xref: /openbmc/linux/fs/jbd2/journal.c (revision 110e6f26)
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24 
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
46 
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/jbd2.h>
49 
50 #include <asm/uaccess.h>
51 #include <asm/page.h>
52 
53 #ifdef CONFIG_JBD2_DEBUG
54 ushort jbd2_journal_enable_debug __read_mostly;
55 EXPORT_SYMBOL(jbd2_journal_enable_debug);
56 
57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
59 #endif
60 
61 EXPORT_SYMBOL(jbd2_journal_extend);
62 EXPORT_SYMBOL(jbd2_journal_stop);
63 EXPORT_SYMBOL(jbd2_journal_lock_updates);
64 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
65 EXPORT_SYMBOL(jbd2_journal_get_write_access);
66 EXPORT_SYMBOL(jbd2_journal_get_create_access);
67 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
68 EXPORT_SYMBOL(jbd2_journal_set_triggers);
69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
70 EXPORT_SYMBOL(jbd2_journal_forget);
71 #if 0
72 EXPORT_SYMBOL(journal_sync_buffer);
73 #endif
74 EXPORT_SYMBOL(jbd2_journal_flush);
75 EXPORT_SYMBOL(jbd2_journal_revoke);
76 
77 EXPORT_SYMBOL(jbd2_journal_init_dev);
78 EXPORT_SYMBOL(jbd2_journal_init_inode);
79 EXPORT_SYMBOL(jbd2_journal_check_used_features);
80 EXPORT_SYMBOL(jbd2_journal_check_available_features);
81 EXPORT_SYMBOL(jbd2_journal_set_features);
82 EXPORT_SYMBOL(jbd2_journal_load);
83 EXPORT_SYMBOL(jbd2_journal_destroy);
84 EXPORT_SYMBOL(jbd2_journal_abort);
85 EXPORT_SYMBOL(jbd2_journal_errno);
86 EXPORT_SYMBOL(jbd2_journal_ack_err);
87 EXPORT_SYMBOL(jbd2_journal_clear_err);
88 EXPORT_SYMBOL(jbd2_log_wait_commit);
89 EXPORT_SYMBOL(jbd2_log_start_commit);
90 EXPORT_SYMBOL(jbd2_journal_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
92 EXPORT_SYMBOL(jbd2_journal_wipe);
93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
94 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
96 EXPORT_SYMBOL(jbd2_journal_force_commit);
97 EXPORT_SYMBOL(jbd2_journal_file_inode);
98 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
99 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
100 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
101 EXPORT_SYMBOL(jbd2_inode_cache);
102 
103 static void __journal_abort_soft (journal_t *journal, int errno);
104 static int jbd2_journal_create_slab(size_t slab_size);
105 
106 #ifdef CONFIG_JBD2_DEBUG
107 void __jbd2_debug(int level, const char *file, const char *func,
108 		  unsigned int line, const char *fmt, ...)
109 {
110 	struct va_format vaf;
111 	va_list args;
112 
113 	if (level > jbd2_journal_enable_debug)
114 		return;
115 	va_start(args, fmt);
116 	vaf.fmt = fmt;
117 	vaf.va = &args;
118 	printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
119 	va_end(args);
120 }
121 EXPORT_SYMBOL(__jbd2_debug);
122 #endif
123 
124 /* Checksumming functions */
125 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
126 {
127 	if (!jbd2_journal_has_csum_v2or3_feature(j))
128 		return 1;
129 
130 	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
131 }
132 
133 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
134 {
135 	__u32 csum;
136 	__be32 old_csum;
137 
138 	old_csum = sb->s_checksum;
139 	sb->s_checksum = 0;
140 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
141 	sb->s_checksum = old_csum;
142 
143 	return cpu_to_be32(csum);
144 }
145 
146 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
147 {
148 	if (!jbd2_journal_has_csum_v2or3(j))
149 		return 1;
150 
151 	return sb->s_checksum == jbd2_superblock_csum(j, sb);
152 }
153 
154 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
155 {
156 	if (!jbd2_journal_has_csum_v2or3(j))
157 		return;
158 
159 	sb->s_checksum = jbd2_superblock_csum(j, sb);
160 }
161 
162 /*
163  * Helper function used to manage commit timeouts
164  */
165 
166 static void commit_timeout(unsigned long __data)
167 {
168 	struct task_struct * p = (struct task_struct *) __data;
169 
170 	wake_up_process(p);
171 }
172 
173 /*
174  * kjournald2: The main thread function used to manage a logging device
175  * journal.
176  *
177  * This kernel thread is responsible for two things:
178  *
179  * 1) COMMIT:  Every so often we need to commit the current state of the
180  *    filesystem to disk.  The journal thread is responsible for writing
181  *    all of the metadata buffers to disk.
182  *
183  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
184  *    of the data in that part of the log has been rewritten elsewhere on
185  *    the disk.  Flushing these old buffers to reclaim space in the log is
186  *    known as checkpointing, and this thread is responsible for that job.
187  */
188 
189 static int kjournald2(void *arg)
190 {
191 	journal_t *journal = arg;
192 	transaction_t *transaction;
193 
194 	/*
195 	 * Set up an interval timer which can be used to trigger a commit wakeup
196 	 * after the commit interval expires
197 	 */
198 	setup_timer(&journal->j_commit_timer, commit_timeout,
199 			(unsigned long)current);
200 
201 	set_freezable();
202 
203 	/* Record that the journal thread is running */
204 	journal->j_task = current;
205 	wake_up(&journal->j_wait_done_commit);
206 
207 	/*
208 	 * And now, wait forever for commit wakeup events.
209 	 */
210 	write_lock(&journal->j_state_lock);
211 
212 loop:
213 	if (journal->j_flags & JBD2_UNMOUNT)
214 		goto end_loop;
215 
216 	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
217 		journal->j_commit_sequence, journal->j_commit_request);
218 
219 	if (journal->j_commit_sequence != journal->j_commit_request) {
220 		jbd_debug(1, "OK, requests differ\n");
221 		write_unlock(&journal->j_state_lock);
222 		del_timer_sync(&journal->j_commit_timer);
223 		jbd2_journal_commit_transaction(journal);
224 		write_lock(&journal->j_state_lock);
225 		goto loop;
226 	}
227 
228 	wake_up(&journal->j_wait_done_commit);
229 	if (freezing(current)) {
230 		/*
231 		 * The simpler the better. Flushing journal isn't a
232 		 * good idea, because that depends on threads that may
233 		 * be already stopped.
234 		 */
235 		jbd_debug(1, "Now suspending kjournald2\n");
236 		write_unlock(&journal->j_state_lock);
237 		try_to_freeze();
238 		write_lock(&journal->j_state_lock);
239 	} else {
240 		/*
241 		 * We assume on resume that commits are already there,
242 		 * so we don't sleep
243 		 */
244 		DEFINE_WAIT(wait);
245 		int should_sleep = 1;
246 
247 		prepare_to_wait(&journal->j_wait_commit, &wait,
248 				TASK_INTERRUPTIBLE);
249 		if (journal->j_commit_sequence != journal->j_commit_request)
250 			should_sleep = 0;
251 		transaction = journal->j_running_transaction;
252 		if (transaction && time_after_eq(jiffies,
253 						transaction->t_expires))
254 			should_sleep = 0;
255 		if (journal->j_flags & JBD2_UNMOUNT)
256 			should_sleep = 0;
257 		if (should_sleep) {
258 			write_unlock(&journal->j_state_lock);
259 			schedule();
260 			write_lock(&journal->j_state_lock);
261 		}
262 		finish_wait(&journal->j_wait_commit, &wait);
263 	}
264 
265 	jbd_debug(1, "kjournald2 wakes\n");
266 
267 	/*
268 	 * Were we woken up by a commit wakeup event?
269 	 */
270 	transaction = journal->j_running_transaction;
271 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
272 		journal->j_commit_request = transaction->t_tid;
273 		jbd_debug(1, "woke because of timeout\n");
274 	}
275 	goto loop;
276 
277 end_loop:
278 	write_unlock(&journal->j_state_lock);
279 	del_timer_sync(&journal->j_commit_timer);
280 	journal->j_task = NULL;
281 	wake_up(&journal->j_wait_done_commit);
282 	jbd_debug(1, "Journal thread exiting.\n");
283 	return 0;
284 }
285 
286 static int jbd2_journal_start_thread(journal_t *journal)
287 {
288 	struct task_struct *t;
289 
290 	t = kthread_run(kjournald2, journal, "jbd2/%s",
291 			journal->j_devname);
292 	if (IS_ERR(t))
293 		return PTR_ERR(t);
294 
295 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
296 	return 0;
297 }
298 
299 static void journal_kill_thread(journal_t *journal)
300 {
301 	write_lock(&journal->j_state_lock);
302 	journal->j_flags |= JBD2_UNMOUNT;
303 
304 	while (journal->j_task) {
305 		write_unlock(&journal->j_state_lock);
306 		wake_up(&journal->j_wait_commit);
307 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
308 		write_lock(&journal->j_state_lock);
309 	}
310 	write_unlock(&journal->j_state_lock);
311 }
312 
313 /*
314  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
315  *
316  * Writes a metadata buffer to a given disk block.  The actual IO is not
317  * performed but a new buffer_head is constructed which labels the data
318  * to be written with the correct destination disk block.
319  *
320  * Any magic-number escaping which needs to be done will cause a
321  * copy-out here.  If the buffer happens to start with the
322  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
323  * magic number is only written to the log for descripter blocks.  In
324  * this case, we copy the data and replace the first word with 0, and we
325  * return a result code which indicates that this buffer needs to be
326  * marked as an escaped buffer in the corresponding log descriptor
327  * block.  The missing word can then be restored when the block is read
328  * during recovery.
329  *
330  * If the source buffer has already been modified by a new transaction
331  * since we took the last commit snapshot, we use the frozen copy of
332  * that data for IO. If we end up using the existing buffer_head's data
333  * for the write, then we have to make sure nobody modifies it while the
334  * IO is in progress. do_get_write_access() handles this.
335  *
336  * The function returns a pointer to the buffer_head to be used for IO.
337  *
338  *
339  * Return value:
340  *  <0: Error
341  * >=0: Finished OK
342  *
343  * On success:
344  * Bit 0 set == escape performed on the data
345  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
346  */
347 
348 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
349 				  struct journal_head  *jh_in,
350 				  struct buffer_head **bh_out,
351 				  sector_t blocknr)
352 {
353 	int need_copy_out = 0;
354 	int done_copy_out = 0;
355 	int do_escape = 0;
356 	char *mapped_data;
357 	struct buffer_head *new_bh;
358 	struct page *new_page;
359 	unsigned int new_offset;
360 	struct buffer_head *bh_in = jh2bh(jh_in);
361 	journal_t *journal = transaction->t_journal;
362 
363 	/*
364 	 * The buffer really shouldn't be locked: only the current committing
365 	 * transaction is allowed to write it, so nobody else is allowed
366 	 * to do any IO.
