xref: /openbmc/linux/fs/jbd2/journal.c (revision 0c874100)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/journal.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem journal-writing code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages journals: areas of disk reserved for logging
13  * transactional updates.  This includes the kernel journaling thread
14  * which is responsible for scheduling updates to the log.
15  *
16  * We do not actually manage the physical storage of the journal in this
17  * file: that is left to a per-journal policy function, which allows us
18  * to store the journal within a filesystem-specified area for ext2
19  * journaling (ext2 can use a reserved inode for storing the log).
20  */
21 
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47 
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50 
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
54 
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
58 
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 #if 0
70 EXPORT_SYMBOL(journal_sync_buffer);
71 #endif
72 EXPORT_SYMBOL(jbd2_journal_flush);
73 EXPORT_SYMBOL(jbd2_journal_revoke);
74 
75 EXPORT_SYMBOL(jbd2_journal_init_dev);
76 EXPORT_SYMBOL(jbd2_journal_init_inode);
77 EXPORT_SYMBOL(jbd2_journal_check_used_features);
78 EXPORT_SYMBOL(jbd2_journal_check_available_features);
79 EXPORT_SYMBOL(jbd2_journal_set_features);
80 EXPORT_SYMBOL(jbd2_journal_load);
81 EXPORT_SYMBOL(jbd2_journal_destroy);
82 EXPORT_SYMBOL(jbd2_journal_abort);
83 EXPORT_SYMBOL(jbd2_journal_errno);
84 EXPORT_SYMBOL(jbd2_journal_ack_err);
85 EXPORT_SYMBOL(jbd2_journal_clear_err);
86 EXPORT_SYMBOL(jbd2_log_wait_commit);
87 EXPORT_SYMBOL(jbd2_log_start_commit);
88 EXPORT_SYMBOL(jbd2_journal_start_commit);
89 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
90 EXPORT_SYMBOL(jbd2_journal_wipe);
91 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
92 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
93 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
94 EXPORT_SYMBOL(jbd2_journal_force_commit);
95 EXPORT_SYMBOL(jbd2_journal_inode_add_write);
96 EXPORT_SYMBOL(jbd2_journal_inode_add_wait);
97 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
98 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
99 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
100 EXPORT_SYMBOL(jbd2_inode_cache);
101 
102 static void __journal_abort_soft (journal_t *journal, int errno);
103 static int jbd2_journal_create_slab(size_t slab_size);
104 
105 #ifdef CONFIG_JBD2_DEBUG
106 void __jbd2_debug(int level, const char *file, const char *func,
107 		  unsigned int line, const char *fmt, ...)
108 {
109 	struct va_format vaf;
110 	va_list args;
111 
112 	if (level > jbd2_journal_enable_debug)
113 		return;
114 	va_start(args, fmt);
115 	vaf.fmt = fmt;
116 	vaf.va = &args;
117 	printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
118 	va_end(args);
119 }
120 EXPORT_SYMBOL(__jbd2_debug);
121 #endif
122 
123 /* Checksumming functions */
124 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
125 {
126 	if (!jbd2_journal_has_csum_v2or3_feature(j))
127 		return 1;
128 
129 	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
130 }
131 
132 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
133 {
134 	__u32 csum;
135 	__be32 old_csum;
136 
137 	old_csum = sb->s_checksum;
138 	sb->s_checksum = 0;
139 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
140 	sb->s_checksum = old_csum;
141 
142 	return cpu_to_be32(csum);
143 }
144 
145 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
146 {
147 	if (!jbd2_journal_has_csum_v2or3(j))
148 		return 1;
149 
150 	return sb->s_checksum == jbd2_superblock_csum(j, sb);
151 }
152 
153 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
154 {
155 	if (!jbd2_journal_has_csum_v2or3(j))
156 		return;
157 
158 	sb->s_checksum = jbd2_superblock_csum(j, sb);
159 }
160 
161 /*
162  * Helper function used to manage commit timeouts
163  */
164 
165 static void commit_timeout(struct timer_list *t)
166 {
167 	journal_t *journal = from_timer(journal, t, j_commit_timer);
168 
169 	wake_up_process(journal->j_task);
170 }
171 
172 /*
173  * kjournald2: The main thread function used to manage a logging device
174  * journal.
175  *
176  * This kernel thread is responsible for two things:
177  *
178  * 1) COMMIT:  Every so often we need to commit the current state of the
179  *    filesystem to disk.  The journal thread is responsible for writing
180  *    all of the metadata buffers to disk.
181  *
182  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
183  *    of the data in that part of the log has been rewritten elsewhere on
184  *    the disk.  Flushing these old buffers to reclaim space in the log is
185  *    known as checkpointing, and this thread is responsible for that job.
186  */
187 
188 static int kjournald2(void *arg)
189 {
190 	journal_t *journal = arg;
191 	transaction_t *transaction;
192 
193 	/*
194 	 * Set up an interval timer which can be used to trigger a commit wakeup
195 	 * after the commit interval expires
196 	 */
197 	timer_setup(&journal->j_commit_timer, commit_timeout, 0);
198 
199 	set_freezable();
200 
201 	/* Record that the journal thread is running */
202 	journal->j_task = current;
203 	wake_up(&journal->j_wait_done_commit);
204 
205 	/*
206 	 * Make sure that no allocations from this kernel thread will ever
207 	 * recurse to the fs layer because we are responsible for the
208 	 * transaction commit and any fs involvement might get stuck waiting for
209 	 * the trasn. commit.
210 	 */
211 	memalloc_nofs_save();
212 
213 	/*
214 	 * And now, wait forever for commit wakeup events.
215 	 */
216 	write_lock(&journal->j_state_lock);
217 
218 loop:
219 	if (journal->j_flags & JBD2_UNMOUNT)
220 		goto end_loop;
221 
222 	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
223 		journal->j_commit_sequence, journal->j_commit_request);
224 
225 	if (journal->j_commit_sequence != journal->j_commit_request) {
226 		jbd_debug(1, "OK, requests differ\n");
227 		write_unlock(&journal->j_state_lock);
228 		del_timer_sync(&journal->j_commit_timer);
229 		jbd2_journal_commit_transaction(journal);
230 		write_lock(&journal->j_state_lock);
231 		goto loop;
232 	}
233 
234 	wake_up(&journal->j_wait_done_commit);
235 	if (freezing(current)) {
236 		/*
237 		 * The simpler the better. Flushing journal isn't a
238 		 * good idea, because that depends on threads that may
239 		 * be already stopped.
240 		 */
241 		jbd_debug(1, "Now suspending kjournald2\n");
242 		write_unlock(&journal->j_state_lock);
243 		try_to_freeze();
244 		write_lock(&journal->j_state_lock);
245 	} else {
246 		/*
247 		 * We assume on resume that commits are already there,
248 		 * so we don't sleep
249 		 */
250 		DEFINE_WAIT(wait);
251 		int should_sleep = 1;
252 
253 		prepare_to_wait(&journal->j_wait_commit, &wait,
254 				TASK_INTERRUPTIBLE);
255 		if (journal->j_commit_sequence != journal->j_commit_request)
256 			should_sleep = 0;
257 		transaction = journal->j_running_transaction;
258 		if (transaction && time_after_eq(jiffies,
259 						transaction->t_expires))
260 			should_sleep = 0;
261 		if (journal->j_flags & JBD2_UNMOUNT)
262 			should_sleep = 0;
263 		if (should_sleep) {
264 			write_unlock(&journal->j_state_lock);
265 			schedule();
266 			write_lock(&journal->j_state_lock);
267 		}
268 		finish_wait(&journal->j_wait_commit, &wait);
269 	}
270 
271 	jbd_debug(1, "kjournald2 wakes\n");
272 
273 	/*
274 	 * Were we woken up by a commit wakeup event?
275 	 */
276 	transaction = journal->j_running_transaction;
277 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
278 		journal->j_commit_request = transaction->t_tid;
279 		jbd_debug(1, "woke because of timeout\n");
280 	}
281 	goto loop;
282 
283 end_loop:
284 	del_timer_sync(&journal->j_commit_timer);
285 	journal->j_task = NULL;
286 	wake_up(&journal->j_wait_done_commit);
287 	jbd_debug(1, "Journal thread exiting.\n");
288 	write_unlock(&journal->j_state_lock);
289 	return 0;
290 }
291 
292 static int jbd2_journal_start_thread(journal_t *journal)
293 {
294 	struct task_struct *t;
295 
296 	t = kthread_run(kjournald2, journal, "jbd2/%s",
297 			journal->j_devname);
298 	if (IS_ERR(t))
299 		return PTR_ERR(t);
300 
301 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
302 	return 0;
303 }
304 
305 static void journal_kill_thread(journal_t *journal)
306 {
307 	write_lock(&journal->j_state_lock);
308 	journal->j_flags |= JBD2_UNMOUNT;
309 
310 	while (journal->j_task) {
311 		write_unlock(&journal->j_state_lock);
312 		wake_up(&journal->j_wait_commit);
313 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
314 		write_lock(&journal->j_state_lock);
315 	}
316 	write_unlock(&journal->j_state_lock);
317 }
318 
319 /*
320  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
321  *
322  * Writes a metadata buffer to a given disk block.  The actual IO is not
323  * performed but a new buffer_head is constructed which labels the data
324  * to be written with the correct destination disk block.
325  *
326  * Any magic-number escaping which needs to be done will cause a
327  * copy-out here.  If the buffer happens to start with the
328  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
329  * magic number is only written to the log for descripter blocks.  In
330  * this case, we copy the data and replace the first word with 0, and we
331  * return a result code which indicates that this buffer needs to be
332  * marked as an escaped buffer in the corresponding log descriptor
333  * block.  The missing word can then be restored when the block is read
334  * during recovery.
335  *
336  * If the source buffer has already been modified by a new transaction
337  * since we took the last commit snapshot, we use the frozen copy of
338  * that data for IO. If we end up using the existing buffer_head's data
339  * for the write, then we have to make sure nobody modifies it while the
340  * IO is in progress. do_get_write_access() handles this.
341  *
342  * The function returns a pointer to the buffer_head to be used for IO.
343  *
344  *
345  * Return value:
346  *  <0: Error
347  * >=0: Finished OK
348  *
349  * On success:
350  * Bit 0 set == escape performed on the data
351  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
352  */
353 
354 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
355 				  struct journal_head  *jh_in,
356 				  struct buffer_head **bh_out,
357 				  sector_t blocknr)
358 {
359 	int need_copy_out = 0;
360 	int done_copy_out = 0;
361 	int do_escape = 0;
362 	char *mapped_data;
363 	struct buffer_head *new_bh;
364 	struct page *new_page;
365 	unsigned int new_offset;
366 	struct buffer_head *bh_in = jh2bh(jh_in);
367 	journal_t *journal = transaction->t_journal;
368 
369 	/*
370 	 * The buffer really shouldn't be locked: only the current committing
371 	 * transaction is allowed to write it, so nobody else is allowed
372 	 * to do any IO.
