1 /* 2 * linux/fs/jbd2/journal.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem journal-writing code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages journals: areas of disk reserved for logging 16 * transactional updates. This includes the kernel journaling thread 17 * which is responsible for scheduling updates to the log. 18 * 19 * We do not actually manage the physical storage of the journal in this 20 * file: that is left to a per-journal policy function, which allows us 21 * to store the journal within a filesystem-specified area for ext2 22 * journaling (ext2 can use a reserved inode for storing the log). 23 */ 24 25 #include <linux/module.h> 26 #include <linux/time.h> 27 #include <linux/fs.h> 28 #include <linux/jbd2.h> 29 #include <linux/errno.h> 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/mm.h> 33 #include <linux/freezer.h> 34 #include <linux/pagemap.h> 35 #include <linux/kthread.h> 36 #include <linux/poison.h> 37 #include <linux/proc_fs.h> 38 #include <linux/debugfs.h> 39 #include <linux/seq_file.h> 40 #include <linux/math64.h> 41 #include <linux/hash.h> 42 #include <linux/log2.h> 43 #include <linux/vmalloc.h> 44 #include <linux/backing-dev.h> 45 #include <linux/bitops.h> 46 #include <linux/ratelimit.h> 47 48 #define CREATE_TRACE_POINTS 49 #include <trace/events/jbd2.h> 50 51 #include <asm/uaccess.h> 52 #include <asm/page.h> 53 54 EXPORT_SYMBOL(jbd2_journal_extend); 55 EXPORT_SYMBOL(jbd2_journal_stop); 56 EXPORT_SYMBOL(jbd2_journal_lock_updates); 57 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 58 EXPORT_SYMBOL(jbd2_journal_get_write_access); 59 EXPORT_SYMBOL(jbd2_journal_get_create_access); 60 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 61 EXPORT_SYMBOL(jbd2_journal_set_triggers); 62 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 63 EXPORT_SYMBOL(jbd2_journal_release_buffer); 64 EXPORT_SYMBOL(jbd2_journal_forget); 65 #if 0 66 EXPORT_SYMBOL(journal_sync_buffer); 67 #endif 68 EXPORT_SYMBOL(jbd2_journal_flush); 69 EXPORT_SYMBOL(jbd2_journal_revoke); 70 71 EXPORT_SYMBOL(jbd2_journal_init_dev); 72 EXPORT_SYMBOL(jbd2_journal_init_inode); 73 EXPORT_SYMBOL(jbd2_journal_check_used_features); 74 EXPORT_SYMBOL(jbd2_journal_check_available_features); 75 EXPORT_SYMBOL(jbd2_journal_set_features); 76 EXPORT_SYMBOL(jbd2_journal_load); 77 EXPORT_SYMBOL(jbd2_journal_destroy); 78 EXPORT_SYMBOL(jbd2_journal_abort); 79 EXPORT_SYMBOL(jbd2_journal_errno); 80 EXPORT_SYMBOL(jbd2_journal_ack_err); 81 EXPORT_SYMBOL(jbd2_journal_clear_err); 82 EXPORT_SYMBOL(jbd2_log_wait_commit); 83 EXPORT_SYMBOL(jbd2_log_start_commit); 84 EXPORT_SYMBOL(jbd2_journal_start_commit); 85 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 86 EXPORT_SYMBOL(jbd2_journal_wipe); 87 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 88 EXPORT_SYMBOL(jbd2_journal_invalidatepage); 89 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 90 EXPORT_SYMBOL(jbd2_journal_force_commit); 91 EXPORT_SYMBOL(jbd2_journal_file_inode); 92 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 93 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 94 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 95 EXPORT_SYMBOL(jbd2_inode_cache); 96 97 static void __journal_abort_soft (journal_t *journal, int errno); 98 static int jbd2_journal_create_slab(size_t slab_size); 99 100 /* Checksumming functions */ 101 int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb) 102 { 103 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2)) 104 return 1; 105 106 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM; 107 } 108 109 static __u32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb) 110 { 111 __u32 csum, old_csum; 112 113 old_csum = sb->s_checksum; 114 sb->s_checksum = 0; 115 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t)); 116 sb->s_checksum = old_csum; 117 118 return cpu_to_be32(csum); 119 } 120 121 int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb) 122 { 123 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2)) 124 return 1; 125 126 return sb->s_checksum == jbd2_superblock_csum(j, sb); 127 } 128 129 void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb) 130 { 131 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2)) 132 return; 133 134 sb->s_checksum = jbd2_superblock_csum(j, sb); 135 } 136 137 /* 138 * Helper function used to manage commit timeouts 139 */ 140 141 static void commit_timeout(unsigned long __data) 142 { 143 struct task_struct * p = (struct task_struct *) __data; 144 145 wake_up_process(p); 146 } 147 148 /* 149 * kjournald2: The main thread function used to manage a logging device 150 * journal. 151 * 152 * This kernel thread is responsible for two things: 153 * 154 * 1) COMMIT: Every so often we need to commit the current state of the 155 * filesystem to disk. The journal thread is responsible for writing 156 * all of the metadata buffers to disk. 157 * 158 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 159 * of the data in that part of the log has been rewritten elsewhere on 160 * the disk. Flushing these old buffers to reclaim space in the log is 161 * known as checkpointing, and this thread is responsible for that job. 162 */ 163 164 static int kjournald2(void *arg) 165 { 166 journal_t *journal = arg; 167 transaction_t *transaction; 168 169 /* 170 * Set up an interval timer which can be used to trigger a commit wakeup 171 * after the commit interval expires 172 */ 173 setup_timer(&journal->j_commit_timer, commit_timeout, 174 (unsigned long)current); 175 176 set_freezable(); 177 178 /* Record that the journal thread is running */ 179 journal->j_task = current; 180 wake_up(&journal->j_wait_done_commit); 181 182 /* 183 * And now, wait forever for commit wakeup events. 184 */ 185 write_lock(&journal->j_state_lock); 186 187 loop: 188 if (journal->j_flags & JBD2_UNMOUNT) 189 goto end_loop; 190 191 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n", 192 journal->j_commit_sequence, journal->j_commit_request); 193 194 if (journal->j_commit_sequence != journal->j_commit_request) { 195 jbd_debug(1, "OK, requests differ\n"); 196 write_unlock(&journal->j_state_lock); 197 del_timer_sync(&journal->j_commit_timer); 198 jbd2_journal_commit_transaction(journal); 199 write_lock(&journal->j_state_lock); 200 goto loop; 201 } 202 203 wake_up(&journal->j_wait_done_commit); 204 if (freezing(current)) { 205 /* 206 * The simpler the better. Flushing journal isn't a 207 * good idea, because that depends on threads that may 208 * be already stopped. 209 */ 210 jbd_debug(1, "Now suspending kjournald2\n"); 211 write_unlock(&journal->j_state_lock); 212 try_to_freeze(); 213 write_lock(&journal->j_state_lock); 214 } else { 215 /* 216 * We assume on resume that commits are already there, 217 * so we don't sleep 218 */ 219 DEFINE_WAIT(wait); 220 int should_sleep = 1; 221 222 prepare_to_wait(&journal->j_wait_commit, &wait, 223 TASK_INTERRUPTIBLE); 224 if (journal->j_commit_sequence != journal->j_commit_request) 225 should_sleep = 0; 226 transaction = journal->j_running_transaction; 227 if (transaction && time_after_eq(jiffies, 228 transaction->t_expires)) 229 should_sleep = 0; 230 if (journal->j_flags & JBD2_UNMOUNT) 231 should_sleep = 0; 232 if (should_sleep) { 233 write_unlock(&journal->j_state_lock); 234 schedule(); 235 write_lock(&journal->j_state_lock); 236 } 237 finish_wait(&journal->j_wait_commit, &wait); 238 } 239 240 jbd_debug(1, "kjournald2 wakes\n"); 241 242 /* 243 * Were we woken up by a commit wakeup event? 244 */ 245 transaction = journal->j_running_transaction; 246 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 247 journal->j_commit_request = transaction->t_tid; 248 jbd_debug(1, "woke because of timeout\n"); 249 } 250 goto loop; 251 252 end_loop: 253 write_unlock(&journal->j_state_lock); 254 del_timer_sync(&journal->j_commit_timer); 255 journal->j_task = NULL; 256 wake_up(&journal->j_wait_done_commit); 257 jbd_debug(1, "Journal thread exiting.