xref: /openbmc/linux/fs/jbd2/journal.c (revision 160b8e75)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/journal.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem journal-writing code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages journals: areas of disk reserved for logging
13  * transactional updates.  This includes the kernel journaling thread
14  * which is responsible for scheduling updates to the log.
15  *
16  * We do not actually manage the physical storage of the journal in this
17  * file: that is left to a per-journal policy function, which allows us
18  * to store the journal within a filesystem-specified area for ext2
19  * journaling (ext2 can use a reserved inode for storing the log).
20  */
21 
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47 
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50 
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
54 
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
58 
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 #if 0
70 EXPORT_SYMBOL(journal_sync_buffer);
71 #endif
72 EXPORT_SYMBOL(jbd2_journal_flush);
73 EXPORT_SYMBOL(jbd2_journal_revoke);
74 
75 EXPORT_SYMBOL(jbd2_journal_init_dev);
76 EXPORT_SYMBOL(jbd2_journal_init_inode);
77 EXPORT_SYMBOL(jbd2_journal_check_used_features);
78 EXPORT_SYMBOL(jbd2_journal_check_available_features);
79 EXPORT_SYMBOL(jbd2_journal_set_features);
80 EXPORT_SYMBOL(jbd2_journal_load);
81 EXPORT_SYMBOL(jbd2_journal_destroy);
82 EXPORT_SYMBOL(jbd2_journal_abort);
83 EXPORT_SYMBOL(jbd2_journal_errno);
84 EXPORT_SYMBOL(jbd2_journal_ack_err);
85 EXPORT_SYMBOL(jbd2_journal_clear_err);
86 EXPORT_SYMBOL(jbd2_log_wait_commit);
87 EXPORT_SYMBOL(jbd2_log_start_commit);
88 EXPORT_SYMBOL(jbd2_journal_start_commit);
89 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
90 EXPORT_SYMBOL(jbd2_journal_wipe);
91 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
92 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
93 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
94 EXPORT_SYMBOL(jbd2_journal_force_commit);
95 EXPORT_SYMBOL(jbd2_journal_inode_add_write);
96 EXPORT_SYMBOL(jbd2_journal_inode_add_wait);
97 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
98 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
99 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
100 EXPORT_SYMBOL(jbd2_inode_cache);
101 
102 static void __journal_abort_soft (journal_t *journal, int errno);
103 static int jbd2_journal_create_slab(size_t slab_size);
104 
105 #ifdef CONFIG_JBD2_DEBUG
106 void __jbd2_debug(int level, const char *file, const char *func,
107 		  unsigned int line, const char *fmt, ...)
108 {
109 	struct va_format vaf;
110 	va_list args;
111 
112 	if (level > jbd2_journal_enable_debug)
113 		return;
114 	va_start(args, fmt);
115 	vaf.fmt = fmt;
116 	vaf.va = &args;
117 	printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
118 	va_end(args);
119 }
120 EXPORT_SYMBOL(__jbd2_debug);
121 #endif
122 
123 /* Checksumming functions */
124 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
125 {
126 	if (!jbd2_journal_has_csum_v2or3_feature(j))
127 		return 1;
128 
129 	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
130 }
131 
132 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
133 {
134 	__u32 csum;
135 	__be32 old_csum;
136 
137 	old_csum = sb->s_checksum;
138 	sb->s_checksum = 0;
139 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
140 	sb->s_checksum = old_csum;
141 
142 	return cpu_to_be32(csum);
143 }
144 
145 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
146 {
147 	if (!jbd2_journal_has_csum_v2or3(j))
148 		return 1;
149 
150 	return sb->s_checksum == jbd2_superblock_csum(j, sb);
151 }
152 
153 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
154 {
155 	if (!jbd2_journal_has_csum_v2or3(j))
156 		return;
157 
158 	sb->s_checksum = jbd2_superblock_csum(j, sb);
159 }
160 
161 /*
162  * Helper function used to manage commit timeouts
163  */
164 
165 static void commit_timeout(struct timer_list *t)
166 {
167 	journal_t *journal = from_timer(journal, t, j_commit_timer);
168 
169 	wake_up_process(journal->j_task);
170 }
171 
172 /*
173  * kjournald2: The main thread function used to manage a logging device
174  * journal.
175  *
176  * This kernel thread is responsible for two things:
177  *
178  * 1) COMMIT:  Every so often we need to commit the current state of the
179  *    filesystem to disk.  The journal thread is responsible for writing
180  *    all of the metadata buffers to disk.
181  *
182  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
183  *    of the data in that part of the log has been rewritten elsewhere on
184  *    the disk.  Flushing these old buffers to reclaim space in the log is
185  *    known as checkpointing, and this thread is responsible for that job.
186  */
187 
188 static int kjournald2(void *arg)
189 {
190 	journal_t *journal = arg;
191 	transaction_t *transaction;
192 
193 	/*
194 	 * Set up an interval timer which can be used to trigger a commit wakeup
195 	 * after the commit interval expires
196 	 */
197 	timer_setup(&journal->j_commit_timer, commit_timeout, 0);
198 
199 	set_freezable();
200 
201 	/* Record that the journal thread is running */
202 	journal->j_task = current;
203 	wake_up(&journal->j_wait_done_commit);
204 
205 	/*
206 	 * Make sure that no allocations from this kernel thread will ever
207 	 * recurse to the fs layer because we are responsible for the
208 	 * transaction commit and any fs involvement might get stuck waiting for
209 	 * the trasn. commit.
210 	 */
211 	memalloc_nofs_save();
212 
213 	/*
214 	 * And now, wait forever for commit wakeup events.
215 	 */
216 	write_lock(&journal->j_state_lock);
217 
218 loop:
219 	if (journal->j_flags & JBD2_UNMOUNT)
220 		goto end_loop;
221 
222 	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
223 		journal->j_commit_sequence, journal->j_commit_request);
224 
225 	if (journal->j_commit_sequence != journal->j_commit_request) {
226 		jbd_debug(1, "OK, requests differ\n");
227 		write_unlock(&journal->j_state_lock);
228 		del_timer_sync(&journal->j_commit_timer);
229 		jbd2_journal_commit_transaction(journal);
230 		write_lock(&journal->j_state_lock);
231 		goto loop;
232 	}
233 
234 	wake_up(&journal->j_wait_done_commit);
235 	if (freezing(current)) {
236 		/*
237 		 * The simpler the better. Flushing journal isn't a
238 		 * good idea, because that depends on threads that may
239 		 * be already stopped.
240 		 */
241 		jbd_debug(1, "Now suspending kjournald2\n");
242 		write_unlock(&journal->j_state_lock);
243 		try_to_freeze();
244 		write_lock(&journal->j_state_lock);
245 	} else {
246 		/*
247 		 * We assume on resume that commits are already there,
248 		 * so we don't sleep
249 		 */
250 		DEFINE_WAIT(wait);
251 		int should_sleep = 1;
252 
253 		prepare_to_wait(&journal->j_wait_commit, &wait,
254 				TASK_INTERRUPTIBLE);
255 		if (journal->j_commit_sequence != journal->j_commit_request)
256 			should_sleep = 0;
257 		transaction = journal->j_running_transaction;
258 		if (transaction && time_after_eq(jiffies,
259 						transaction->t_expires))
260 			should_sleep = 0;
261 		if (journal->j_flags & JBD2_UNMOUNT)
262 			should_sleep = 0;
263 		if (should_sleep) {
264 			write_unlock(&journal->j_state_lock);
265 			schedule();
266 			write_lock(&journal->j_state_lock);
267 		}
268 		finish_wait(&journal->j_wait_commit, &wait);
269 	}
270 
271 	jbd_debug(1, "kjournald2 wakes\n");
272 
273 	/*
274 	 * Were we woken up by a commit wakeup event?
275 	 */
276 	transaction = journal->j_running_transaction;
277 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
278 		journal->j_commit_request = transaction->t_tid;
279 		jbd_debug(1, "woke because of timeout\n");
280 	}
281 	goto loop;
282 
283 end_loop:
284 	del_timer_sync(&journal->j_commit_timer);
285 	journal->j_task = NULL;
286 	wake_up(&journal->j_wait_done_commit);
287 	jbd_debug(1, "Journal thread exiting.\n");
288 	write_unlock(&journal->j_state_lock);
289 	return 0;
290 }
291 
292 static int jbd2_journal_start_thread(journal_t *journal)
293 {
294 	struct task_struct *t;
295 
296 	t = kthread_run(kjournald2, journal, "jbd2/%s",
297 			journal->j_devname);
298 	if (IS_ERR(t))
299 		return PTR_ERR(t);
300 
301 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
302 	return 0;
303 }
304 
305 static void journal_kill_thread(journal_t *journal)
306 {
307 	write_lock(&journal->j_state_lock);
308 	journal->j_flags |= JBD2_UNMOUNT;
309 
310 	while (journal->j_task) {
311 		write_unlock(&journal->j_state_lock);
312 		wake_up(&journal->j_wait_commit);
313 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
314 		write_lock(&journal->j_state_lock);
315 	}
316 	write_unlock(&journal->j_state_lock);
317 }
318 
319 /*
320  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
321  *
322  * Writes a metadata buffer to a given disk block.  The actual IO is not
323  * performed but a new buffer_head is constructed which labels the data
324  * to be written with the correct destination disk block.
325  *
326  * Any magic-number escaping which needs to be done will cause a
327  * copy-out here.  If the buffer happens to start with the
328  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
329  * magic number is only written to the log for descripter blocks.  In
330  * this case, we copy the data and replace the first word with 0, and we
331  * return a result code which indicates that this buffer needs to be
332  * marked as an escaped buffer in the corresponding log descriptor
333  * block.  The missing word can then be restored when the block is read
334  * during recovery.
335  *
336  * If the source buffer has already been modified by a new transaction
337  * since we took the last commit snapshot, we use the frozen copy of
338  * that data for IO. If we end up using the existing buffer_head's data
339  * for the write, then we have to make sure nobody modifies it while the
340  * IO is in progress. do_get_write_access() handles this.
341  *
342  * The function returns a pointer to the buffer_head to be used for IO.
343  *
344  *
345  * Return value:
346  *  <0: Error
347  * >=0: Finished OK
348  *
349  * On success:
350  * Bit 0 set == escape performed on the data
351  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
352  */
353 
354 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
355 				  struct journal_head  *jh_in,
356 				  struct buffer_head **bh_out,
357 				  sector_t blocknr)
358 {
359 	int need_copy_out = 0;
360 	int done_copy_out = 0;
361 	int do_escape = 0;
362 	char *mapped_data;
363 	struct buffer_head *new_bh;
364 	struct page *new_page;
365 	unsigned int new_offset;
366 	struct buffer_head *bh_in = jh2bh(jh_in);
367 	journal_t *journal = transaction->t_journal;
368 
369 	/*
370 	 * The buffer really shouldn't be locked: only the current committing
371 	 * transaction is allowed to write it, so nobody else is allowed
372 	 * to do any IO.