373 	 *
374 	 * akpm: except if we're journalling data, and write() output is
375 	 * also part of a shared mapping, and another thread has
376 	 * decided to launch a writepage() against this buffer.
377 	 */
378 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
379 
380 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
381 
382 	/* keep subsequent assertions sane */
383 	atomic_set(&new_bh->b_count, 1);
384 
385 	jbd_lock_bh_state(bh_in);
386 repeat:
387 	/*
388 	 * If a new transaction has already done a buffer copy-out, then
389 	 * we use that version of the data for the commit.
390 	 */
391 	if (jh_in->b_frozen_data) {
392 		done_copy_out = 1;
393 		new_page = virt_to_page(jh_in->b_frozen_data);
394 		new_offset = offset_in_page(jh_in->b_frozen_data);
395 	} else {
396 		new_page = jh2bh(jh_in)->b_page;
397 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
398 	}
399 
400 	mapped_data = kmap_atomic(new_page);
401 	/*
402 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
403 	 * before checking for escaping, as the trigger may modify the magic
404 	 * offset.  If a copy-out happens afterwards, it will have the correct
405 	 * data in the buffer.
406 	 */
407 	if (!done_copy_out)
408 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
409 					   jh_in->b_triggers);
410 
411 	/*
412 	 * Check for escaping
413 	 */
414 	if (*((__be32 *)(mapped_data + new_offset)) ==
415 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
416 		need_copy_out = 1;
417 		do_escape = 1;
418 	}
419 	kunmap_atomic(mapped_data);
420 
421 	/*
422 	 * Do we need to do a data copy?
423 	 */
424 	if (need_copy_out && !done_copy_out) {
425 		char *tmp;
426 
427 		jbd_unlock_bh_state(bh_in);
428 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
429 		if (!tmp) {
430 			brelse(new_bh);
431 			return -ENOMEM;
432 		}
433 		jbd_lock_bh_state(bh_in);
434 		if (jh_in->b_frozen_data) {
435 			jbd2_free(tmp, bh_in->b_size);
436 			goto repeat;
437 		}
438 
439 		jh_in->b_frozen_data = tmp;
440 		mapped_data = kmap_atomic(new_page);
441 		memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
442 		kunmap_atomic(mapped_data);
443 
444 		new_page = virt_to_page(tmp);
445 		new_offset = offset_in_page(tmp);
446 		done_copy_out = 1;
447 
448 		/*
449 		 * This isn't strictly necessary, as we're using frozen
450 		 * data for the escaping, but it keeps consistency with
451 		 * b_frozen_data usage.
452 		 */
453 		jh_in->b_frozen_triggers = jh_in->b_triggers;
454 	}
455 
456 	/*
457 	 * Did we need to do an escaping?  Now we've done all the
458 	 * copying, we can finally do so.
459 	 */
460 	if (do_escape) {
461 		mapped_data = kmap_atomic(new_page);
462 		*((unsigned int *)(mapped_data + new_offset)) = 0;
463 		kunmap_atomic(mapped_data);
464 	}
465 
466 	set_bh_page(new_bh, new_page, new_offset);
467 	new_bh->b_size = bh_in->b_size;
468 	new_bh->b_bdev = journal->j_dev;
469 	new_bh->b_blocknr = blocknr;
470 	new_bh->b_private = bh_in;
471 	set_buffer_mapped(new_bh);
472 	set_buffer_dirty(new_bh);
473 
474 	*bh_out = new_bh;
475 
476 	/*
477 	 * The to-be-written buffer needs to get moved to the io queue,
478 	 * and the original buffer whose contents we are shadowing or
479 	 * copying is moved to the transaction's shadow queue.
480 	 */
481 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
482 	spin_lock(&journal->j_list_lock);
483 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
484 	spin_unlock(&journal->j_list_lock);
485 	set_buffer_shadow(bh_in);
486 	jbd_unlock_bh_state(bh_in);
487 
488 	return do_escape | (done_copy_out << 1);
489 }
490 
491 /*
492  * Allocation code for the journal file.  Manage the space left in the
493  * journal, so that we can begin checkpointing when appropriate.
494  */
495 
496 /*
497  * Called with j_state_lock locked for writing.
498  * Returns true if a transaction commit was started.
499  */
500 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
501 {
502 	/* Return if the txn has already requested to be committed */
503 	if (journal->j_commit_request == target)
504 		return 0;
505 
506 	/*
507 	 * The only transaction we can possibly wait upon is the
508 	 * currently running transaction (if it exists).  Otherwise,
509 	 * the target tid must be an old one.
510 	 */
511 	if (journal->j_running_transaction &&
512 	    journal->j_running_transaction->t_tid == target) {
513 		/*
514 		 * We want a new commit: OK, mark the request and wakeup the
515 		 * commit thread.  We do _not_ do the commit ourselves.
516 		 */
517 
518 		journal->j_commit_request = target;
519 		jbd_debug(1, "JBD2: requesting commit %d/%d\n",
520 			  journal->j_commit_request,
521 			  journal->j_commit_sequence);
522 		journal->j_running_transaction->t_requested = jiffies;
523 		wake_up(&journal->j_wait_commit);
524 		return 1;
525 	} else if (!tid_geq(journal->j_commit_request, target))
526 		/* This should never happen, but if it does, preserve
527 		   the evidence before kjournald goes into a loop and
528 		   increments j_commit_sequence beyond all recognition. */
529 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
530 			  journal->j_commit_request,
531 			  journal->j_commit_sequence,
532 			  target, journal->j_running_transaction ?
533 			  journal->j_running_transaction->t_tid : 0);
534 	return 0;
535 }
536 
537 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
538 {
539 	int ret;
540 
541 	write_lock(&journal->j_state_lock);
542 	ret = __jbd2_log_start_commit(journal, tid);
543 	write_unlock(&journal->j_state_lock);
544 	return ret;
545 }
546 
547 /*
548  * Force and wait any uncommitted transactions.  We can only force the running
549  * transaction if we don't have an active handle, otherwise, we will deadlock.
550  * Returns: <0 in case of error,
551  *           0 if nothing to commit,
552  *           1 if transaction was successfully committed.
553  */
554 static int __jbd2_journal_force_commit(journal_t *journal)
555 {
556 	transaction_t *transaction = NULL;
557 	tid_t tid;
558 	int need_to_start = 0, ret = 0;
559 
560 	read_lock(&journal->j_state_lock);
561 	if (journal->j_running_transaction && !current->journal_info) {
562 		transaction = journal->j_running_transaction;
563 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
564 			need_to_start = 1;
565 	} else if (journal->j_committing_transaction)
566 		transaction = journal->j_committing_transaction;
567 
568 	if (!transaction) {
569 		/* Nothing to commit */
570 		read_unlock(&journal->j_state_lock);
571 		return 0;
572 	}
573 	tid = transaction->t_tid;
574 	read_unlock(&journal->j_state_lock);
575 	if (need_to_start)
576 		jbd2_log_start_commit(journal, tid);
577 	ret = jbd2_log_wait_commit(journal, tid);
578 	if (!ret)
579 		ret = 1;
580 
581 	return ret;
582 }
583 
584 /**
585  * Force and wait upon a commit if the calling process is not within
586  * transaction.  This is used for forcing out undo-protected data which contains
587  * bitmaps, when the fs is running out of space.
588  *
589  * @journal: journal to force
590  * Returns true if progress was made.
591  */
592 int jbd2_journal_force_commit_nested(journal_t *journal)
593 {
594 	int ret;
595 
596 	ret = __jbd2_journal_force_commit(journal);
597 	return ret > 0;
598 }
599 
600 /**
601  * int journal_force_commit() - force any uncommitted transactions
602  * @journal: journal to force
603  *
604  * Caller want unconditional commit. We can only force the running transaction
605  * if we don't have an active handle, otherwise, we will deadlock.
606  */
607 int jbd2_journal_force_commit(journal_t *journal)
608 {
609 	int ret;
610 
611 	J_ASSERT(!current->journal_info);
612 	ret = __jbd2_journal_force_commit(journal);
613 	if (ret > 0)
614 		ret = 0;
615 	return ret;
616 }
617 
618 /*
619  * Start a commit of the current running transaction (if any).  Returns true
620  * if a transaction is going to be committed (or is currently already
621  * committing), and fills its tid in at *ptid
622  */
623 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
624 {
625 	int ret = 0;
626 
627 	write_lock(&journal->j_state_lock);
628 	if (journal->j_running_transaction) {
629 		tid_t tid = journal->j_running_transaction->t_tid;
630 
631 		__jbd2_log_start_commit(journal, tid);
632 		/* There's a running transaction and we've just made sure
633 		 * it's commit has been scheduled. */
634 		if (ptid)
635 			*ptid = tid;
636 		ret = 1;
637 	} else if (journal->j_committing_transaction) {
638 		/*
639 		 * If commit has been started, then we have to wait for
640 		 * completion of that transaction.
641 		 */
642 		if (ptid)
643 			*ptid = journal->j_committing_transaction->t_tid;
644 		ret = 1;
645 	}
646 	write_unlock(&journal->j_state_lock);
647 	return ret;
648 }
649 
650 /*
651  * Return 1 if a given transaction has not yet sent barrier request
652  * connected with a transaction commit. If 0 is returned, transaction
653  * may or may not have sent the barrier. Used to avoid sending barrier
654  * twice in common cases.
655  */
656 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
657 {
658 	int ret = 0;
659 	transaction_t *commit_trans;
660 
661 	if (!(journal->j_flags & JBD2_BARRIER))
662 		return 0;
663 	read_lock(&journal->j_state_lock);
664 	/* Transaction already committed? */
665 	if (tid_geq(journal->j_commit_sequence, tid))
666 		goto out;
667 	commit_trans = journal->j_committing_transaction;
668 	if (!commit_trans || commit_trans->t_tid != tid) {
669 		ret = 1;
670 		goto out;
671 	}
672 	/*
673 	 * Transaction is being committed and we already proceeded to
674 	 * submitting a flush to fs partition?
675 	 */
676 	if (journal->j_fs_dev != journal->j_dev) {
677 		if (!commit_trans->t_need_data_flush ||
678 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
679 			goto out;
680 	} else {
681 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
682 			goto out;
683 	}
684 	ret = 1;
685 out:
686 	read_unlock(&journal->j_state_lock);
687 	return ret;
688 }
689 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
690 
691 /*
692  * Wait for a specified commit to complete.
693  * The caller may not hold the journal lock.
694  */
695 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
696 {
697 	int err = 0;
698 
699 	read_lock(&journal->j_state_lock);
700 #ifdef CONFIG_PROVE_LOCKING
701 	/*
702 	 * Some callers make sure transaction is already committing and in that
703 	 * case we cannot block on open handles anymore. So don't warn in that
704 	 * case.