\n"); 258 return 0; 259 } 260 261 static int jbd2_journal_start_thread(journal_t *journal) 262 { 263 struct task_struct *t; 264 265 t = kthread_run(kjournald2, journal, "jbd2/%s", 266 journal->j_devname); 267 if (IS_ERR(t)) 268 return PTR_ERR(t); 269 270 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 271 return 0; 272 } 273 274 static void journal_kill_thread(journal_t *journal) 275 { 276 write_lock(&journal->j_state_lock); 277 journal->j_flags |= JBD2_UNMOUNT; 278 279 while (journal->j_task) { 280 wake_up(&journal->j_wait_commit); 281 write_unlock(&journal->j_state_lock); 282 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 283 write_lock(&journal->j_state_lock); 284 } 285 write_unlock(&journal->j_state_lock); 286 } 287 288 /* 289 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 290 * 291 * Writes a metadata buffer to a given disk block. The actual IO is not 292 * performed but a new buffer_head is constructed which labels the data 293 * to be written with the correct destination disk block. 294 * 295 * Any magic-number escaping which needs to be done will cause a 296 * copy-out here. If the buffer happens to start with the 297 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 298 * magic number is only written to the log for descripter blocks. In 299 * this case, we copy the data and replace the first word with 0, and we 300 * return a result code which indicates that this buffer needs to be 301 * marked as an escaped buffer in the corresponding log descriptor 302 * block. The missing word can then be restored when the block is read 303 * during recovery. 304 * 305 * If the source buffer has already been modified by a new transaction 306 * since we took the last commit snapshot, we use the frozen copy of 307 * that data for IO. If we end up using the existing buffer_head's data 308 * for the write, then we *have* to lock the buffer to prevent anyone 309 * else from using and possibly modifying it while the IO is in 310 * progress. 311 * 312 * The function returns a pointer to the buffer_heads to be used for IO. 313 * 314 * We assume that the journal has already been locked in this function. 315 * 316 * Return value: 317 * <0: Error 318 * >=0: Finished OK 319 * 320 * On success: 321 * Bit 0 set == escape performed on the data 322 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 323 */ 324 325 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 326 struct journal_head *jh_in, 327 struct journal_head **jh_out, 328 unsigned long long blocknr) 329 { 330 int need_copy_out = 0; 331 int done_copy_out = 0; 332 int do_escape = 0; 333 char *mapped_data; 334 struct buffer_head *new_bh; 335 struct journal_head *new_jh; 336 struct page *new_page; 337 unsigned int new_offset; 338 struct buffer_head *bh_in = jh2bh(jh_in); 339 journal_t *journal = transaction->t_journal; 340 341 /* 342 * The buffer really shouldn't be locked: only the current committing 343 * transaction is allowed to write it, so nobody else is allowed 344 * to do any IO. 345 * 346 * akpm: except if we're journalling data, and write() output is 347 * also part of a shared mapping, and another thread has 348 * decided to launch a writepage() against this buffer. 349 */ 350 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 351 352 retry_alloc: 353 new_bh = alloc_buffer_head(GFP_NOFS); 354 if (!new_bh) { 355 /* 356 * Failure is not an option, but __GFP_NOFAIL is going 357 * away; so we retry ourselves here. 358 */ 359 congestion_wait(BLK_RW_ASYNC, HZ/50); 360 goto retry_alloc; 361 } 362 363 /* keep subsequent assertions sane */ 364 new_bh->b_state = 0; 365 init_buffer(new_bh, NULL, NULL); 366 atomic_set(&new_bh->b_count, 1); 367 new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */ 368 369 /* 370 * If a new transaction has already done a buffer copy-out, then 371 * we use that version of the data for the commit. 372 */ 373 jbd_lock_bh_state(bh_in); 374 repeat: 375 if (jh_in->b_frozen_data) { 376 done_copy_out = 1; 377 new_page = virt_to_page(jh_in->b_frozen_data); 378 new_offset = offset_in_page(jh_in->b_frozen_data); 379 } else { 380 new_page = jh2bh(jh_in)->b_page; 381 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 382 } 383 384 mapped_data = kmap_atomic(new_page); 385 /* 386 * Fire data frozen trigger if data already wasn't frozen. Do this 387 * before checking for escaping, as the trigger may modify the magic 388 * offset. If a copy-out happens afterwards, it will have the correct 389 * data in the buffer. 390 */ 391 if (!done_copy_out) 392 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset, 393 jh_in->b_triggers); 394 395 /* 396 * Check for escaping 397 */ 398 if (*((__be32 *)(mapped_data + new_offset)) == 399 cpu_to_be32(JBD2_MAGIC_NUMBER)) { 400 need_copy_out = 1; 401 do_escape = 1; 402 } 403 kunmap_atomic(mapped_data); 404 405 /* 406 * Do we need to do a data copy? 407 */ 408 if (need_copy_out && !done_copy_out) { 409 char *tmp; 410 411 jbd_unlock_bh_state(bh_in); 412 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS); 413 if (!tmp) { 414 jbd2_journal_put_journal_head(new_jh); 415 return -ENOMEM; 416 } 417 jbd_lock_bh_state(bh_in); 418 if (jh_in->b_frozen_data) { 419 jbd2_free(tmp, bh_in->b_size); 420 goto repeat; 421 } 422 423 jh_in->b_frozen_data = tmp; 424 mapped_data = kmap_atomic(new_page); 425 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size); 426 kunmap_atomic(mapped_data); 427 428 new_page = virt_to_page(tmp); 429 new_offset = offset_in_page(tmp); 430 done_copy_out = 1; 431 432 /* 433 * This isn't strictly necessary, as we're using frozen 434 * data for the escaping, but it keeps consistency with 435 * b_frozen_data usage. 436 */ 437 jh_in->b_frozen_triggers = jh_in->b_triggers; 438 } 439 440 /* 441 * Did we need to do an escaping? Now we've done all the 442 * copying, we can finally do so. 443 */ 444 if (do_escape) { 445 mapped_data = kmap_atomic(new_page); 446 *((unsigned int *)(mapped_data + new_offset)) = 0; 447 kunmap_atomic(mapped_data); 448 } 449 450 set_bh_page(new_bh, new_page, new_offset); 451 new_jh->b_transaction = NULL; 452 new_bh->b_size = jh2bh(jh_in)->b_size; 453 new_bh->b_bdev = transaction->t_journal->j_dev; 454 new_bh->b_blocknr = blocknr; 455 set_buffer_mapped(new_bh); 456 set_buffer_dirty(new_bh); 457 458 *jh_out = new_jh; 459 460 /* 461 * The to-be-written buffer needs to get moved to the io queue, 462 * and the original buffer whose contents we are shadowing or 463 * copying is moved to the transaction's shadow queue. 464 */ 465 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 466 spin_lock(&journal->j_list_lock); 467 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 468 spin_unlock(&journal->j_list_lock); 469 jbd_unlock_bh_state(bh_in); 470 471 JBUFFER_TRACE(new_jh, "file as BJ_IO"); 472 jbd2_journal_file_buffer(new_jh, transaction, BJ_IO); 473 474 return do_escape | (done_copy_out << 1); 475 } 476 477 /* 478 * Allocation code for the journal file. Manage the space left in the 479 * journal, so that we can begin checkpointing when appropriate. 480 */ 481 482 /* 483 * __jbd2_log_space_left: Return the number of free blocks left in the journal. 484 * 485 * Called with the journal already locked. 486 * 487 * Called under j_state_lock 488 */ 489 490 int __jbd2_log_space_left(journal_t *journal) 491 { 492 int left = journal->j_free; 493 494 /* assert_spin_locked(&journal->j_state_lock); */ 495 496 /* 497 * Be pessimistic here about the number of those free blocks which 498 * might be required for log descriptor control blocks. 499 */ 500 501 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */ 502 503 left -= MIN_LOG_RESERVED_BLOCKS; 504 505 if (left <= 0) 506 return 0; 507 left -= (left >> 3); 508 return left; 509 } 510 511 /* 512 * Called with j_state_lock locked for writing. 513 * Returns true if a transaction commit was started. 514 */ 515 int __jbd2_log_start_commit(journal_t *journal, tid_t target) 516 { 517 /* 518 * The only transaction we can possibly wait upon is the 519 * currently running transaction (if it exists). Otherwise, 520 * the target tid must be an old one. 521 */ 522 if (journal->j_running_transaction && 523 journal->j_running_transaction->t_tid == target) { 524 /* 525 * We want a new commit: OK, mark the request and wakeup the 526 * commit thread. We do _not_ do the commit ourselves. 