373 	 *
374 	 * akpm: except if we're journalling data, and write() output is
375 	 * also part of a shared mapping, and another thread has
376 	 * decided to launch a writepage() against this buffer.
377 	 */
378 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
379 
380 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
381 
382 	/* keep subsequent assertions sane */
383 	atomic_set(&new_bh->b_count, 1);
384 
385 	jbd_lock_bh_state(bh_in);
386 repeat:
387 	/*
388 	 * If a new transaction has already done a buffer copy-out, then
389 	 * we use that version of the data for the commit.
390 	 */
391 	if (jh_in->b_frozen_data) {
392 		done_copy_out = 1;
393 		new_page = virt_to_page(jh_in->b_frozen_data);
394 		new_offset = offset_in_page(jh_in->b_frozen_data);
395 	} else {
396 		new_page = jh2bh(jh_in)->b_page;
397 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
398 	}
399 
400 	mapped_data = kmap_atomic(new_page);
401 	/*
402 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
403 	 * before checking for escaping, as the trigger may modify the magic
404 	 * offset.  If a copy-out happens afterwards, it will have the correct
405 	 * data in the buffer.
406 	 */
407 	if (!done_copy_out)
408 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
409 					   jh_in->b_triggers);
410 
411 	/*
412 	 * Check for escaping
413 	 */
414 	if (*((__be32 *)(mapped_data + new_offset)) ==
415 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
416 		need_copy_out = 1;
417 		do_escape = 1;
418 	}
419 	kunmap_atomic(mapped_data);
420 
421 	/*
422 	 * Do we need to do a data copy?
423 	 */
424 	if (need_copy_out && !done_copy_out) {
425 		char *tmp;
426 
427 		jbd_unlock_bh_state(bh_in);
428 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
429 		if (!tmp) {
430 			brelse(new_bh);
431 			return -ENOMEM;
432 		}
433 		jbd_lock_bh_state(bh_in);
434 		if (jh_in->b_frozen_data) {
435 			jbd2_free(tmp, bh_in->b_size);
436 			goto repeat;
437 		}
438 
439 		jh_in->b_frozen_data = tmp;
440 		mapped_data = kmap_atomic(new_page);
441 		memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
442 		kunmap_atomic(mapped_data);
443 
444 		new_page = virt_to_page(tmp);
445 		new_offset = offset_in_page(tmp);
446 		done_copy_out = 1;
447 
448 		/*
449 		 * This isn't strictly necessary, as we're using frozen
450 		 * data for the escaping, but it keeps consistency with
451 		 * b_frozen_data usage.
452 		 */
453 		jh_in->b_frozen_triggers = jh_in->b_triggers;
454 	}
455 
456 	/*
457 	 * Did we need to do an escaping?  Now we've done all the
458 	 * copying, we can finally do so.
459 	 */
460 	if (do_escape) {
461 		mapped_data = kmap_atomic(new_page);
462 		*((unsigned int *)(mapped_data + new_offset)) = 0;
463 		kunmap_atomic(mapped_data);
464 	}
465 
466 	set_bh_page(new_bh, new_page, new_offset);
467 	new_bh->b_size = bh_in->b_size;
468 	new_bh->b_bdev = journal->j_dev;
469 	new_bh->b_blocknr = blocknr;
470 	new_bh->b_private = bh_in;
471 	set_buffer_mapped(new_bh);
472 	set_buffer_dirty(new_bh);
473 
474 	*bh_out = new_bh;
475 
476 	/*
477 	 * The to-be-written buffer needs to get moved to the io queue,
478 	 * and the original buffer whose contents we are shadowing or
479 	 * copying is moved to the transaction's shadow queue.
480 	 */
481 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
482 	spin_lock(&journal->j_list_lock);
483 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
484 	spin_unlock(&journal->j_list_lock);
485 	set_buffer_shadow(bh_in);
486 	jbd_unlock_bh_state(bh_in);
487 
488 	return do_escape | (done_copy_out << 1);
489 }
490 
491 /*
492  * Allocation code for the journal file.  Manage the space left in the
493  * journal, so that we can begin checkpointing when appropriate.
494  */
495 
496 /*
497  * Called with j_state_lock locked for writing.
498  * Returns true if a transaction commit was started.
499  */
500 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
501 {
502 	/* Return if the txn has already requested to be committed */
503 	if (journal->j_commit_request == target)
504 		return 0;
505 
506 	/*
507 	 * The only transaction we can possibly wait upon is the
508 	 * currently running transaction (if it exists).  Otherwise,
509 	 * the target tid must be an old one.
510 	 */
511 	if (journal->j_running_transaction &&
512 	    journal->j_running_transaction->t_tid == target) {
513 		/*
514 		 * We want a new commit: OK, mark the request and wakeup the
515 		 * commit thread.  We do _not_ do the commit ourselves.
516 		 */
517 
518 		journal->j_commit_request = target;
519 		jbd_debug(1, "JBD2: requesting commit %d/%d\n",
520 			  journal->j_commit_request,
521 			  journal->j_commit_sequence);
522 		journal->j_running_transaction->t_requested = jiffies;
523 		wake_up(&journal->j_wait_commit);
524 		return 1;
525 	} else if (!tid_geq(journal->j_commit_request, target))
526 		/* This should never happen, but if it does, preserve
527 		   the evidence before kjournald goes into a loop and
528 		   increments j_commit_sequence beyond all recognition. */
529 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
530 			  journal->j_commit_request,
531 			  journal->j_commit_sequence,
532 			  target, journal->j_running_transaction ?
533 			  journal->j_running_transaction->t_tid : 0);
534 	return 0;
535 }
536 
537 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
538 {
539 	int ret;
540 
541 	write_lock(&journal->j_state_lock);
542 	ret = __jbd2_log_start_commit(journal, tid);
543 	write_unlock(&journal->j_state_lock);
544 	return ret;
545 }
546 
547 /*
548  * Force and wait any uncommitted transactions.  We can only force the running
549  * transaction if we don't have an active handle, otherwise, we will deadlock.
550  * Returns: <0 in case of error,
551  *           0 if nothing to commit,
552  *           1 if transaction was successfully committed.
553  */
554 static int __jbd2_journal_force_commit(journal_t *journal)
555 {
556 	transaction_t *transaction = NULL;
557 	tid_t tid;
558 	int need_to_start = 0, ret = 0;
559 
560 	read_lock(&journal->j_state_lock);
561 	if (journal->j_running_transaction && !current->journal_info) {
562 		transaction = journal->j_running_transaction;
563 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
564 			need_to_start = 1;
565 	} else if (journal->j_committing_transaction)
566 		transaction = journal->j_committing_transaction;
567 
568 	if (!transaction) {
569 		/* Nothing to commit */
570 		read_unlock(&journal->j_state_lock);
571 		return 0;
572 	}
573 	tid = transaction->t_tid;
574 	read_unlock(&journal->j_state_lock);
575 	if (need_to_start)
576 		jbd2_log_start_commit(journal, tid);
577 	ret = jbd2_log_wait_commit(journal, tid);
578 	if (!ret)
579 		ret = 1;
580 
581 	return ret;
582 }
583 
584 /**
585  * Force and wait upon a commit if the calling process is not within
586  * transaction.  This is used for forcing out undo-protected data which contains
587  * bitmaps, when the fs is running out of space.
588  *
589  * @journal: journal to force
590  * Returns true if progress was made.
591  */
592 int jbd2_journal_force_commit_nested(journal_t *journal)
593 {
594 	int ret;
595 
596 	ret = __jbd2_journal_force_commit(journal);
597 	return ret > 0;
598 }
599 
600 /**
601  * int journal_force_commit() - force any uncommitted transactions
602  * @journal: journal to force
603  *
604  * Caller want unconditional commit. We can only force the running transaction
605  * if we don't have an active handle, otherwise, we will deadlock.
606  */
607 int jbd2_journal_force_commit(journal_t *journal)
608 {
609 	int ret;
610 
611 	J_ASSERT(!current->journal_info);
612 	ret = __jbd2_journal_force_commit(journal);
613 	if (ret > 0)
614 		ret = 0;
615 	return ret;
616 }
617 
618 /*
619  * Start a commit of the current running transaction (if any).  Returns true
620  * if a transaction is going to be committed (or is currently already
621  * committing), and fills its tid in at *ptid
622  */
623 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
624 {
625 	int ret = 0;
626 
627 	write_lock(&journal->j_state_lock);
628 	if (journal->j_running_transaction) {
629 		tid_t tid = journal->j_running_transaction->t_tid;
630 
631 		__jbd2_log_start_commit(journal, tid);
632 		/* There's a running transaction and we've just made sure
633 		 * it's commit has been scheduled. */
634 		if (ptid)
635 			*ptid = tid;
636 		ret = 1;
637 	} else if (journal->j_committing_transaction) {
638 		/*
639 		 * If commit has been started, then we have to wait for
640 		 * completion of that transaction.
641 		 */
642 		if (ptid)
643 			*ptid = journal->j_committing_transaction->t_tid;
644 		ret = 1;
645 	}
646 	write_unlock(&journal->j_state_lock);
647 	return ret;
648 }
649 
650 /*
651  * Return 1 if a given transaction has not yet sent barrier request
652  * connected with a transaction commit. If 0 is returned, transaction
653  * may or may not have sent the barrier. Used to avoid sending barrier
654  * twice in common cases.
655  */
656 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
657 {
658 	int ret = 0;
659 	transaction_t *commit_trans;
660 
661 	if (!(journal->j_flags & JBD2_BARRIER))
662 		return 0;
663 	read_lock(&journal->j_state_lock);
664 	/* Transaction already committed? */
665 	if (tid_geq(journal->j_commit_sequence, tid))
666 		goto out;
667 	commit_trans = journal->j_committing_transaction;
668 	if (!commit_trans || commit_trans->t_tid != tid) {
669 		ret = 1;
670 		goto out;
671 	}
672 	/*
673 	 * Transaction is being committed and we already proceeded to
674 	 * submitting a flush to fs partition?
675 	 */
676 	if (journal->j_fs_dev != journal->j_dev) {
677 		if (!commit_trans->t_need_data_flush ||
678 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
679 			goto out;
680 	} else {
681 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
682 			goto out;
683 	}
684 	ret = 1;
685 out:
686 	read_unlock(&journal->j_state_lock);
687 	return ret;
688 }
689 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
690 
691 /*
692  * Wait for a specified commit to complete.
693  * The caller may not hold the journal lock.
694  */
695 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
696 {
697 	int err = 0;
698 
699 	read_lock(&journal->j_state_lock);
700 #ifdef CONFIG_PROVE_LOCKING
701 	/*
702 	 * Some callers make sure transaction is already committing and in that
703 	 * case we cannot block on open handles anymore. So don't warn in that
704 	 * case.