367 	 *
368 	 * akpm: except if we're journalling data, and write() output is
369 	 * also part of a shared mapping, and another thread has
370 	 * decided to launch a writepage() against this buffer.
371 	 */
372 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
373 
374 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
375 
376 	/* keep subsequent assertions sane */
377 	atomic_set(&new_bh->b_count, 1);
378 
379 	jbd_lock_bh_state(bh_in);
380 repeat:
381 	/*
382 	 * If a new transaction has already done a buffer copy-out, then
383 	 * we use that version of the data for the commit.
384 	 */
385 	if (jh_in->b_frozen_data) {
386 		done_copy_out = 1;
387 		new_page = virt_to_page(jh_in->b_frozen_data);
388 		new_offset = offset_in_page(jh_in->b_frozen_data);
389 	} else {
390 		new_page = jh2bh(jh_in)->b_page;
391 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
392 	}
393 
394 	mapped_data = kmap_atomic(new_page);
395 	/*
396 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
397 	 * before checking for escaping, as the trigger may modify the magic
398 	 * offset.  If a copy-out happens afterwards, it will have the correct
399 	 * data in the buffer.
400 	 */
401 	if (!done_copy_out)
402 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
403 					   jh_in->b_triggers);
404 
405 	/*
406 	 * Check for escaping
407 	 */
408 	if (*((__be32 *)(mapped_data + new_offset)) ==
409 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
410 		need_copy_out = 1;
411 		do_escape = 1;
412 	}
413 	kunmap_atomic(mapped_data);
414 
415 	/*
416 	 * Do we need to do a data copy?
417 	 */
418 	if (need_copy_out && !done_copy_out) {
419 		char *tmp;
420 
421 		jbd_unlock_bh_state(bh_in);
422 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
423 		if (!tmp) {
424 			brelse(new_bh);
425 			return -ENOMEM;
426 		}
427 		jbd_lock_bh_state(bh_in);
428 		if (jh_in->b_frozen_data) {
429 			jbd2_free(tmp, bh_in->b_size);
430 			goto repeat;
431 		}
432 
433 		jh_in->b_frozen_data = tmp;
434 		mapped_data = kmap_atomic(new_page);
435 		memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
436 		kunmap_atomic(mapped_data);
437 
438 		new_page = virt_to_page(tmp);
439 		new_offset = offset_in_page(tmp);
440 		done_copy_out = 1;
441 
442 		/*
443 		 * This isn't strictly necessary, as we're using frozen
444 		 * data for the escaping, but it keeps consistency with
445 		 * b_frozen_data usage.
446 		 */
447 		jh_in->b_frozen_triggers = jh_in->b_triggers;
448 	}
449 
450 	/*
451 	 * Did we need to do an escaping?  Now we've done all the
452 	 * copying, we can finally do so.
453 	 */
454 	if (do_escape) {
455 		mapped_data = kmap_atomic(new_page);
456 		*((unsigned int *)(mapped_data + new_offset)) = 0;
457 		kunmap_atomic(mapped_data);
458 	}
459 
460 	set_bh_page(new_bh, new_page, new_offset);
461 	new_bh->b_size = bh_in->b_size;
462 	new_bh->b_bdev = journal->j_dev;
463 	new_bh->b_blocknr = blocknr;
464 	new_bh->b_private = bh_in;
465 	set_buffer_mapped(new_bh);
466 	set_buffer_dirty(new_bh);
467 
468 	*bh_out = new_bh;
469 
470 	/*
471 	 * The to-be-written buffer needs to get moved to the io queue,
472 	 * and the original buffer whose contents we are shadowing or
473 	 * copying is moved to the transaction's shadow queue.
474 	 */
475 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
476 	spin_lock(&journal->j_list_lock);
477 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
478 	spin_unlock(&journal->j_list_lock);
479 	set_buffer_shadow(bh_in);
480 	jbd_unlock_bh_state(bh_in);
481 
482 	return do_escape | (done_copy_out << 1);
483 }
484 
485 /*
486  * Allocation code for the journal file.  Manage the space left in the
487  * journal, so that we can begin checkpointing when appropriate.
488  */
489 
490 /*
491  * Called with j_state_lock locked for writing.
492  * Returns true if a transaction commit was started.
493  */
494 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
495 {
496 	/* Return if the txn has already requested to be committed */
497 	if (journal->j_commit_request == target)
498 		return 0;
499 
500 	/*
501 	 * The only transaction we can possibly wait upon is the
502 	 * currently running transaction (if it exists).  Otherwise,
503 	 * the target tid must be an old one.
504 	 */
505 	if (journal->j_running_transaction &&
506 	    journal->j_running_transaction->t_tid == target) {
507 		/*
508 		 * We want a new commit: OK, mark the request and wakeup the
509 		 * commit thread.  We do _not_ do the commit ourselves.
510 		 */
511 
512 		journal->j_commit_request = target;
513 		jbd_debug(1, "JBD2: requesting commit %d/%d\n",
514 			  journal->j_commit_request,
515 			  journal->j_commit_sequence);
516 		journal->j_running_transaction->t_requested = jiffies;
517 		wake_up(&journal->j_wait_commit);
518 		return 1;
519 	} else if (!tid_geq(journal->j_commit_request, target))
520 		/* This should never happen, but if it does, preserve
521 		   the evidence before kjournald goes into a loop and
522 		   increments j_commit_sequence beyond all recognition. */
523 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
524 			  journal->j_commit_request,
525 			  journal->j_commit_sequence,
526 			  target, journal->j_running_transaction ?
527 			  journal->j_running_transaction->t_tid : 0);
528 	return 0;
529 }
530 
531 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
532 {
533 	int ret;
534 
535 	write_lock(&journal->j_state_lock);
536 	ret = __jbd2_log_start_commit(journal, tid);
537 	write_unlock(&journal->j_state_lock);
538 	return ret;
539 }
540 
541 /*
542  * Force and wait any uncommitted transactions.  We can only force the running
543  * transaction if we don't have an active handle, otherwise, we will deadlock.
544  * Returns: <0 in case of error,
545  *           0 if nothing to commit,
546  *           1 if transaction was successfully committed.
547  */
548 static int __jbd2_journal_force_commit(journal_t *journal)
549 {
550 	transaction_t *transaction = NULL;
551 	tid_t tid;
552 	int need_to_start = 0, ret = 0;
553 
554 	read_lock(&journal->j_state_lock);
555 	if (journal->j_running_transaction && !current->journal_info) {
556 		transaction = journal->j_running_transaction;
557 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
558 			need_to_start = 1;
559 	} else if (journal->j_committing_transaction)
560 		transaction = journal->j_committing_transaction;
561 
562 	if (!transaction) {
563 		/* Nothing to commit */
564 		read_unlock(&journal->j_state_lock);
565 		return 0;
566 	}
567 	tid = transaction->t_tid;
568 	read_unlock(&journal->j_state_lock);
569 	if (need_to_start)
570 		jbd2_log_start_commit(journal, tid);
571 	ret = jbd2_log_wait_commit(journal, tid);
572 	if (!ret)
573 		ret = 1;
574 
575 	return ret;
576 }
577 
578 /**
579  * Force and wait upon a commit if the calling process is not within
580  * transaction.  This is used for forcing out undo-protected data which contains
581  * bitmaps, when the fs is running out of space.
582  *
583  * @journal: journal to force
584  * Returns true if progress was made.
585  */
586 int jbd2_journal_force_commit_nested(journal_t *journal)
587 {
588 	int ret;
589 
590 	ret = __jbd2_journal_force_commit(journal);
591 	return ret > 0;
592 }
593 
594 /**
595  * int journal_force_commit() - force any uncommitted transactions
596  * @journal: journal to force
597  *
598  * Caller want unconditional commit. We can only force the running transaction
599  * if we don't have an active handle, otherwise, we will deadlock.
600  */
601 int jbd2_journal_force_commit(journal_t *journal)
602 {
603 	int ret;
604 
605 	J_ASSERT(!current->journal_info);
606 	ret = __jbd2_journal_force_commit(journal);
607 	if (ret > 0)
608 		ret = 0;
609 	return ret;
610 }
611 
612 /*
613  * Start a commit of the current running transaction (if any).  Returns true
614  * if a transaction is going to be committed (or is currently already
615  * committing), and fills its tid in at *ptid
616  */
617 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
618 {
619 	int ret = 0;
620 
621 	write_lock(&journal->j_state_lock);
622 	if (journal->j_running_transaction) {
623 		tid_t tid = journal->j_running_transaction->t_tid;
624 
625 		__jbd2_log_start_commit(journal, tid);
626 		/* There's a running transaction and we've just made sure
627 		 * it's commit has been scheduled. */
628 		if (ptid)
629 			*ptid = tid;
630 		ret = 1;
631 	} else if (journal->j_committing_transaction) {
632 		/*
633 		 * If commit has been started, then we have to wait for
634 		 * completion of that transaction.
635 		 */
636 		if (ptid)
637 			*ptid = journal->j_committing_transaction->t_tid;
638 		ret = 1;
639 	}
640 	write_unlock(&journal->j_state_lock);
641 	return ret;
642 }
643 
644 /*
645  * Return 1 if a given transaction has not yet sent barrier request
646  * connected with a transaction commit. If 0 is returned, transaction
647  * may or may not have sent the barrier. Used to avoid sending barrier
648  * twice in common cases.
649  */
650 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
651 {
652 	int ret = 0;
653 	transaction_t *commit_trans;
654 
655 	if (!(journal->j_flags & JBD2_BARRIER))
656 		return 0;
657 	read_lock(&journal->j_state_lock);
658 	/* Transaction already committed? */
659 	if (tid_geq(journal->j_commit_sequence, tid))
660 		goto out;
661 	commit_trans = journal->j_committing_transaction;
662 	if (!commit_trans || commit_trans->t_tid != tid) {
663 		ret = 1;
664 		goto out;
665 	}
666 	/*
667 	 * Transaction is being committed and we already proceeded to
668 	 * submitting a flush to fs partition?
669 	 */
670 	if (journal->j_fs_dev != journal->j_dev) {
671 		if (!commit_trans->t_need_data_flush ||
672 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
673 			goto out;
674 	} else {
675 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
676 			goto out;
677 	}
678 	ret = 1;
679 out:
680 	read_unlock(&journal->j_state_lock);
681 	return ret;
682 }
683 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
684 
685 /*
686  * Wait for a specified commit to complete.
687  * The caller may not hold the journal lock.