527 */ 528 529 journal->j_commit_request = target; 530 jbd_debug(1, "JBD2: requesting commit %d/%d\n", 531 journal->j_commit_request, 532 journal->j_commit_sequence); 533 wake_up(&journal->j_wait_commit); 534 return 1; 535 } else if (!tid_geq(journal->j_commit_request, target)) 536 /* This should never happen, but if it does, preserve 537 the evidence before kjournald goes into a loop and 538 increments j_commit_sequence beyond all recognition. */ 539 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n", 540 journal->j_commit_request, 541 journal->j_commit_sequence, 542 target, journal->j_running_transaction ? 543 journal->j_running_transaction->t_tid : 0); 544 return 0; 545 } 546 547 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 548 { 549 int ret; 550 551 write_lock(&journal->j_state_lock); 552 ret = __jbd2_log_start_commit(journal, tid); 553 write_unlock(&journal->j_state_lock); 554 return ret; 555 } 556 557 /* 558 * Force and wait upon a commit if the calling process is not within 559 * transaction. This is used for forcing out undo-protected data which contains 560 * bitmaps, when the fs is running out of space. 561 * 562 * We can only force the running transaction if we don't have an active handle; 563 * otherwise, we will deadlock. 564 * 565 * Returns true if a transaction was started. 566 */ 567 int jbd2_journal_force_commit_nested(journal_t *journal) 568 { 569 transaction_t *transaction = NULL; 570 tid_t tid; 571 int need_to_start = 0; 572 573 read_lock(&journal->j_state_lock); 574 if (journal->j_running_transaction && !current->journal_info) { 575 transaction = journal->j_running_transaction; 576 if (!tid_geq(journal->j_commit_request, transaction->t_tid)) 577 need_to_start = 1; 578 } else if (journal->j_committing_transaction) 579 transaction = journal->j_committing_transaction; 580 581 if (!transaction) { 582 read_unlock(&journal->j_state_lock); 583 return 0; /* Nothing to retry */ 584 } 585 586 tid = transaction->t_tid; 587 read_unlock(&journal->j_state_lock); 588 if (need_to_start) 589 jbd2_log_start_commit(journal, tid); 590 jbd2_log_wait_commit(journal, tid); 591 return 1; 592 } 593 594 /* 595 * Start a commit of the current running transaction (if any). Returns true 596 * if a transaction is going to be committed (or is currently already 597 * committing), and fills its tid in at *ptid 598 */ 599 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 600 { 601 int ret = 0; 602 603 write_lock(&journal->j_state_lock); 604 if (journal->j_running_transaction) { 605 tid_t tid = journal->j_running_transaction->t_tid; 606 607 __jbd2_log_start_commit(journal, tid); 608 /* There's a running transaction and we've just made sure 609 * it's commit has been scheduled. */ 610 if (ptid) 611 *ptid = tid; 612 ret = 1; 613 } else if (journal->j_committing_transaction) { 614 /* 615 * If commit has been started, then we have to wait for 616 * completion of that transaction. 617 */ 618 if (ptid) 619 *ptid = journal->j_committing_transaction->t_tid; 620 ret = 1; 621 } 622 write_unlock(&journal->j_state_lock); 623 return ret; 624 } 625 626 /* 627 * Return 1 if a given transaction has not yet sent barrier request 628 * connected with a transaction commit. If 0 is returned, transaction 629 * may or may not have sent the barrier. Used to avoid sending barrier 630 * twice in common cases. 631 */ 632 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid) 633 { 634 int ret = 0; 635 transaction_t *commit_trans; 636 637 if (!(journal->j_flags & JBD2_BARRIER)) 638 return 0; 639 read_lock(&journal->j_state_lock); 640 /* Transaction already committed? */ 641 if (tid_geq(journal->j_commit_sequence, tid)) 642 goto out; 643 commit_trans = journal->j_committing_transaction; 644 if (!commit_trans || commit_trans->t_tid != tid) { 645 ret = 1; 646 goto out; 647 } 648 /* 649 * Transaction is being committed and we already proceeded to 650 * submitting a flush to fs partition? 651 */ 652 if (journal->j_fs_dev != journal->j_dev) { 653 if (!commit_trans->t_need_data_flush || 654 commit_trans->t_state >= T_COMMIT_DFLUSH) 655 goto out; 656 } else { 657 if (commit_trans->t_state >= T_COMMIT_JFLUSH) 658 goto out; 659 } 660 ret = 1; 661 out: 662 read_unlock(&journal->j_state_lock); 663 return ret; 664 } 665 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier); 666 667 /* 668 * Wait for a specified commit to complete. 669 * The caller may not hold the journal lock. 670 */ 671 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 672 { 673 int err = 0; 674 675 read_lock(&journal->j_state_lock); 676 #ifdef CONFIG_JBD2_DEBUG 677 if (!tid_geq(journal->j_commit_request, tid)) { 678 printk(KERN_EMERG 679 "%s: error: j_commit_request=%d, tid=%d\n", 680 __func__, journal->j_commit_request, tid); 681 } 682 #endif 683 while (tid_gt(tid, journal->j_commit_sequence)) { 684 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n", 685 tid, journal->j_commit_sequence); 686 wake_up(&journal->j_wait_commit); 687 read_unlock(&journal->j_state_lock); 688 wait_event(journal->j_wait_done_commit, 689 !tid_gt(tid, journal->j_commit_sequence)); 690 read_lock(&journal->j_state_lock); 691 } 692 read_unlock(&journal->j_state_lock); 693 694 if (unlikely(is_journal_aborted(journal))) { 695 printk(KERN_EMERG "journal commit I/O error\n"); 696 err = -EIO; 697 } 698 return err; 699 } 700 701 /* 702 * Log buffer allocation routines: 703 */ 704 705 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 706 { 707 unsigned long blocknr; 708 709 write_lock(&journal->j_state_lock); 710 J_ASSERT(journal->j_free > 1); 711 712 blocknr = journal->j_head; 713 journal->j_head++; 714 journal->j_free--; 715 if (journal->j_head == journal->j_last) 716 journal->j_head = journal->j_first; 717 write_unlock(&journal->j_state_lock); 718 return jbd2_journal_bmap(journal, blocknr, retp); 719 } 720 721 /* 722 * Conversion of logical to physical block numbers for the journal 723 * 724 * On external journals the journal blocks are identity-mapped, so 725 * this is a no-op. If needed, we can use j_blk_offset - everything is 726 * ready. 727 */ 728 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 729 unsigned long long *retp) 730 { 731 int err = 0; 732 unsigned long long ret; 733 734 if (journal->j_inode) { 735 ret = bmap(journal->j_inode, blocknr); 736 if (ret) 737 *retp = ret; 738 else { 739 printk(KERN_ALERT "%s: journal block not found " 740 "at offset %lu on %s\n", 741 __func__, blocknr, journal->j_devname); 742 err = -EIO; 743 __journal_abort_soft(journal, err); 744 } 745 } else { 746 *retp = blocknr; /* +journal->j_blk_offset */ 747 } 748 return err; 749 } 750 751 /* 752 * We play buffer_head aliasing tricks to write data/metadata blocks to 753 * the journal without copying their contents, but for journal 754 * descriptor blocks we do need to generate bona fide buffers. 755 * 756 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 757 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 758 * But we don't bother doing that, so there will be coherency problems with 759 * mmaps of blockdevs which hold live JBD-controlled filesystems. 760 */ 761 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal) 762 { 763 struct buffer_head *bh; 764 unsigned long long blocknr; 765 int err; 766 767 err = jbd2_journal_next_log_block(journal, &blocknr); 768 769 if (err) 770 return NULL; 771 772 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 773 if (!bh) 774 return NULL; 775 lock_buffer(bh); 776 memset(bh->b_data, 0, journal->j_blocksize); 777 set_buffer_uptodate(bh); 778 unlock_buffer(bh); 779 BUFFER_TRACE(bh, "return this buffer"); 780 return jbd2_journal_add_journal_head(bh); 781 } 782 783 /* 784 * Return tid of the oldest transaction in the journal and block in the journal 785 * where the transaction starts. 786 * 787 * If the journal is now empty, return which will be the next transaction ID 788 * we will write and where will that transaction start. 