705 	 */
706 	if (tid_gt(tid, journal->j_commit_sequence) &&
707 	    (!journal->j_committing_transaction ||
708 	     journal->j_committing_transaction->t_tid != tid)) {
709 		read_unlock(&journal->j_state_lock);
710 		jbd2_might_wait_for_commit(journal);
711 		read_lock(&journal->j_state_lock);
712 	}
713 #endif
714 #ifdef CONFIG_JBD2_DEBUG
715 	if (!tid_geq(journal->j_commit_request, tid)) {
716 		printk(KERN_ERR
717 		       "%s: error: j_commit_request=%d, tid=%d\n",
718 		       __func__, journal->j_commit_request, tid);
719 	}
720 #endif
721 	while (tid_gt(tid, journal->j_commit_sequence)) {
722 		jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
723 				  tid, journal->j_commit_sequence);
724 		read_unlock(&journal->j_state_lock);
725 		wake_up(&journal->j_wait_commit);
726 		wait_event(journal->j_wait_done_commit,
727 				!tid_gt(tid, journal->j_commit_sequence));
728 		read_lock(&journal->j_state_lock);
729 	}
730 	read_unlock(&journal->j_state_lock);
731 
732 	if (unlikely(is_journal_aborted(journal)))
733 		err = -EIO;
734 	return err;
735 }
736 
737 /* Return 1 when transaction with given tid has already committed. */
738 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
739 {
740 	int ret = 1;
741 
742 	read_lock(&journal->j_state_lock);
743 	if (journal->j_running_transaction &&
744 	    journal->j_running_transaction->t_tid == tid)
745 		ret = 0;
746 	if (journal->j_committing_transaction &&
747 	    journal->j_committing_transaction->t_tid == tid)
748 		ret = 0;
749 	read_unlock(&journal->j_state_lock);
750 	return ret;
751 }
752 EXPORT_SYMBOL(jbd2_transaction_committed);
753 
754 /*
755  * When this function returns the transaction corresponding to tid
756  * will be completed.  If the transaction has currently running, start
757  * committing that transaction before waiting for it to complete.  If
758  * the transaction id is stale, it is by definition already completed,
759  * so just return SUCCESS.
760  */
761 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
762 {
763 	int	need_to_wait = 1;
764 
765 	read_lock(&journal->j_state_lock);
766 	if (journal->j_running_transaction &&
767 	    journal->j_running_transaction->t_tid == tid) {
768 		if (journal->j_commit_request != tid) {
769 			/* transaction not yet started, so request it */
770 			read_unlock(&journal->j_state_lock);
771 			jbd2_log_start_commit(journal, tid);
772 			goto wait_commit;
773 		}
774 	} else if (!(journal->j_committing_transaction &&
775 		     journal->j_committing_transaction->t_tid == tid))
776 		need_to_wait = 0;
777 	read_unlock(&journal->j_state_lock);
778 	if (!need_to_wait)
779 		return 0;
780 wait_commit:
781 	return jbd2_log_wait_commit(journal, tid);
782 }
783 EXPORT_SYMBOL(jbd2_complete_transaction);
784 
785 /*
786  * Log buffer allocation routines:
787  */
788 
789 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
790 {
791 	unsigned long blocknr;
792 
793 	write_lock(&journal->j_state_lock);
794 	J_ASSERT(journal->j_free > 1);
795 
796 	blocknr = journal->j_head;
797 	journal->j_head++;
798 	journal->j_free--;
799 	if (journal->j_head == journal->j_last)
800 		journal->j_head = journal->j_first;
801 	write_unlock(&journal->j_state_lock);
802 	return jbd2_journal_bmap(journal, blocknr, retp);
803 }
804 
805 /*
806  * Conversion of logical to physical block numbers for the journal
807  *
808  * On external journals the journal blocks are identity-mapped, so
809  * this is a no-op.  If needed, we can use j_blk_offset - everything is
810  * ready.
811  */
812 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
813 		 unsigned long long *retp)
814 {
815 	int err = 0;
816 	unsigned long long ret;
817 
818 	if (journal->j_inode) {
819 		ret = bmap(journal->j_inode, blocknr);
820 		if (ret)
821 			*retp = ret;
822 		else {
823 			printk(KERN_ALERT "%s: journal block not found "
824 					"at offset %lu on %s\n",
825 			       __func__, blocknr, journal->j_devname);
826 			err = -EIO;
827 			__journal_abort_soft(journal, err);
828 		}
829 	} else {
830 		*retp = blocknr; /* +journal->j_blk_offset */
831 	}
832 	return err;
833 }
834 
835 /*
836  * We play buffer_head aliasing tricks to write data/metadata blocks to
837  * the journal without copying their contents, but for journal
838  * descriptor blocks we do need to generate bona fide buffers.
839  *
840  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
841  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
842  * But we don't bother doing that, so there will be coherency problems with
843  * mmaps of blockdevs which hold live JBD-controlled filesystems.
844  */
845 struct buffer_head *
846 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
847 {
848 	journal_t *journal = transaction->t_journal;
849 	struct buffer_head *bh;
850 	unsigned long long blocknr;
851 	journal_header_t *header;
852 	int err;
853 
854 	err = jbd2_journal_next_log_block(journal, &blocknr);
855 
856 	if (err)
857 		return NULL;
858 
859 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
860 	if (!bh)
861 		return NULL;
862 	lock_buffer(bh);
863 	memset(bh->b_data, 0, journal->j_blocksize);
864 	header = (journal_header_t *)bh->b_data;
865 	header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
866 	header->h_blocktype = cpu_to_be32(type);
867 	header->h_sequence = cpu_to_be32(transaction->t_tid);
868 	set_buffer_uptodate(bh);
869 	unlock_buffer(bh);
870 	BUFFER_TRACE(bh, "return this buffer");
871 	return bh;
872 }
873 
874 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
875 {
876 	struct jbd2_journal_block_tail *tail;
877 	__u32 csum;
878 
879 	if (!jbd2_journal_has_csum_v2or3(j))
880 		return;
881 
882 	tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
883 			sizeof(struct jbd2_journal_block_tail));
884 	tail->t_checksum = 0;
885 	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
886 	tail->t_checksum = cpu_to_be32(csum);
887 }
888 
889 /*
890  * Return tid of the oldest transaction in the journal and block in the journal
891  * where the transaction starts.
892  *
893  * If the journal is now empty, return which will be the next transaction ID
894  * we will write and where will that transaction start.
895  *
896  * The return value is 0 if journal tail cannot be pushed any further, 1 if
897  * it can.
898  */
899 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
900 			      unsigned long *block)
901 {
902 	transaction_t *transaction;
903 	int ret;
904 
905 	read_lock(&journal->j_state_lock);
906 	spin_lock(&journal->j_list_lock);
907 	transaction = journal->j_checkpoint_transactions;
908 	if (transaction) {
909 		*tid = transaction->t_tid;
910 		*block = transaction->t_log_start;
911 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
912 		*tid = transaction->t_tid;
913 		*block = transaction->t_log_start;
914 	} else if ((transaction = journal->j_running_transaction) != NULL) {
915 		*tid = transaction->t_tid;
916 		*block = journal->j_head;
917 	} else {
918 		*tid = journal->j_transaction_sequence;
919 		*block = journal->j_head;
920 	}
921 	ret = tid_gt(*tid, journal->j_tail_sequence);
922 	spin_unlock(&journal->j_list_lock);
923 	read_unlock(&journal->j_state_lock);
924 
925 	return ret;
926 }
927 
928 /*
929  * Update information in journal structure and in on disk journal superblock
930  * about log tail. This function does not check whether information passed in
931  * really pushes log tail further. It's responsibility of the caller to make
932  * sure provided log tail information is valid (e.g. by holding
933  * j_checkpoint_mutex all the time between computing log tail and calling this
934  * function as is the case with jbd2_cleanup_journal_tail()).
935  *
936  * Requires j_checkpoint_mutex
937  */
938 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
939 {
940 	unsigned long freed;
941 	int ret;
942 
943 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
944 
945 	/*
946 	 * We cannot afford for write to remain in drive's caches since as
947 	 * soon as we update j_tail, next transaction can start reusing journal
948 	 * space and if we lose sb update during power failure we'd replay
949 	 * old transaction with possibly newly overwritten data.
950 	 */
951 	ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
952 					      REQ_SYNC | REQ_FUA);
953 	if (ret)
954 		goto out;
955 
956 	write_lock(&journal->j_state_lock);
957 	freed = block - journal->j_tail;
958 	if (block < journal->j_tail)
959 		freed += journal->j_last - journal->j_first;
960 
961 	trace_jbd2_update_log_tail(journal, tid, block, freed);
962 	jbd_debug(1,
963 		  "Cleaning journal tail from %d to %d (offset %lu), "
964 		  "freeing %lu\n",
965 		  journal->j_tail_sequence, tid, block, freed);
966 
967 	journal->j_free += freed;
968 	journal->j_tail_sequence = tid;
969 	journal->j_tail = block;
970 	write_unlock(&journal->j_state_lock);
971 
972 out:
973 	return ret;
974 }
975 
976 /*
977  * This is a variaon of __jbd2_update_log_tail which checks for validity of
978  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
979  * with other threads updating log tail.