688  */
689 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
690 {
691 	int err = 0;
692 
693 	read_lock(&journal->j_state_lock);
694 #ifdef CONFIG_JBD2_DEBUG
695 	if (!tid_geq(journal->j_commit_request, tid)) {
696 		printk(KERN_ERR
697 		       "%s: error: j_commit_request=%d, tid=%d\n",
698 		       __func__, journal->j_commit_request, tid);
699 	}
700 #endif
701 	while (tid_gt(tid, journal->j_commit_sequence)) {
702 		jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
703 				  tid, journal->j_commit_sequence);
704 		read_unlock(&journal->j_state_lock);
705 		wake_up(&journal->j_wait_commit);
706 		wait_event(journal->j_wait_done_commit,
707 				!tid_gt(tid, journal->j_commit_sequence));
708 		read_lock(&journal->j_state_lock);
709 	}
710 	read_unlock(&journal->j_state_lock);
711 
712 	if (unlikely(is_journal_aborted(journal)))
713 		err = -EIO;
714 	return err;
715 }
716 
717 /*
718  * When this function returns the transaction corresponding to tid
719  * will be completed.  If the transaction has currently running, start
720  * committing that transaction before waiting for it to complete.  If
721  * the transaction id is stale, it is by definition already completed,
722  * so just return SUCCESS.
723  */
724 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
725 {
726 	int	need_to_wait = 1;
727 
728 	read_lock(&journal->j_state_lock);
729 	if (journal->j_running_transaction &&
730 	    journal->j_running_transaction->t_tid == tid) {
731 		if (journal->j_commit_request != tid) {
732 			/* transaction not yet started, so request it */
733 			read_unlock(&journal->j_state_lock);
734 			jbd2_log_start_commit(journal, tid);
735 			goto wait_commit;
736 		}
737 	} else if (!(journal->j_committing_transaction &&
738 		     journal->j_committing_transaction->t_tid == tid))
739 		need_to_wait = 0;
740 	read_unlock(&journal->j_state_lock);
741 	if (!need_to_wait)
742 		return 0;
743 wait_commit:
744 	return jbd2_log_wait_commit(journal, tid);
745 }
746 EXPORT_SYMBOL(jbd2_complete_transaction);
747 
748 /*
749  * Log buffer allocation routines:
750  */
751 
752 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
753 {
754 	unsigned long blocknr;
755 
756 	write_lock(&journal->j_state_lock);
757 	J_ASSERT(journal->j_free > 1);
758 
759 	blocknr = journal->j_head;
760 	journal->j_head++;
761 	journal->j_free--;
762 	if (journal->j_head == journal->j_last)
763 		journal->j_head = journal->j_first;
764 	write_unlock(&journal->j_state_lock);
765 	return jbd2_journal_bmap(journal, blocknr, retp);
766 }
767 
768 /*
769  * Conversion of logical to physical block numbers for the journal
770  *
771  * On external journals the journal blocks are identity-mapped, so
772  * this is a no-op.  If needed, we can use j_blk_offset - everything is
773  * ready.
774  */
775 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
776 		 unsigned long long *retp)
777 {
778 	int err = 0;
779 	unsigned long long ret;
780 
781 	if (journal->j_inode) {
782 		ret = bmap(journal->j_inode, blocknr);
783 		if (ret)
784 			*retp = ret;
785 		else {
786 			printk(KERN_ALERT "%s: journal block not found "
787 					"at offset %lu on %s\n",
788 			       __func__, blocknr, journal->j_devname);
789 			err = -EIO;
790 			__journal_abort_soft(journal, err);
791 		}
792 	} else {
793 		*retp = blocknr; /* +journal->j_blk_offset */
794 	}
795 	return err;
796 }
797 
798 /*
799  * We play buffer_head aliasing tricks to write data/metadata blocks to
800  * the journal without copying their contents, but for journal
801  * descriptor blocks we do need to generate bona fide buffers.
802  *
803  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
804  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
805  * But we don't bother doing that, so there will be coherency problems with
806  * mmaps of blockdevs which hold live JBD-controlled filesystems.
807  */
808 struct buffer_head *
809 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
810 {
811 	journal_t *journal = transaction->t_journal;
812 	struct buffer_head *bh;
813 	unsigned long long blocknr;
814 	journal_header_t *header;
815 	int err;
816 
817 	err = jbd2_journal_next_log_block(journal, &blocknr);
818 
819 	if (err)
820 		return NULL;
821 
822 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
823 	if (!bh)
824 		return NULL;
825 	lock_buffer(bh);
826 	memset(bh->b_data, 0, journal->j_blocksize);
827 	header = (journal_header_t *)bh->b_data;
828 	header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
829 	header->h_blocktype = cpu_to_be32(type);
830 	header->h_sequence = cpu_to_be32(transaction->t_tid);
831 	set_buffer_uptodate(bh);
832 	unlock_buffer(bh);
833 	BUFFER_TRACE(bh, "return this buffer");
834 	return bh;
835 }
836 
837 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
838 {
839 	struct jbd2_journal_block_tail *tail;
840 	__u32 csum;
841 
842 	if (!jbd2_journal_has_csum_v2or3(j))
843 		return;
844 
845 	tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
846 			sizeof(struct jbd2_journal_block_tail));
847 	tail->t_checksum = 0;
848 	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
849 	tail->t_checksum = cpu_to_be32(csum);
850 }
851 
852 /*
853  * Return tid of the oldest transaction in the journal and block in the journal
854  * where the transaction starts.
855  *
856  * If the journal is now empty, return which will be the next transaction ID
857  * we will write and where will that transaction start.
858  *
859  * The return value is 0 if journal tail cannot be pushed any further, 1 if
860  * it can.
861  */
862 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
863 			      unsigned long *block)
864 {
865 	transaction_t *transaction;
866 	int ret;
867 
868 	read_lock(&journal->j_state_lock);
869 	spin_lock(&journal->j_list_lock);
870 	transaction = journal->j_checkpoint_transactions;
871 	if (transaction) {
872 		*tid = transaction->t_tid;
873 		*block = transaction->t_log_start;
874 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
875 		*tid = transaction->t_tid;
876 		*block = transaction->t_log_start;
877 	} else if ((transaction = journal->j_running_transaction) != NULL) {
878 		*tid = transaction->t_tid;
879 		*block = journal->j_head;
880 	} else {
881 		*tid = journal->j_transaction_sequence;
882 		*block = journal->j_head;
883 	}
884 	ret = tid_gt(*tid, journal->j_tail_sequence);
885 	spin_unlock(&journal->j_list_lock);
886 	read_unlock(&journal->j_state_lock);
887 
888 	return ret;
889 }
890 
891 /*
892  * Update information in journal structure and in on disk journal superblock
893  * about log tail. This function does not check whether information passed in
894  * really pushes log tail further. It's responsibility of the caller to make
895  * sure provided log tail information is valid (e.g. by holding
896  * j_checkpoint_mutex all the time between computing log tail and calling this
897  * function as is the case with jbd2_cleanup_journal_tail()).
898  *
899  * Requires j_checkpoint_mutex
900  */
901 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
902 {
903 	unsigned long freed;
904 	int ret;
905 
906 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
907 
908 	/*
909 	 * We cannot afford for write to remain in drive's caches since as
910 	 * soon as we update j_tail, next transaction can start reusing journal
911 	 * space and if we lose sb update during power failure we'd replay
912 	 * old transaction with possibly newly overwritten data.
913 	 */
914 	ret = jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
915 	if (ret)
916 		goto out;
917 
918 	write_lock(&journal->j_state_lock);
919 	freed = block - journal->j_tail;
920 	if (block < journal->j_tail)
921 		freed += journal->j_last - journal->j_first;
922 
923 	trace_jbd2_update_log_tail(journal, tid, block, freed);
924 	jbd_debug(1,
925 		  "Cleaning journal tail from %d to %d (offset %lu), "
926 		  "freeing %lu\n",
927 		  journal->j_tail_sequence, tid, block, freed);
928 
929 	journal->j_free += freed;
930 	journal->j_tail_sequence = tid;
931 	journal->j_tail = block;
932 	write_unlock(&journal->j_state_lock);
933 
934 out:
935 	return ret;
936 }
937 
938 /*
939  * This is a variaon of __jbd2_update_log_tail which checks for validity of
940  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
941  * with other threads updating log tail.
942  */
943 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
944 {
945 	mutex_lock(&journal->j_checkpoint_mutex);
946 	if (tid_gt(tid, journal->j_tail_sequence))
947 		__jbd2_update_log_tail(journal, tid, block);
948 	mutex_unlock(&journal->j_checkpoint_mutex);
949 }
950 
951 struct jbd2_stats_proc_session {
952 	journal_t *journal;
953 	struct transaction_stats_s *stats;
954 	int start;
955 	int max;
956 };
957 
958 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
959 {
960 	return *pos ? NULL : SEQ_START_TOKEN;
961 }
962 
963 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
964 {
965 	return NULL;
966 }
967 
968 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
969 {
970 	struct jbd2_stats_proc_session *s = seq->private;
971 
972 	if (v != SEQ_START_TOKEN)
973 		return 0;
974 	seq_printf(seq, "%lu transactions (%lu requested), "
975 		   "each up to %u blocks\n",
976 		   s->stats->ts_tid, s->stats->ts_requested,
977 		   s->journal->j_max_transaction_buffers);
978 	if (s->stats->ts_tid == 0)
979 		return 0;
980 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
981 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
982 	seq_printf(seq, "  %ums request delay\n",
983 	    (s->stats->ts_requested == 0) ? 0 :
984 	    jiffies_to_msecs(s->stats->run.rs_request_delay /
985 			     s->stats->ts_requested));
986 	seq_printf(seq, "  %ums running transaction\n",
987 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
988 	seq_printf(seq, "  %ums transaction was being locked\n",
989 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
990 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
991 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
992 	seq_printf(seq, "  %ums logging transaction\n",
993 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
994 	seq_printf(seq, "  %lluus average transaction commit time\n",
995 		   div_u64(s->journal->j_average_commit_time, 1000));
996 	seq_printf(seq, "  %lu handles per transaction\n",
997 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
998 	seq_printf(seq, "  %lu blocks per transaction\n",
999 	    s->stats->run.rs_blocks / s->stats->ts_tid);
1000 	seq_printf(seq, "  %lu logged blocks per transaction\n",
1001 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1002 	return 0;
1003 }
1004 
1005 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1006 {
1007 }
1008 
1009 static const struct seq_operations jbd2_seq_info_ops = {
1010 	.start  = jbd2_seq_info_start,
1011 	.next   = jbd2_seq_info_next,
1012 	.stop   = jbd2_seq_info_stop,
1013 	.show   = jbd2_seq_info_show,
1014 };
1015 
1016 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1017 {
1018 	journal_t *journal = PDE_DATA(inode);
1019 	struct jbd2_stats_proc_session *s;
1020 	int rc, size;
1021 
1022 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1023 	if (s == NULL)
1024 		return -ENOMEM;
1025 	size = sizeof(struct transaction_stats_s);
1026 	s->stats = kmalloc(size, GFP_KERNEL);
1027 	if (s->stats == NULL) {
1028 		kfree(s);
1029 		return -ENOMEM;
1030 	}
1031 	spin_lock(&journal->j_history_lock);
1032 	memcpy(s->stats, &journal->j_stats, size);
1033 	s->journal = journal;
1034 	spin_unlock(&journal->j_history_lock);
1035 
1036 	rc = seq_open(file, &jbd2_seq_info_ops);
1037 	if (rc == 0) {
1038 		struct seq_file *m = file->private_data;
1039 		m->private = s;
1040 	} else {
1041 		kfree(s->stats);
1042 		kfree(s);
1043 	}
1044 	return rc;
1045 
1046 }
1047 
1048 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1049 {
1050 	struct seq_file *seq = file->private_data;
1051 	struct jbd2_stats_proc_session *s = seq->private;
1052 	kfree(s->stats);
1053 	kfree(s);
1054 	return seq_release(inode, file);
1055 }
1056 
1057 static const struct file_operations jbd2_seq_info_fops = {
1058 	.owner		= THIS_MODULE,
1059 	.open           = jbd2_seq_info_open,
1060 	.read           = seq_read,
1061 	.llseek         = seq_lseek,
1062 	.release        = jbd2_seq_info_release,
1063 };
1064 
1065 static struct proc_dir_entry *proc_jbd2_stats;
1066 
1067 static void jbd2_stats_proc_init(journal_t *journal)
1068 {
1069 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1070 	if (journal->j_proc_entry) {
1071 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1072 				 &jbd2_seq_info_fops, journal);
1073 	}
1074 }
1075 
1076 static void jbd2_stats_proc_exit(journal_t *journal)
1077 {
1078 	remove_proc_entry("info", journal->j_proc_entry);
1079 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1080 }
1081 
1082 /*
1083  * Management for journal control blocks: functions to create and
1084  * destroy journal_t structures, and to initialise and read existing
1085  * journal blocks from disk.  */
1086 
1087 /* First: create and setup a journal_t object in memory.  We initialise
1088  * very few fields yet: that has to wait until we have created the
1089  * journal structures from from scratch, or loaded them from disk. */
1090 
1091 static journal_t * journal_init_common (void)
1092 {
1093 	journal_t *journal;
1094 	int err;
1095 
1096 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1097 	if (!journal)
1098 		return NULL;
1099 
1100 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1101 	init_waitqueue_head(&journal->j_wait_done_commit);
1102 	init_waitqueue_head(&journal->j_wait_commit);
1103 	init_waitqueue_head(&journal->j_wait_updates);
1104 	init_waitqueue_head(&journal->j_wait_reserved);
1105 	mutex_init(&journal->j_barrier);
1106 	mutex_init(&journal->j_checkpoint_mutex);
1107 	spin_lock_init(&journal->j_revoke_lock);
1108 	spin_lock_init(&journal->j_list_lock);
1109 	rwlock_init(&journal->j_state_lock);
1110 
1111 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1112 	journal->j_min_batch_time = 0;
1113 	journal->j_max_batch_time = 15000; /* 15ms */
1114 	atomic_set(&journal->j_reserved_credits, 0);
1115 
1116 	/* The journal is marked for error until we succeed with recovery! */
1117 	journal->j_flags = JBD2_ABORT;
1118 
1119 	/* Set up a default-sized revoke table for the new mount. */
1120 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1121 	if (err) {
1122 		kfree(journal);
1123 		return NULL;
1124 	}
1125 
1126 	spin_lock_init(&journal->j_history_lock);
1127 
1128 	return journal;
1129 }
1130 
1131 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1132  *
1133  * Create a journal structure assigned some fixed set of disk blocks to
1134  * the journal.  We don't actually touch those disk blocks yet, but we
1135  * need to set up all of the mapping information to tell the journaling
1136  * system where the journal blocks are.