789 * 790 * The return value is 0 if journal tail cannot be pushed any further, 1 if 791 * it can. 792 */ 793 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid, 794 unsigned long *block) 795 { 796 transaction_t *transaction; 797 int ret; 798 799 read_lock(&journal->j_state_lock); 800 spin_lock(&journal->j_list_lock); 801 transaction = journal->j_checkpoint_transactions; 802 if (transaction) { 803 *tid = transaction->t_tid; 804 *block = transaction->t_log_start; 805 } else if ((transaction = journal->j_committing_transaction) != NULL) { 806 *tid = transaction->t_tid; 807 *block = transaction->t_log_start; 808 } else if ((transaction = journal->j_running_transaction) != NULL) { 809 *tid = transaction->t_tid; 810 *block = journal->j_head; 811 } else { 812 *tid = journal->j_transaction_sequence; 813 *block = journal->j_head; 814 } 815 ret = tid_gt(*tid, journal->j_tail_sequence); 816 spin_unlock(&journal->j_list_lock); 817 read_unlock(&journal->j_state_lock); 818 819 return ret; 820 } 821 822 /* 823 * Update information in journal structure and in on disk journal superblock 824 * about log tail. This function does not check whether information passed in 825 * really pushes log tail further. It's responsibility of the caller to make 826 * sure provided log tail information is valid (e.g. by holding 827 * j_checkpoint_mutex all the time between computing log tail and calling this 828 * function as is the case with jbd2_cleanup_journal_tail()). 829 * 830 * Requires j_checkpoint_mutex 831 */ 832 void __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 833 { 834 unsigned long freed; 835 836 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 837 838 /* 839 * We cannot afford for write to remain in drive's caches since as 840 * soon as we update j_tail, next transaction can start reusing journal 841 * space and if we lose sb update during power failure we'd replay 842 * old transaction with possibly newly overwritten data. 843 */ 844 jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA); 845 write_lock(&journal->j_state_lock); 846 freed = block - journal->j_tail; 847 if (block < journal->j_tail) 848 freed += journal->j_last - journal->j_first; 849 850 trace_jbd2_update_log_tail(journal, tid, block, freed); 851 jbd_debug(1, 852 "Cleaning journal tail from %d to %d (offset %lu), " 853 "freeing %lu\n", 854 journal->j_tail_sequence, tid, block, freed); 855 856 journal->j_free += freed; 857 journal->j_tail_sequence = tid; 858 journal->j_tail = block; 859 write_unlock(&journal->j_state_lock); 860 } 861 862 /* 863 * This is a variaon of __jbd2_update_log_tail which checks for validity of 864 * provided log tail and locks j_checkpoint_mutex. So it is safe against races 865 * with other threads updating log tail. 866 */ 867 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 868 { 869 mutex_lock(&journal->j_checkpoint_mutex); 870 if (tid_gt(tid, journal->j_tail_sequence)) 871 __jbd2_update_log_tail(journal, tid, block); 872 mutex_unlock(&journal->j_checkpoint_mutex); 873 } 874 875 struct jbd2_stats_proc_session { 876 journal_t *journal; 877 struct transaction_stats_s *stats; 878 int start; 879 int max; 880 }; 881 882 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 883 { 884 return *pos ? NULL : SEQ_START_TOKEN; 885 } 886 887 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 888 { 889 return NULL; 890 } 891 892 static int jbd2_seq_info_show(struct seq_file *seq, void *v) 893 { 894 struct jbd2_stats_proc_session *s = seq->private; 895 896 if (v != SEQ_START_TOKEN) 897 return 0; 898 seq_printf(seq, "%lu transaction, each up to %u blocks\n", 899 s->stats->ts_tid, 900 s->journal->j_max_transaction_buffers); 901 if (s->stats->ts_tid == 0) 902 return 0; 903 seq_printf(seq, "average: \n %ums waiting for transaction\n", 904 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); 905 seq_printf(seq, " %ums running transaction\n", 906 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); 907 seq_printf(seq, " %ums transaction was being locked\n", 908 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); 909 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 910 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); 911 seq_printf(seq, " %ums logging transaction\n", 912 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); 913 seq_printf(seq, " %lluus average transaction commit time\n", 914 div_u64(s->journal->j_average_commit_time, 1000)); 915 seq_printf(seq, " %lu handles per transaction\n", 916 s->stats->run.rs_handle_count / s->stats->ts_tid); 917 seq_printf(seq, " %lu blocks per transaction\n", 918 s->stats->run.rs_blocks / s->stats->ts_tid); 919 seq_printf(seq, " %lu logged blocks per transaction\n", 920 s->stats->run.rs_blocks_logged / s->stats->ts_tid); 921 return 0; 922 } 923 924 static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 925 { 926 } 927 928 static const struct seq_operations jbd2_seq_info_ops = { 929 .start = jbd2_seq_info_start, 930 .next = jbd2_seq_info_next, 931 .stop = jbd2_seq_info_stop, 932 .show = jbd2_seq_info_show, 933 }; 934 935 static int jbd2_seq_info_open(struct inode *inode, struct file *file) 936 { 937 journal_t *journal = PDE(inode)->data; 938 struct jbd2_stats_proc_session *s; 939 int rc, size; 940 941 s = kmalloc(sizeof(*s), GFP_KERNEL); 942 if (s == NULL) 943 return -ENOMEM; 944 size = sizeof(struct transaction_stats_s); 945 s->stats = kmalloc(size, GFP_KERNEL); 946 if (s->stats == NULL) { 947 kfree(s); 948 return -ENOMEM; 949 } 950 spin_lock(&journal->j_history_lock); 951 memcpy(s->stats, &journal->j_stats, size); 952 s->journal = journal; 953 spin_unlock(&journal->j_history_lock); 954 955 rc = seq_open(file, &jbd2_seq_info_ops); 956 if (rc == 0) { 957 struct seq_file *m = file->private_data; 958 m->private = s; 959 } else { 960 kfree(s->stats); 961 kfree(s); 962 } 963 return rc; 964 965 } 966 967 static int jbd2_seq_info_release(struct inode *inode, struct file *file) 968 { 969 struct seq_file *seq = file->private_data; 970 struct jbd2_stats_proc_session *s = seq->private; 971 kfree(s->stats); 972 kfree(s); 973 return seq_release(inode, file); 974 } 975 976 static const struct file_operations jbd2_seq_info_fops = { 977 .owner = THIS_MODULE, 978 .open = jbd2_seq_info_open, 979 .read = seq_read, 980 .llseek = seq_lseek, 981 .release = jbd2_seq_info_release, 982 }; 983 984 static struct proc_dir_entry *proc_jbd2_stats; 985 986 static void jbd2_stats_proc_init(journal_t *journal) 987 { 988 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 989 if (journal->j_proc_entry) { 990 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 991 &jbd2_seq_info_fops, journal); 992 } 993 } 994 995 static void jbd2_stats_proc_exit(journal_t *journal) 996 { 997 remove_proc_entry("info", journal->j_proc_entry); 998 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 999 } 1000 1001 /* 1002 * Management for journal control blocks: functions to create and 1003 * destroy journal_t structures, and to initialise and read existing 1004 * journal blocks from disk. */ 1005 1006 /* First: create and setup a journal_t object in memory. We initialise 1007 * very few fields yet: that has to wait until we have created the 1008 * journal structures from from scratch, or loaded them from disk. */ 1009 1010 static journal_t * journal_init_common (void) 1011 { 1012 journal_t *journal; 1013 int err; 1014 1015 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 1016 if (!journal) 1017 return NULL; 1018 1019 init_waitqueue_head(&journal->j_wait_transaction_locked); 1020 init_waitqueue_head(&journal->j_wait_logspace); 1021 init_waitqueue_head(&journal->j_wait_done_commit); 1022 init_waitqueue_head(&journal->j_wait_checkpoint); 1023 init_waitqueue_head(&journal->j_wait_commit); 1024 init_waitqueue_head(&journal->j_wait_updates); 1025 mutex_init(&journal->j_barrier); 1026 mutex_init(&journal->j_checkpoint_mutex); 1027 spin_lock_init(&journal->j_revoke_lock); 1028 spin_lock_init(&journal->j_list_lock); 1029 rwlock_init(&journal->j_state_lock); 1030 1031 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 1032 journal->j_min_batch_time = 0; 1033 journal->j_max_batch_time = 15000; /* 15ms */ 1034 1035 /* The journal is marked for error until we succeed with recovery! */ 1036 journal->j_flags = JBD2_ABORT; 1037 1038 /* Set up a default-sized revoke table for the new mount. */ 1039 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 1040 if (err) { 1041 kfree(journal); 1042 return NULL; 1043 } 1044 1045 spin_lock_init(&journal->j_history_lock); 1046 1047 return journal; 1048 } 1049 1050 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 1051 * 1052 * Create a journal structure assigned some fixed set of disk blocks to 1053 * the journal. We don't actually touch those disk blocks yet, but we 1054 * need to set up all of the mapping information to tell the journaling 1055 * system where the journal blocks are. 1056 * 1057 */ 1058 1059 /** 1060 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 1061 * @bdev: Block device on which to create the journal 1062 * @fs_dev: Device which hold journalled filesystem for this journal. 