980  */
981 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
982 {
983 	mutex_lock_io(&journal->j_checkpoint_mutex);
984 	if (tid_gt(tid, journal->j_tail_sequence))
985 		__jbd2_update_log_tail(journal, tid, block);
986 	mutex_unlock(&journal->j_checkpoint_mutex);
987 }
988 
989 struct jbd2_stats_proc_session {
990 	journal_t *journal;
991 	struct transaction_stats_s *stats;
992 	int start;
993 	int max;
994 };
995 
996 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
997 {
998 	return *pos ? NULL : SEQ_START_TOKEN;
999 }
1000 
1001 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
1002 {
1003 	return NULL;
1004 }
1005 
1006 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
1007 {
1008 	struct jbd2_stats_proc_session *s = seq->private;
1009 
1010 	if (v != SEQ_START_TOKEN)
1011 		return 0;
1012 	seq_printf(seq, "%lu transactions (%lu requested), "
1013 		   "each up to %u blocks\n",
1014 		   s->stats->ts_tid, s->stats->ts_requested,
1015 		   s->journal->j_max_transaction_buffers);
1016 	if (s->stats->ts_tid == 0)
1017 		return 0;
1018 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1019 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1020 	seq_printf(seq, "  %ums request delay\n",
1021 	    (s->stats->ts_requested == 0) ? 0 :
1022 	    jiffies_to_msecs(s->stats->run.rs_request_delay /
1023 			     s->stats->ts_requested));
1024 	seq_printf(seq, "  %ums running transaction\n",
1025 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1026 	seq_printf(seq, "  %ums transaction was being locked\n",
1027 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1028 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1029 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1030 	seq_printf(seq, "  %ums logging transaction\n",
1031 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1032 	seq_printf(seq, "  %lluus average transaction commit time\n",
1033 		   div_u64(s->journal->j_average_commit_time, 1000));
1034 	seq_printf(seq, "  %lu handles per transaction\n",
1035 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
1036 	seq_printf(seq, "  %lu blocks per transaction\n",
1037 	    s->stats->run.rs_blocks / s->stats->ts_tid);
1038 	seq_printf(seq, "  %lu logged blocks per transaction\n",
1039 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1040 	return 0;
1041 }
1042 
1043 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1044 {
1045 }
1046 
1047 static const struct seq_operations jbd2_seq_info_ops = {
1048 	.start  = jbd2_seq_info_start,
1049 	.next   = jbd2_seq_info_next,
1050 	.stop   = jbd2_seq_info_stop,
1051 	.show   = jbd2_seq_info_show,
1052 };
1053 
1054 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1055 {
1056 	journal_t *journal = PDE_DATA(inode);
1057 	struct jbd2_stats_proc_session *s;
1058 	int rc, size;
1059 
1060 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1061 	if (s == NULL)
1062 		return -ENOMEM;
1063 	size = sizeof(struct transaction_stats_s);
1064 	s->stats = kmalloc(size, GFP_KERNEL);
1065 	if (s->stats == NULL) {
1066 		kfree(s);
1067 		return -ENOMEM;
1068 	}
1069 	spin_lock(&journal->j_history_lock);
1070 	memcpy(s->stats, &journal->j_stats, size);
1071 	s->journal = journal;
1072 	spin_unlock(&journal->j_history_lock);
1073 
1074 	rc = seq_open(file, &jbd2_seq_info_ops);
1075 	if (rc == 0) {
1076 		struct seq_file *m = file->private_data;
1077 		m->private = s;
1078 	} else {
1079 		kfree(s->stats);
1080 		kfree(s);
1081 	}
1082 	return rc;
1083 
1084 }
1085 
1086 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1087 {
1088 	struct seq_file *seq = file->private_data;
1089 	struct jbd2_stats_proc_session *s = seq->private;
1090 	kfree(s->stats);
1091 	kfree(s);
1092 	return seq_release(inode, file);
1093 }
1094 
1095 static const struct file_operations jbd2_seq_info_fops = {
1096 	.owner		= THIS_MODULE,
1097 	.open           = jbd2_seq_info_open,
1098 	.read           = seq_read,
1099 	.llseek         = seq_lseek,
1100 	.release        = jbd2_seq_info_release,
1101 };
1102 
1103 static struct proc_dir_entry *proc_jbd2_stats;
1104 
1105 static void jbd2_stats_proc_init(journal_t *journal)
1106 {
1107 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1108 	if (journal->j_proc_entry) {
1109 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1110 				 &jbd2_seq_info_fops, journal);
1111 	}
1112 }
1113 
1114 static void jbd2_stats_proc_exit(journal_t *journal)
1115 {
1116 	remove_proc_entry("info", journal->j_proc_entry);
1117 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1118 }
1119 
1120 /*
1121  * Management for journal control blocks: functions to create and
1122  * destroy journal_t structures, and to initialise and read existing
1123  * journal blocks from disk.  */
1124 
1125 /* First: create and setup a journal_t object in memory.  We initialise
1126  * very few fields yet: that has to wait until we have created the
1127  * journal structures from from scratch, or loaded them from disk. */
1128 
1129 static journal_t *journal_init_common(struct block_device *bdev,
1130 			struct block_device *fs_dev,
1131 			unsigned long long start, int len, int blocksize)
1132 {
1133 	static struct lock_class_key jbd2_trans_commit_key;
1134 	journal_t *journal;
1135 	int err;
1136 	struct buffer_head *bh;
1137 	int n;
1138 
1139 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1140 	if (!journal)
1141 		return NULL;
1142 
1143 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1144 	init_waitqueue_head(&journal->j_wait_done_commit);
1145 	init_waitqueue_head(&journal->j_wait_commit);
1146 	init_waitqueue_head(&journal->j_wait_updates);
1147 	init_waitqueue_head(&journal->j_wait_reserved);
1148 	mutex_init(&journal->j_barrier);
1149 	mutex_init(&journal->j_checkpoint_mutex);
1150 	spin_lock_init(&journal->j_revoke_lock);
1151 	spin_lock_init(&journal->j_list_lock);
1152 	rwlock_init(&journal->j_state_lock);
1153 
1154 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1155 	journal->j_min_batch_time = 0;
1156 	journal->j_max_batch_time = 15000; /* 15ms */
1157 	atomic_set(&journal->j_reserved_credits, 0);
1158 
1159 	/* The journal is marked for error until we succeed with recovery! */
1160 	journal->j_flags = JBD2_ABORT;
1161 
1162 	/* Set up a default-sized revoke table for the new mount. */
1163 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1164 	if (err)
1165 		goto err_cleanup;
1166 
1167 	spin_lock_init(&journal->j_history_lock);
1168 
1169 	lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1170 			 &jbd2_trans_commit_key, 0);
1171 
1172 	/* journal descriptor can store up to n blocks -bzzz */
1173 	journal->j_blocksize = blocksize;
1174 	journal->j_dev = bdev;
1175 	journal->j_fs_dev = fs_dev;
1176 	journal->j_blk_offset = start;
1177 	journal->j_maxlen = len;
1178 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1179 	journal->j_wbufsize = n;
1180 	journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1181 					GFP_KERNEL);
1182 	if (!journal->j_wbuf)
1183 		goto err_cleanup;
1184 
1185 	bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1186 	if (!bh) {
1187 		pr_err("%s: Cannot get buffer for journal superblock\n",
1188 			__func__);
1189 		goto err_cleanup;
1190 	}
1191 	journal->j_sb_buffer = bh;
1192 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1193 
1194 	return journal;
1195 
1196 err_cleanup:
1197 	kfree(journal->j_wbuf);
1198 	jbd2_journal_destroy_revoke(journal);
1199 	kfree(journal);
1200 	return NULL;
1201 }
1202 
1203 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1204  *
1205  * Create a journal structure assigned some fixed set of disk blocks to
1206  * the journal.  We don't actually touch those disk blocks yet, but we
1207  * need to set up all of the mapping information to tell the journaling
1208  * system where the journal blocks are.
1209  *
1210  */
1211 
1212 /**
1213  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1214  *  @bdev: Block device on which to create the journal
1215  *  @fs_dev: Device which hold journalled filesystem for this journal.
1216  *  @start: Block nr Start of journal.
1217  *  @len:  Length of the journal in blocks.
1218  *  @blocksize: blocksize of journalling device
1219  *
1220  *  Returns: a newly created journal_t *
1221  *
1222  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1223  *  range of blocks on an arbitrary block device.
1224  *
1225  */
1226 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1227 			struct block_device *fs_dev,
1228 			unsigned long long start, int len, int blocksize)
1229 {
1230 	journal_t *journal;
1231 
1232 	journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1233 	if (!journal)
1234 		return NULL;
1235 
1236 	bdevname(journal->j_dev, journal->j_devname);
1237 	strreplace(journal->j_devname, '/', '!');
1238 	jbd2_stats_proc_init(journal);
1239 
1240 	return journal;
1241 }
1242 
1243 /**
1244  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1245  *  @inode: An inode to create the journal in
1246  *
1247  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1248  * the journal.  The inode must exist already, must support bmap() and
1249  * must have all data blocks preallocated.
1250  */
1251 journal_t *jbd2_journal_init_inode(struct inode *inode)
1252 {
1253 	journal_t *journal;
1254 	char *p;
1255 	unsigned long long blocknr;
1256 
1257 	blocknr = bmap(inode, 0);
1258 	if (!blocknr) {
1259 		pr_err("%s: Cannot locate journal superblock\n",
1260 			__func__);
1261 		return NULL;
1262 	}
1263 
1264 	jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1265 		  inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1266 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1267 
1268 	journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1269 			blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1270 			inode->i_sb->s_blocksize);
1271 	if (!journal)
1272 		return NULL;
1273 
1274 	journal->j_inode = inode;
1275 	bdevname(journal->j_dev, journal->j_devname);
1276 	p = strreplace(journal->j_devname, '/', '!');
1277 	sprintf(p, "-%lu", journal->j_inode->i_ino);
1278 	jbd2_stats_proc_init(journal);
1279 
1280 	return journal;
1281 }
1282 
1283 /*
1284  * If the journal init or create aborts, we need to mark the journal
1285  * superblock as being NULL to prevent the journal destroy from writing
1286  * back a bogus superblock.
1287  */
1288 static void journal_fail_superblock (journal_t *journal)
1289 {
1290 	struct buffer_head *bh = journal->j_sb_buffer;
1291 	brelse(bh);
1292 	journal->j_sb_buffer = NULL;
1293 }
1294 
1295 /*
1296  * Given a journal_t structure, initialise the various fields for
1297  * startup of a new journaling session.  We use this both when creating
1298  * a journal, and after recovering an old journal to reset it for
1299  * subsequent use.
1300  */
1301 
1302 static int journal_reset(journal_t *journal)
1303 {
1304 	journal_superblock_t *sb = journal->j_superblock;
1305 	unsigned long long first, last;
1306 
1307 	first = be32_to_cpu(sb->s_first);
1308 	last = be32_to_cpu(sb->s_maxlen);
1309 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1310 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1311 		       first, last);
1312 		journal_fail_superblock(journal);
1313 		return -EINVAL;
1314 	}
1315 
1316 	journal->j_first = first;
1317 	journal->j_last = last;
1318 
1319 	journal->j_head = first;
1320 	journal->j_tail = first;
1321 	journal->j_free = last - first;
1322 
1323 	journal->j_tail_sequence = journal->j_transaction_sequence;
1324 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1325 	journal->j_commit_request = journal->j_commit_sequence;
1326 
1327 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1328 
1329 	/*
1330 	 * As a special case, if the on-disk copy is already marked as needing
1331 	 * no recovery (s_start == 0), then we can safely defer the superblock
1332 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1333 	 * attempting a write to a potential-readonly device.
1334 	 */
1335 	if (sb->s_start == 0) {
1336 		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1337 			"(start %ld, seq %d, errno %d)\n",
1338 			journal->j_tail, journal->j_tail_sequence,
1339 			journal->j_errno);
1340 		journal->j_flags |= JBD2_FLUSHED;
1341 	} else {
1342 		/* Lock here to make assertions happy... */
1343 		mutex_lock_io(&journal->j_checkpoint_mutex);
1344 		/*
1345 		 * Update log tail information. We use REQ_FUA since new
1346 		 * transaction will start reusing journal space and so we
1347 		 * must make sure information about current log tail is on
1348 		 * disk before that.