705 	 */
706 	if (tid_gt(tid, journal->j_commit_sequence) &&
707 	    (!journal->j_committing_transaction ||
708 	     journal->j_committing_transaction->t_tid != tid)) {
709 		read_unlock(&journal->j_state_lock);
710 		jbd2_might_wait_for_commit(journal);
711 		read_lock(&journal->j_state_lock);
712 	}
713 #endif
714 #ifdef CONFIG_JBD2_DEBUG
715 	if (!tid_geq(journal->j_commit_request, tid)) {
716 		printk(KERN_ERR
717 		       "%s: error: j_commit_request=%d, tid=%d\n",
718 		       __func__, journal->j_commit_request, tid);
719 	}
720 #endif
721 	while (tid_gt(tid, journal->j_commit_sequence)) {
722 		jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
723 				  tid, journal->j_commit_sequence);
724 		read_unlock(&journal->j_state_lock);
725 		wake_up(&journal->j_wait_commit);
726 		wait_event(journal->j_wait_done_commit,
727 				!tid_gt(tid, journal->j_commit_sequence));
728 		read_lock(&journal->j_state_lock);
729 	}
730 	read_unlock(&journal->j_state_lock);
731 
732 	if (unlikely(is_journal_aborted(journal)))
733 		err = -EIO;
734 	return err;
735 }
736 
737 /* Return 1 when transaction with given tid has already committed. */
738 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
739 {
740 	int ret = 1;
741 
742 	read_lock(&journal->j_state_lock);
743 	if (journal->j_running_transaction &&
744 	    journal->j_running_transaction->t_tid == tid)
745 		ret = 0;
746 	if (journal->j_committing_transaction &&
747 	    journal->j_committing_transaction->t_tid == tid)
748 		ret = 0;
749 	read_unlock(&journal->j_state_lock);
750 	return ret;
751 }
752 EXPORT_SYMBOL(jbd2_transaction_committed);
753 
754 /*
755  * When this function returns the transaction corresponding to tid
756  * will be completed.  If the transaction has currently running, start
757  * committing that transaction before waiting for it to complete.  If
758  * the transaction id is stale, it is by definition already completed,
759  * so just return SUCCESS.
760  */
761 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
762 {
763 	int	need_to_wait = 1;
764 
765 	read_lock(&journal->j_state_lock);
766 	if (journal->j_running_transaction &&
767 	    journal->j_running_transaction->t_tid == tid) {
768 		if (journal->j_commit_request != tid) {
769 			/* transaction not yet started, so request it */
770 			read_unlock(&journal->j_state_lock);
771 			jbd2_log_start_commit(journal, tid);
772 			goto wait_commit;
773 		}
774 	} else if (!(journal->j_committing_transaction &&
775 		     journal->j_committing_transaction->t_tid == tid))
776 		need_to_wait = 0;
777 	read_unlock(&journal->j_state_lock);
778 	if (!need_to_wait)
779 		return 0;
780 wait_commit:
781 	return jbd2_log_wait_commit(journal, tid);
782 }
783 EXPORT_SYMBOL(jbd2_complete_transaction);
784 
785 /*
786  * Log buffer allocation routines:
787  */
788 
789 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
790 {
791 	unsigned long blocknr;
792 
793 	write_lock(&journal->j_state_lock);
794 	J_ASSERT(journal->j_free > 1);
795 
796 	blocknr = journal->j_head;
797 	journal->j_head++;
798 	journal->j_free--;
799 	if (journal->j_head == journal->j_last)
800 		journal->j_head = journal->j_first;
801 	write_unlock(&journal->j_state_lock);
802 	return jbd2_journal_bmap(journal, blocknr, retp);
803 }
804 
805 /*
806  * Conversion of logical to physical block numbers for the journal
807  *
808  * On external journals the journal blocks are identity-mapped, so
809  * this is a no-op.  If needed, we can use j_blk_offset - everything is
810  * ready.
811  */
812 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
813 		 unsigned long long *retp)
814 {
815 	int err = 0;
816 	unsigned long long ret;
817 
818 	if (journal->j_inode) {
819 		ret = bmap(journal->j_inode, blocknr);
820 		if (ret)
821 			*retp = ret;
822 		else {
823 			printk(KERN_ALERT "%s: journal block not found "
824 					"at offset %lu on %s\n",
825 			       __func__, blocknr, journal->j_devname);
826 			err = -EIO;
827 			__journal_abort_soft(journal, err);
828 		}
829 	} else {
830 		*retp = blocknr; /* +journal->j_blk_offset */
831 	}
832 	return err;
833 }
834 
835 /*
836  * We play buffer_head aliasing tricks to write data/metadata blocks to
837  * the journal without copying their contents, but for journal
838  * descriptor blocks we do need to generate bona fide buffers.
839  *
840  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
841  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
842  * But we don't bother doing that, so there will be coherency problems with
843  * mmaps of blockdevs which hold live JBD-controlled filesystems.
844  */
845 struct buffer_head *
846 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
847 {
848 	journal_t *journal = transaction->t_journal;
849 	struct buffer_head *bh;
850 	unsigned long long blocknr;
851 	journal_header_t *header;
852 	int err;
853 
854 	err = jbd2_journal_next_log_block(journal, &blocknr);
855 
856 	if (err)
857 		return NULL;
858 
859 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
860 	if (!bh)
861 		return NULL;
862 	lock_buffer(bh);
863 	memset(bh->b_data, 0, journal->j_blocksize);
864 	header = (journal_header_t *)bh->b_data;
865 	header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
866 	header->h_blocktype = cpu_to_be32(type);
867 	header->h_sequence = cpu_to_be32(transaction->t_tid);
868 	set_buffer_uptodate(bh);
869 	unlock_buffer(bh);
870 	BUFFER_TRACE(bh, "return this buffer");
871 	return bh;
872 }
873 
874 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
875 {
876 	struct jbd2_journal_block_tail *tail;
877 	__u32 csum;
878 
879 	if (!jbd2_journal_has_csum_v2or3(j))
880 		return;
881 
882 	tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
883 			sizeof(struct jbd2_journal_block_tail));
884 	tail->t_checksum = 0;
885 	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
886 	tail->t_checksum = cpu_to_be32(csum);
887 }
888 
889 /*
890  * Return tid of the oldest transaction in the journal and block in the journal
891  * where the transaction starts.
892  *
893  * If the journal is now empty, return which will be the next transaction ID
894  * we will write and where will that transaction start.
895  *
896  * The return value is 0 if journal tail cannot be pushed any further, 1 if
897  * it can.
898  */
899 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
900 			      unsigned long *block)
901 {
902 	transaction_t *transaction;
903 	int ret;
904 
905 	read_lock(&journal->j_state_lock);
906 	spin_lock(&journal->j_list_lock);
907 	transaction = journal->j_checkpoint_transactions;
908 	if (transaction) {
909 		*tid = transaction->t_tid;
910 		*block = transaction->t_log_start;
911 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
912 		*tid = transaction->t_tid;
913 		*block = transaction->t_log_start;
914 	} else if ((transaction = journal->j_running_transaction) != NULL) {
915 		*tid = transaction->t_tid;
916 		*block = journal->j_head;
917 	} else {
918 		*tid = journal->j_transaction_sequence;
919 		*block = journal->j_head;
920 	}
921 	ret = tid_gt(*tid, journal->j_tail_sequence);
922 	spin_unlock(&journal->j_list_lock);
923 	read_unlock(&journal->j_state_lock);
924 
925 	return ret;
926 }
927 
928 /*
929  * Update information in journal structure and in on disk journal superblock
930  * about log tail. This function does not check whether information passed in
931  * really pushes log tail further. It's responsibility of the caller to make
932  * sure provided log tail information is valid (e.g. by holding
933  * j_checkpoint_mutex all the time between computing log tail and calling this
934  * function as is the case with jbd2_cleanup_journal_tail()).
935  *
936  * Requires j_checkpoint_mutex
937  */
938 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
939 {
940 	unsigned long freed;
941 	int ret;
942 
943 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
944 
945 	/*
946 	 * We cannot afford for write to remain in drive's caches since as
947 	 * soon as we update j_tail, next transaction can start reusing journal
948 	 * space and if we lose sb update during power failure we'd replay
949 	 * old transaction with possibly newly overwritten data.
950 	 */
951 	ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
952 					      REQ_SYNC | REQ_FUA);
953 	if (ret)
954 		goto out;
955 
956 	write_lock(&journal->j_state_lock);
957 	freed = block - journal->j_tail;
958 	if (block < journal->j_tail)
959 		freed += journal->j_last - journal->j_first;
960 
961 	trace_jbd2_update_log_tail(journal, tid, block, freed);
962 	jbd_debug(1,
963 		  "Cleaning journal tail from %d to %d (offset %lu), "
964 		  "freeing %lu\n",
965 		  journal->j_tail_sequence, tid, block, freed);
966 
967 	journal->j_free += freed;
968 	journal->j_tail_sequence = tid;
969 	journal->j_tail = block;
970 	write_unlock(&journal->j_state_lock);
971 
972 out:
973 	return ret;
974 }
975 
976 /*
977  * This is a variation of __jbd2_update_log_tail which checks for validity of
978  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
979  * with other threads updating log tail.