1063 * @start: Block nr Start of journal. 1064 * @len: Length of the journal in blocks. 1065 * @blocksize: blocksize of journalling device 1066 * 1067 * Returns: a newly created journal_t * 1068 * 1069 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 1070 * range of blocks on an arbitrary block device. 1071 * 1072 */ 1073 journal_t * jbd2_journal_init_dev(struct block_device *bdev, 1074 struct block_device *fs_dev, 1075 unsigned long long start, int len, int blocksize) 1076 { 1077 journal_t *journal = journal_init_common(); 1078 struct buffer_head *bh; 1079 char *p; 1080 int n; 1081 1082 if (!journal) 1083 return NULL; 1084 1085 /* journal descriptor can store up to n blocks -bzzz */ 1086 journal->j_blocksize = blocksize; 1087 journal->j_dev = bdev; 1088 journal->j_fs_dev = fs_dev; 1089 journal->j_blk_offset = start; 1090 journal->j_maxlen = len; 1091 bdevname(journal->j_dev, journal->j_devname); 1092 p = journal->j_devname; 1093 while ((p = strchr(p, '/'))) 1094 *p = '!'; 1095 jbd2_stats_proc_init(journal); 1096 n = journal->j_blocksize / sizeof(journal_block_tag_t); 1097 journal->j_wbufsize = n; 1098 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 1099 if (!journal->j_wbuf) { 1100 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n", 1101 __func__); 1102 goto out_err; 1103 } 1104 1105 bh = __getblk(journal->j_dev, start, journal->j_blocksize); 1106 if (!bh) { 1107 printk(KERN_ERR 1108 "%s: Cannot get buffer for journal superblock\n", 1109 __func__); 1110 goto out_err; 1111 } 1112 journal->j_sb_buffer = bh; 1113 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1114 1115 return journal; 1116 out_err: 1117 kfree(journal->j_wbuf); 1118 jbd2_stats_proc_exit(journal); 1119 kfree(journal); 1120 return NULL; 1121 } 1122 1123 /** 1124 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 1125 * @inode: An inode to create the journal in 1126 * 1127 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 1128 * the journal. The inode must exist already, must support bmap() and 1129 * must have all data blocks preallocated. 1130 */ 1131 journal_t * jbd2_journal_init_inode (struct inode *inode) 1132 { 1133 struct buffer_head *bh; 1134 journal_t *journal = journal_init_common(); 1135 char *p; 1136 int err; 1137 int n; 1138 unsigned long long blocknr; 1139 1140 if (!journal) 1141 return NULL; 1142 1143 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev; 1144 journal->j_inode = inode; 1145 bdevname(journal->j_dev, journal->j_devname); 1146 p = journal->j_devname; 1147 while ((p = strchr(p, '/'))) 1148 *p = '!'; 1149 p = journal->j_devname + strlen(journal->j_devname); 1150 sprintf(p, "-%lu", journal->j_inode->i_ino); 1151 jbd_debug(1, 1152 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n", 1153 journal, inode->i_sb->s_id, inode->i_ino, 1154 (long long) inode->i_size, 1155 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 1156 1157 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits; 1158 journal->j_blocksize = inode->i_sb->s_blocksize; 1159 jbd2_stats_proc_init(journal); 1160 1161 /* journal descriptor can store up to n blocks -bzzz */ 1162 n = journal->j_blocksize / sizeof(journal_block_tag_t); 1163 journal->j_wbufsize = n; 1164 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 1165 if (!journal->j_wbuf) { 1166 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n", 1167 __func__); 1168 goto out_err; 1169 } 1170 1171 err = jbd2_journal_bmap(journal, 0, &blocknr); 1172 /* If that failed, give up */ 1173 if (err) { 1174 printk(KERN_ERR "%s: Cannot locate journal superblock\n", 1175 __func__); 1176 goto out_err; 1177 } 1178 1179 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 1180 if (!bh) { 1181 printk(KERN_ERR 1182 "%s: Cannot get buffer for journal superblock\n", 1183 __func__); 1184 goto out_err; 1185 } 1186 journal->j_sb_buffer = bh; 1187 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1188 1189 return journal; 1190 out_err: 1191 kfree(journal->j_wbuf); 1192 jbd2_stats_proc_exit(journal); 1193 kfree(journal); 1194 return NULL; 1195 } 1196 1197 /* 1198 * If the journal init or create aborts, we need to mark the journal 1199 * superblock as being NULL to prevent the journal destroy from writing 1200 * back a bogus superblock. 1201 */ 1202 static void journal_fail_superblock (journal_t *journal) 1203 { 1204 struct buffer_head *bh = journal->j_sb_buffer; 1205 brelse(bh); 1206 journal->j_sb_buffer = NULL; 1207 } 1208 1209 /* 1210 * Given a journal_t structure, initialise the various fields for 1211 * startup of a new journaling session. We use this both when creating 1212 * a journal, and after recovering an old journal to reset it for 1213 * subsequent use. 1214 */ 1215 1216 static int journal_reset(journal_t *journal) 1217 { 1218 journal_superblock_t *sb = journal->j_superblock; 1219 unsigned long long first, last; 1220 1221 first = be32_to_cpu(sb->s_first); 1222 last = be32_to_cpu(sb->s_maxlen); 1223 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1224 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n", 1225 first, last); 1226 journal_fail_superblock(journal); 1227 return -EINVAL; 1228 } 1229 1230 journal->j_first = first; 1231 journal->j_last = last; 1232 1233 journal->j_head = first; 1234 journal->j_tail = first; 1235 journal->j_free = last - first; 1236 1237 journal->j_tail_sequence = journal->j_transaction_sequence; 1238 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1239 journal->j_commit_request = journal->j_commit_sequence; 1240 1241 journal->j_max_transaction_buffers = journal->j_maxlen / 4; 1242 1243 /* 1244 * As a special case, if the on-disk copy is already marked as needing 1245 * no recovery (s_start == 0), then we can safely defer the superblock 1246 * update until the next commit by setting JBD2_FLUSHED. This avoids 1247 * attempting a write to a potential-readonly device. 1248 */ 1249 if (sb->s_start == 0) { 1250 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb " 1251 "(start %ld, seq %d, errno %d)\n", 1252 journal->j_tail, journal->j_tail_sequence, 1253 journal->j_errno); 1254 journal->j_flags |= JBD2_FLUSHED; 1255 } else { 1256 /* Lock here to make assertions happy... */ 1257 mutex_lock(&journal->j_checkpoint_mutex); 1258 /* 1259 * Update log tail information. We use WRITE_FUA since new 1260 * transaction will start reusing journal space and so we 1261 * must make sure information about current log tail is on 1262 * disk before that. 1263 */ 1264 jbd2_journal_update_sb_log_tail(journal, 1265 journal->j_tail_sequence, 1266 journal->j_tail, 1267 WRITE_FUA); 1268 mutex_unlock(&journal->j_checkpoint_mutex); 1269 } 1270 return jbd2_journal_start_thread(journal); 1271 } 1272 1273 static void jbd2_write_superblock(journal_t *journal, int write_op) 1274 { 1275 struct buffer_head *bh = journal->j_sb_buffer; 1276 int ret; 1277 1278 trace_jbd2_write_superblock(journal, write_op); 1279 if (!(journal->j_flags & JBD2_BARRIER)) 1280 write_op &= ~(REQ_FUA | REQ_FLUSH); 1281 lock_buffer(bh); 1282 if (buffer_write_io_error(bh)) { 1283 /* 1284 * Oh, dear. A previous attempt to write the journal 1285 * superblock failed. This could happen because the 1286 * USB device was yanked out. Or it could happen to 1287 * be a transient write error and maybe the block will 1288 * be remapped. Nothing we can do but to retry the 1289 * write and hope for the best. 1290 */ 1291 printk(KERN_ERR "JBD2: previous I/O error detected " 1292 "for journal superblock update for %s.