1349 		 */
1350 		jbd2_journal_update_sb_log_tail(journal,
1351 						journal->j_tail_sequence,
1352 						journal->j_tail,
1353 						REQ_SYNC | REQ_FUA);
1354 		mutex_unlock(&journal->j_checkpoint_mutex);
1355 	}
1356 	return jbd2_journal_start_thread(journal);
1357 }
1358 
1359 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1360 {
1361 	struct buffer_head *bh = journal->j_sb_buffer;
1362 	journal_superblock_t *sb = journal->j_superblock;
1363 	int ret;
1364 
1365 	trace_jbd2_write_superblock(journal, write_flags);
1366 	if (!(journal->j_flags & JBD2_BARRIER))
1367 		write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1368 	lock_buffer(bh);
1369 	if (buffer_write_io_error(bh)) {
1370 		/*
1371 		 * Oh, dear.  A previous attempt to write the journal
1372 		 * superblock failed.  This could happen because the
1373 		 * USB device was yanked out.  Or it could happen to
1374 		 * be a transient write error and maybe the block will
1375 		 * be remapped.  Nothing we can do but to retry the
1376 		 * write and hope for the best.
1377 		 */
1378 		printk(KERN_ERR "JBD2: previous I/O error detected "
1379 		       "for journal superblock update for %s.\n",
1380 		       journal->j_devname);
1381 		clear_buffer_write_io_error(bh);
1382 		set_buffer_uptodate(bh);
1383 	}
1384 	jbd2_superblock_csum_set(journal, sb);
1385 	get_bh(bh);
1386 	bh->b_end_io = end_buffer_write_sync;
1387 	ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1388 	wait_on_buffer(bh);
1389 	if (buffer_write_io_error(bh)) {
1390 		clear_buffer_write_io_error(bh);
1391 		set_buffer_uptodate(bh);
1392 		ret = -EIO;
1393 	}
1394 	if (ret) {
1395 		printk(KERN_ERR "JBD2: Error %d detected when updating "
1396 		       "journal superblock for %s.\n", ret,
1397 		       journal->j_devname);
1398 		jbd2_journal_abort(journal, ret);
1399 	}
1400 
1401 	return ret;
1402 }
1403 
1404 /**
1405  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1406  * @journal: The journal to update.
1407  * @tail_tid: TID of the new transaction at the tail of the log
1408  * @tail_block: The first block of the transaction at the tail of the log
1409  * @write_op: With which operation should we write the journal sb
1410  *
1411  * Update a journal's superblock information about log tail and write it to
1412  * disk, waiting for the IO to complete.
1413  */
1414 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1415 				     unsigned long tail_block, int write_op)
1416 {
1417 	journal_superblock_t *sb = journal->j_superblock;
1418 	int ret;
1419 
1420 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1421 	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1422 		  tail_block, tail_tid);
1423 
1424 	sb->s_sequence = cpu_to_be32(tail_tid);
1425 	sb->s_start    = cpu_to_be32(tail_block);
1426 
1427 	ret = jbd2_write_superblock(journal, write_op);
1428 	if (ret)
1429 		goto out;
1430 
1431 	/* Log is no longer empty */
1432 	write_lock(&journal->j_state_lock);
1433 	WARN_ON(!sb->s_sequence);
1434 	journal->j_flags &= ~JBD2_FLUSHED;
1435 	write_unlock(&journal->j_state_lock);
1436 
1437 out:
1438 	return ret;
1439 }
1440 
1441 /**
1442  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1443  * @journal: The journal to update.
1444  * @write_op: With which operation should we write the journal sb
1445  *
1446  * Update a journal's dynamic superblock fields to show that journal is empty.
1447  * Write updated superblock to disk waiting for IO to complete.
1448  */
1449 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1450 {
1451 	journal_superblock_t *sb = journal->j_superblock;
1452 
1453 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1454 	read_lock(&journal->j_state_lock);
1455 	/* Is it already empty? */
1456 	if (sb->s_start == 0) {
1457 		read_unlock(&journal->j_state_lock);
1458 		return;
1459 	}
1460 	jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1461 		  journal->j_tail_sequence);
1462 
1463 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1464 	sb->s_start    = cpu_to_be32(0);
1465 	read_unlock(&journal->j_state_lock);
1466 
1467 	jbd2_write_superblock(journal, write_op);
1468 
1469 	/* Log is no longer empty */
1470 	write_lock(&journal->j_state_lock);
1471 	journal->j_flags |= JBD2_FLUSHED;
1472 	write_unlock(&journal->j_state_lock);
1473 }
1474 
1475 
1476 /**
1477  * jbd2_journal_update_sb_errno() - Update error in the journal.
1478  * @journal: The journal to update.
1479  *
1480  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1481  * to complete.
1482  */
1483 void jbd2_journal_update_sb_errno(journal_t *journal)
1484 {
1485 	journal_superblock_t *sb = journal->j_superblock;
1486 
1487 	read_lock(&journal->j_state_lock);
1488 	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1489 		  journal->j_errno);
1490 	sb->s_errno    = cpu_to_be32(journal->j_errno);
1491 	read_unlock(&journal->j_state_lock);
1492 
1493 	jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1494 }
1495 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1496 
1497 /*
1498  * Read the superblock for a given journal, performing initial
1499  * validation of the format.
1500  */
1501 static int journal_get_superblock(journal_t *journal)
1502 {
1503 	struct buffer_head *bh;
1504 	journal_superblock_t *sb;
1505 	int err = -EIO;
1506 
1507 	bh = journal->j_sb_buffer;
1508 
1509 	J_ASSERT(bh != NULL);
1510 	if (!buffer_uptodate(bh)) {
1511 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1512 		wait_on_buffer(bh);
1513 		if (!buffer_uptodate(bh)) {
1514 			printk(KERN_ERR
1515 				"JBD2: IO error reading journal superblock\n");
1516 			goto out;
1517 		}
1518 	}
1519 
1520 	if (buffer_verified(bh))
1521 		return 0;
1522 
1523 	sb = journal->j_superblock;
1524 
1525 	err = -EINVAL;
1526 
1527 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1528 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1529 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1530 		goto out;
1531 	}
1532 
1533 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1534 	case JBD2_SUPERBLOCK_V1:
1535 		journal->j_format_version = 1;
1536 		break;
1537 	case JBD2_SUPERBLOCK_V2:
1538 		journal->j_format_version = 2;
1539 		break;
1540 	default:
1541 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1542 		goto out;
1543 	}
1544 
1545 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1546 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1547 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1548 		printk(KERN_WARNING "JBD2: journal file too short\n");
1549 		goto out;
1550 	}
1551 
1552 	if (be32_to_cpu(sb->s_first) == 0 ||
1553 	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1554 		printk(KERN_WARNING
1555 			"JBD2: Invalid start block of journal: %u\n",
1556 			be32_to_cpu(sb->s_first));
1557 		goto out;
1558 	}
1559 
1560 	if (jbd2_has_feature_csum2(journal) &&
1561 	    jbd2_has_feature_csum3(journal)) {
1562 		/* Can't have checksum v2 and v3 at the same time! */
1563 		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1564 		       "at the same time!\n");
1565 		goto out;
1566 	}
1567 
1568 	if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1569 	    jbd2_has_feature_checksum(journal)) {
1570 		/* Can't have checksum v1 and v2 on at the same time! */
1571 		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1572 		       "at the same time!\n");
1573 		goto out;
1574 	}
1575 
1576 	if (!jbd2_verify_csum_type(journal, sb)) {
1577 		printk(KERN_ERR "JBD2: Unknown checksum type\n");
1578 		goto out;
1579 	}
1580 
1581 	/* Load the checksum driver */
1582 	if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1583 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1584 		if (IS_ERR(journal->j_chksum_driver)) {
1585 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1586 			err = PTR_ERR(journal->j_chksum_driver);
1587 			journal->j_chksum_driver = NULL;
1588 			goto out;
1589 		}
1590 	}
1591 
1592 	/* Check superblock checksum */
1593 	if (!jbd2_superblock_csum_verify(journal, sb)) {
1594 		printk(KERN_ERR "JBD2: journal checksum error\n");
1595 		err = -EFSBADCRC;
1596 		goto out;
1597 	}
1598 
1599 	/* Precompute checksum seed for all metadata */
1600 	if (jbd2_journal_has_csum_v2or3(journal))
1601 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1602 						   sizeof(sb->s_uuid));
1603 
1604 	set_buffer_verified(bh);
1605 
1606 	return 0;
1607 
1608 out:
1609 	journal_fail_superblock(journal);
1610 	return err;
1611 }
1612 
1613 /*
1614  * Load the on-disk journal superblock and read the key fields into the
1615  * journal_t.
1616  */
1617 
1618 static int load_superblock(journal_t *journal)
1619 {
1620 	int err;
1621 	journal_superblock_t *sb;
1622 
1623 	err = journal_get_superblock(journal);
1624 	if (err)
1625 		return err;
1626 
1627 	sb = journal->j_superblock;
1628 
1629 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1630 	journal->j_tail = be32_to_cpu(sb->s_start);
1631 	journal->j_first = be32_to_cpu(sb->s_first);
1632 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1633 	journal->j_errno = be32_to_cpu(sb->s_errno);
1634 
1635 	return 0;
1636 }
1637 
1638 
1639 /**
1640  * int jbd2_journal_load() - Read journal from disk.
1641  * @journal: Journal to act on.
1642  *
1643  * Given a journal_t structure which tells us which disk blocks contain
1644  * a journal, read the journal from disk to initialise the in-memory
1645  * structures.
1646  */
1647 int jbd2_journal_load(journal_t *journal)
1648 {
1649 	int err;
1650 	journal_superblock_t *sb;
1651 
1652 	err = load_superblock(journal);
1653 	if (err)
1654 		return err;
1655 
1656 	sb = journal->j_superblock;
1657 	/* If this is a V2 superblock, then we have to check the
1658 	 * features flags on it. */
1659 
1660 	if (journal->j_format_version >= 2) {
1661 		if ((sb->s_feature_ro_compat &
1662 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1663 		    (sb->s_feature_incompat &
1664 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1665 			printk(KERN_WARNING
1666 				"JBD2: Unrecognised features on journal\n");
1667 			return -EINVAL;
1668 		}
1669 	}
1670 
1671 	/*
1672 	 * Create a slab for this blocksize
1673 	 */
1674 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1675 	if (err)
1676 		return err;
1677 
1678 	/* Let the recovery code check whether it needs to recover any
1679 	 * data from the journal. */
1680 	if (jbd2_journal_recover(journal))
1681 		goto recovery_error;
1682 
1683 	if (journal->j_failed_commit) {
1684 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1685 		       "is corrupt.\n", journal->j_failed_commit,
1686 		       journal->j_devname);
1687 		return -EFSCORRUPTED;
1688 	}
1689 
1690 	/* OK, we've finished with the dynamic journal bits:
1691 	 * reinitialise the dynamic contents of the superblock in memory
1692 	 * and reset them on disk. */
1693 	if (journal_reset(journal))
1694 		goto recovery_error;
1695 
1696 	journal->j_flags &= ~JBD2_ABORT;
1697 	journal->j_flags |= JBD2_LOADED;
1698 	return 0;
1699 
1700 recovery_error:
1701 	printk(KERN_WARNING "JBD2: recovery failed\n");
1702 	return -EIO;
1703 }
1704 
1705 /**
1706  * void jbd2_journal_destroy() - Release a journal_t structure.
1707  * @journal: Journal to act on.