980  */
981 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
982 {
983 	mutex_lock_io(&journal->j_checkpoint_mutex);
984 	if (tid_gt(tid, journal->j_tail_sequence))
985 		__jbd2_update_log_tail(journal, tid, block);
986 	mutex_unlock(&journal->j_checkpoint_mutex);
987 }
988 
989 struct jbd2_stats_proc_session {
990 	journal_t *journal;
991 	struct transaction_stats_s *stats;
992 	int start;
993 	int max;
994 };
995 
996 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
997 {
998 	return *pos ? NULL : SEQ_START_TOKEN;
999 }
1000 
1001 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
1002 {
1003 	return NULL;
1004 }
1005 
1006 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
1007 {
1008 	struct jbd2_stats_proc_session *s = seq->private;
1009 
1010 	if (v != SEQ_START_TOKEN)
1011 		return 0;
1012 	seq_printf(seq, "%lu transactions (%lu requested), "
1013 		   "each up to %u blocks\n",
1014 		   s->stats->ts_tid, s->stats->ts_requested,
1015 		   s->journal->j_max_transaction_buffers);
1016 	if (s->stats->ts_tid == 0)
1017 		return 0;
1018 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1019 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1020 	seq_printf(seq, "  %ums request delay\n",
1021 	    (s->stats->ts_requested == 0) ? 0 :
1022 	    jiffies_to_msecs(s->stats->run.rs_request_delay /
1023 			     s->stats->ts_requested));
1024 	seq_printf(seq, "  %ums running transaction\n",
1025 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1026 	seq_printf(seq, "  %ums transaction was being locked\n",
1027 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1028 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1029 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1030 	seq_printf(seq, "  %ums logging transaction\n",
1031 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1032 	seq_printf(seq, "  %lluus average transaction commit time\n",
1033 		   div_u64(s->journal->j_average_commit_time, 1000));
1034 	seq_printf(seq, "  %lu handles per transaction\n",
1035 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
1036 	seq_printf(seq, "  %lu blocks per transaction\n",
1037 	    s->stats->run.rs_blocks / s->stats->ts_tid);
1038 	seq_printf(seq, "  %lu logged blocks per transaction\n",
1039 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1040 	return 0;
1041 }
1042 
1043 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1044 {
1045 }
1046 
1047 static const struct seq_operations jbd2_seq_info_ops = {
1048 	.start  = jbd2_seq_info_start,
1049 	.next   = jbd2_seq_info_next,
1050 	.stop   = jbd2_seq_info_stop,
1051 	.show   = jbd2_seq_info_show,
1052 };
1053 
1054 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1055 {
1056 	journal_t *journal = PDE_DATA(inode);
1057 	struct jbd2_stats_proc_session *s;
1058 	int rc, size;
1059 
1060 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1061 	if (s == NULL)
1062 		return -ENOMEM;
1063 	size = sizeof(struct transaction_stats_s);
1064 	s->stats = kmalloc(size, GFP_KERNEL);
1065 	if (s->stats == NULL) {
1066 		kfree(s);
1067 		return -ENOMEM;
1068 	}
1069 	spin_lock(&journal->j_history_lock);
1070 	memcpy(s->stats, &journal->j_stats, size);
1071 	s->journal = journal;
1072 	spin_unlock(&journal->j_history_lock);
1073 
1074 	rc = seq_open(file, &jbd2_seq_info_ops);
1075 	if (rc == 0) {
1076 		struct seq_file *m = file->private_data;
1077 		m->private = s;
1078 	} else {
1079 		kfree(s->stats);
1080 		kfree(s);
1081 	}
1082 	return rc;
1083 
1084 }
1085 
1086 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1087 {
1088 	struct seq_file *seq = file->private_data;
1089 	struct jbd2_stats_proc_session *s = seq->private;
1090 	kfree(s->stats);
1091 	kfree(s);
1092 	return seq_release(inode, file);
1093 }
1094 
1095 static const struct file_operations jbd2_seq_info_fops = {
1096 	.owner		= THIS_MODULE,
1097 	.open           = jbd2_seq_info_open,
1098 	.read           = seq_read,
1099 	.llseek         = seq_lseek,
1100 	.release        = jbd2_seq_info_release,
1101 };
1102 
1103 static struct proc_dir_entry *proc_jbd2_stats;
1104 
1105 static void jbd2_stats_proc_init(journal_t *journal)
1106 {
1107 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1108 	if (journal->j_proc_entry) {
1109 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1110 				 &jbd2_seq_info_fops, journal);
1111 	}
1112 }
1113 
1114 static void jbd2_stats_proc_exit(journal_t *journal)
1115 {
1116 	remove_proc_entry("info", journal->j_proc_entry);
1117 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1118 }
1119 
1120 /*
1121  * Management for journal control blocks: functions to create and
1122  * destroy journal_t structures, and to initialise and read existing
1123  * journal blocks from disk.  */
1124 
1125 /* First: create and setup a journal_t object in memory.  We initialise
1126  * very few fields yet: that has to wait until we have created the
1127  * journal structures from from scratch, or loaded them from disk. */
1128 
1129 static journal_t *journal_init_common(struct block_device *bdev,
1130 			struct block_device *fs_dev,
1131 			unsigned long long start, int len, int blocksize)
1132 {
1133 	static struct lock_class_key jbd2_trans_commit_key;
1134 	journal_t *journal;
1135 	int err;
1136 	struct buffer_head *bh;
1137 	int n;
1138 
1139 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1140 	if (!journal)
1141 		return NULL;
1142 
1143 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1144 	init_waitqueue_head(&journal->j_wait_done_commit);
1145 	init_waitqueue_head(&journal->j_wait_commit);
1146 	init_waitqueue_head(&journal->j_wait_updates);
1147 	init_waitqueue_head(&journal->j_wait_reserved);
1148 	mutex_init(&journal->j_barrier);
1149 	mutex_init(&journal->j_checkpoint_mutex);
1150 	spin_lock_init(&journal->j_revoke_lock);
1151 	spin_lock_init(&journal->j_list_lock);
1152 	rwlock_init(&journal->j_state_lock);
1153 
1154 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1155 	journal->j_min_batch_time = 0;
1156 	journal->j_max_batch_time = 15000; /* 15ms */
1157 	atomic_set(&journal->j_reserved_credits, 0);
1158 
1159 	/* The journal is marked for error until we succeed with recovery! */
1160 	journal->j_flags = JBD2_ABORT;
1161 
1162 	/* Set up a default-sized revoke table for the new mount. */
1163 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1164 	if (err)
1165 		goto err_cleanup;
1166 
1167 	spin_lock_init(&journal->j_history_lock);
1168 
1169 	lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1170 			 &jbd2_trans_commit_key, 0);
1171 
1172 	/* journal descriptor can store up to n blocks -bzzz */
1173 	journal->j_blocksize = blocksize;
1174 	journal->j_dev = bdev;
1175 	journal->j_fs_dev = fs_dev;
1176 	journal->j_blk_offset = start;
1177 	journal->j_maxlen = len;
1178 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1179 	journal->j_wbufsize = n;
1180 	journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1181 					GFP_KERNEL);
1182 	if (!journal->j_wbuf)
1183 		goto err_cleanup;
1184 
1185 	bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1186 	if (!bh) {
1187 		pr_err("%s: Cannot get buffer for journal superblock\n",
1188 			__func__);
1189 		goto err_cleanup;
1190 	}
1191 	journal->j_sb_buffer = bh;
1192 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1193 
1194 	return journal;
1195 
1196 err_cleanup:
1197 	kfree(journal->j_wbuf);
1198 	jbd2_journal_destroy_revoke(journal);
1199 	kfree(journal);
1200 	return NULL;
1201 }
1202 
1203 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1204  *
1205  * Create a journal structure assigned some fixed set of disk blocks to
1206  * the journal.  We don't actually touch those disk blocks yet, but we
1207  * need to set up all of the mapping information to tell the journaling
1208  * system where the journal blocks are.
1209  *
1210  */
1211 
1212 /**
1213  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1214  *  @bdev: Block device on which to create the journal
1215  *  @fs_dev: Device which hold journalled filesystem for this journal.
1216  *  @start: Block nr Start of journal.
1217  *  @len:  Length of the journal in blocks.
1218  *  @blocksize: blocksize of journalling device
1219  *
1220  *  Returns: a newly created journal_t *
1221  *
1222  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1223  *  range of blocks on an arbitrary block device.
1224  *
1225  */
1226 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1227 			struct block_device *fs_dev,
1228 			unsigned long long start, int len, int blocksize)
1229 {
1230 	journal_t *journal;
1231 
1232 	journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1233 	if (!journal)
1234 		return NULL;
1235 
1236 	bdevname(journal->j_dev, journal->j_devname);
1237 	strreplace(journal->j_devname, '/', '!');
1238 	jbd2_stats_proc_init(journal);
1239 
1240 	return journal;
1241 }
1242 
1243 /**
1244  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1245  *  @inode: An inode to create the journal in
1246  *
1247  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1248  * the journal.  The inode must exist already, must support bmap() and
1249  * must have all data blocks preallocated.
1250  */
1251 journal_t *jbd2_journal_init_inode(struct inode *inode)
1252 {
1253 	journal_t *journal;
1254 	char *p;
1255 	unsigned long long blocknr;
1256 
1257 	blocknr = bmap(inode, 0);
1258 	if (!blocknr) {
1259 		pr_err("%s: Cannot locate journal superblock\n",
1260 			__func__);
1261 		return NULL;
1262 	}
1263 
1264 	jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1265 		  inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1266 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1267 
1268 	journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1269 			blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1270 			inode->i_sb->s_blocksize);
1271 	if (!journal)
1272 		return NULL;
1273 
1274 	journal->j_inode = inode;
1275 	bdevname(journal->j_dev, journal->j_devname);
1276 	p = strreplace(journal->j_devname, '/', '!');
1277 	sprintf(p, "-%lu", journal->j_inode->i_ino);
1278 	jbd2_stats_proc_init(journal);
1279 
1280 	return journal;
1281 }
1282 
1283 /*
1284  * If the journal init or create aborts, we need to mark the journal
1285  * superblock as being NULL to prevent the journal destroy from writing
1286  * back a bogus superblock.
1287  */
1288 static void journal_fail_superblock (journal_t *journal)
1289 {
1290 	struct buffer_head *bh = journal->j_sb_buffer;
1291 	brelse(bh);
1292 	journal->j_sb_buffer = NULL;
1293 }
1294 
1295 /*
1296  * Given a journal_t structure, initialise the various fields for
1297  * startup of a new journaling session.  We use this both when creating
1298  * a journal, and after recovering an old journal to reset it for
1299  * subsequent use.
1300  */
1301 
1302 static int journal_reset(journal_t *journal)
1303 {
1304 	journal_superblock_t *sb = journal->j_superblock;
1305 	unsigned long long first, last;
1306 
1307 	first = be32_to_cpu(sb->s_first);
1308 	last = be32_to_cpu(sb->s_maxlen);
1309 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1310 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1311 		       first, last);
1312 		journal_fail_superblock(journal);
1313 		return -EINVAL;
1314 	}
1315 
1316 	journal->j_first = first;
1317 	journal->j_last = last;
1318 
1319 	journal->j_head = first;
1320 	journal->j_tail = first;
1321 	journal->j_free = last - first;
1322 
1323 	journal->j_tail_sequence = journal->j_transaction_sequence;
1324 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1325 	journal->j_commit_request = journal->j_commit_sequence;
1326 
1327 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1328 
1329 	/*
1330 	 * As a special case, if the on-disk copy is already marked as needing
1331 	 * no recovery (s_start == 0), then we can safely defer the superblock
1332 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1333 	 * attempting a write to a potential-readonly device.
1334 	 */
1335 	if (sb->s_start == 0) {
1336 		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1337 			"(start %ld, seq %d, errno %d)\n",
1338 			journal->j_tail, journal->j_tail_sequence,
1339 			journal->j_errno);
1340 		journal->j_flags |= JBD2_FLUSHED;
1341 	} else {
1342 		/* Lock here to make assertions happy... */
1343 		mutex_lock_io(&journal->j_checkpoint_mutex);
1344 		/*
1345 		 * Update log tail information. We use REQ_FUA since new
1346 		 * transaction will start reusing journal space and so we
1347 		 * must make sure information about current log tail is on
1348 		 * disk before that.
1349 		 */
1350 		jbd2_journal_update_sb_log_tail(journal,
1351 						journal->j_tail_sequence,
1352 						journal->j_tail,
1353 						REQ_SYNC | REQ_FUA);
1354 		mutex_unlock(&journal->j_checkpoint_mutex);
1355 	}
1356 	return jbd2_journal_start_thread(journal);
1357 }
1358 
1359 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1360 {
1361 	struct buffer_head *bh = journal->j_sb_buffer;
1362 	journal_superblock_t *sb = journal->j_superblock;
1363 	int ret;
1364 
1365 	trace_jbd2_write_superblock(journal, write_flags);
1366 	if (!(journal->j_flags & JBD2_BARRIER))
1367 		write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1368 	lock_buffer(bh);
1369 	if (buffer_write_io_error(bh)) {
1370 		/*
1371 		 * Oh, dear.  A previous attempt to write the journal
1372 		 * superblock failed.  This could happen because the
1373 		 * USB device was yanked out.  Or it could happen to
1374 		 * be a transient write error and maybe the block will
1375 		 * be remapped.  Nothing we can do but to retry the
1376 		 * write and hope for the best.
