
2714 	write_lock(&journal->j_state_lock);
2715 	if (journal->j_errno)
2716 		journal->j_flags |= JBD2_ACK_ERR;
2717 	write_unlock(&journal->j_state_lock);
2718 }
2719 
2720 int jbd2_journal_blocks_per_page(struct inode *inode)
2721 {
2722 	return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2723 }
2724 
2725 /*
2726  * helper functions to deal with 32 or 64bit block numbers.
2727  */
2728 size_t journal_tag_bytes(journal_t *journal)
2729 {
2730 	size_t sz;
2731 
2732 	if (jbd2_has_feature_csum3(journal))
2733 		return sizeof(journal_block_tag3_t);
2734 
2735 	sz = sizeof(journal_block_tag_t);
2736 
2737 	if (jbd2_has_feature_csum2(journal))
2738 		sz += sizeof(__u16);
2739 
2740 	if (jbd2_has_feature_64bit(journal))
2741 		return sz;
2742 	else
2743 		return sz - sizeof(__u32);
2744 }
2745 
2746 /*
2747  * JBD memory management
2748  *
2749  * These functions are used to allocate block-sized chunks of memory
2750  * used for making copies of buffer_head data.  Very often it will be
2751  * page-sized chunks of data, but sometimes it will be in
2752  * sub-page-size chunks.  (For example, 16k pages on Power systems
2753  * with a 4k block file system.)  For blocks smaller than a page, we
2754  * use a SLAB allocator.  There are slab caches for each block size,
2755  * which are allocated at mount time, if necessary, and we only free
2756  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2757  * this reason we don't need to a mutex to protect access to
2758  * jbd2_slab[] allocating or releasing memory; only in
2759  * jbd2_journal_create_slab().
2760  */
2761 #define JBD2_MAX_SLABS 8
2762 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2763 
2764 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2765 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2766 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2767 };
2768 
2769 
2770 static void jbd2_journal_destroy_slabs(void)
2771 {
2772 	int i;
2773 
2774 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2775 		kmem_cache_destroy(jbd2_slab[i]);
2776 		jbd2_slab[i] = NULL;
2777 	}
2778 }
2779 
2780 static int jbd2_journal_create_slab(size_t size)
2781 {
2782 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2783 	int i = order_base_2(size) - 10;
2784 	size_t slab_size;
2785 
2786 	if (size == PAGE_SIZE)
2787 		return 0;
2788 
2789 	if (i >= JBD2_MAX_SLABS)
2790 		return -EINVAL;
2791 
2792 	if (unlikely(i < 0))
2793 		i = 0;
2794 	mutex_lock(&jbd2_slab_create_mutex);
2795 	if (jbd2_slab[i]) {
2796 		mutex_unlock(&jbd2_slab_create_mutex);
2797 		return 0;	/* Already created */
2798 	}
2799 
2800 	slab_size = 1 << (i+10);
2801 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2802 					 slab_size, 0, NULL);
2803 	mutex_unlock(&jbd2_slab_create_mutex);
2804 	if (!jbd2_slab[i]) {
2805 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2806 		return -ENOMEM;
2807 	}
2808 	return 0;
2809 }
2810 
2811 static struct kmem_cache *get_slab(size_t size)
2812 {
2813 	int i = order_base_2(size) - 10;
2814 
2815 	BUG_ON(i >= JBD2_MAX_SLABS);
2816 	if (unlikely(i < 0))
2817 		i = 0;
2818 	BUG_ON(jbd2_slab[i] == NULL);
2819 	return jbd2_slab[i];
2820 }
2821 
2822 void *jbd2_alloc(size_t size, gfp_t flags)
2823 {
2824 	void *ptr;
2825 
2826 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2827 
2828 	if (size < PAGE_SIZE)
2829 		ptr = kmem_cache_alloc(get_slab(size), flags);
2830 	else
2831 		ptr = (void *)__get_free_pages(flags, get_order(size));
2832 
2833 	/* Check alignment; SLUB has gotten this wrong in the past,
2834 	 * and this can lead to user data corruption! */
2835 	BUG_ON(((unsigned long) ptr) & (size-1));