\n", 1293 journal->j_devname); 1294 clear_buffer_write_io_error(bh); 1295 set_buffer_uptodate(bh); 1296 } 1297 get_bh(bh); 1298 bh->b_end_io = end_buffer_write_sync; 1299 ret = submit_bh(write_op, bh); 1300 wait_on_buffer(bh); 1301 if (buffer_write_io_error(bh)) { 1302 clear_buffer_write_io_error(bh); 1303 set_buffer_uptodate(bh); 1304 ret = -EIO; 1305 } 1306 if (ret) { 1307 printk(KERN_ERR "JBD2: Error %d detected when updating " 1308 "journal superblock for %s.\n", ret, 1309 journal->j_devname); 1310 } 1311 } 1312 1313 /** 1314 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk. 1315 * @journal: The journal to update. 1316 * @tail_tid: TID of the new transaction at the tail of the log 1317 * @tail_block: The first block of the transaction at the tail of the log 1318 * @write_op: With which operation should we write the journal sb 1319 * 1320 * Update a journal's superblock information about log tail and write it to 1321 * disk, waiting for the IO to complete. 1322 */ 1323 void jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid, 1324 unsigned long tail_block, int write_op) 1325 { 1326 journal_superblock_t *sb = journal->j_superblock; 1327 1328 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1329 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n", 1330 tail_block, tail_tid); 1331 1332 sb->s_sequence = cpu_to_be32(tail_tid); 1333 sb->s_start = cpu_to_be32(tail_block); 1334 1335 jbd2_write_superblock(journal, write_op); 1336 1337 /* Log is no longer empty */ 1338 write_lock(&journal->j_state_lock); 1339 WARN_ON(!sb->s_sequence); 1340 journal->j_flags &= ~JBD2_FLUSHED; 1341 write_unlock(&journal->j_state_lock); 1342 } 1343 1344 /** 1345 * jbd2_mark_journal_empty() - Mark on disk journal as empty. 1346 * @journal: The journal to update. 1347 * 1348 * Update a journal's dynamic superblock fields to show that journal is empty. 1349 * Write updated superblock to disk waiting for IO to complete. 1350 */ 1351 static void jbd2_mark_journal_empty(journal_t *journal) 1352 { 1353 journal_superblock_t *sb = journal->j_superblock; 1354 1355 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1356 read_lock(&journal->j_state_lock); 1357 /* Is it already empty? */ 1358 if (sb->s_start == 0) { 1359 read_unlock(&journal->j_state_lock); 1360 return; 1361 } 1362 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n", 1363 journal->j_tail_sequence); 1364 1365 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1366 sb->s_start = cpu_to_be32(0); 1367 read_unlock(&journal->j_state_lock); 1368 1369 jbd2_write_superblock(journal, WRITE_FUA); 1370 1371 /* Log is no longer empty */ 1372 write_lock(&journal->j_state_lock); 1373 journal->j_flags |= JBD2_FLUSHED; 1374 write_unlock(&journal->j_state_lock); 1375 } 1376 1377 1378 /** 1379 * jbd2_journal_update_sb_errno() - Update error in the journal. 1380 * @journal: The journal to update. 1381 * 1382 * Update a journal's errno. Write updated superblock to disk waiting for IO 1383 * to complete. 1384 */ 1385 void jbd2_journal_update_sb_errno(journal_t *journal) 1386 { 1387 journal_superblock_t *sb = journal->j_superblock; 1388 1389 read_lock(&journal->j_state_lock); 1390 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", 1391 journal->j_errno); 1392 sb->s_errno = cpu_to_be32(journal->j_errno); 1393 jbd2_superblock_csum_set(journal, sb); 1394 read_unlock(&journal->j_state_lock); 1395 1396 jbd2_write_superblock(journal, WRITE_SYNC); 1397 } 1398 EXPORT_SYMBOL(jbd2_journal_update_sb_errno); 1399 1400 /* 1401 * Read the superblock for a given journal, performing initial 1402 * validation of the format. 1403 */ 1404 static int journal_get_superblock(journal_t *journal) 1405 { 1406 struct buffer_head *bh; 1407 journal_superblock_t *sb; 1408 int err = -EIO; 1409 1410 bh = journal->j_sb_buffer; 1411 1412 J_ASSERT(bh != NULL); 1413 if (!buffer_uptodate(bh)) { 1414 ll_rw_block(READ, 1, &bh); 1415 wait_on_buffer(bh); 1416 if (!buffer_uptodate(bh)) { 1417 printk(KERN_ERR 1418 "JBD2: IO error reading journal superblock\n"); 1419 goto out; 1420 } 1421 } 1422 1423 if (buffer_verified(bh)) 1424 return 0; 1425 1426 sb = journal->j_superblock; 1427 1428 err = -EINVAL; 1429 1430 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1431 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1432 printk(KERN_WARNING "JBD2: no valid journal superblock found\n"); 1433 goto out; 1434 } 1435 1436 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1437 case JBD2_SUPERBLOCK_V1: 1438 journal->j_format_version = 1; 1439 break; 1440 case JBD2_SUPERBLOCK_V2: 1441 journal->j_format_version = 2; 1442 break; 1443 default: 1444 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n"); 1445 goto out; 1446 } 1447 1448 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen) 1449 journal->j_maxlen = be32_to_cpu(sb->s_maxlen); 1450 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) { 1451 printk(KERN_WARNING "JBD2: journal file too short\n"); 1452 goto out; 1453 } 1454 1455 if (be32_to_cpu(sb->s_first) == 0 || 1456 be32_to_cpu(sb->s_first) >= journal->j_maxlen) { 1457 printk(KERN_WARNING 1458 "JBD2: Invalid start block of journal: %u\n", 1459 be32_to_cpu(sb->s_first)); 1460 goto out; 1461 } 1462 1463 if (JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM) && 1464 JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) { 1465 /* Can't have checksum v1 and v2 on at the same time! */ 1466 printk(KERN_ERR "JBD: Can't enable checksumming v1 and v2 " 1467 "at the same time!\n"); 1468 goto out; 1469 } 1470 1471 if (!jbd2_verify_csum_type(journal, sb)) { 1472 printk(KERN_ERR "JBD: Unknown checksum type\n"); 1473 goto out; 1474 } 1475 1476 /* Load the checksum driver */ 1477 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) { 1478 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 1479 if (IS_ERR(journal->j_chksum_driver)) { 1480 printk(KERN_ERR "JBD: Cannot load crc32c driver.\n"); 1481 err = PTR_ERR(journal->j_chksum_driver); 1482 journal->j_chksum_driver = NULL; 1483 goto out; 1484 } 1485 } 1486 1487 /* Check superblock checksum */ 1488 if (!jbd2_superblock_csum_verify(journal, sb)) { 1489 printk(KERN_ERR "JBD: journal checksum error\n"); 1490 goto out; 1491 } 1492 1493 /* Precompute checksum seed for all metadata */ 1494 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) 1495 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 1496 sizeof(sb->s_uuid)); 1497 1498 set_buffer_verified(bh); 1499 1500 return 0; 1501 1502 out: 1503 journal_fail_superblock(journal); 1504 return err; 1505 } 1506 1507 /* 1508 * Load the on-disk journal superblock and read the key fields into the 1509 * journal_t. 1510 */ 1511 1512 static int load_superblock(journal_t *journal) 1513 { 1514 int err; 1515 journal_superblock_t *sb; 1516 1517 err = journal_get_superblock(journal); 1518 if (err) 1519 return err; 1520 1521 sb = journal->j_superblock; 1522 1523 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1524 journal->j_tail = be32_to_cpu(sb->s_start); 1525 journal->j_first = be32_to_cpu(sb->s_first); 1526 journal->j_last = be32_to_cpu(sb->s_maxlen); 1527 journal->j_errno = be32_to_cpu(sb->s_errno); 1528 1529 return 0; 1530 } 1531 1532 1533 /** 1534 * int jbd2_journal_load() - Read journal from disk. 1535 * @journal: Journal to act on. 1536 * 1537 * Given a journal_t structure which tells us which disk blocks contain 1538 * a journal, read the journal from disk to initialise the in-memory 1539 * structures. 