1377 		 */
1378 		printk(KERN_ERR "JBD2: previous I/O error detected "
1379 		       "for journal superblock update for %s.\n",
1380 		       journal->j_devname);
1381 		clear_buffer_write_io_error(bh);
1382 		set_buffer_uptodate(bh);
1383 	}
1384 	jbd2_superblock_csum_set(journal, sb);
1385 	get_bh(bh);
1386 	bh->b_end_io = end_buffer_write_sync;
1387 	ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1388 	wait_on_buffer(bh);
1389 	if (buffer_write_io_error(bh)) {
1390 		clear_buffer_write_io_error(bh);
1391 		set_buffer_uptodate(bh);
1392 		ret = -EIO;
1393 	}
1394 	if (ret) {
1395 		printk(KERN_ERR "JBD2: Error %d detected when updating "
1396 		       "journal superblock for %s.\n", ret,
1397 		       journal->j_devname);
1398 		jbd2_journal_abort(journal, ret);
1399 	}
1400 
1401 	return ret;
1402 }
1403 
1404 /**
1405  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1406  * @journal: The journal to update.
1407  * @tail_tid: TID of the new transaction at the tail of the log
1408  * @tail_block: The first block of the transaction at the tail of the log
1409  * @write_op: With which operation should we write the journal sb
1410  *
1411  * Update a journal's superblock information about log tail and write it to
1412  * disk, waiting for the IO to complete.
1413  */
1414 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1415 				     unsigned long tail_block, int write_op)
1416 {
1417 	journal_superblock_t *sb = journal->j_superblock;
1418 	int ret;
1419 
1420 	if (is_journal_aborted(journal))
1421 		return -EIO;
1422 
1423 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1424 	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1425 		  tail_block, tail_tid);
1426 
1427 	sb->s_sequence = cpu_to_be32(tail_tid);
1428 	sb->s_start    = cpu_to_be32(tail_block);
1429 
1430 	ret = jbd2_write_superblock(journal, write_op);
1431 	if (ret)
1432 		goto out;
1433 
1434 	/* Log is no longer empty */
1435 	write_lock(&journal->j_state_lock);
1436 	WARN_ON(!sb->s_sequence);
1437 	journal->j_flags &= ~JBD2_FLUSHED;
1438 	write_unlock(&journal->j_state_lock);
1439 
1440 out:
1441 	return ret;
1442 }
1443 
1444 /**
1445  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1446  * @journal: The journal to update.
1447  * @write_op: With which operation should we write the journal sb
1448  *
1449  * Update a journal's dynamic superblock fields to show that journal is empty.
1450  * Write updated superblock to disk waiting for IO to complete.
1451  */
1452 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1453 {
1454 	journal_superblock_t *sb = journal->j_superblock;
1455 
1456 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1457 	read_lock(&journal->j_state_lock);
1458 	/* Is it already empty? */
1459 	if (sb->s_start == 0) {
1460 		read_unlock(&journal->j_state_lock);
1461 		return;
1462 	}
1463 	jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1464 		  journal->j_tail_sequence);
1465 
1466 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1467 	sb->s_start    = cpu_to_be32(0);
1468 	read_unlock(&journal->j_state_lock);
1469 
1470 	jbd2_write_superblock(journal, write_op);
1471 
1472 	/* Log is no longer empty */
1473 	write_lock(&journal->j_state_lock);
1474 	journal->j_flags |= JBD2_FLUSHED;
1475 	write_unlock(&journal->j_state_lock);
1476 }
1477 
1478 
1479 /**
1480  * jbd2_journal_update_sb_errno() - Update error in the journal.
1481  * @journal: The journal to update.
1482  *
1483  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1484  * to complete.
1485  */
1486 void jbd2_journal_update_sb_errno(journal_t *journal)
1487 {
1488 	journal_superblock_t *sb = journal->j_superblock;
1489 	int errcode;
1490 
1491 	read_lock(&journal->j_state_lock);
1492 	errcode = journal->j_errno;
1493 	read_unlock(&journal->j_state_lock);
1494 	if (errcode == -ESHUTDOWN)
1495 		errcode = 0;
1496 	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1497 	sb->s_errno    = cpu_to_be32(errcode);
1498 
1499 	jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1500 }
1501 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1502 
1503 /*
1504  * Read the superblock for a given journal, performing initial
1505  * validation of the format.
1506  */
1507 static int journal_get_superblock(journal_t *journal)
1508 {
1509 	struct buffer_head *bh;
1510 	journal_superblock_t *sb;
1511 	int err = -EIO;
1512 
1513 	bh = journal->j_sb_buffer;
1514 
1515 	J_ASSERT(bh != NULL);
1516 	if (!buffer_uptodate(bh)) {
1517 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1518 		wait_on_buffer(bh);
1519 		if (!buffer_uptodate(bh)) {
1520 			printk(KERN_ERR
1521 				"JBD2: IO error reading journal superblock\n");
1522 			goto out;
1523 		}
1524 	}
1525 
1526 	if (buffer_verified(bh))
1527 		return 0;
1528 
1529 	sb = journal->j_superblock;
1530 
1531 	err = -EINVAL;
1532 
1533 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1534 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1535 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1536 		goto out;
1537 	}
1538 
1539 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1540 	case JBD2_SUPERBLOCK_V1:
1541 		journal->j_format_version = 1;
1542 		break;
1543 	case JBD2_SUPERBLOCK_V2:
1544 		journal->j_format_version = 2;
1545 		break;
1546 	default:
1547 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1548 		goto out;
1549 	}
1550 
1551 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1552 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1553 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1554 		printk(KERN_WARNING "JBD2: journal file too short\n");
1555 		goto out;
1556 	}
1557 
1558 	if (be32_to_cpu(sb->s_first) == 0 ||
1559 	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1560 		printk(KERN_WARNING
1561 			"JBD2: Invalid start block of journal: %u\n",
1562 			be32_to_cpu(sb->s_first));
1563 		goto out;
1564 	}
1565 
1566 	if (jbd2_has_feature_csum2(journal) &&
1567 	    jbd2_has_feature_csum3(journal)) {
1568 		/* Can't have checksum v2 and v3 at the same time! */
1569 		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1570 		       "at the same time!\n");
1571 		goto out;
1572 	}
1573 
1574 	if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1575 	    jbd2_has_feature_checksum(journal)) {
1576 		/* Can't have checksum v1 and v2 on at the same time! */
1577 		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1578 		       "at the same time!\n");
1579 		goto out;
1580 	}
1581 
1582 	if (!jbd2_verify_csum_type(journal, sb)) {
1583 		printk(KERN_ERR "JBD2: Unknown checksum type\n");
1584 		goto out;
1585 	}
1586 
1587 	/* Load the checksum driver */
1588 	if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1589 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1590 		if (IS_ERR(journal->j_chksum_driver)) {
1591 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1592 			err = PTR_ERR(journal->j_chksum_driver);
1593 			journal->j_chksum_driver = NULL;
1594 			goto out;
1595 		}
1596 	}
1597 
1598 	/* Check superblock checksum */
1599 	if (!jbd2_superblock_csum_verify(journal, sb)) {
1600 		printk(KERN_ERR "JBD2: journal checksum error\n");
1601 		err = -EFSBADCRC;
1602 		goto out;
1603 	}
1604 
1605 	/* Precompute checksum seed for all metadata */
1606 	if (jbd2_journal_has_csum_v2or3(journal))
1607 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1608 						   sizeof(sb->s_uuid));
1609 
1610 	set_buffer_verified(bh);
1611 
1612 	return 0;
1613 
1614 out:
1615 	journal_fail_superblock(journal);
1616 	return err;
1617 }
1618 
1619 /*
1620  * Load the on-disk journal superblock and read the key fields into the
1621  * journal_t.
1622  */
1623 
1624 static int load_superblock(journal_t *journal)
1625 {
1626 	int err;
1627 	journal_superblock_t *sb;
1628 
1629 	err = journal_get_superblock(journal);
1630 	if (err)
1631 		return err;
1632 
1633 	sb = journal->j_superblock;
1634 
1635 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1636 	journal->j_tail = be32_to_cpu(sb->s_start);
1637 	journal->j_first = be32_to_cpu(sb->s_first);
1638 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1639 	journal->j_errno = be32_to_cpu(sb->s_errno);
1640 
1641 	return 0;
1642 }
1643 
1644 
1645 /**
1646  * int jbd2_journal_load() - Read journal from disk.
1647  * @journal: Journal to act on.
1648  *
1649  * Given a journal_t structure which tells us which disk blocks contain
1650  * a journal, read the journal from disk to initialise the in-memory
1651  * structures.
1652  */
1653 int jbd2_journal_load(journal_t *journal)
1654 {
1655 	int err;
1656 	journal_superblock_t *sb;
1657 
1658 	err = load_superblock(journal);
1659 	if (err)
1660 		return err;
1661 
1662 	sb = journal->j_superblock;
1663 	/* If this is a V2 superblock, then we have to check the
1664 	 * features flags on it. */
1665 
1666 	if (journal->j_format_version >= 2) {
1667 		if ((sb->s_feature_ro_compat &
1668 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1669 		    (sb->s_feature_incompat &
1670 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1671 			printk(KERN_WARNING
1672 				"JBD2: Unrecognised features on journal\n");
1673 			return -EINVAL;
1674 		}
1675 	}
1676 
1677 	/*
1678 	 * Create a slab for this blocksize
1679 	 */
1680 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1681 	if (err)
1682 		return err;
1683 
1684 	/* Let the recovery code check whether it needs to recover any
1685 	 * data from the journal. */
1686 	if (jbd2_journal_recover(journal))
1687 		goto recovery_error;
1688 
1689 	if (journal->j_failed_commit) {
1690 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1691 		       "is corrupt.\n", journal->j_failed_commit,
1692 		       journal->j_devname);
1693 		return -EFSCORRUPTED;
1694 	}
1695 
1696 	/* OK, we've finished with the dynamic journal bits:
1697 	 * reinitialise the dynamic contents of the superblock in memory
1698 	 * and reset them on disk. */
1699 	if (journal_reset(journal))
1700 		goto recovery_error;
1701 
1702 	journal->j_flags &= ~JBD2_ABORT;
1703 	journal->j_flags |= JBD2_LOADED;
1704 	return 0;
1705 
1706 recovery_error:
1707 	printk(KERN_WARNING "JBD2: recovery failed\n");
1708 	return -EIO;
1709 }
1710 
1711 /**
1712  * void jbd2_journal_destroy() - Release a journal_t structure.
1713  * @journal: Journal to act on.
1714  *
1715  * Release a journal_t structure once it is no longer in use by the
1716  * journaled object.
1717  * Return <0 if we couldn't clean up the journal.