2836 
2837 	return ptr;
2838 }
2839 
2840 void jbd2_free(void *ptr, size_t size)
2841 {
2842 	if (size < PAGE_SIZE)
2843 		kmem_cache_free(get_slab(size), ptr);
2844 	else
2845 		free_pages((unsigned long)ptr, get_order(size));
2846 };
2847 
2848 /*
2849  * Journal_head storage management
2850  */
2851 static struct kmem_cache *jbd2_journal_head_cache;
2852 #ifdef CONFIG_JBD2_DEBUG
2853 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2854 #endif
2855 
2856 static int __init jbd2_journal_init_journal_head_cache(void)
2857 {
2858 	J_ASSERT(!jbd2_journal_head_cache);
2859 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2860 				sizeof(struct journal_head),
2861 				0,		/* offset */
2862 				SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2863 				NULL);		/* ctor */
2864 	if (!jbd2_journal_head_cache) {
2865 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2866 		return -ENOMEM;
2867 	}
2868 	return 0;
2869 }
2870 
2871 static void jbd2_journal_destroy_journal_head_cache(void)
2872 {
2873 	kmem_cache_destroy(jbd2_journal_head_cache);
2874 	jbd2_journal_head_cache = NULL;
2875 }
2876 
2877 /*
2878  * journal_head splicing and dicing
2879  */
2880 static struct journal_head *journal_alloc_journal_head(void)
2881 {
2882 	struct journal_head *ret;
2883 
2884 #ifdef CONFIG_JBD2_DEBUG
2885 	atomic_inc(&nr_journal_heads);
2886 #endif
2887 	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2888 	if (!ret) {
2889 		jbd_debug(1, "out of memory for journal_head\n");
2890 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2891 		ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2892 				GFP_NOFS | __GFP_NOFAIL);
2893 	}
2894 	if (ret)
2895 		spin_lock_init(&ret->b_state_lock);
2896 	return ret;
2897 }
2898 
2899 static void journal_free_journal_head(struct journal_head *jh)
2900 {
2901 #ifdef CONFIG_JBD2_DEBUG
2902 	atomic_dec(&nr_journal_heads);
2903 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2904 #endif
2905 	kmem_cache_free(jbd2_journal_head_cache, jh);
2906 }
2907 
2908 /*
2909  * A journal_head is attached to a buffer_head whenever JBD has an
2910  * interest in the buffer.
2911  *
2912  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2913  * is set.  This bit is tested in core kernel code where we need to take
2914  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2915  * there.
2916  *
2917  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2918  *
2919  * When a buffer has its BH_JBD bit set it is immune from being released by
2920  * core kernel code, mainly via ->b_count.
2921  *
2922  * A journal_head is detached from its buffer_head when the journal_head's
2923  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2924  * transaction (b_cp_transaction) hold their references to b_jcount.
2925  *
2926  * Various places in the kernel want to attach a journal_head to a buffer_head
2927  * _before_ attaching the journal_head to a transaction.  To protect the
2928  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2929  * journal_head's b_jcount refcount by one.  The caller must call
2930  * jbd2_journal_put_journal_head() to undo this.
2931  *
2932  * So the typical usage would be:
2933  *
2934  *	(Attach a journal_head if needed.  Increments b_jcount)
2935  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2936  *	...
2937  *      (Get another reference for transaction)
2938  *	jbd2_journal_grab_journal_head(bh);
2939  *	jh->b_transaction = xxx;
2940  *	(Put original reference)
2941  *	jbd2_journal_put_journal_head(jh);
2942  */
2943 
2944 /*
2945  * Give a buffer_head a journal_head.
2946  *
2947  * May sleep.