1137  *
1138  */
1139 
1140 /**
1141  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1142  *  @bdev: Block device on which to create the journal
1143  *  @fs_dev: Device which hold journalled filesystem for this journal.
1144  *  @start: Block nr Start of journal.
1145  *  @len:  Length of the journal in blocks.
1146  *  @blocksize: blocksize of journalling device
1147  *
1148  *  Returns: a newly created journal_t *
1149  *
1150  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1151  *  range of blocks on an arbitrary block device.
1152  *
1153  */
1154 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1155 			struct block_device *fs_dev,
1156 			unsigned long long start, int len, int blocksize)
1157 {
1158 	journal_t *journal = journal_init_common();
1159 	struct buffer_head *bh;
1160 	int n;
1161 
1162 	if (!journal)
1163 		return NULL;
1164 
1165 	/* journal descriptor can store up to n blocks -bzzz */
1166 	journal->j_blocksize = blocksize;
1167 	journal->j_dev = bdev;
1168 	journal->j_fs_dev = fs_dev;
1169 	journal->j_blk_offset = start;
1170 	journal->j_maxlen = len;
1171 	bdevname(journal->j_dev, journal->j_devname);
1172 	strreplace(journal->j_devname, '/', '!');
1173 	jbd2_stats_proc_init(journal);
1174 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1175 	journal->j_wbufsize = n;
1176 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1177 	if (!journal->j_wbuf) {
1178 		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1179 			__func__);
1180 		goto out_err;
1181 	}
1182 
1183 	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1184 	if (!bh) {
1185 		printk(KERN_ERR
1186 		       "%s: Cannot get buffer for journal superblock\n",
1187 		       __func__);
1188 		goto out_err;
1189 	}
1190 	journal->j_sb_buffer = bh;
1191 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1192 
1193 	return journal;
1194 out_err:
1195 	kfree(journal->j_wbuf);
1196 	jbd2_stats_proc_exit(journal);
1197 	kfree(journal);
1198 	return NULL;
1199 }
1200 
1201 /**
1202  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1203  *  @inode: An inode to create the journal in
1204  *
1205  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1206  * the journal.  The inode must exist already, must support bmap() and
1207  * must have all data blocks preallocated.
1208  */
1209 journal_t * jbd2_journal_init_inode (struct inode *inode)
1210 {
1211 	struct buffer_head *bh;
1212 	journal_t *journal = journal_init_common();
1213 	char *p;
1214 	int err;
1215 	int n;
1216 	unsigned long long blocknr;
1217 
1218 	if (!journal)
1219 		return NULL;
1220 
1221 	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1222 	journal->j_inode = inode;
1223 	bdevname(journal->j_dev, journal->j_devname);
1224 	p = strreplace(journal->j_devname, '/', '!');
1225 	sprintf(p, "-%lu", journal->j_inode->i_ino);
1226 	jbd_debug(1,
1227 		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1228 		  journal, inode->i_sb->s_id, inode->i_ino,
1229 		  (long long) inode->i_size,
1230 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1231 
1232 	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1233 	journal->j_blocksize = inode->i_sb->s_blocksize;
1234 	jbd2_stats_proc_init(journal);
1235 
1236 	/* journal descriptor can store up to n blocks -bzzz */
1237 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1238 	journal->j_wbufsize = n;
1239 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1240 	if (!journal->j_wbuf) {
1241 		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1242 			__func__);
1243 		goto out_err;
1244 	}
1245 
1246 	err = jbd2_journal_bmap(journal, 0, &blocknr);
1247 	/* If that failed, give up */
1248 	if (err) {
1249 		printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1250 		       __func__);
1251 		goto out_err;
1252 	}
1253 
1254 	bh = getblk_unmovable(journal->j_dev, blocknr, journal->j_blocksize);
1255 	if (!bh) {
1256 		printk(KERN_ERR
1257 		       "%s: Cannot get buffer for journal superblock\n",
1258 		       __func__);
1259 		goto out_err;
1260 	}
1261 	journal->j_sb_buffer = bh;
1262 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1263 
1264 	return journal;
1265 out_err:
1266 	kfree(journal->j_wbuf);
1267 	jbd2_stats_proc_exit(journal);
1268 	kfree(journal);
1269 	return NULL;
1270 }
1271 
1272 /*
1273  * If the journal init or create aborts, we need to mark the journal
1274  * superblock as being NULL to prevent the journal destroy from writing
1275  * back a bogus superblock.
1276  */
1277 static void journal_fail_superblock (journal_t *journal)
1278 {
1279 	struct buffer_head *bh = journal->j_sb_buffer;
1280 	brelse(bh);
1281 	journal->j_sb_buffer = NULL;
1282 }
1283 
1284 /*
1285  * Given a journal_t structure, initialise the various fields for
1286  * startup of a new journaling session.  We use this both when creating
1287  * a journal, and after recovering an old journal to reset it for
1288  * subsequent use.
1289  */
1290 
1291 static int journal_reset(journal_t *journal)
1292 {
1293 	journal_superblock_t *sb = journal->j_superblock;
1294 	unsigned long long first, last;
1295 
1296 	first = be32_to_cpu(sb->s_first);
1297 	last = be32_to_cpu(sb->s_maxlen);
1298 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1299 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1300 		       first, last);
1301 		journal_fail_superblock(journal);
1302 		return -EINVAL;
1303 	}
1304 
1305 	journal->j_first = first;
1306 	journal->j_last = last;
1307 
1308 	journal->j_head = first;
1309 	journal->j_tail = first;
1310 	journal->j_free = last - first;
1311 
1312 	journal->j_tail_sequence = journal->j_transaction_sequence;
1313 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1314 	journal->j_commit_request = journal->j_commit_sequence;
1315 
1316 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1317 
1318 	/*
1319 	 * As a special case, if the on-disk copy is already marked as needing
1320 	 * no recovery (s_start == 0), then we can safely defer the superblock
1321 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1322 	 * attempting a write to a potential-readonly device.
1323 	 */
1324 	if (sb->s_start == 0) {
1325 		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1326 			"(start %ld, seq %d, errno %d)\n",
1327 			journal->j_tail, journal->j_tail_sequence,
1328 			journal->j_errno);
1329 		journal->j_flags |= JBD2_FLUSHED;
1330 	} else {
1331 		/* Lock here to make assertions happy... */
1332 		mutex_lock(&journal->j_checkpoint_mutex);
1333 		/*
1334 		 * Update log tail information. We use WRITE_FUA since new
1335 		 * transaction will start reusing journal space and so we
1336 		 * must make sure information about current log tail is on
1337 		 * disk before that.
1338 		 */
1339 		jbd2_journal_update_sb_log_tail(journal,
1340 						journal->j_tail_sequence,
1341 						journal->j_tail,
1342 						WRITE_FUA);
1343 		mutex_unlock(&journal->j_checkpoint_mutex);
1344 	}
1345 	return jbd2_journal_start_thread(journal);
1346 }
1347 
1348 static int jbd2_write_superblock(journal_t *journal, int write_op)
1349 {
1350 	struct buffer_head *bh = journal->j_sb_buffer;
1351 	journal_superblock_t *sb = journal->j_superblock;
1352 	int ret;
1353 
1354 	trace_jbd2_write_superblock(journal, write_op);
1355 	if (!(journal->j_flags & JBD2_BARRIER))
1356 		write_op &= ~(REQ_FUA | REQ_FLUSH);
1357 	lock_buffer(bh);
1358 	if (buffer_write_io_error(bh)) {
1359 		/*
1360 		 * Oh, dear.  A previous attempt to write the journal
1361 		 * superblock failed.  This could happen because the
1362 		 * USB device was yanked out.  Or it could happen to
1363 		 * be a transient write error and maybe the block will
1364 		 * be remapped.  Nothing we can do but to retry the
1365 		 * write and hope for the best.