1718  */
1719 int jbd2_journal_destroy(journal_t *journal)
1720 {
1721 	int err = 0;
1722 
1723 	/* Wait for the commit thread to wake up and die. */
1724 	journal_kill_thread(journal);
1725 
1726 	/* Force a final log commit */
1727 	if (journal->j_running_transaction)
1728 		jbd2_journal_commit_transaction(journal);
1729 
1730 	/* Force any old transactions to disk */
1731 
1732 	/* Totally anal locking here... */
1733 	spin_lock(&journal->j_list_lock);
1734 	while (journal->j_checkpoint_transactions != NULL) {
1735 		spin_unlock(&journal->j_list_lock);
1736 		mutex_lock_io(&journal->j_checkpoint_mutex);
1737 		err = jbd2_log_do_checkpoint(journal);
1738 		mutex_unlock(&journal->j_checkpoint_mutex);
1739 		/*
1740 		 * If checkpointing failed, just free the buffers to avoid
1741 		 * looping forever
1742 		 */
1743 		if (err) {
1744 			jbd2_journal_destroy_checkpoint(journal);
1745 			spin_lock(&journal->j_list_lock);
1746 			break;
1747 		}
1748 		spin_lock(&journal->j_list_lock);
1749 	}
1750 
1751 	J_ASSERT(journal->j_running_transaction == NULL);
1752 	J_ASSERT(journal->j_committing_transaction == NULL);
1753 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1754 	spin_unlock(&journal->j_list_lock);
1755 
1756 	if (journal->j_sb_buffer) {
1757 		if (!is_journal_aborted(journal)) {
1758 			mutex_lock_io(&journal->j_checkpoint_mutex);
1759 
1760 			write_lock(&journal->j_state_lock);
1761 			journal->j_tail_sequence =
1762 				++journal->j_transaction_sequence;
1763 			write_unlock(&journal->j_state_lock);
1764 
1765 			jbd2_mark_journal_empty(journal,
1766 					REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1767 			mutex_unlock(&journal->j_checkpoint_mutex);
1768 		} else
1769 			err = -EIO;
1770 		brelse(journal->j_sb_buffer);
1771 	}
1772 
1773 	if (journal->j_proc_entry)
1774 		jbd2_stats_proc_exit(journal);
1775 	iput(journal->j_inode);
1776 	if (journal->j_revoke)
1777 		jbd2_journal_destroy_revoke(journal);
1778 	if (journal->j_chksum_driver)
1779 		crypto_free_shash(journal->j_chksum_driver);
1780 	kfree(journal->j_wbuf);
1781 	kfree(journal);
1782 
1783 	return err;
1784 }
1785 
1786 
1787 /**
1788  *int jbd2_journal_check_used_features () - Check if features specified are used.
1789  * @journal: Journal to check.
1790  * @compat: bitmask of compatible features
1791  * @ro: bitmask of features that force read-only mount
1792  * @incompat: bitmask of incompatible features
1793  *
1794  * Check whether the journal uses all of a given set of
1795  * features.  Return true (non-zero) if it does.
1796  **/
1797 
1798 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1799 				 unsigned long ro, unsigned long incompat)
1800 {
1801 	journal_superblock_t *sb;
1802 
1803 	if (!compat && !ro && !incompat)
1804 		return 1;
1805 	/* Load journal superblock if it is not loaded yet. */
1806 	if (journal->j_format_version == 0 &&
1807 	    journal_get_superblock(journal) != 0)
1808 		return 0;
1809 	if (journal->j_format_version == 1)
1810 		return 0;
1811 
1812 	sb = journal->j_superblock;
1813 
1814 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1815 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1816 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1817 		return 1;
1818 
1819 	return 0;
1820 }
1821 
1822 /**
1823  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1824  * @journal: Journal to check.
1825  * @compat: bitmask of compatible features
1826  * @ro: bitmask of features that force read-only mount
1827  * @incompat: bitmask of incompatible features
1828  *
1829  * Check whether the journaling code supports the use of
1830  * all of a given set of features on this journal.  Return true
1831  * (non-zero) if it can. */
1832 
1833 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1834 				      unsigned long ro, unsigned long incompat)
1835 {
1836 	if (!compat && !ro && !incompat)
1837 		return 1;
1838 
1839 	/* We can support any known requested features iff the
1840 	 * superblock is in version 2.  Otherwise we fail to support any
1841 	 * extended sb features. */
1842 
1843 	if (journal->j_format_version != 2)
1844 		return 0;
1845 
1846 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1847 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1848 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1849 		return 1;
1850 
1851 	return 0;
1852 }
1853 
1854 /**
1855  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1856  * @journal: Journal to act on.
1857  * @compat: bitmask of compatible features
1858  * @ro: bitmask of features that force read-only mount
1859  * @incompat: bitmask of incompatible features
1860  *
1861  * Mark a given journal feature as present on the
1862  * superblock.  Returns true if the requested features could be set.
1863  *
1864  */
1865 
1866 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1867 			  unsigned long ro, unsigned long incompat)
1868 {
1869 #define INCOMPAT_FEATURE_ON(f) \
1870 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1871 #define COMPAT_FEATURE_ON(f) \
1872 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1873 	journal_superblock_t *sb;
1874 
1875 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1876 		return 1;
1877 
1878 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1879 		return 0;
1880 
1881 	/* If enabling v2 checksums, turn on v3 instead */
1882 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1883 		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1884 		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1885 	}
1886 
1887 	/* Asking for checksumming v3 and v1?  Only give them v3. */
1888 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1889 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1890 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1891 
1892 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1893 		  compat, ro, incompat);
1894 
1895 	sb = journal->j_superblock;
1896 
1897 	/* If enabling v3 checksums, update superblock */
1898 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1899 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1900 		sb->s_feature_compat &=
1901 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1902 
1903 		/* Load the checksum driver */
1904 		if (journal->j_chksum_driver == NULL) {
1905 			journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1906 								      0, 0);
1907 			if (IS_ERR(journal->j_chksum_driver)) {
1908 				printk(KERN_ERR "JBD2: Cannot load crc32c "
1909 				       "driver.\n");
1910 				journal->j_chksum_driver = NULL;
1911 				return 0;
1912 			}
1913 
1914 			/* Precompute checksum seed for all metadata */
1915 			journal->j_csum_seed = jbd2_chksum(journal, ~0,
1916 							   sb->s_uuid,
1917 							   sizeof(sb->s_uuid));
1918 		}
1919 	}
1920 
1921 	/* If enabling v1 checksums, downgrade superblock */
1922 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1923 		sb->s_feature_incompat &=
1924 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1925 				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
1926 
1927 	sb->s_feature_compat    |= cpu_to_be32(compat);
1928 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1929 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1930 
1931 	return 1;
1932 #undef COMPAT_FEATURE_ON
1933 #undef INCOMPAT_FEATURE_ON
1934 }
1935 
1936 /*
1937  * jbd2_journal_clear_features () - Clear a given journal feature in the
1938  * 				    superblock
1939  * @journal: Journal to act on.
1940  * @compat: bitmask of compatible features
1941  * @ro: bitmask of features that force read-only mount
1942  * @incompat: bitmask of incompatible features
1943  *
1944  * Clear a given journal feature as present on the
1945  * superblock.
1946  */
1947 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1948 				unsigned long ro, unsigned long incompat)
1949 {
1950 	journal_superblock_t *sb;
1951 
1952 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1953 		  compat, ro, incompat);
1954 
1955 	sb = journal->j_superblock;
1956 
1957 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1958 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1959 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1960 }
1961 EXPORT_SYMBOL(jbd2_journal_clear_features);
1962 
1963 /**
1964  * int jbd2_journal_flush () - Flush journal
1965  * @journal: Journal to act on.
1966  *
1967  * Flush all data for a given journal to disk and empty the journal.
1968  * Filesystems can use this when remounting readonly to ensure that
1969  * recovery does not need to happen on remount.
1970  */
1971 
1972 int jbd2_journal_flush(journal_t *journal)
1973 {
1974 	int err = 0;
1975 	transaction_t *transaction = NULL;
1976 
1977 	write_lock(&journal->j_state_lock);
1978 
1979 	/* Force everything buffered to the log... */
1980 	if (journal->j_running_transaction) {
1981 		transaction = journal->j_running_transaction;
1982 		__jbd2_log_start_commit(journal, transaction->t_tid);
1983 	} else if (journal->j_committing_transaction)
1984 		transaction = journal->j_committing_transaction;
1985 
1986 	/* Wait for the log commit to complete... */
1987 	if (transaction) {
1988 		tid_t tid = transaction->t_tid;
1989 
1990 		write_unlock(&journal->j_state_lock);
1991 		jbd2_log_wait_commit(journal, tid);
1992 	} else {
1993 		write_unlock(&journal->j_state_lock);
1994 	}
1995 
1996 	/* ...and flush everything in the log out to disk. */
1997 	spin_lock(&journal->j_list_lock);
1998 	while (!err && journal->j_checkpoint_transactions != NULL) {
1999 		spin_unlock(&journal->j_list_lock);
2000 		mutex_lock_io(&journal->j_checkpoint_mutex);
2001 		err = jbd2_log_do_checkpoint(journal);
2002 		mutex_unlock(&journal->j_checkpoint_mutex);
2003 		spin_lock(&journal->j_list_lock);
2004 	}
2005 	spin_unlock(&journal->j_list_lock);
2006 
2007 	if (is_journal_aborted(journal))
2008 		return -EIO;
2009 
2010 	mutex_lock_io(&journal->j_checkpoint_mutex);
2011 	if (!err) {
2012 		err = jbd2_cleanup_journal_tail(journal);
2013 		if (err < 0) {
2014 			mutex_unlock(&journal->j_checkpoint_mutex);
2015 			goto out;
2016 		}
2017 		err = 0;
2018 	}
2019 
2020 	/* Finally, mark the journal as really needing no recovery.
2021 	 * This sets s_start==0 in the underlying superblock, which is
2022 	 * the magic code for a fully-recovered superblock.  Any future
2023 	 * commits of data to the journal will restore the current
2024 	 * s_start value. */
2025 	jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2026 	mutex_unlock(&journal->j_checkpoint_mutex);
2027 	write_lock(&journal->j_state_lock);
2028 	J_ASSERT(!journal->j_running_transaction);
2029 	J_ASSERT(!journal->j_committing_transaction);
2030 	J_ASSERT(!journal->j_checkpoint_transactions);
2031 	J_ASSERT(journal->j_head == journal->j_tail);
2032 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2033 	write_unlock(&journal->j_state_lock);
2034 out:
2035 	return err;
2036 }
2037 
2038 /**
2039  * int jbd2_journal_wipe() - Wipe journal contents
2040  * @journal: Journal to act on.
2041  * @write: flag (see below)
2042  *
2043  * Wipe out all of the contents of a journal, safely.  This will produce
2044  * a warning if the journal contains any valid recovery information.
2045  * Must be called between journal_init_*() and jbd2_journal_load().
2046  *
2047  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2048  * we merely suppress recovery.