1708  *
1709  * Release a journal_t structure once it is no longer in use by the
1710  * journaled object.
1711  * Return <0 if we couldn't clean up the journal.
1712  */
1713 int jbd2_journal_destroy(journal_t *journal)
1714 {
1715 	int err = 0;
1716 
1717 	/* Wait for the commit thread to wake up and die. */
1718 	journal_kill_thread(journal);
1719 
1720 	/* Force a final log commit */
1721 	if (journal->j_running_transaction)
1722 		jbd2_journal_commit_transaction(journal);
1723 
1724 	/* Force any old transactions to disk */
1725 
1726 	/* Totally anal locking here... */
1727 	spin_lock(&journal->j_list_lock);
1728 	while (journal->j_checkpoint_transactions != NULL) {
1729 		spin_unlock(&journal->j_list_lock);
1730 		mutex_lock_io(&journal->j_checkpoint_mutex);
1731 		err = jbd2_log_do_checkpoint(journal);
1732 		mutex_unlock(&journal->j_checkpoint_mutex);
1733 		/*
1734 		 * If checkpointing failed, just free the buffers to avoid
1735 		 * looping forever
1736 		 */
1737 		if (err) {
1738 			jbd2_journal_destroy_checkpoint(journal);
1739 			spin_lock(&journal->j_list_lock);
1740 			break;
1741 		}
1742 		spin_lock(&journal->j_list_lock);
1743 	}
1744 
1745 	J_ASSERT(journal->j_running_transaction == NULL);
1746 	J_ASSERT(journal->j_committing_transaction == NULL);
1747 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1748 	spin_unlock(&journal->j_list_lock);
1749 
1750 	if (journal->j_sb_buffer) {
1751 		if (!is_journal_aborted(journal)) {
1752 			mutex_lock_io(&journal->j_checkpoint_mutex);
1753 
1754 			write_lock(&journal->j_state_lock);
1755 			journal->j_tail_sequence =
1756 				++journal->j_transaction_sequence;
1757 			write_unlock(&journal->j_state_lock);
1758 
1759 			jbd2_mark_journal_empty(journal,
1760 					REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1761 			mutex_unlock(&journal->j_checkpoint_mutex);
1762 		} else
1763 			err = -EIO;
1764 		brelse(journal->j_sb_buffer);
1765 	}
1766 
1767 	if (journal->j_proc_entry)
1768 		jbd2_stats_proc_exit(journal);
1769 	iput(journal->j_inode);
1770 	if (journal->j_revoke)
1771 		jbd2_journal_destroy_revoke(journal);
1772 	if (journal->j_chksum_driver)
1773 		crypto_free_shash(journal->j_chksum_driver);
1774 	kfree(journal->j_wbuf);
1775 	kfree(journal);
1776 
1777 	return err;
1778 }
1779 
1780 
1781 /**
1782  *int jbd2_journal_check_used_features () - Check if features specified are used.
1783  * @journal: Journal to check.
1784  * @compat: bitmask of compatible features
1785  * @ro: bitmask of features that force read-only mount
1786  * @incompat: bitmask of incompatible features
1787  *
1788  * Check whether the journal uses all of a given set of
1789  * features.  Return true (non-zero) if it does.
1790  **/
1791 
1792 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1793 				 unsigned long ro, unsigned long incompat)
1794 {
1795 	journal_superblock_t *sb;
1796 
1797 	if (!compat && !ro && !incompat)
1798 		return 1;
1799 	/* Load journal superblock if it is not loaded yet. */
1800 	if (journal->j_format_version == 0 &&
1801 	    journal_get_superblock(journal) != 0)
1802 		return 0;
1803 	if (journal->j_format_version == 1)
1804 		return 0;
1805 
1806 	sb = journal->j_superblock;
1807 
1808 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1809 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1810 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1811 		return 1;
1812 
1813 	return 0;
1814 }
1815 
1816 /**
1817  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1818  * @journal: Journal to check.
1819  * @compat: bitmask of compatible features
1820  * @ro: bitmask of features that force read-only mount
1821  * @incompat: bitmask of incompatible features
1822  *
1823  * Check whether the journaling code supports the use of
1824  * all of a given set of features on this journal.  Return true
1825  * (non-zero) if it can. */
1826 
1827 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1828 				      unsigned long ro, unsigned long incompat)
1829 {
1830 	if (!compat && !ro && !incompat)
1831 		return 1;
1832 
1833 	/* We can support any known requested features iff the
1834 	 * superblock is in version 2.  Otherwise we fail to support any
1835 	 * extended sb features. */
1836 
1837 	if (journal->j_format_version != 2)
1838 		return 0;
1839 
1840 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1841 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1842 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1843 		return 1;
1844 
1845 	return 0;
1846 }
1847 
1848 /**
1849  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1850  * @journal: Journal to act on.
1851  * @compat: bitmask of compatible features
1852  * @ro: bitmask of features that force read-only mount
1853  * @incompat: bitmask of incompatible features
1854  *
1855  * Mark a given journal feature as present on the
1856  * superblock.  Returns true if the requested features could be set.
1857  *
1858  */
1859 
1860 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1861 			  unsigned long ro, unsigned long incompat)
1862 {
1863 #define INCOMPAT_FEATURE_ON(f) \
1864 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1865 #define COMPAT_FEATURE_ON(f) \
1866 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1867 	journal_superblock_t *sb;
1868 
1869 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1870 		return 1;
1871 
1872 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1873 		return 0;
1874 
1875 	/* If enabling v2 checksums, turn on v3 instead */
1876 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1877 		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1878 		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1879 	}
1880 
1881 	/* Asking for checksumming v3 and v1?  Only give them v3. */
1882 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1883 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1884 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1885 
1886 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1887 		  compat, ro, incompat);
1888 
1889 	sb = journal->j_superblock;
1890 
1891 	/* If enabling v3 checksums, update superblock */
1892 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1893 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1894 		sb->s_feature_compat &=
1895 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1896 
1897 		/* Load the checksum driver */
1898 		if (journal->j_chksum_driver == NULL) {
1899 			journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1900 								      0, 0);
1901 			if (IS_ERR(journal->j_chksum_driver)) {
1902 				printk(KERN_ERR "JBD2: Cannot load crc32c "
1903 				       "driver.\n");
1904 				journal->j_chksum_driver = NULL;
1905 				return 0;
1906 			}
1907 
1908 			/* Precompute checksum seed for all metadata */
1909 			journal->j_csum_seed = jbd2_chksum(journal, ~0,
1910 							   sb->s_uuid,
1911 							   sizeof(sb->s_uuid));
1912 		}
1913 	}
1914 
1915 	/* If enabling v1 checksums, downgrade superblock */
1916 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1917 		sb->s_feature_incompat &=
1918 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1919 				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
1920 
1921 	sb->s_feature_compat    |= cpu_to_be32(compat);
1922 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1923 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1924 
1925 	return 1;
1926 #undef COMPAT_FEATURE_ON
1927 #undef INCOMPAT_FEATURE_ON
1928 }
1929 
1930 /*
1931  * jbd2_journal_clear_features () - Clear a given journal feature in the
1932  * 				    superblock
1933  * @journal: Journal to act on.
1934  * @compat: bitmask of compatible features
1935  * @ro: bitmask of features that force read-only mount
1936  * @incompat: bitmask of incompatible features
1937  *
1938  * Clear a given journal feature as present on the
1939  * superblock.
1940  */
1941 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1942 				unsigned long ro, unsigned long incompat)
1943 {
1944 	journal_superblock_t *sb;
1945 
1946 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1947 		  compat, ro, incompat);
1948 
1949 	sb = journal->j_superblock;
1950 
1951 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1952 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1953 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1954 }
1955 EXPORT_SYMBOL(jbd2_journal_clear_features);
1956 
1957 /**
1958  * int jbd2_journal_flush () - Flush journal
1959  * @journal: Journal to act on.
1960  *
1961  * Flush all data for a given journal to disk and empty the journal.
1962  * Filesystems can use this when remounting readonly to ensure that
1963  * recovery does not need to happen on remount.
1964  */
1965 
1966 int jbd2_journal_flush(journal_t *journal)
1967 {
1968 	int err = 0;
1969 	transaction_t *transaction = NULL;
1970 
1971 	write_lock(&journal->j_state_lock);
1972 
1973 	/* Force everything buffered to the log... */
1974 	if (journal->j_running_transaction) {
1975 		transaction = journal->j_running_transaction;
1976 		__jbd2_log_start_commit(journal, transaction->t_tid);
1977 	} else if (journal->j_committing_transaction)
1978 		transaction = journal->j_committing_transaction;
1979 
1980 	/* Wait for the log commit to complete... */
1981 	if (transaction) {
1982 		tid_t tid = transaction->t_tid;
1983 
1984 		write_unlock(&journal->j_state_lock);
1985 		jbd2_log_wait_commit(journal, tid);
1986 	} else {
1987 		write_unlock(&journal->j_state_lock);
1988 	}
1989 
1990 	/* ...and flush everything in the log out to disk. */
1991 	spin_lock(&journal->j_list_lock);
1992 	while (!err && journal->j_checkpoint_transactions != NULL) {
1993 		spin_unlock(&journal->j_list_lock);
1994 		mutex_lock_io(&journal->j_checkpoint_mutex);
1995 		err = jbd2_log_do_checkpoint(journal);
1996 		mutex_unlock(&journal->j_checkpoint_mutex);
1997 		spin_lock(&journal->j_list_lock);
1998 	}
1999 	spin_unlock(&journal->j_list_lock);
2000 
2001 	if (is_journal_aborted(journal))
2002 		return -EIO;
2003 
2004 	mutex_lock_io(&journal->j_checkpoint_mutex);
2005 	if (!err) {
2006 		err = jbd2_cleanup_journal_tail(journal);
2007 		if (err < 0) {
2008 			mutex_unlock(&journal->j_checkpoint_mutex);
2009 			goto out;
2010 		}
2011 		err = 0;
2012 	}
2013 
2014 	/* Finally, mark the journal as really needing no recovery.
2015 	 * This sets s_start==0 in the underlying superblock, which is
2016 	 * the magic code for a fully-recovered superblock.  Any future
2017 	 * commits of data to the journal will restore the current
2018 	 * s_start value. */
2019 	jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2020 	mutex_unlock(&journal->j_checkpoint_mutex);
2021 	write_lock(&journal->j_state_lock);
2022 	J_ASSERT(!journal->j_running_transaction);
2023 	J_ASSERT(!journal->j_committing_transaction);
2024 	J_ASSERT(!journal->j_checkpoint_transactions);
2025 	J_ASSERT(journal->j_head == journal->j_tail);
2026 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2027 	write_unlock(&journal->j_state_lock);
2028 out:
2029 	return err;
2030 }
2031 
2032 /**
2033  * int jbd2_journal_wipe() - Wipe journal contents
2034  * @journal: Journal to act on.