1366 		 */
1367 		printk(KERN_ERR "JBD2: previous I/O error detected "
1368 		       "for journal superblock update for %s.\n",
1369 		       journal->j_devname);
1370 		clear_buffer_write_io_error(bh);
1371 		set_buffer_uptodate(bh);
1372 	}
1373 	jbd2_superblock_csum_set(journal, sb);
1374 	get_bh(bh);
1375 	bh->b_end_io = end_buffer_write_sync;
1376 	ret = submit_bh(write_op, bh);
1377 	wait_on_buffer(bh);
1378 	if (buffer_write_io_error(bh)) {
1379 		clear_buffer_write_io_error(bh);
1380 		set_buffer_uptodate(bh);
1381 		ret = -EIO;
1382 	}
1383 	if (ret) {
1384 		printk(KERN_ERR "JBD2: Error %d detected when updating "
1385 		       "journal superblock for %s.\n", ret,
1386 		       journal->j_devname);
1387 		jbd2_journal_abort(journal, ret);
1388 	}
1389 
1390 	return ret;
1391 }
1392 
1393 /**
1394  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1395  * @journal: The journal to update.
1396  * @tail_tid: TID of the new transaction at the tail of the log
1397  * @tail_block: The first block of the transaction at the tail of the log
1398  * @write_op: With which operation should we write the journal sb
1399  *
1400  * Update a journal's superblock information about log tail and write it to
1401  * disk, waiting for the IO to complete.
1402  */
1403 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1404 				     unsigned long tail_block, int write_op)
1405 {
1406 	journal_superblock_t *sb = journal->j_superblock;
1407 	int ret;
1408 
1409 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1410 	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1411 		  tail_block, tail_tid);
1412 
1413 	sb->s_sequence = cpu_to_be32(tail_tid);
1414 	sb->s_start    = cpu_to_be32(tail_block);
1415 
1416 	ret = jbd2_write_superblock(journal, write_op);
1417 	if (ret)
1418 		goto out;
1419 
1420 	/* Log is no longer empty */
1421 	write_lock(&journal->j_state_lock);
1422 	WARN_ON(!sb->s_sequence);
1423 	journal->j_flags &= ~JBD2_FLUSHED;
1424 	write_unlock(&journal->j_state_lock);
1425 
1426 out:
1427 	return ret;
1428 }
1429 
1430 /**
1431  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1432  * @journal: The journal to update.
1433  * @write_op: With which operation should we write the journal sb
1434  *
1435  * Update a journal's dynamic superblock fields to show that journal is empty.
1436  * Write updated superblock to disk waiting for IO to complete.
1437  */
1438 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1439 {
1440 	journal_superblock_t *sb = journal->j_superblock;
1441 
1442 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1443 	read_lock(&journal->j_state_lock);
1444 	/* Is it already empty? */
1445 	if (sb->s_start == 0) {
1446 		read_unlock(&journal->j_state_lock);
1447 		return;
1448 	}
1449 	jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1450 		  journal->j_tail_sequence);
1451 
1452 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1453 	sb->s_start    = cpu_to_be32(0);
1454 	read_unlock(&journal->j_state_lock);
1455 
1456 	jbd2_write_superblock(journal, write_op);
1457 
1458 	/* Log is no longer empty */
1459 	write_lock(&journal->j_state_lock);
1460 	journal->j_flags |= JBD2_FLUSHED;
1461 	write_unlock(&journal->j_state_lock);
1462 }
1463 
1464 
1465 /**
1466  * jbd2_journal_update_sb_errno() - Update error in the journal.
1467  * @journal: The journal to update.
1468  *
1469  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1470  * to complete.
1471  */
1472 void jbd2_journal_update_sb_errno(journal_t *journal)
1473 {
1474 	journal_superblock_t *sb = journal->j_superblock;
1475 
1476 	read_lock(&journal->j_state_lock);
1477 	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1478 		  journal->j_errno);
1479 	sb->s_errno    = cpu_to_be32(journal->j_errno);
1480 	read_unlock(&journal->j_state_lock);
1481 
1482 	jbd2_write_superblock(journal, WRITE_FUA);
1483 }
1484 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1485 
1486 /*
1487  * Read the superblock for a given journal, performing initial
1488  * validation of the format.
1489  */
1490 static int journal_get_superblock(journal_t *journal)
1491 {
1492 	struct buffer_head *bh;
1493 	journal_superblock_t *sb;
1494 	int err = -EIO;
1495 
1496 	bh = journal->j_sb_buffer;
1497 
1498 	J_ASSERT(bh != NULL);
1499 	if (!buffer_uptodate(bh)) {
1500 		ll_rw_block(READ, 1, &bh);
1501 		wait_on_buffer(bh);
1502 		if (!buffer_uptodate(bh)) {
1503 			printk(KERN_ERR
1504 				"JBD2: IO error reading journal superblock\n");
1505 			goto out;
1506 		}
1507 	}
1508 
1509 	if (buffer_verified(bh))
1510 		return 0;
1511 
1512 	sb = journal->j_superblock;
1513 
1514 	err = -EINVAL;
1515 
1516 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1517 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1518 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1519 		goto out;
1520 	}
1521 
1522 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1523 	case JBD2_SUPERBLOCK_V1:
1524 		journal->j_format_version = 1;
1525 		break;
1526 	case JBD2_SUPERBLOCK_V2:
1527 		journal->j_format_version = 2;
1528 		break;
1529 	default:
1530 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1531 		goto out;
1532 	}
1533 
1534 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1535 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1536 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1537 		printk(KERN_WARNING "JBD2: journal file too short\n");
1538 		goto out;
1539 	}
1540 
1541 	if (be32_to_cpu(sb->s_first) == 0 ||
1542 	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1543 		printk(KERN_WARNING
1544 			"JBD2: Invalid start block of journal: %u\n",
1545 			be32_to_cpu(sb->s_first));
1546 		goto out;
1547 	}
1548 
1549 	if (jbd2_has_feature_csum2(journal) &&
1550 	    jbd2_has_feature_csum3(journal)) {
1551 		/* Can't have checksum v2 and v3 at the same time! */
1552 		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1553 		       "at the same time!\n");
1554 		goto out;
1555 	}
1556 
1557 	if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1558 	    jbd2_has_feature_checksum(journal)) {
1559 		/* Can't have checksum v1 and v2 on at the same time! */
1560 		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1561 		       "at the same time!\n");
1562 		goto out;
1563 	}
1564 
1565 	if (!jbd2_verify_csum_type(journal, sb)) {
1566 		printk(KERN_ERR "JBD2: Unknown checksum type\n");
1567 		goto out;
1568 	}
1569 
1570 	/* Load the checksum driver */
1571 	if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1572 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1573 		if (IS_ERR(journal->j_chksum_driver)) {
1574 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1575 			err = PTR_ERR(journal->j_chksum_driver);
1576 			journal->j_chksum_driver = NULL;
1577 			goto out;
1578 		}
1579 	}
1580 
1581 	/* Check superblock checksum */
1582 	if (!jbd2_superblock_csum_verify(journal, sb)) {
1583 		printk(KERN_ERR "JBD2: journal checksum error\n");
1584 		err = -EFSBADCRC;
1585 		goto out;
1586 	}
1587 
1588 	/* Precompute checksum seed for all metadata */
1589 	if (jbd2_journal_has_csum_v2or3(journal))
1590 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1591 						   sizeof(sb->s_uuid));
1592 
1593 	set_buffer_verified(bh);
1594 
1595 	return 0;
1596 
1597 out:
1598 	journal_fail_superblock(journal);
1599 	return err;
1600 }
1601 
1602 /*
1603  * Load the on-disk journal superblock and read the key fields into the
1604  * journal_t.
1605  */
1606 
1607 static int load_superblock(journal_t *journal)
1608 {
1609 	int err;
1610 	journal_superblock_t *sb;
1611 
1612 	err = journal_get_superblock(journal);
1613 	if (err)
1614 		return err;
1615 
1616 	sb = journal->j_superblock;
1617 
1618 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1619 	journal->j_tail = be32_to_cpu(sb->s_start);
1620 	journal->j_first = be32_to_cpu(sb->s_first);
1621 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1622 	journal->j_errno = be32_to_cpu(sb->s_errno);
1623 
1624 	return 0;
1625 }
1626 
1627 
1628 /**
1629  * int jbd2_journal_load() - Read journal from disk.
1630  * @journal: Journal to act on.
1631  *
1632  * Given a journal_t structure which tells us which disk blocks contain
1633  * a journal, read the journal from disk to initialise the in-memory
1634  * structures.
1635  */
1636 int jbd2_journal_load(journal_t *journal)
1637 {
1638 	int err;
1639 	journal_superblock_t *sb;
1640 
1641 	err = load_superblock(journal);
1642 	if (err)
1643 		return err;
1644 
1645 	sb = journal->j_superblock;
1646 	/* If this is a V2 superblock, then we have to check the
1647 	 * features flags on it. */
1648 
1649 	if (journal->j_format_version >= 2) {
1650 		if ((sb->s_feature_ro_compat &
1651 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1652 		    (sb->s_feature_incompat &
1653 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1654 			printk(KERN_WARNING
1655 				"JBD2: Unrecognised features on journal\n");
1656 			return -EINVAL;
1657 		}
1658 	}
1659 
1660 	/*
1661 	 * Create a slab for this blocksize
1662 	 */
1663 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1664 	if (err)
1665 		return err;
1666 
1667 	/* Let the recovery code check whether it needs to recover any
1668 	 * data from the journal. */
1669 	if (jbd2_journal_recover(journal))
1670 		goto recovery_error;
1671 
1672 	if (journal->j_failed_commit) {
1673 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1674 		       "is corrupt.\n", journal->j_failed_commit,
1675 		       journal->j_devname);
1676 		return -EFSCORRUPTED;
1677 	}
1678 
1679 	/* OK, we've finished with the dynamic journal bits:
1680 	 * reinitialise the dynamic contents of the superblock in memory
1681 	 * and reset them on disk. */
1682 	if (journal_reset(journal))
1683 		goto recovery_error;
1684 
1685 	journal->j_flags &= ~JBD2_ABORT;
1686 	journal->j_flags |= JBD2_LOADED;
1687 	return 0;
1688 
1689 recovery_error:
1690 	printk(KERN_WARNING "JBD2: recovery failed\n");
1691 	return -EIO;
1692 }
1693 
1694 /**
1695  * void jbd2_journal_destroy() - Release a journal_t structure.
1696  * @journal: Journal to act on.
1697  *
1698  * Release a journal_t structure once it is no longer in use by the
1699  * journaled object.
1700  * Return <0 if we couldn't clean up the journal.