2049  */
2050 
2051 int jbd2_journal_wipe(journal_t *journal, int write)
2052 {
2053 	int err = 0;
2054 
2055 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2056 
2057 	err = load_superblock(journal);
2058 	if (err)
2059 		return err;
2060 
2061 	if (!journal->j_tail)
2062 		goto no_recovery;
2063 
2064 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2065 		write ? "Clearing" : "Ignoring");
2066 
2067 	err = jbd2_journal_skip_recovery(journal);
2068 	if (write) {
2069 		/* Lock to make assertions happy... */
2070 		mutex_lock(&journal->j_checkpoint_mutex);
2071 		jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2072 		mutex_unlock(&journal->j_checkpoint_mutex);
2073 	}
2074 
2075  no_recovery:
2076 	return err;
2077 }
2078 
2079 /*
2080  * Journal abort has very specific semantics, which we describe
2081  * for journal abort.
2082  *
2083  * Two internal functions, which provide abort to the jbd layer
2084  * itself are here.
2085  */
2086 
2087 /*
2088  * Quick version for internal journal use (doesn't lock the journal).
2089  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2090  * and don't attempt to make any other journal updates.
2091  */
2092 void __jbd2_journal_abort_hard(journal_t *journal)
2093 {
2094 	transaction_t *transaction;
2095 
2096 	if (journal->j_flags & JBD2_ABORT)
2097 		return;
2098 
2099 	printk(KERN_ERR "Aborting journal on device %s.\n",
2100 	       journal->j_devname);
2101 
2102 	write_lock(&journal->j_state_lock);
2103 	journal->j_flags |= JBD2_ABORT;
2104 	transaction = journal->j_running_transaction;
2105 	if (transaction)
2106 		__jbd2_log_start_commit(journal, transaction->t_tid);
2107 	write_unlock(&journal->j_state_lock);
2108 }
2109 
2110 /* Soft abort: record the abort error status in the journal superblock,
2111  * but don't do any other IO. */
2112 static void __journal_abort_soft (journal_t *journal, int errno)
2113 {
2114 	int old_errno;
2115 
2116 	write_lock(&journal->j_state_lock);
2117 	old_errno = journal->j_errno;
2118 	if (!journal->j_errno || errno == -ESHUTDOWN)
2119 		journal->j_errno = errno;
2120 
2121 	if (journal->j_flags & JBD2_ABORT) {
2122 		write_unlock(&journal->j_state_lock);
2123 		if (!old_errno && old_errno != -ESHUTDOWN &&
2124 		    errno == -ESHUTDOWN)
2125 			jbd2_journal_update_sb_errno(journal);
2126 		return;
2127 	}
2128 	write_unlock(&journal->j_state_lock);
2129 
2130 	__jbd2_journal_abort_hard(journal);
2131 
2132 	if (errno) {
2133 		jbd2_journal_update_sb_errno(journal);
2134 		write_lock(&journal->j_state_lock);
2135 		journal->j_flags |= JBD2_REC_ERR;
2136 		write_unlock(&journal->j_state_lock);
2137 	}
2138 }
2139 
2140 /**
2141  * void jbd2_journal_abort () - Shutdown the journal immediately.
2142  * @journal: the journal to shutdown.
2143  * @errno:   an error number to record in the journal indicating
2144  *           the reason for the shutdown.
2145  *
2146  * Perform a complete, immediate shutdown of the ENTIRE
2147  * journal (not of a single transaction).  This operation cannot be
2148  * undone without closing and reopening the journal.
2149  *
2150  * The jbd2_journal_abort function is intended to support higher level error
2151  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2152  * mode.
2153  *
2154  * Journal abort has very specific semantics.  Any existing dirty,
2155  * unjournaled buffers in the main filesystem will still be written to
2156  * disk by bdflush, but the journaling mechanism will be suspended
2157  * immediately and no further transaction commits will be honoured.
2158  *
2159  * Any dirty, journaled buffers will be written back to disk without
2160  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2161  * filesystem, but we _do_ attempt to leave as much data as possible
2162  * behind for fsck to use for cleanup.
2163  *
2164  * Any attempt to get a new transaction handle on a journal which is in
2165  * ABORT state will just result in an -EROFS error return.  A
2166  * jbd2_journal_stop on an existing handle will return -EIO if we have
2167  * entered abort state during the update.
2168  *
2169  * Recursive transactions are not disturbed by journal abort until the
2170  * final jbd2_journal_stop, which will receive the -EIO error.
2171  *
2172  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2173  * which will be recorded (if possible) in the journal superblock.  This
2174  * allows a client to record failure conditions in the middle of a
2175  * transaction without having to complete the transaction to record the
2176  * failure to disk.  ext3_error, for example, now uses this
2177  * functionality.
2178  *
2179  * Errors which originate from within the journaling layer will NOT
2180  * supply an errno; a null errno implies that absolutely no further
2181  * writes are done to the journal (unless there are any already in
2182  * progress).
2183  *
2184  */
2185 
2186 void jbd2_journal_abort(journal_t *journal, int errno)
2187 {
2188 	__journal_abort_soft(journal, errno);
2189 }
2190 
2191 /**
2192  * int jbd2_journal_errno () - returns the journal's error state.
2193  * @journal: journal to examine.
2194  *
2195  * This is the errno number set with jbd2_journal_abort(), the last
2196  * time the journal was mounted - if the journal was stopped
2197  * without calling abort this will be 0.
2198  *
2199  * If the journal has been aborted on this mount time -EROFS will
2200  * be returned.
2201  */
2202 int jbd2_journal_errno(journal_t *journal)
2203 {
2204 	int err;
2205 
2206 	read_lock(&journal->j_state_lock);
2207 	if (journal->j_flags & JBD2_ABORT)
2208 		err = -EROFS;
2209 	else
2210 		err = journal->j_errno;
2211 	read_unlock(&journal->j_state_lock);
2212 	return err;
2213 }
2214 
2215 /**
2216  * int jbd2_journal_clear_err () - clears the journal's error state
2217  * @journal: journal to act on.
2218  *
2219  * An error must be cleared or acked to take a FS out of readonly
2220  * mode.
2221  */
2222 int jbd2_journal_clear_err(journal_t *journal)
2223 {
2224 	int err = 0;
2225 
2226 	write_lock(&journal->j_state_lock);
2227 	if (journal->j_flags & JBD2_ABORT)
2228 		err = -EROFS;
2229 	else
2230 		journal->j_errno = 0;
2231 	write_unlock(&journal->j_state_lock);
2232 	return err;
2233 }
2234 
2235 /**
2236  * void jbd2_journal_ack_err() - Ack journal err.
2237  * @journal: journal to act on.
2238  *
2239  * An error must be cleared or acked to take a FS out of readonly
2240  * mode.
2241  */
2242 void jbd2_journal_ack_err(journal_t *journal)
2243 {
2244 	write_lock(&journal->j_state_lock);
2245 	if (journal->j_errno)
2246 		journal->j_flags |= JBD2_ACK_ERR;
2247 	write_unlock(&journal->j_state_lock);
2248 }
2249 
2250 int jbd2_journal_blocks_per_page(struct inode *inode)
2251 {
2252 	return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2253 }
2254 
2255 /*
2256  * helper functions to deal with 32 or 64bit block numbers.
2257  */
2258 size_t journal_tag_bytes(journal_t *journal)
2259 {
2260 	size_t sz;
2261 
2262 	if (jbd2_has_feature_csum3(journal))
2263 		return sizeof(journal_block_tag3_t);
2264 
2265 	sz = sizeof(journal_block_tag_t);
2266 
2267 	if (jbd2_has_feature_csum2(journal))
2268 		sz += sizeof(__u16);
2269 
2270 	if (jbd2_has_feature_64bit(journal))
2271 		return sz;
2272 	else
2273 		return sz - sizeof(__u32);
2274 }
2275 
2276 /*
2277  * JBD memory management
2278  *
2279  * These functions are used to allocate block-sized chunks of memory
2280  * used for making copies of buffer_head data.  Very often it will be
2281  * page-sized chunks of data, but sometimes it will be in
2282  * sub-page-size chunks.  (For example, 16k pages on Power systems
2283  * with a 4k block file system.)  For blocks smaller than a page, we
2284  * use a SLAB allocator.  There are slab caches for each block size,
2285  * which are allocated at mount time, if necessary, and we only free
2286  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2287  * this reason we don't need to a mutex to protect access to
2288  * jbd2_slab[] allocating or releasing memory; only in
2289  * jbd2_journal_create_slab().
2290  */
2291 #define JBD2_MAX_SLABS 8
2292 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2293 
2294 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2295 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2296 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2297 };
2298 
2299 
2300 static void jbd2_journal_destroy_slabs(void)
2301 {
2302 	int i;
2303 
2304 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2305 		kmem_cache_destroy(jbd2_slab[i]);
2306 		jbd2_slab[i] = NULL;
2307 	}
2308 }
2309 
2310 static int jbd2_journal_create_slab(size_t size)
2311 {
2312 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2313 	int i = order_base_2(size) - 10;
2314 	size_t slab_size;
2315 
2316 	if (size == PAGE_SIZE)
2317 		return 0;
2318 
2319 	if (i >= JBD2_MAX_SLABS)
2320 		return -EINVAL;
2321 
2322 	if (unlikely(i < 0))
2323 		i = 0;
2324 	mutex_lock(&jbd2_slab_create_mutex);
2325 	if (jbd2_slab[i]) {
2326 		mutex_unlock(&jbd2_slab_create_mutex);
2327 		return 0;	/* Already created */
2328 	}
2329 
2330 	slab_size = 1 << (i+10);
2331 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2332 					 slab_size, 0, NULL);
2333 	mutex_unlock(&jbd2_slab_create_mutex);
2334 	if (!jbd2_slab[i]) {
2335 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2336 		return -ENOMEM;
2337 	}
2338 	return 0;
2339 }
2340 
2341 static struct kmem_cache *get_slab(size_t size)
2342 {
2343 	int i = order_base_2(size) - 10;
2344 
2345 	BUG_ON(i >= JBD2_MAX_SLABS);
2346 	if (unlikely(i < 0))
2347 		i = 0;
2348 	BUG_ON(jbd2_slab[i] == NULL);
2349 	return jbd2_slab[i];
2350 }
2351 
2352 void *jbd2_alloc(size_t size, gfp_t flags)
2353 {
2354 	void *ptr;
2355 
2356 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2357 
2358 	if (size < PAGE_SIZE)
2359 		ptr = kmem_cache_alloc(get_slab(size), flags);
2360 	else
2361 		ptr = (void *)__get_free_pages(flags, get_order(size));
2362 
2363 	/* Check alignment; SLUB has gotten this wrong in the past,
2364 	 * and this can lead to user data corruption! */
2365 	BUG_ON(((unsigned long) ptr) & (size-1));
2366 
2367 	return ptr;
2368 }
2369 
2370 void jbd2_free(void *ptr, size_t size)
2371 {
2372 	if (size < PAGE_SIZE)
2373 		kmem_cache_free(get_slab(size), ptr);
2374 	else
2375 		free_pages((unsigned long)ptr, get_order(size));
2376 };
2377 
2378 /*
2379  * Journal_head storage management
2380  */
2381 static struct kmem_cache *jbd2_journal_head_cache;
2382 #ifdef CONFIG_JBD2_DEBUG
2383 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2384 #endif
2385 
2386 static int jbd2_journal_init_journal_head_cache(void)
2387 {
2388 	int retval;
2389 
2390 	J_ASSERT(jbd2_journal_head_cache == NULL);
2391 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2392 				sizeof(struct journal_head),
2393 				0,		/* offset */
2394 				SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2395 				NULL);		/* ctor */
2396 	retval = 0;
2397 	if (!jbd2_journal_head_cache) {
2398 		retval = -ENOMEM;
2399 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2400 	}
2401 	return retval;
2402 }
2403 
2404 static void jbd2_journal_destroy_journal_head_cache(void)
2405 {
2406 	kmem_cache_destroy(jbd2_journal_head_cache);
2407 	jbd2_journal_head_cache = NULL;
2408 }
2409 
2410 /*
2411  * journal_head splicing and dicing
2412  */
2413 static struct journal_head *journal_alloc_journal_head(void)
2414 {
2415 	struct journal_head *ret;
2416 
2417 #ifdef CONFIG_JBD2_DEBUG
2418 	atomic_inc(&nr_journal_heads);
2419 #endif
2420 	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2421 	if (!ret) {
2422 		jbd_debug(1, "out of memory for journal_head\n");
2423 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2424 		ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2425 				GFP_NOFS | __GFP_NOFAIL);
2426 	}
2427 	return ret;
2428 }
2429 
2430 static void journal_free_journal_head(struct journal_head *jh)
2431 {
2432 #ifdef CONFIG_JBD2_DEBUG
2433 	atomic_dec(&nr_journal_heads);
2434 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2435 #endif
2436 	kmem_cache_free(jbd2_journal_head_cache, jh);
2437 }
2438 
2439 /*
2440  * A journal_head is attached to a buffer_head whenever JBD has an
2441  * interest in the buffer.