1540 */ 1541 int jbd2_journal_load(journal_t *journal) 1542 { 1543 int err; 1544 journal_superblock_t *sb; 1545 1546 err = load_superblock(journal); 1547 if (err) 1548 return err; 1549 1550 sb = journal->j_superblock; 1551 /* If this is a V2 superblock, then we have to check the 1552 * features flags on it. */ 1553 1554 if (journal->j_format_version >= 2) { 1555 if ((sb->s_feature_ro_compat & 1556 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 1557 (sb->s_feature_incompat & 1558 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 1559 printk(KERN_WARNING 1560 "JBD2: Unrecognised features on journal\n"); 1561 return -EINVAL; 1562 } 1563 } 1564 1565 /* 1566 * Create a slab for this blocksize 1567 */ 1568 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize)); 1569 if (err) 1570 return err; 1571 1572 /* Let the recovery code check whether it needs to recover any 1573 * data from the journal. */ 1574 if (jbd2_journal_recover(journal)) 1575 goto recovery_error; 1576 1577 if (journal->j_failed_commit) { 1578 printk(KERN_ERR "JBD2: journal transaction %u on %s " 1579 "is corrupt.\n", journal->j_failed_commit, 1580 journal->j_devname); 1581 return -EIO; 1582 } 1583 1584 /* OK, we've finished with the dynamic journal bits: 1585 * reinitialise the dynamic contents of the superblock in memory 1586 * and reset them on disk. */ 1587 if (journal_reset(journal)) 1588 goto recovery_error; 1589 1590 journal->j_flags &= ~JBD2_ABORT; 1591 journal->j_flags |= JBD2_LOADED; 1592 return 0; 1593 1594 recovery_error: 1595 printk(KERN_WARNING "JBD2: recovery failed\n"); 1596 return -EIO; 1597 } 1598 1599 /** 1600 * void jbd2_journal_destroy() - Release a journal_t structure. 1601 * @journal: Journal to act on. 1602 * 1603 * Release a journal_t structure once it is no longer in use by the 1604 * journaled object. 1605 * Return <0 if we couldn't clean up the journal. 1606 */ 1607 int jbd2_journal_destroy(journal_t *journal) 1608 { 1609 int err = 0; 1610 1611 /* Wait for the commit thread to wake up and die. */ 1612 journal_kill_thread(journal); 1613 1614 /* Force a final log commit */ 1615 if (journal->j_running_transaction) 1616 jbd2_journal_commit_transaction(journal); 1617 1618 /* Force any old transactions to disk */ 1619 1620 /* Totally anal locking here... */ 1621 spin_lock(&journal->j_list_lock); 1622 while (journal->j_checkpoint_transactions != NULL) { 1623 spin_unlock(&journal->j_list_lock); 1624 mutex_lock(&journal->j_checkpoint_mutex); 1625 jbd2_log_do_checkpoint(journal); 1626 mutex_unlock(&journal->j_checkpoint_mutex); 1627 spin_lock(&journal->j_list_lock); 1628 } 1629 1630 J_ASSERT(journal->j_running_transaction == NULL); 1631 J_ASSERT(journal->j_committing_transaction == NULL); 1632 J_ASSERT(journal->j_checkpoint_transactions == NULL); 1633 spin_unlock(&journal->j_list_lock); 1634 1635 if (journal->j_sb_buffer) { 1636 if (!is_journal_aborted(journal)) { 1637 mutex_lock(&journal->j_checkpoint_mutex); 1638 jbd2_mark_journal_empty(journal); 1639 mutex_unlock(&journal->j_checkpoint_mutex); 1640 } else 1641 err = -EIO; 1642 brelse(journal->j_sb_buffer); 1643 } 1644 1645 if (journal->j_proc_entry) 1646 jbd2_stats_proc_exit(journal); 1647 if (journal->j_inode) 1648 iput(journal->j_inode); 1649 if (journal->j_revoke) 1650 jbd2_journal_destroy_revoke(journal); 1651 if (journal->j_chksum_driver) 1652 crypto_free_shash(journal->j_chksum_driver); 1653 kfree(journal->j_wbuf); 1654 kfree(journal); 1655 1656 return err; 1657 } 1658 1659 1660 /** 1661 *int jbd2_journal_check_used_features () - Check if features specified are used. 1662 * @journal: Journal to check. 1663 * @compat: bitmask of compatible features 1664 * @ro: bitmask of features that force read-only mount 1665 * @incompat: bitmask of incompatible features 1666 * 1667 * Check whether the journal uses all of a given set of 1668 * features. Return true (non-zero) if it does. 1669 **/ 1670 1671 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat, 1672 unsigned long ro, unsigned long incompat) 1673 { 1674 journal_superblock_t *sb; 1675 1676 if (!compat && !ro && !incompat) 1677 return 1; 1678 /* Load journal superblock if it is not loaded yet. */ 1679 if (journal->j_format_version == 0 && 1680 journal_get_superblock(journal) != 0) 1681 return 0; 1682 if (journal->j_format_version == 1) 1683 return 0; 1684 1685 sb = journal->j_superblock; 1686 1687 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 1688 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 1689 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 1690 return 1; 1691 1692 return 0; 1693 } 1694 1695 /** 1696 * int jbd2_journal_check_available_features() - Check feature set in journalling layer 1697 * @journal: Journal to check. 1698 * @compat: bitmask of compatible features 1699 * @ro: bitmask of features that force read-only mount 1700 * @incompat: bitmask of incompatible features 1701 * 1702 * Check whether the journaling code supports the use of 1703 * all of a given set of features on this journal. Return true 1704 * (non-zero) if it can. */ 1705 1706 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat, 1707 unsigned long ro, unsigned long incompat) 1708 { 1709 if (!compat && !ro && !incompat) 1710 return 1; 1711 1712 /* We can support any known requested features iff the 1713 * superblock is in version 2. Otherwise we fail to support any 1714 * extended sb features. */ 1715 1716 if (journal->j_format_version != 2) 1717 return 0; 1718 1719 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 1720 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 1721 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 1722 return 1; 1723 1724 return 0; 1725 } 1726 1727 /** 1728 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock 1729 * @journal: Journal to act on. 1730 * @compat: bitmask of compatible features 1731 * @ro: bitmask of features that force read-only mount 1732 * @incompat: bitmask of incompatible features 1733 * 1734 * Mark a given journal feature as present on the 1735 * superblock. Returns true if the requested features could be set. 1736 * 1737 */ 1738 1739 int jbd2_journal_set_features (journal_t *journal, unsigned long compat, 1740 unsigned long ro, unsigned long incompat) 1741 { 1742 #define INCOMPAT_FEATURE_ON(f) \ 1743 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f))) 1744 #define COMPAT_FEATURE_ON(f) \ 1745 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f))) 1746 journal_superblock_t *sb; 1747 1748 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 1749 return 1; 1750 1751 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 1752 return 0; 1753 1754 /* Asking for checksumming v2 and v1? Only give them v2. */ 1755 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2 && 1756 compat & JBD2_FEATURE_COMPAT_CHECKSUM) 1757 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM; 1758 1759 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 1760 compat, ro, incompat); 1761 1762 sb = journal->j_superblock; 1763 1764 /* If enabling v2 checksums, update superblock */ 1765 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V2)) { 1766 sb->s_checksum_type = JBD2_CRC32C_CHKSUM; 1767 sb->s_feature_compat &= 1768 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM); 1769 1770 /* Load the checksum driver */ 1771 if (journal->j_chksum_driver == NULL) { 1772 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 1773 0, 0); 1774 if (IS_ERR(journal->j_chksum_driver)) { 1775 printk(KERN_ERR "JBD: Cannot load crc32c " 1776 "driver.\n"); 1777 journal->j_chksum_driver = NULL; 1778 return 0; 1779 } 1780 } 1781 1782 /* Precompute checksum seed for all metadata */ 1783 if (JBD2_HAS_INCOMPAT_FEATURE(journal, 1784 JBD2_FEATURE_INCOMPAT_CSUM_V2)) 1785 journal->j_csum_seed = jbd2_chksum(journal, ~0, 1786 sb->s_uuid, 1787 sizeof(sb->s_uuid)); 1788 } 1789 1790 /* If enabling v1 checksums, downgrade superblock */ 1791 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM)) 1792 sb->s_feature_incompat &= 1793 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2); 1794 1795 sb->s_feature_compat |= cpu_to_be32(compat); 1796 sb->s_feature_ro_compat |= cpu_to_be32(ro); 1797 sb->s_feature_incompat |= cpu_to_be32(incompat); 1798 1799 return 1; 1800 #undef COMPAT_FEATURE_ON 1801 #undef INCOMPAT_FEATURE_ON 1802 } 1803 1804 /* 1805 * jbd2_journal_clear_features () - Clear a given journal feature in the 1806 * superblock 1807 * @journal: Journal to act on. 1808 * @compat: bitmask of compatible features 1809 * @ro: bitmask of features that force read-only mount 1810 * @incompat: bitmask of incompatible features 1811 * 1812 * Clear a given journal feature as present on the 1813 * superblock. 