1701  */
1702 int jbd2_journal_destroy(journal_t *journal)
1703 {
1704 	int err = 0;
1705 
1706 	/* Wait for the commit thread to wake up and die. */
1707 	journal_kill_thread(journal);
1708 
1709 	/* Force a final log commit */
1710 	if (journal->j_running_transaction)
1711 		jbd2_journal_commit_transaction(journal);
1712 
1713 	/* Force any old transactions to disk */
1714 
1715 	/* Totally anal locking here... */
1716 	spin_lock(&journal->j_list_lock);
1717 	while (journal->j_checkpoint_transactions != NULL) {
1718 		spin_unlock(&journal->j_list_lock);
1719 		mutex_lock(&journal->j_checkpoint_mutex);
1720 		err = jbd2_log_do_checkpoint(journal);
1721 		mutex_unlock(&journal->j_checkpoint_mutex);
1722 		/*
1723 		 * If checkpointing failed, just free the buffers to avoid
1724 		 * looping forever
1725 		 */
1726 		if (err) {
1727 			jbd2_journal_destroy_checkpoint(journal);
1728 			spin_lock(&journal->j_list_lock);
1729 			break;
1730 		}
1731 		spin_lock(&journal->j_list_lock);
1732 	}
1733 
1734 	J_ASSERT(journal->j_running_transaction == NULL);
1735 	J_ASSERT(journal->j_committing_transaction == NULL);
1736 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1737 	spin_unlock(&journal->j_list_lock);
1738 
1739 	if (journal->j_sb_buffer) {
1740 		if (!is_journal_aborted(journal)) {
1741 			mutex_lock(&journal->j_checkpoint_mutex);
1742 
1743 			write_lock(&journal->j_state_lock);
1744 			journal->j_tail_sequence =
1745 				++journal->j_transaction_sequence;
1746 			write_unlock(&journal->j_state_lock);
1747 
1748 			jbd2_mark_journal_empty(journal, WRITE_FLUSH_FUA);
1749 			mutex_unlock(&journal->j_checkpoint_mutex);
1750 		} else
1751 			err = -EIO;
1752 		brelse(journal->j_sb_buffer);
1753 	}
1754 
1755 	if (journal->j_proc_entry)
1756 		jbd2_stats_proc_exit(journal);
1757 	iput(journal->j_inode);
1758 	if (journal->j_revoke)
1759 		jbd2_journal_destroy_revoke(journal);
1760 	if (journal->j_chksum_driver)
1761 		crypto_free_shash(journal->j_chksum_driver);
1762 	kfree(journal->j_wbuf);
1763 	kfree(journal);
1764 
1765 	return err;
1766 }
1767 
1768 
1769 /**
1770  *int jbd2_journal_check_used_features () - Check if features specified are used.
1771  * @journal: Journal to check.
1772  * @compat: bitmask of compatible features
1773  * @ro: bitmask of features that force read-only mount
1774  * @incompat: bitmask of incompatible features
1775  *
1776  * Check whether the journal uses all of a given set of
1777  * features.  Return true (non-zero) if it does.
1778  **/
1779 
1780 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1781 				 unsigned long ro, unsigned long incompat)
1782 {
1783 	journal_superblock_t *sb;
1784 
1785 	if (!compat && !ro && !incompat)
1786 		return 1;
1787 	/* Load journal superblock if it is not loaded yet. */
1788 	if (journal->j_format_version == 0 &&
1789 	    journal_get_superblock(journal) != 0)
1790 		return 0;
1791 	if (journal->j_format_version == 1)
1792 		return 0;
1793 
1794 	sb = journal->j_superblock;
1795 
1796 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1797 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1798 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1799 		return 1;
1800 
1801 	return 0;
1802 }
1803 
1804 /**
1805  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1806  * @journal: Journal to check.
1807  * @compat: bitmask of compatible features
1808  * @ro: bitmask of features that force read-only mount
1809  * @incompat: bitmask of incompatible features
1810  *
1811  * Check whether the journaling code supports the use of
1812  * all of a given set of features on this journal.  Return true
1813  * (non-zero) if it can. */
1814 
1815 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1816 				      unsigned long ro, unsigned long incompat)
1817 {
1818 	if (!compat && !ro && !incompat)
1819 		return 1;
1820 
1821 	/* We can support any known requested features iff the
1822 	 * superblock is in version 2.  Otherwise we fail to support any
1823 	 * extended sb features. */
1824 
1825 	if (journal->j_format_version != 2)
1826 		return 0;
1827 
1828 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1829 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1830 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1831 		return 1;
1832 
1833 	return 0;
1834 }
1835 
1836 /**
1837  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1838  * @journal: Journal to act on.
1839  * @compat: bitmask of compatible features
1840  * @ro: bitmask of features that force read-only mount
1841  * @incompat: bitmask of incompatible features
1842  *
1843  * Mark a given journal feature as present on the
1844  * superblock.  Returns true if the requested features could be set.
1845  *
1846  */
1847 
1848 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1849 			  unsigned long ro, unsigned long incompat)
1850 {
1851 #define INCOMPAT_FEATURE_ON(f) \
1852 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1853 #define COMPAT_FEATURE_ON(f) \
1854 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1855 	journal_superblock_t *sb;
1856 
1857 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1858 		return 1;
1859 
1860 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1861 		return 0;
1862 
1863 	/* If enabling v2 checksums, turn on v3 instead */
1864 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1865 		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1866 		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1867 	}
1868 
1869 	/* Asking for checksumming v3 and v1?  Only give them v3. */
1870 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1871 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1872 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1873 
1874 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1875 		  compat, ro, incompat);
1876 
1877 	sb = journal->j_superblock;
1878 
1879 	/* If enabling v3 checksums, update superblock */
1880 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1881 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1882 		sb->s_feature_compat &=
1883 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1884 
1885 		/* Load the checksum driver */
1886 		if (journal->j_chksum_driver == NULL) {
1887 			journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1888 								      0, 0);
1889 			if (IS_ERR(journal->j_chksum_driver)) {
1890 				printk(KERN_ERR "JBD2: Cannot load crc32c "
1891 				       "driver.\n");
1892 				journal->j_chksum_driver = NULL;
1893 				return 0;
1894 			}
1895 
1896 			/* Precompute checksum seed for all metadata */
1897 			journal->j_csum_seed = jbd2_chksum(journal, ~0,
1898 							   sb->s_uuid,
1899 							   sizeof(sb->s_uuid));
1900 		}
1901 	}
1902 
1903 	/* If enabling v1 checksums, downgrade superblock */
1904 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1905 		sb->s_feature_incompat &=
1906 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1907 				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
1908 
1909 	sb->s_feature_compat    |= cpu_to_be32(compat);
1910 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1911 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1912 
1913 	return 1;
1914 #undef COMPAT_FEATURE_ON
1915 #undef INCOMPAT_FEATURE_ON
1916 }
1917 
1918 /*
1919  * jbd2_journal_clear_features () - Clear a given journal feature in the
1920  * 				    superblock
1921  * @journal: Journal to act on.
1922  * @compat: bitmask of compatible features
1923  * @ro: bitmask of features that force read-only mount
1924  * @incompat: bitmask of incompatible features
1925  *
1926  * Clear a given journal feature as present on the
1927  * superblock.
1928  */
1929 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1930 				unsigned long ro, unsigned long incompat)
1931 {
1932 	journal_superblock_t *sb;
1933 
1934 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1935 		  compat, ro, incompat);
1936 
1937 	sb = journal->j_superblock;
1938 
1939 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1940 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1941 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1942 }
1943 EXPORT_SYMBOL(jbd2_journal_clear_features);
1944 
1945 /**
1946  * int jbd2_journal_flush () - Flush journal
1947  * @journal: Journal to act on.
1948  *
1949  * Flush all data for a given journal to disk and empty the journal.
1950  * Filesystems can use this when remounting readonly to ensure that
1951  * recovery does not need to happen on remount.
1952  */
1953 
1954 int jbd2_journal_flush(journal_t *journal)
1955 {
1956 	int err = 0;
1957 	transaction_t *transaction = NULL;
1958 
1959 	write_lock(&journal->j_state_lock);
1960 
1961 	/* Force everything buffered to the log... */
1962 	if (journal->j_running_transaction) {
1963 		transaction = journal->j_running_transaction;
1964 		__jbd2_log_start_commit(journal, transaction->t_tid);
1965 	} else if (journal->j_committing_transaction)
1966 		transaction = journal->j_committing_transaction;
1967 
1968 	/* Wait for the log commit to complete... */
1969 	if (transaction) {
1970 		tid_t tid = transaction->t_tid;
1971 
1972 		write_unlock(&journal->j_state_lock);
1973 		jbd2_log_wait_commit(journal, tid);
1974 	} else {
1975 		write_unlock(&journal->j_state_lock);
1976 	}
1977 
1978 	/* ...and flush everything in the log out to disk. */
1979 	spin_lock(&journal->j_list_lock);
1980 	while (!err && journal->j_checkpoint_transactions != NULL) {
1981 		spin_unlock(&journal->j_list_lock);
1982 		mutex_lock(&journal->j_checkpoint_mutex);
1983 		err = jbd2_log_do_checkpoint(journal);
1984 		mutex_unlock(&journal->j_checkpoint_mutex);
1985 		spin_lock(&journal->j_list_lock);
1986 	}
1987 	spin_unlock(&journal->j_list_lock);
1988 
1989 	if (is_journal_aborted(journal))
1990 		return -EIO;
1991 
1992 	mutex_lock(&journal->j_checkpoint_mutex);
1993 	if (!err) {
1994 		err = jbd2_cleanup_journal_tail(journal);
1995 		if (err < 0) {
1996 			mutex_unlock(&journal->j_checkpoint_mutex);
1997 			goto out;
1998 		}
1999 		err = 0;
2000 	}
2001 
2002 	/* Finally, mark the journal as really needing no recovery.
2003 	 * This sets s_start==0 in the underlying superblock, which is
2004 	 * the magic code for a fully-recovered superblock.  Any future
2005 	 * commits of data to the journal will restore the current
2006 	 * s_start value. */
2007 	jbd2_mark_journal_empty(journal, WRITE_FUA);
2008 	mutex_unlock(&journal->j_checkpoint_mutex);
2009 	write_lock(&journal->j_state_lock);
2010 	J_ASSERT(!journal->j_running_transaction);
2011 	J_ASSERT(!journal->j_committing_transaction);
2012 	J_ASSERT(!journal->j_checkpoint_transactions);
2013 	J_ASSERT(journal->j_head == journal->j_tail);
2014 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2015 	write_unlock(&journal->j_state_lock);
2016 out:
2017 	return err;
2018 }
2019 
2020 /**
2021  * int jbd2_journal_wipe() - Wipe journal contents
2022  * @journal: Journal to act on.
2023  * @write: flag (see below)
2024  *
2025  * Wipe out all of the contents of a journal, safely.  This will produce
2026  * a warning if the journal contains any valid recovery information.
2027  * Must be called between journal_init_*() and jbd2_journal_load().
2028  *
2029  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2030  * we merely suppress recovery.