2442  *
2443  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2444  * is set.  This bit is tested in core kernel code where we need to take
2445  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2446  * there.
2447  *
2448  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2449  *
2450  * When a buffer has its BH_JBD bit set it is immune from being released by
2451  * core kernel code, mainly via ->b_count.
2452  *
2453  * A journal_head is detached from its buffer_head when the journal_head's
2454  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2455  * transaction (b_cp_transaction) hold their references to b_jcount.
2456  *
2457  * Various places in the kernel want to attach a journal_head to a buffer_head
2458  * _before_ attaching the journal_head to a transaction.  To protect the
2459  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2460  * journal_head's b_jcount refcount by one.  The caller must call
2461  * jbd2_journal_put_journal_head() to undo this.
2462  *
2463  * So the typical usage would be:
2464  *
2465  *	(Attach a journal_head if needed.  Increments b_jcount)
2466  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2467  *	...
2468  *      (Get another reference for transaction)
2469  *	jbd2_journal_grab_journal_head(bh);
2470  *	jh->b_transaction = xxx;
2471  *	(Put original reference)
2472  *	jbd2_journal_put_journal_head(jh);
2473  */
2474 
2475 /*
2476  * Give a buffer_head a journal_head.
2477  *
2478  * May sleep.
2479  */
2480 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2481 {
2482 	struct journal_head *jh;
2483 	struct journal_head *new_jh = NULL;
2484 
2485 repeat:
2486 	if (!buffer_jbd(bh))
2487 		new_jh = journal_alloc_journal_head();
2488 
2489 	jbd_lock_bh_journal_head(bh);
2490 	if (buffer_jbd(bh)) {
2491 		jh = bh2jh(bh);
2492 	} else {
2493 		J_ASSERT_BH(bh,
2494 			(atomic_read(&bh->b_count) > 0) ||
2495 			(bh->b_page && bh->b_page->mapping));
2496 
2497 		if (!new_jh) {
2498 			jbd_unlock_bh_journal_head(bh);
2499 			goto repeat;
2500 		}
2501 
2502 		jh = new_jh;
2503 		new_jh = NULL;		/* We consumed it */
2504 		set_buffer_jbd(bh);
2505 		bh->b_private = jh;
2506 		jh->b_bh = bh;
2507 		get_bh(bh);
2508 		BUFFER_TRACE(bh, "added journal_head");
2509 	}
2510 	jh->b_jcount++;
2511 	jbd_unlock_bh_journal_head(bh);
2512 	if (new_jh)
2513 		journal_free_journal_head(new_jh);
2514 	return bh->b_private;
2515 }
2516 
2517 /*
2518  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2519  * having a journal_head, return NULL
2520  */
2521 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2522 {
2523 	struct journal_head *jh = NULL;
2524 
2525 	jbd_lock_bh_journal_head(bh);
2526 	if (buffer_jbd(bh)) {
2527 		jh = bh2jh(bh);
2528 		jh->b_jcount++;
2529 	}
2530 	jbd_unlock_bh_journal_head(bh);
2531 	return jh;
2532 }
2533 
2534 static void __journal_remove_journal_head(struct buffer_head *bh)
2535 {
2536 	struct journal_head *jh = bh2jh(bh);
2537 
2538 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2539 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2540 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2541 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2542 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2543 	J_ASSERT_BH(bh, buffer_jbd(bh));
2544 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2545 	BUFFER_TRACE(bh, "remove journal_head");
2546 	if (jh->b_frozen_data) {
2547 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2548 		jbd2_free(jh->b_frozen_data, bh->b_size);
2549 	}
2550 	if (jh->b_committed_data) {
2551 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2552 		jbd2_free(jh->b_committed_data, bh->b_size);
2553 	}
2554 	bh->b_private = NULL;
2555 	jh->b_bh = NULL;	/* debug, really */
2556 	clear_buffer_jbd(bh);
2557 	journal_free_journal_head(jh);
2558 }
2559 
2560 /*
2561  * Drop a reference on the passed journal_head.  If it fell to zero then
2562  * release the journal_head from the buffer_head.
2563  */
2564 void jbd2_journal_put_journal_head(struct journal_head *jh)
2565 {
2566 	struct buffer_head *bh = jh2bh(jh);
2567 
2568 	jbd_lock_bh_journal_head(bh);
2569 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2570 	--jh->b_jcount;
2571 	if (!jh->b_jcount) {
2572 		__journal_remove_journal_head(bh);
2573 		jbd_unlock_bh_journal_head(bh);
2574 		__brelse(bh);
2575 	} else
2576 		jbd_unlock_bh_journal_head(bh);
2577 }
2578 
2579 /*
2580  * Initialize jbd inode head
2581  */
2582 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2583 {
2584 	jinode->i_transaction = NULL;
2585 	jinode->i_next_transaction = NULL;
2586 	jinode->i_vfs_inode = inode;
2587 	jinode->i_flags = 0;
2588 	INIT_LIST_HEAD(&jinode->i_list);
2589 }
2590 
2591 /*
2592  * Function to be called before we start removing inode from memory (i.e.,
2593  * clear_inode() is a fine place to be called from). It removes inode from
2594  * transaction's lists.
2595  */
2596 void jbd2_journal_release_jbd_inode(journal_t *journal,
2597 				    struct jbd2_inode *jinode)
2598 {
2599 	if (!journal)
2600 		return;
2601 restart:
2602 	spin_lock(&journal->j_list_lock);
2603 	/* Is commit writing out inode - we have to wait */
2604 	if (jinode->i_flags & JI_COMMIT_RUNNING) {
2605 		wait_queue_head_t *wq;
2606 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2607 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2608 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2609 		spin_unlock(&journal->j_list_lock);
2610 		schedule();
2611 		finish_wait(wq, &wait.wq_entry);
2612 		goto restart;
2613 	}
2614 
2615 	if (jinode->i_transaction) {
2616 		list_del(&jinode->i_list);
2617 		jinode->i_transaction = NULL;
2618 	}
2619 	spin_unlock(&journal->j_list_lock);
2620 }
2621 
2622 
2623 #ifdef CONFIG_PROC_FS
2624 
2625 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2626 
2627 static void __init jbd2_create_jbd_stats_proc_entry(void)
2628 {
2629 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2630 }
2631 
2632 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2633 {
2634 	if (proc_jbd2_stats)
2635 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2636 }
2637 
2638 #else
2639 
2640 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2641 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2642 
2643 #endif
2644 
2645 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2646 
2647 static int __init jbd2_journal_init_handle_cache(void)
2648 {
2649 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2650 	if (jbd2_handle_cache == NULL) {
2651 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2652 		return -ENOMEM;
2653 	}
2654 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2655 	if (jbd2_inode_cache == NULL) {
2656 		printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2657 		kmem_cache_destroy(jbd2_handle_cache);
2658 		return -ENOMEM;
2659 	}
2660 	return 0;
2661 }
2662 
2663 static void jbd2_journal_destroy_handle_cache(void)
2664 {
2665 	kmem_cache_destroy(jbd2_handle_cache);
2666 	jbd2_handle_cache = NULL;
2667 	kmem_cache_destroy(jbd2_inode_cache);
2668 	jbd2_inode_cache = NULL;
2669 }
2670 
2671 /*
2672  * Module startup and shutdown
2673  */
2674 
2675 static int __init journal_init_caches(void)
2676 {
2677 	int ret;
2678 
2679 	ret = jbd2_journal_init_revoke_caches();
2680 	if (ret == 0)
2681 		ret = jbd2_journal_init_journal_head_cache();
2682 	if (ret == 0)
2683 		ret = jbd2_journal_init_handle_cache();
2684 	if (ret == 0)
2685 		ret = jbd2_journal_init_transaction_cache();
2686 	return ret;
2687 }
2688 
2689 static void jbd2_journal_destroy_caches(void)
2690 {
2691 	jbd2_journal_destroy_revoke_caches();
2692 	jbd2_journal_destroy_journal_head_cache();
2693 	jbd2_journal_destroy_handle_cache();
2694 	jbd2_journal_destroy_transaction_cache();
2695 	jbd2_journal_destroy_slabs();
2696 }
2697 
2698 static int __init journal_init(void)
2699 {
2700 	int ret;
2701 
2702 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2703 
2704 	ret = journal_init_caches();
2705 	if (ret == 0) {
2706 		jbd2_create_jbd_stats_proc_entry();
2707 	} else {
2708 		jbd2_journal_destroy_caches();
2709 	}
2710 	return ret;
2711 }
2712 
2713 static void __exit journal_exit(void)
2714 {
2715 #ifdef CONFIG_JBD2_DEBUG
2716 	int n = atomic_read(&nr_journal_heads);
2717 	if (n)
2718 		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2719 #endif
2720 	jbd2_remove_jbd_stats_proc_entry();
2721 	jbd2_journal_destroy_caches();
2722 }
2723 
2724 MODULE_LICENSE("GPL");
2725 module_init(journal_init);
2726 module_exit(journal_exit);
2727 
2728