2948  */
2949 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2950 {
2951 	struct journal_head *jh;
2952 	struct journal_head *new_jh = NULL;
2953 
2954 repeat:
2955 	if (!buffer_jbd(bh))
2956 		new_jh = journal_alloc_journal_head();
2957 
2958 	jbd_lock_bh_journal_head(bh);
2959 	if (buffer_jbd(bh)) {
2960 		jh = bh2jh(bh);
2961 	} else {
2962 		J_ASSERT_BH(bh,
2963 			(atomic_read(&bh->b_count) > 0) ||
2964 			(bh->b_page && bh->b_page->mapping));
2965 
2966 		if (!new_jh) {
2967 			jbd_unlock_bh_journal_head(bh);
2968 			goto repeat;
2969 		}
2970 
2971 		jh = new_jh;
2972 		new_jh = NULL;		/* We consumed it */
2973 		set_buffer_jbd(bh);
2974 		bh->b_private = jh;
2975 		jh->b_bh = bh;
2976 		get_bh(bh);
2977 		BUFFER_TRACE(bh, "added journal_head");
2978 	}
2979 	jh->b_jcount++;
2980 	jbd_unlock_bh_journal_head(bh);
2981 	if (new_jh)
2982 		journal_free_journal_head(new_jh);
2983 	return bh->b_private;
2984 }
2985 
2986 /*
2987  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2988  * having a journal_head, return NULL
2989  */
2990 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2991 {
2992 	struct journal_head *jh = NULL;
2993 
2994 	jbd_lock_bh_journal_head(bh);
2995 	if (buffer_jbd(bh)) {
2996 		jh = bh2jh(bh);
2997 		jh->b_jcount++;
2998 	}
2999 	jbd_unlock_bh_journal_head(bh);
3000 	return jh;
3001 }
3002 
3003 static void __journal_remove_journal_head(struct buffer_head *bh)
3004 {
3005 	struct journal_head *jh = bh2jh(bh);
3006 
3007 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
3008 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
3009 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
3010 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
3011 	J_ASSERT_BH(bh, buffer_jbd(bh));
3012 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
3013 	BUFFER_TRACE(bh, "remove journal_head");
3014 
3015 	/* Unlink before dropping the lock */
3016 	bh->b_private = NULL;
3017 	jh->b_bh = NULL;	/* debug, really */
3018 	clear_buffer_jbd(bh);
3019 }
3020 
3021 static void journal_release_journal_head(struct journal_head *jh, size_t b_size)
3022 {
3023 	if (jh->b_frozen_data) {
3024 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
3025 		jbd2_free(jh->b_frozen_data, b_size);
3026 	}
3027 	if (jh->b_committed_data) {
3028 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
3029 		jbd2_free(jh->b_committed_data, b_size);
3030 	}
3031 	journal_free_journal_head(jh);
3032 }
3033 
3034 /*
3035  * Drop a reference on the passed journal_head.  If it fell to zero then
3036  * release the journal_head from the buffer_head.
3037  */
3038 void jbd2_journal_put_journal_head(struct journal_head *jh)
3039 {
3040 	struct buffer_head *bh = jh2bh(jh);
3041 
3042 	jbd_lock_bh_journal_head(bh);
3043 	J_ASSERT_JH(jh, jh->b_jcount > 0);
3044 	--jh->b_jcount;
3045 	if (!jh->b_jcount) {
3046 		__journal_remove_journal_head(bh);
3047 		jbd_unlock_bh_journal_head(bh);
3048 		journal_release_journal_head(jh, bh->b_size);
3049 		__brelse(bh);
3050 	} else {
3051 		jbd_unlock_bh_journal_head(bh);
3052 	}
3053 }
3054 
3055 /*
3056  * Initialize jbd inode head
3057  */
3058 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
3059 {
3060 	jinode->i_transaction = NULL;
3061 	jinode->i_next_transaction = NULL;
3062 	jinode->i_vfs_inode = inode;
3063 	jinode->i_flags = 0;
3064 	jinode->i_dirty_start = 0;
3065 	jinode->i_dirty_end = 0;
3066 	INIT_LIST_HEAD(&jinode->i_list);
3067 }
3068 
3069 /*
3070  * Function to be called before we start removing inode from memory (i.e.,
3071  * clear_inode() is a fine place to be called from). It removes inode from
3072  * transaction's lists.