2031  */
2032 
2033 int jbd2_journal_wipe(journal_t *journal, int write)
2034 {
2035 	int err = 0;
2036 
2037 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2038 
2039 	err = load_superblock(journal);
2040 	if (err)
2041 		return err;
2042 
2043 	if (!journal->j_tail)
2044 		goto no_recovery;
2045 
2046 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2047 		write ? "Clearing" : "Ignoring");
2048 
2049 	err = jbd2_journal_skip_recovery(journal);
2050 	if (write) {
2051 		/* Lock to make assertions happy... */
2052 		mutex_lock(&journal->j_checkpoint_mutex);
2053 		jbd2_mark_journal_empty(journal, WRITE_FUA);
2054 		mutex_unlock(&journal->j_checkpoint_mutex);
2055 	}
2056 
2057  no_recovery:
2058 	return err;
2059 }
2060 
2061 /*
2062  * Journal abort has very specific semantics, which we describe
2063  * for journal abort.
2064  *
2065  * Two internal functions, which provide abort to the jbd layer
2066  * itself are here.
2067  */
2068 
2069 /*
2070  * Quick version for internal journal use (doesn't lock the journal).
2071  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2072  * and don't attempt to make any other journal updates.
2073  */
2074 void __jbd2_journal_abort_hard(journal_t *journal)
2075 {
2076 	transaction_t *transaction;
2077 
2078 	if (journal->j_flags & JBD2_ABORT)
2079 		return;
2080 
2081 	printk(KERN_ERR "Aborting journal on device %s.\n",
2082 	       journal->j_devname);
2083 
2084 	write_lock(&journal->j_state_lock);
2085 	journal->j_flags |= JBD2_ABORT;
2086 	transaction = journal->j_running_transaction;
2087 	if (transaction)
2088 		__jbd2_log_start_commit(journal, transaction->t_tid);
2089 	write_unlock(&journal->j_state_lock);
2090 }
2091 
2092 /* Soft abort: record the abort error status in the journal superblock,
2093  * but don't do any other IO. */
2094 static void __journal_abort_soft (journal_t *journal, int errno)
2095 {
2096 	if (journal->j_flags & JBD2_ABORT)
2097 		return;
2098 
2099 	if (!journal->j_errno)
2100 		journal->j_errno = errno;
2101 
2102 	__jbd2_journal_abort_hard(journal);
2103 
2104 	if (errno) {
2105 		jbd2_journal_update_sb_errno(journal);
2106 		write_lock(&journal->j_state_lock);
2107 		journal->j_flags |= JBD2_REC_ERR;
2108 		write_unlock(&journal->j_state_lock);
2109 	}
2110 }
2111 
2112 /**
2113  * void jbd2_journal_abort () - Shutdown the journal immediately.
2114  * @journal: the journal to shutdown.
2115  * @errno:   an error number to record in the journal indicating
2116  *           the reason for the shutdown.
2117  *
2118  * Perform a complete, immediate shutdown of the ENTIRE
2119  * journal (not of a single transaction).  This operation cannot be
2120  * undone without closing and reopening the journal.
2121  *
2122  * The jbd2_journal_abort function is intended to support higher level error
2123  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2124  * mode.
2125  *
2126  * Journal abort has very specific semantics.  Any existing dirty,
2127  * unjournaled buffers in the main filesystem will still be written to
2128  * disk by bdflush, but the journaling mechanism will be suspended
2129  * immediately and no further transaction commits will be honoured.
2130  *
2131  * Any dirty, journaled buffers will be written back to disk without
2132  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2133  * filesystem, but we _do_ attempt to leave as much data as possible
2134  * behind for fsck to use for cleanup.
2135  *
2136  * Any attempt to get a new transaction handle on a journal which is in
2137  * ABORT state will just result in an -EROFS error return.  A
2138  * jbd2_journal_stop on an existing handle will return -EIO if we have
2139  * entered abort state during the update.
2140  *
2141  * Recursive transactions are not disturbed by journal abort until the
2142  * final jbd2_journal_stop, which will receive the -EIO error.
2143  *
2144  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2145  * which will be recorded (if possible) in the journal superblock.  This
2146  * allows a client to record failure conditions in the middle of a
2147  * transaction without having to complete the transaction to record the
2148  * failure to disk.  ext3_error, for example, now uses this
2149  * functionality.
2150  *
2151  * Errors which originate from within the journaling layer will NOT
2152  * supply an errno; a null errno implies that absolutely no further
2153  * writes are done to the journal (unless there are any already in
2154  * progress).
2155  *
2156  */
2157 
2158 void jbd2_journal_abort(journal_t *journal, int errno)
2159 {
2160 	__journal_abort_soft(journal, errno);
2161 }
2162 
2163 /**
2164  * int jbd2_journal_errno () - returns the journal's error state.
2165  * @journal: journal to examine.
2166  *
2167  * This is the errno number set with jbd2_journal_abort(), the last
2168  * time the journal was mounted - if the journal was stopped
2169  * without calling abort this will be 0.
2170  *
2171  * If the journal has been aborted on this mount time -EROFS will
2172  * be returned.
2173  */
2174 int jbd2_journal_errno(journal_t *journal)
2175 {
2176 	int err;
2177 
2178 	read_lock(&journal->j_state_lock);
2179 	if (journal->j_flags & JBD2_ABORT)
2180 		err = -EROFS;
2181 	else
2182 		err = journal->j_errno;
2183 	read_unlock(&journal->j_state_lock);
2184 	return err;
2185 }
2186 
2187 /**
2188  * int jbd2_journal_clear_err () - clears the journal's error state
2189  * @journal: journal to act on.
2190  *
2191  * An error must be cleared or acked to take a FS out of readonly
2192  * mode.
2193  */
2194 int jbd2_journal_clear_err(journal_t *journal)
2195 {
2196 	int err = 0;
2197 
2198 	write_lock(&journal->j_state_lock);
2199 	if (journal->j_flags & JBD2_ABORT)
2200 		err = -EROFS;
2201 	else
2202 		journal->j_errno = 0;
2203 	write_unlock(&journal->j_state_lock);
2204 	return err;
2205 }
2206 
2207 /**
2208  * void jbd2_journal_ack_err() - Ack journal err.
2209  * @journal: journal to act on.
2210  *
2211  * An error must be cleared or acked to take a FS out of readonly
2212  * mode.
2213  */
2214 void jbd2_journal_ack_err(journal_t *journal)
2215 {
2216 	write_lock(&journal->j_state_lock);
2217 	if (journal->j_errno)
2218 		journal->j_flags |= JBD2_ACK_ERR;
2219 	write_unlock(&journal->j_state_lock);
2220 }
2221 
2222 int jbd2_journal_blocks_per_page(struct inode *inode)
2223 {
2224 	return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2225 }
2226 
2227 /*
2228  * helper functions to deal with 32 or 64bit block numbers.
2229  */
2230 size_t journal_tag_bytes(journal_t *journal)
2231 {
2232 	size_t sz;
2233 
2234 	if (jbd2_has_feature_csum3(journal))
2235 		return sizeof(journal_block_tag3_t);
2236 
2237 	sz = sizeof(journal_block_tag_t);
2238 
2239 	if (jbd2_has_feature_csum2(journal))
2240 		sz += sizeof(__u16);
2241 
2242 	if (jbd2_has_feature_64bit(journal))
2243 		return sz;
2244 	else
2245 		return sz - sizeof(__u32);
2246 }
2247 
2248 /*
2249  * JBD memory management
2250  *
2251  * These functions are used to allocate block-sized chunks of memory
2252  * used for making copies of buffer_head data.  Very often it will be
2253  * page-sized chunks of data, but sometimes it will be in
2254  * sub-page-size chunks.  (For example, 16k pages on Power systems
2255  * with a 4k block file system.)  For blocks smaller than a page, we
2256  * use a SLAB allocator.  There are slab caches for each block size,
2257  * which are allocated at mount time, if necessary, and we only free
2258  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2259  * this reason we don't need to a mutex to protect access to
2260  * jbd2_slab[] allocating or releasing memory; only in
2261  * jbd2_journal_create_slab().
2262  */
2263 #define JBD2_MAX_SLABS 8
2264 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2265 
2266 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2267 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2268 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2269 };
2270 
2271 
2272 static void jbd2_journal_destroy_slabs(void)
2273 {
2274 	int i;
2275 
2276 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2277 		if (jbd2_slab[i])
2278 			kmem_cache_destroy(jbd2_slab[i]);
2279 		jbd2_slab[i] = NULL;
2280 	}
2281 }
2282 
2283 static int jbd2_journal_create_slab(size_t size)
2284 {
2285 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2286 	int i = order_base_2(size) - 10;
2287 	size_t slab_size;
2288 
2289 	if (size == PAGE_SIZE)
2290 		return 0;
2291 
2292 	if (i >= JBD2_MAX_SLABS)
2293 		return -EINVAL;
2294 
2295 	if (unlikely(i < 0))
2296 		i = 0;
2297 	mutex_lock(&jbd2_slab_create_mutex);
2298 	if (jbd2_slab[i]) {
2299 		mutex_unlock(&jbd2_slab_create_mutex);
2300 		return 0;	/* Already created */
2301 	}
2302 
2303 	slab_size = 1 << (i+10);
2304 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2305 					 slab_size, 0, NULL);
2306 	mutex_unlock(&jbd2_slab_create_mutex);
2307 	if (!jbd2_slab[i]) {
2308 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2309 		return -ENOMEM;
2310 	}
2311 	return 0;
2312 }
2313 
2314 static struct kmem_cache *get_slab(size_t size)
2315 {
2316 	int i = order_base_2(size) - 10;
2317 
2318 	BUG_ON(i >= JBD2_MAX_SLABS);
2319 	if (unlikely(i < 0))
2320 		i = 0;
2321 	BUG_ON(jbd2_slab[i] == NULL);
2322 	return jbd2_slab[i];
2323 }
2324 
2325 void *jbd2_alloc(size_t size, gfp_t flags)
2326 {
2327 	void *ptr;
2328 
2329 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2330 
2331 	flags |= __GFP_REPEAT;
2332 	if (size == PAGE_SIZE)
2333 		ptr = (void *)__get_free_pages(flags, 0);
2334 	else if (size > PAGE_SIZE) {
2335 		int order = get_order(size);
2336 
2337 		if (order < 3)
2338 			ptr = (void *)__get_free_pages(flags, order);
2339 		else
2340 			ptr = vmalloc(size);
2341 	} else
2342 		ptr = kmem_cache_alloc(get_slab(size), flags);
2343 
2344 	/* Check alignment; SLUB has gotten this wrong in the past,
2345 	 * and this can lead to user data corruption! */
2346 	BUG_ON(((unsigned long) ptr) & (size-1));
2347 
2348 	return ptr;
2349 }
2350 
2351 void jbd2_free(void *ptr, size_t size)
2352 {
2353 	if (size == PAGE_SIZE) {
2354 		free_pages((unsigned long)ptr, 0);
2355 		return;
2356 	}
2357 	if (size > PAGE_SIZE) {
2358 		int order = get_order(size);
2359 
2360 		if (order < 3)
2361 			free_pages((unsigned long)ptr, order);
2362 		else
2363 			vfree(ptr);
2364 		return;
2365 	}
2366 	kmem_cache_free(get_slab(size), ptr);
2367 };
2368 
2369 /*
2370  * Journal_head storage management
2371  */
2372 static struct kmem_cache *jbd2_journal_head_cache;
2373 #ifdef CONFIG_JBD2_DEBUG
2374 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2375 #endif
2376 
2377 static int jbd2_journal_init_journal_head_cache(void)
2378 {
2379 	int retval;
2380 
2381 	J_ASSERT(jbd2_journal_head_cache == NULL);
2382 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2383 				sizeof(struct journal_head),
2384 				0,		/* offset */
2385 				SLAB_TEMPORARY | SLAB_DESTROY_BY_RCU,
2386 				NULL);		/* ctor */
2387 	retval = 0;
2388 	if (!jbd2_journal_head_cache) {
2389 		retval = -ENOMEM;
2390 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2391 	}
2392 	return retval;
2393 }
2394 
2395 static void jbd2_journal_destroy_journal_head_cache(void)
2396 {
2397 	if (jbd2_journal_head_cache) {
2398 		kmem_cache_destroy(jbd2_journal_head_cache);
2399 		jbd2_journal_head_cache = NULL;
2400 	}
2401 }
2402 
2403 /*
2404  * journal_head splicing and dicing
2405  */
2406 static struct journal_head *journal_alloc_journal_head(void)
2407 {
2408 	struct journal_head *ret;
2409 
2410 #ifdef CONFIG_JBD2_DEBUG
2411 	atomic_inc(&nr_journal_heads);
2412 #endif
2413 	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2414 	if (!ret) {
2415 		jbd_debug(1, "out of memory for journal_head\n");
2416 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2417 		ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2418 				GFP_NOFS | __GFP_NOFAIL);
2419 	}
2420 	return ret;
2421 }
2422 
2423 static void journal_free_journal_head(struct journal_head *jh)
2424 {
2425 #ifdef CONFIG_JBD2_DEBUG
2426 	atomic_dec(&nr_journal_heads);
2427 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2428 #endif
2429 	kmem_cache_free(jbd2_journal_head_cache, jh);
2430 }
2431 
2432 /*
2433  * A journal_head is attached to a buffer_head whenever JBD has an
2434  * interest in the buffer.