2035  * @write: flag (see below)
2036  *
2037  * Wipe out all of the contents of a journal, safely.  This will produce
2038  * a warning if the journal contains any valid recovery information.
2039  * Must be called between journal_init_*() and jbd2_journal_load().
2040  *
2041  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2042  * we merely suppress recovery.
2043  */
2044 
2045 int jbd2_journal_wipe(journal_t *journal, int write)
2046 {
2047 	int err = 0;
2048 
2049 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2050 
2051 	err = load_superblock(journal);
2052 	if (err)
2053 		return err;
2054 
2055 	if (!journal->j_tail)
2056 		goto no_recovery;
2057 
2058 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2059 		write ? "Clearing" : "Ignoring");
2060 
2061 	err = jbd2_journal_skip_recovery(journal);
2062 	if (write) {
2063 		/* Lock to make assertions happy... */
2064 		mutex_lock(&journal->j_checkpoint_mutex);
2065 		jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2066 		mutex_unlock(&journal->j_checkpoint_mutex);
2067 	}
2068 
2069  no_recovery:
2070 	return err;
2071 }
2072 
2073 /*
2074  * Journal abort has very specific semantics, which we describe
2075  * for journal abort.
2076  *
2077  * Two internal functions, which provide abort to the jbd layer
2078  * itself are here.
2079  */
2080 
2081 /*
2082  * Quick version for internal journal use (doesn't lock the journal).
2083  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2084  * and don't attempt to make any other journal updates.
2085  */
2086 void __jbd2_journal_abort_hard(journal_t *journal)
2087 {
2088 	transaction_t *transaction;
2089 
2090 	if (journal->j_flags & JBD2_ABORT)
2091 		return;
2092 
2093 	printk(KERN_ERR "Aborting journal on device %s.\n",
2094 	       journal->j_devname);
2095 
2096 	write_lock(&journal->j_state_lock);
2097 	journal->j_flags |= JBD2_ABORT;
2098 	transaction = journal->j_running_transaction;
2099 	if (transaction)
2100 		__jbd2_log_start_commit(journal, transaction->t_tid);
2101 	write_unlock(&journal->j_state_lock);
2102 }
2103 
2104 /* Soft abort: record the abort error status in the journal superblock,
2105  * but don't do any other IO. */
2106 static void __journal_abort_soft (journal_t *journal, int errno)
2107 {
2108 	if (journal->j_flags & JBD2_ABORT)
2109 		return;
2110 
2111 	if (!journal->j_errno)
2112 		journal->j_errno = errno;
2113 
2114 	__jbd2_journal_abort_hard(journal);
2115 
2116 	if (errno) {
2117 		jbd2_journal_update_sb_errno(journal);
2118 		write_lock(&journal->j_state_lock);
2119 		journal->j_flags |= JBD2_REC_ERR;
2120 		write_unlock(&journal->j_state_lock);
2121 	}
2122 }
2123 
2124 /**
2125  * void jbd2_journal_abort () - Shutdown the journal immediately.
2126  * @journal: the journal to shutdown.
2127  * @errno:   an error number to record in the journal indicating
2128  *           the reason for the shutdown.
2129  *
2130  * Perform a complete, immediate shutdown of the ENTIRE
2131  * journal (not of a single transaction).  This operation cannot be
2132  * undone without closing and reopening the journal.
2133  *
2134  * The jbd2_journal_abort function is intended to support higher level error
2135  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2136  * mode.
2137  *
2138  * Journal abort has very specific semantics.  Any existing dirty,
2139  * unjournaled buffers in the main filesystem will still be written to
2140  * disk by bdflush, but the journaling mechanism will be suspended
2141  * immediately and no further transaction commits will be honoured.
2142  *
2143  * Any dirty, journaled buffers will be written back to disk without
2144  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2145  * filesystem, but we _do_ attempt to leave as much data as possible
2146  * behind for fsck to use for cleanup.
2147  *
2148  * Any attempt to get a new transaction handle on a journal which is in
2149  * ABORT state will just result in an -EROFS error return.  A
2150  * jbd2_journal_stop on an existing handle will return -EIO if we have
2151  * entered abort state during the update.
2152  *
2153  * Recursive transactions are not disturbed by journal abort until the
2154  * final jbd2_journal_stop, which will receive the -EIO error.
2155  *
2156  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2157  * which will be recorded (if possible) in the journal superblock.  This
2158  * allows a client to record failure conditions in the middle of a
2159  * transaction without having to complete the transaction to record the
2160  * failure to disk.  ext3_error, for example, now uses this
2161  * functionality.
2162  *
2163  * Errors which originate from within the journaling layer will NOT
2164  * supply an errno; a null errno implies that absolutely no further
2165  * writes are done to the journal (unless there are any already in
2166  * progress).
2167  *
2168  */
2169 
2170 void jbd2_journal_abort(journal_t *journal, int errno)
2171 {
2172 	__journal_abort_soft(journal, errno);
2173 }
2174 
2175 /**
2176  * int jbd2_journal_errno () - returns the journal's error state.
2177  * @journal: journal to examine.
2178  *
2179  * This is the errno number set with jbd2_journal_abort(), the last
2180  * time the journal was mounted - if the journal was stopped
2181  * without calling abort this will be 0.
2182  *
2183  * If the journal has been aborted on this mount time -EROFS will
2184  * be returned.
2185  */
2186 int jbd2_journal_errno(journal_t *journal)
2187 {
2188 	int err;
2189 
2190 	read_lock(&journal->j_state_lock);
2191 	if (journal->j_flags & JBD2_ABORT)
2192 		err = -EROFS;
2193 	else
2194 		err = journal->j_errno;
2195 	read_unlock(&journal->j_state_lock);
2196 	return err;
2197 }
2198 
2199 /**
2200  * int jbd2_journal_clear_err () - clears the journal's error state
2201  * @journal: journal to act on.
2202  *
2203  * An error must be cleared or acked to take a FS out of readonly
2204  * mode.
2205  */
2206 int jbd2_journal_clear_err(journal_t *journal)
2207 {
2208 	int err = 0;
2209 
2210 	write_lock(&journal->j_state_lock);
2211 	if (journal->j_flags & JBD2_ABORT)
2212 		err = -EROFS;
2213 	else
2214 		journal->j_errno = 0;
2215 	write_unlock(&journal->j_state_lock);
2216 	return err;
2217 }
2218 
2219 /**
2220  * void jbd2_journal_ack_err() - Ack journal err.
2221  * @journal: journal to act on.
2222  *
2223  * An error must be cleared or acked to take a FS out of readonly
2224  * mode.
2225  */
2226 void jbd2_journal_ack_err(journal_t *journal)
2227 {
2228 	write_lock(&journal->j_state_lock);
2229 	if (journal->j_errno)
2230 		journal->j_flags |= JBD2_ACK_ERR;
2231 	write_unlock(&journal->j_state_lock);
2232 }
2233 
2234 int jbd2_journal_blocks_per_page(struct inode *inode)
2235 {
2236 	return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2237 }
2238 
2239 /*
2240  * helper functions to deal with 32 or 64bit block numbers.
2241  */
2242 size_t journal_tag_bytes(journal_t *journal)
2243 {
2244 	size_t sz;
2245 
2246 	if (jbd2_has_feature_csum3(journal))
2247 		return sizeof(journal_block_tag3_t);
2248 
2249 	sz = sizeof(journal_block_tag_t);
2250 
2251 	if (jbd2_has_feature_csum2(journal))
2252 		sz += sizeof(__u16);
2253 
2254 	if (jbd2_has_feature_64bit(journal))
2255 		return sz;
2256 	else
2257 		return sz - sizeof(__u32);
2258 }
2259 
2260 /*
2261  * JBD memory management
2262  *
2263  * These functions are used to allocate block-sized chunks of memory
2264  * used for making copies of buffer_head data.  Very often it will be
2265  * page-sized chunks of data, but sometimes it will be in
2266  * sub-page-size chunks.  (For example, 16k pages on Power systems
2267  * with a 4k block file system.)  For blocks smaller than a page, we
2268  * use a SLAB allocator.  There are slab caches for each block size,
2269  * which are allocated at mount time, if necessary, and we only free
2270  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2271  * this reason we don't need to a mutex to protect access to
2272  * jbd2_slab[] allocating or releasing memory; only in
2273  * jbd2_journal_create_slab().
2274  */
2275 #define JBD2_MAX_SLABS 8
2276 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2277 
2278 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2279 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2280 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2281 };
2282 
2283 
2284 static void jbd2_journal_destroy_slabs(void)
2285 {
2286 	int i;
2287 
2288 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2289 		if (jbd2_slab[i])
2290 			kmem_cache_destroy(jbd2_slab[i]);
2291 		jbd2_slab[i] = NULL;
2292 	}
2293 }
2294 
2295 static int jbd2_journal_create_slab(size_t size)
2296 {
2297 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2298 	int i = order_base_2(size) - 10;
2299 	size_t slab_size;
2300 
2301 	if (size == PAGE_SIZE)
2302 		return 0;
2303 
2304 	if (i >= JBD2_MAX_SLABS)
2305 		return -EINVAL;
2306 
2307 	if (unlikely(i < 0))
2308 		i = 0;
2309 	mutex_lock(&jbd2_slab_create_mutex);
2310 	if (jbd2_slab[i]) {
2311 		mutex_unlock(&jbd2_slab_create_mutex);
2312 		return 0;	/* Already created */
2313 	}
2314 
2315 	slab_size = 1 << (i+10);
2316 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2317 					 slab_size, 0, NULL);
2318 	mutex_unlock(&jbd2_slab_create_mutex);
2319 	if (!jbd2_slab[i]) {
2320 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2321 		return -ENOMEM;
2322 	}
2323 	return 0;
2324 }
2325 
2326 static struct kmem_cache *get_slab(size_t size)
2327 {
2328 	int i = order_base_2(size) - 10;
2329 
2330 	BUG_ON(i >= JBD2_MAX_SLABS);
2331 	if (unlikely(i < 0))
2332 		i = 0;
2333 	BUG_ON(jbd2_slab[i] == NULL);
2334 	return jbd2_slab[i];
2335 }
2336 
2337 void *jbd2_alloc(size_t size, gfp_t flags)
2338 {
2339 	void *ptr;
2340 
2341 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2342 
2343 	if (size < PAGE_SIZE)
2344 		ptr = kmem_cache_alloc(get_slab(size), flags);
2345 	else
2346 		ptr = (void *)__get_free_pages(flags, get_order(size));
2347 
2348 	/* Check alignment; SLUB has gotten this wrong in the past,
2349 	 * and this can lead to user data corruption! */
2350 	BUG_ON(((unsigned long) ptr) & (size-1));
2351 
2352 	return ptr;
2353 }
2354 
2355 void jbd2_free(void *ptr, size_t size)
2356 {
2357 	if (size < PAGE_SIZE)
2358 		kmem_cache_free(get_slab(size), ptr);
2359 	else
2360 		free_pages((unsigned long)ptr, get_order(size));
2361 };
2362 
2363 /*
2364  * Journal_head storage management
2365  */
2366 static struct kmem_cache *jbd2_journal_head_cache;
2367 #ifdef CONFIG_JBD2_DEBUG
2368 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2369 #endif
2370 
2371 static int jbd2_journal_init_journal_head_cache(void)
2372 {
2373 	int retval;
2374 
2375 	J_ASSERT(jbd2_journal_head_cache == NULL);
2376 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2377 				sizeof(struct journal_head),
2378 				0,		/* offset */
2379 				SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2380 				NULL);		/* ctor */
2381 	retval = 0;
2382 	if (!jbd2_journal_head_cache) {
2383 		retval = -ENOMEM;
2384 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2385 	}
2386 	return retval;
2387 }
2388 
2389 static void jbd2_journal_destroy_journal_head_cache(void)
2390 {
2391 	if (jbd2_journal_head_cache) {
2392 		kmem_cache_destroy(jbd2_journal_head_cache);
2393 		jbd2_journal_head_cache = NULL;
2394 	}
2395 }
2396 
2397 /*
2398  * journal_head splicing and dicing
2399  */
2400 static struct journal_head *journal_alloc_journal_head(void)
2401 {
2402 	struct journal_head *ret;
2403 
2404 #ifdef CONFIG_JBD2_DEBUG
2405 	atomic_inc(&nr_journal_heads);
2406 #endif
2407 	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2408 	if (!ret) {
2409 		jbd_debug(1, "out of memory for journal_head\n");
2410 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2411 		ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2412 				GFP_NOFS | __GFP_NOFAIL);
2413 	}
2414 	return ret;
2415 }
2416 
2417 static void journal_free_journal_head(struct journal_head *jh)
2418 {
2419 #ifdef CONFIG_JBD2_DEBUG
2420 	atomic_dec(&nr_journal_heads);
2421 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2422 #endif
2423 	kmem_cache_free(jbd2_journal_head_cache, jh);
2424 }
2425 
2426 /*
2427  * A journal_head is attached to a buffer_head whenever JBD has an
2428  * interest in the buffer.