3073  */
3074 void jbd2_journal_release_jbd_inode(journal_t *journal,
3075 				    struct jbd2_inode *jinode)
3076 {
3077 	if (!journal)
3078 		return;
3079 restart:
3080 	spin_lock(&journal->j_list_lock);
3081 	/* Is commit writing out inode - we have to wait */
3082 	if (jinode->i_flags & JI_COMMIT_RUNNING) {
3083 		wait_queue_head_t *wq;
3084 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
3085 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
3086 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
3087 		spin_unlock(&journal->j_list_lock);
3088 		schedule();
3089 		finish_wait(wq, &wait.wq_entry);
3090 		goto restart;
3091 	}
3092 
3093 	if (jinode->i_transaction) {
3094 		list_del(&jinode->i_list);
3095 		jinode->i_transaction = NULL;
3096 	}
3097 	spin_unlock(&journal->j_list_lock);
3098 }
3099 
3100 
3101 #ifdef CONFIG_PROC_FS
3102 
3103 #define JBD2_STATS_PROC_NAME "fs/jbd2"
3104 
3105 static void __init jbd2_create_jbd_stats_proc_entry(void)
3106 {
3107 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
3108 }
3109 
3110 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
3111 {
3112 	if (proc_jbd2_stats)
3113 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
3114 }
3115 
3116 #else
3117 
3118 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
3119 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
3120 
3121 #endif
3122 
3123 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
3124 
3125 static int __init jbd2_journal_init_inode_cache(void)
3126 {
3127 	J_ASSERT(!jbd2_inode_cache);
3128 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
3129 	if (!jbd2_inode_cache) {
3130 		pr_emerg("JBD2: failed to create inode cache\n");
3131 		return -ENOMEM;
3132 	}
3133 	return 0;
3134 }
3135 
3136 static int __init jbd2_journal_init_handle_cache(void)
3137 {
3138 	J_ASSERT(!jbd2_handle_cache);
3139 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
3140 	if (!jbd2_handle_cache) {
3141 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
3142 		return -ENOMEM;
3143 	}
3144 	return 0;
3145 }
3146 
3147 static void jbd2_journal_destroy_inode_cache(void)
3148 {
3149 	kmem_cache_destroy(jbd2_inode_cache);
3150 	jbd2_inode_cache = NULL;
3151 }
3152 
3153 static void jbd2_journal_destroy_handle_cache(void)
3154 {
3155 	kmem_cache_destroy(jbd2_handle_cache);
3156 	jbd2_handle_cache = NULL;
3157 }
3158 
3159 /*
3160  * Module startup and shutdown
3161  */
3162 
3163 static int __init journal_init_caches(void)
3164 {
3165 	int ret;
3166 
3167 	ret = jbd2_journal_init_revoke_record_cache();
3168 	if (ret == 0)
3169 		ret = jbd2_journal_init_revoke_table_cache();
3170 	if (ret == 0)
3171 		ret = jbd2_journal_init_journal_head_cache();
3172 	if (ret == 0)
3173 		ret = jbd2_journal_init_handle_cache();
3174 	if (ret == 0)
3175 		ret = jbd2_journal_init_inode_cache();
3176 	if (ret == 0)
3177 		ret = jbd2_journal_init_transaction_cache();
3178 	return ret;
3179 }
3180 
3181 static void jbd2_journal_destroy_caches(void)
3182 {
3183 	jbd2_journal_destroy_revoke_record_cache();
3184 	jbd2_journal_destroy_revoke_table_cache();
3185 	jbd2_journal_destroy_journal_head_cache();
3186 	jbd2_journal_destroy_handle_cache();
3187 	jbd2_journal_destroy_inode_cache();
3188 	jbd2_journal_destroy_transaction_cache();
3189 	jbd2_journal_destroy_slabs();
3190 }
3191 
3192 static int __init journal_init(void)
3193 {
3194 	int ret;
3195 
3196 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
3197 
3198 	ret = journal_init_caches();
3199 	if (ret == 0) {
3200 		jbd2_create_jbd_stats_proc_entry();
3201 	} else {
3202 		jbd2_journal_destroy_caches();
3203 	}
3204 	return ret;
3205 }
3206 
3207 static void __exit journal_exit(void)
3208 {
3209 #ifdef CONFIG_JBD2_DEBUG
3210 	int n = atomic_read(&nr_journal_heads);
3211 	if (n)
3212 		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
3213 #endif
3214 	jbd2_remove_jbd_stats_proc_entry();
3215 	jbd2_journal_destroy_caches();
3216 }
3217 
3218 MODULE_LICENSE("GPL");
3219 module_init(journal_init);
3220 module_exit(journal_exit);
3221 
3222