2435  *
2436  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2437  * is set.  This bit is tested in core kernel code where we need to take
2438  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2439  * there.
2440  *
2441  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2442  *
2443  * When a buffer has its BH_JBD bit set it is immune from being released by
2444  * core kernel code, mainly via ->b_count.
2445  *
2446  * A journal_head is detached from its buffer_head when the journal_head's
2447  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2448  * transaction (b_cp_transaction) hold their references to b_jcount.
2449  *
2450  * Various places in the kernel want to attach a journal_head to a buffer_head
2451  * _before_ attaching the journal_head to a transaction.  To protect the
2452  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2453  * journal_head's b_jcount refcount by one.  The caller must call
2454  * jbd2_journal_put_journal_head() to undo this.
2455  *
2456  * So the typical usage would be:
2457  *
2458  *	(Attach a journal_head if needed.  Increments b_jcount)
2459  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2460  *	...
2461  *      (Get another reference for transaction)
2462  *	jbd2_journal_grab_journal_head(bh);
2463  *	jh->b_transaction = xxx;
2464  *	(Put original reference)
2465  *	jbd2_journal_put_journal_head(jh);
2466  */
2467 
2468 /*
2469  * Give a buffer_head a journal_head.
2470  *
2471  * May sleep.
2472  */
2473 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2474 {
2475 	struct journal_head *jh;
2476 	struct journal_head *new_jh = NULL;
2477 
2478 repeat:
2479 	if (!buffer_jbd(bh))
2480 		new_jh = journal_alloc_journal_head();
2481 
2482 	jbd_lock_bh_journal_head(bh);
2483 	if (buffer_jbd(bh)) {
2484 		jh = bh2jh(bh);
2485 	} else {
2486 		J_ASSERT_BH(bh,
2487 			(atomic_read(&bh->b_count) > 0) ||
2488 			(bh->b_page && bh->b_page->mapping));
2489 
2490 		if (!new_jh) {
2491 			jbd_unlock_bh_journal_head(bh);
2492 			goto repeat;
2493 		}
2494 
2495 		jh = new_jh;
2496 		new_jh = NULL;		/* We consumed it */
2497 		set_buffer_jbd(bh);
2498 		bh->b_private = jh;
2499 		jh->b_bh = bh;
2500 		get_bh(bh);
2501 		BUFFER_TRACE(bh, "added journal_head");
2502 	}
2503 	jh->b_jcount++;
2504 	jbd_unlock_bh_journal_head(bh);
2505 	if (new_jh)
2506 		journal_free_journal_head(new_jh);
2507 	return bh->b_private;
2508 }
2509 
2510 /*
2511  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2512  * having a journal_head, return NULL
2513  */
2514 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2515 {
2516 	struct journal_head *jh = NULL;
2517 
2518 	jbd_lock_bh_journal_head(bh);
2519 	if (buffer_jbd(bh)) {
2520 		jh = bh2jh(bh);
2521 		jh->b_jcount++;
2522 	}
2523 	jbd_unlock_bh_journal_head(bh);
2524 	return jh;
2525 }
2526 
2527 static void __journal_remove_journal_head(struct buffer_head *bh)
2528 {
2529 	struct journal_head *jh = bh2jh(bh);
2530 
2531 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2532 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2533 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2534 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2535 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2536 	J_ASSERT_BH(bh, buffer_jbd(bh));
2537 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2538 	BUFFER_TRACE(bh, "remove journal_head");
2539 	if (jh->b_frozen_data) {
2540 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2541 		jbd2_free(jh->b_frozen_data, bh->b_size);
2542 	}
2543 	if (jh->b_committed_data) {
2544 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2545 		jbd2_free(jh->b_committed_data, bh->b_size);
2546 	}
2547 	bh->b_private = NULL;
2548 	jh->b_bh = NULL;	/* debug, really */
2549 	clear_buffer_jbd(bh);
2550 	journal_free_journal_head(jh);
2551 }
2552 
2553 /*
2554  * Drop a reference on the passed journal_head.  If it fell to zero then
2555  * release the journal_head from the buffer_head.
2556  */
2557 void jbd2_journal_put_journal_head(struct journal_head *jh)
2558 {
2559 	struct buffer_head *bh = jh2bh(jh);
2560 
2561 	jbd_lock_bh_journal_head(bh);
2562 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2563 	--jh->b_jcount;
2564 	if (!jh->b_jcount) {
2565 		__journal_remove_journal_head(bh);
2566 		jbd_unlock_bh_journal_head(bh);
2567 		__brelse(bh);
2568 	} else
2569 		jbd_unlock_bh_journal_head(bh);
2570 }
2571 
2572 /*
2573  * Initialize jbd inode head
2574  */
2575 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2576 {
2577 	jinode->i_transaction = NULL;
2578 	jinode->i_next_transaction = NULL;
2579 	jinode->i_vfs_inode = inode;
2580 	jinode->i_flags = 0;
2581 	INIT_LIST_HEAD(&jinode->i_list);
2582 }
2583 
2584 /*
2585  * Function to be called before we start removing inode from memory (i.e.,
2586  * clear_inode() is a fine place to be called from). It removes inode from
2587  * transaction's lists.
2588  */
2589 void jbd2_journal_release_jbd_inode(journal_t *journal,
2590 				    struct jbd2_inode *jinode)
2591 {
2592 	if (!journal)
2593 		return;
2594 restart:
2595 	spin_lock(&journal->j_list_lock);
2596 	/* Is commit writing out inode - we have to wait */
2597 	if (jinode->i_flags & JI_COMMIT_RUNNING) {
2598 		wait_queue_head_t *wq;
2599 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2600 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2601 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2602 		spin_unlock(&journal->j_list_lock);
2603 		schedule();
2604 		finish_wait(wq, &wait.wait);
2605 		goto restart;
2606 	}
2607 
2608 	if (jinode->i_transaction) {
2609 		list_del(&jinode->i_list);
2610 		jinode->i_transaction = NULL;
2611 	}
2612 	spin_unlock(&journal->j_list_lock);
2613 }
2614 
2615 
2616 #ifdef CONFIG_PROC_FS
2617 
2618 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2619 
2620 static void __init jbd2_create_jbd_stats_proc_entry(void)
2621 {
2622 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2623 }
2624 
2625 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2626 {
2627 	if (proc_jbd2_stats)
2628 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2629 }
2630 
2631 #else
2632 
2633 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2634 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2635 
2636 #endif
2637 
2638 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2639 
2640 static int __init jbd2_journal_init_handle_cache(void)
2641 {
2642 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2643 	if (jbd2_handle_cache == NULL) {
2644 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2645 		return -ENOMEM;
2646 	}
2647 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2648 	if (jbd2_inode_cache == NULL) {
2649 		printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2650 		kmem_cache_destroy(jbd2_handle_cache);
2651 		return -ENOMEM;
2652 	}
2653 	return 0;
2654 }
2655 
2656 static void jbd2_journal_destroy_handle_cache(void)
2657 {
2658 	if (jbd2_handle_cache)
2659 		kmem_cache_destroy(jbd2_handle_cache);
2660 	if (jbd2_inode_cache)
2661 		kmem_cache_destroy(jbd2_inode_cache);
2662 
2663 }
2664 
2665 /*
2666  * Module startup and shutdown
2667  */
2668 
2669 static int __init journal_init_caches(void)
2670 {
2671 	int ret;
2672 
2673 	ret = jbd2_journal_init_revoke_caches();
2674 	if (ret == 0)
2675 		ret = jbd2_journal_init_journal_head_cache();
2676 	if (ret == 0)
2677 		ret = jbd2_journal_init_handle_cache();
2678 	if (ret == 0)
2679 		ret = jbd2_journal_init_transaction_cache();
2680 	return ret;
2681 }
2682 
2683 static void jbd2_journal_destroy_caches(void)
2684 {
2685 	jbd2_journal_destroy_revoke_caches();
2686 	jbd2_journal_destroy_journal_head_cache();
2687 	jbd2_journal_destroy_handle_cache();
2688 	jbd2_journal_destroy_transaction_cache();
2689 	jbd2_journal_destroy_slabs();
2690 }
2691 
2692 static int __init journal_init(void)
2693 {
2694 	int ret;
2695 
2696 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2697 
2698 	ret = journal_init_caches();
2699 	if (ret == 0) {
2700 		jbd2_create_jbd_stats_proc_entry();
2701 	} else {
2702 		jbd2_journal_destroy_caches();
2703 	}
2704 	return ret;
2705 }
2706 
2707 static void __exit journal_exit(void)
2708 {
2709 #ifdef CONFIG_JBD2_DEBUG
2710 	int n = atomic_read(&nr_journal_heads);
2711 	if (n)
2712 		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2713 #endif
2714 	jbd2_remove_jbd_stats_proc_entry();
2715 	jbd2_journal_destroy_caches();
2716 }
2717 
2718 MODULE_LICENSE("GPL");
2719 module_init(journal_init);
2720 module_exit(journal_exit);
2721 
2722