2429  *
2430  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2431  * is set.  This bit is tested in core kernel code where we need to take
2432  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2433  * there.
2434  *
2435  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2436  *
2437  * When a buffer has its BH_JBD bit set it is immune from being released by
2438  * core kernel code, mainly via ->b_count.
2439  *
2440  * A journal_head is detached from its buffer_head when the journal_head's
2441  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2442  * transaction (b_cp_transaction) hold their references to b_jcount.
2443  *
2444  * Various places in the kernel want to attach a journal_head to a buffer_head
2445  * _before_ attaching the journal_head to a transaction.  To protect the
2446  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2447  * journal_head's b_jcount refcount by one.  The caller must call
2448  * jbd2_journal_put_journal_head() to undo this.
2449  *
2450  * So the typical usage would be:
2451  *
2452  *	(Attach a journal_head if needed.  Increments b_jcount)
2453  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2454  *	...
2455  *      (Get another reference for transaction)
2456  *	jbd2_journal_grab_journal_head(bh);
2457  *	jh->b_transaction = xxx;
2458  *	(Put original reference)
2459  *	jbd2_journal_put_journal_head(jh);
2460  */
2461 
2462 /*
2463  * Give a buffer_head a journal_head.
2464  *
2465  * May sleep.
2466  */
2467 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2468 {
2469 	struct journal_head *jh;
2470 	struct journal_head *new_jh = NULL;
2471 
2472 repeat:
2473 	if (!buffer_jbd(bh))
2474 		new_jh = journal_alloc_journal_head();
2475 
2476 	jbd_lock_bh_journal_head(bh);
2477 	if (buffer_jbd(bh)) {
2478 		jh = bh2jh(bh);
2479 	} else {
2480 		J_ASSERT_BH(bh,
2481 			(atomic_read(&bh->b_count) > 0) ||
2482 			(bh->b_page && bh->b_page->mapping));
2483 
2484 		if (!new_jh) {
2485 			jbd_unlock_bh_journal_head(bh);
2486 			goto repeat;
2487 		}
2488 
2489 		jh = new_jh;
2490 		new_jh = NULL;		/* We consumed it */
2491 		set_buffer_jbd(bh);
2492 		bh->b_private = jh;
2493 		jh->b_bh = bh;
2494 		get_bh(bh);
2495 		BUFFER_TRACE(bh, "added journal_head");
2496 	}
2497 	jh->b_jcount++;
2498 	jbd_unlock_bh_journal_head(bh);
2499 	if (new_jh)
2500 		journal_free_journal_head(new_jh);
2501 	return bh->b_private;
2502 }
2503 
2504 /*
2505  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2506  * having a journal_head, return NULL
2507  */
2508 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2509 {
2510 	struct journal_head *jh = NULL;
2511 
2512 	jbd_lock_bh_journal_head(bh);
2513 	if (buffer_jbd(bh)) {
2514 		jh = bh2jh(bh);
2515 		jh->b_jcount++;
2516 	}
2517 	jbd_unlock_bh_journal_head(bh);
2518 	return jh;
2519 }
2520 
2521 static void __journal_remove_journal_head(struct buffer_head *bh)
2522 {
2523 	struct journal_head *jh = bh2jh(bh);
2524 
2525 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2526 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2527 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2528 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2529 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2530 	J_ASSERT_BH(bh, buffer_jbd(bh));
2531 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2532 	BUFFER_TRACE(bh, "remove journal_head");
2533 	if (jh->b_frozen_data) {
2534 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2535 		jbd2_free(jh->b_frozen_data, bh->b_size);
2536 	}
2537 	if (jh->b_committed_data) {
2538 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2539 		jbd2_free(jh->b_committed_data, bh->b_size);
2540 	}
2541 	bh->b_private = NULL;
2542 	jh->b_bh = NULL;	/* debug, really */
2543 	clear_buffer_jbd(bh);
2544 	journal_free_journal_head(jh);
2545 }
2546 
2547 /*
2548  * Drop a reference on the passed journal_head.  If it fell to zero then
2549  * release the journal_head from the buffer_head.
2550  */
2551 void jbd2_journal_put_journal_head(struct journal_head *jh)
2552 {
2553 	struct buffer_head *bh = jh2bh(jh);
2554 
2555 	jbd_lock_bh_journal_head(bh);
2556 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2557 	--jh->b_jcount;
2558 	if (!jh->b_jcount) {
2559 		__journal_remove_journal_head(bh);
2560 		jbd_unlock_bh_journal_head(bh);
2561 		__brelse(bh);
2562 	} else
2563 		jbd_unlock_bh_journal_head(bh);
2564 }
2565 
2566 /*
2567  * Initialize jbd inode head
2568  */
2569 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2570 {
2571 	jinode->i_transaction = NULL;
2572 	jinode->i_next_transaction = NULL;
2573 	jinode->i_vfs_inode = inode;
2574 	jinode->i_flags = 0;
2575 	INIT_LIST_HEAD(&jinode->i_list);
2576 }
2577 
2578 /*
2579  * Function to be called before we start removing inode from memory (i.e.,
2580  * clear_inode() is a fine place to be called from). It removes inode from
2581  * transaction's lists.
2582  */
2583 void jbd2_journal_release_jbd_inode(journal_t *journal,
2584 				    struct jbd2_inode *jinode)
2585 {
2586 	if (!journal)
2587 		return;
2588 restart:
2589 	spin_lock(&journal->j_list_lock);
2590 	/* Is commit writing out inode - we have to wait */
2591 	if (jinode->i_flags & JI_COMMIT_RUNNING) {
2592 		wait_queue_head_t *wq;
2593 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2594 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2595 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2596 		spin_unlock(&journal->j_list_lock);
2597 		schedule();
2598 		finish_wait(wq, &wait.wq_entry);
2599 		goto restart;
2600 	}
2601 
2602 	if (jinode->i_transaction) {
2603 		list_del(&jinode->i_list);
2604 		jinode->i_transaction = NULL;
2605 	}
2606 	spin_unlock(&journal->j_list_lock);
2607 }
2608 
2609 
2610 #ifdef CONFIG_PROC_FS
2611 
2612 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2613 
2614 static void __init jbd2_create_jbd_stats_proc_entry(void)
2615 {
2616 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2617 }
2618 
2619 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2620 {
2621 	if (proc_jbd2_stats)
2622 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2623 }
2624 
2625 #else
2626 
2627 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2628 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2629 
2630 #endif
2631 
2632 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2633 
2634 static int __init jbd2_journal_init_handle_cache(void)
2635 {
2636 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2637 	if (jbd2_handle_cache == NULL) {
2638 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2639 		return -ENOMEM;
2640 	}
2641 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2642 	if (jbd2_inode_cache == NULL) {
2643 		printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2644 		kmem_cache_destroy(jbd2_handle_cache);
2645 		return -ENOMEM;
2646 	}
2647 	return 0;
2648 }
2649 
2650 static void jbd2_journal_destroy_handle_cache(void)
2651 {
2652 	if (jbd2_handle_cache)
2653 		kmem_cache_destroy(jbd2_handle_cache);
2654 	if (jbd2_inode_cache)
2655 		kmem_cache_destroy(jbd2_inode_cache);
2656 
2657 }
2658 
2659 /*
2660  * Module startup and shutdown
2661  */
2662 
2663 static int __init journal_init_caches(void)
2664 {
2665 	int ret;
2666 
2667 	ret = jbd2_journal_init_revoke_caches();
2668 	if (ret == 0)
2669 		ret = jbd2_journal_init_journal_head_cache();
2670 	if (ret == 0)
2671 		ret = jbd2_journal_init_handle_cache();
2672 	if (ret == 0)
2673 		ret = jbd2_journal_init_transaction_cache();
2674 	return ret;
2675 }
2676 
2677 static void jbd2_journal_destroy_caches(void)
2678 {
2679 	jbd2_journal_destroy_revoke_caches();
2680 	jbd2_journal_destroy_journal_head_cache();
2681 	jbd2_journal_destroy_handle_cache();
2682 	jbd2_journal_destroy_transaction_cache();
2683 	jbd2_journal_destroy_slabs();
2684 }
2685 
2686 static int __init journal_init(void)
2687 {
2688 	int ret;
2689 
2690 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2691 
2692 	ret = journal_init_caches();
2693 	if (ret == 0) {
2694 		jbd2_create_jbd_stats_proc_entry();
2695 	} else {
2696 		jbd2_journal_destroy_caches();
2697 	}
2698 	return ret;
2699 }
2700 
2701 static void __exit journal_exit(void)
2702 {
2703 #ifdef CONFIG_JBD2_DEBUG
2704 	int n = atomic_read(&nr_journal_heads);
2705 	if (n)
2706 		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2707 #endif
2708 	jbd2_remove_jbd_stats_proc_entry();
2709 	jbd2_journal_destroy_caches();
2710 }
2711 
2712 MODULE_LICENSE("GPL");
2713 module_init(journal_init);
2714 module_exit(journal_exit);
2715 
2716