1814 */ 1815 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 1816 unsigned long ro, unsigned long incompat) 1817 { 1818 journal_superblock_t *sb; 1819 1820 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 1821 compat, ro, incompat); 1822 1823 sb = journal->j_superblock; 1824 1825 sb->s_feature_compat &= ~cpu_to_be32(compat); 1826 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 1827 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 1828 } 1829 EXPORT_SYMBOL(jbd2_journal_clear_features); 1830 1831 /** 1832 * int jbd2_journal_flush () - Flush journal 1833 * @journal: Journal to act on. 1834 * 1835 * Flush all data for a given journal to disk and empty the journal. 1836 * Filesystems can use this when remounting readonly to ensure that 1837 * recovery does not need to happen on remount. 1838 */ 1839 1840 int jbd2_journal_flush(journal_t *journal) 1841 { 1842 int err = 0; 1843 transaction_t *transaction = NULL; 1844 1845 write_lock(&journal->j_state_lock); 1846 1847 /* Force everything buffered to the log... */ 1848 if (journal->j_running_transaction) { 1849 transaction = journal->j_running_transaction; 1850 __jbd2_log_start_commit(journal, transaction->t_tid); 1851 } else if (journal->j_committing_transaction) 1852 transaction = journal->j_committing_transaction; 1853 1854 /* Wait for the log commit to complete... */ 1855 if (transaction) { 1856 tid_t tid = transaction->t_tid; 1857 1858 write_unlock(&journal->j_state_lock); 1859 jbd2_log_wait_commit(journal, tid); 1860 } else { 1861 write_unlock(&journal->j_state_lock); 1862 } 1863 1864 /* ...and flush everything in the log out to disk. */ 1865 spin_lock(&journal->j_list_lock); 1866 while (!err && journal->j_checkpoint_transactions != NULL) { 1867 spin_unlock(&journal->j_list_lock); 1868 mutex_lock(&journal->j_checkpoint_mutex); 1869 err = jbd2_log_do_checkpoint(journal); 1870 mutex_unlock(&journal->j_checkpoint_mutex); 1871 spin_lock(&journal->j_list_lock); 1872 } 1873 spin_unlock(&journal->j_list_lock); 1874 1875 if (is_journal_aborted(journal)) 1876 return -EIO; 1877 1878 mutex_lock(&journal->j_checkpoint_mutex); 1879 jbd2_cleanup_journal_tail(journal); 1880 1881 /* Finally, mark the journal as really needing no recovery. 1882 * This sets s_start==0 in the underlying superblock, which is 1883 * the magic code for a fully-recovered superblock. Any future 1884 * commits of data to the journal will restore the current 1885 * s_start value. */ 1886 jbd2_mark_journal_empty(journal); 1887 mutex_unlock(&journal->j_checkpoint_mutex); 1888 write_lock(&journal->j_state_lock); 1889 J_ASSERT(!journal->j_running_transaction); 1890 J_ASSERT(!journal->j_committing_transaction); 1891 J_ASSERT(!journal->j_checkpoint_transactions); 1892 J_ASSERT(journal->j_head == journal->j_tail); 1893 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 1894 write_unlock(&journal->j_state_lock); 1895 return 0; 1896 } 1897 1898 /** 1899 * int jbd2_journal_wipe() - Wipe journal contents 1900 * @journal: Journal to act on. 1901 * @write: flag (see below) 1902 * 1903 * Wipe out all of the contents of a journal, safely. This will produce 1904 * a warning if the journal contains any valid recovery information. 1905 * Must be called between journal_init_*() and jbd2_journal_load(). 1906 * 1907 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 1908 * we merely suppress recovery. 1909 */ 1910 1911 int jbd2_journal_wipe(journal_t *journal, int write) 1912 { 1913 int err = 0; 1914 1915 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 1916 1917 err = load_superblock(journal); 1918 if (err) 1919 return err; 1920 1921 if (!journal->j_tail) 1922 goto no_recovery; 1923 1924 printk(KERN_WARNING "JBD2: %s recovery information on journal\n", 1925 write ? "Clearing" : "Ignoring"); 1926 1927 err = jbd2_journal_skip_recovery(journal); 1928 if (write) { 1929 /* Lock to make assertions happy... */ 1930 mutex_lock(&journal->j_checkpoint_mutex); 1931 jbd2_mark_journal_empty(journal); 1932 mutex_unlock(&journal->j_checkpoint_mutex); 1933 } 1934 1935 no_recovery: 1936 return err; 1937 } 1938 1939 /* 1940 * Journal abort has very specific semantics, which we describe 1941 * for journal abort. 1942 * 1943 * Two internal functions, which provide abort to the jbd layer 1944 * itself are here. 1945 */ 1946 1947 /* 1948 * Quick version for internal journal use (doesn't lock the journal). 1949 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else, 1950 * and don't attempt to make any other journal updates. 1951 */ 1952 void __jbd2_journal_abort_hard(journal_t *journal) 1953 { 1954 transaction_t *transaction; 1955 1956 if (journal->j_flags & JBD2_ABORT) 1957 return; 1958 1959 printk(KERN_ERR "Aborting journal on device %s.\n", 1960 journal->j_devname); 1961 1962 write_lock(&journal->j_state_lock); 1963 journal->j_flags |= JBD2_ABORT; 1964 transaction = journal->j_running_transaction; 1965 if (transaction) 1966 __jbd2_log_start_commit(journal, transaction->t_tid); 1967 write_unlock(&journal->j_state_lock); 1968 } 1969 1970 /* Soft abort: record the abort error status in the journal superblock, 1971 * but don't do any other IO. */ 1972 static void __journal_abort_soft (journal_t *journal, int errno) 1973 { 1974 if (journal->j_flags & JBD2_ABORT) 1975 return; 1976 1977 if (!journal->j_errno) 1978 journal->j_errno = errno; 1979 1980 __jbd2_journal_abort_hard(journal); 1981 1982 if (errno) 1983 jbd2_journal_update_sb_errno(journal); 1984 } 1985 1986 /** 1987 * void jbd2_journal_abort () - Shutdown the journal immediately. 1988 * @journal: the journal to shutdown. 1989 * @errno: an error number to record in the journal indicating 1990 * the reason for the shutdown. 1991 * 1992 * Perform a complete, immediate shutdown of the ENTIRE 1993 * journal (not of a single transaction). This operation cannot be 1994 * undone without closing and reopening the journal. 1995 * 1996 * The jbd2_journal_abort function is intended to support higher level error 1997 * recovery mechanisms such as the ext2/ext3 remount-readonly error 1998 * mode. 1999 * 2000 * Journal abort has very specific semantics. Any existing dirty, 2001 * unjournaled buffers in the main filesystem will still be written to 2002 * disk by bdflush, but the journaling mechanism will be suspended 2003 * immediately and no further transaction commits will be honoured. 2004 * 2005 * Any dirty, journaled buffers will be written back to disk without 2006 * hitting the journal. Atomicity cannot be guaranteed on an aborted 2007 * filesystem, but we _do_ attempt to leave as much data as possible 2008 * behind for fsck to use for cleanup. 2009 * 2010 * Any attempt to get a new transaction handle on a journal which is in 2011 * ABORT state will just result in an -EROFS error return. A 2012 * jbd2_journal_stop on an existing handle will return -EIO if we have 2013 * entered abort state during the update. 2014 * 2015 * Recursive transactions are not disturbed by journal abort until the 2016 * final jbd2_journal_stop, which will receive the -EIO error. 2017 * 2018 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 2019 * which will be recorded (if possible) in the journal superblock. This 2020 * allows a client to record failure conditions in the middle of a 2021 * transaction without having to complete the transaction to record the 2022 * failure to disk. ext3_error, for example, now uses this 2023 * functionality. 2024 * 2025 * Errors which originate from within the journaling layer will NOT 2026 * supply an errno; a null errno implies that absolutely no further 2027 * writes are done to the journal (unless there are any already in 2028 * progress). 2029 * 2030 */ 2031 2032 void jbd2_journal_abort(journal_t *journal, int errno) 2033 { 2034 __journal_abort_soft(journal, errno); 2035 } 2036 2037 /** 2038 * int jbd2_journal_errno () - returns the journal's error state. 2039 * @journal: journal to examine. 2040 * 2041 * This is the errno number set with jbd2_journal_abort(), the last 2042 * time the journal was mounted - if the journal was stopped 2043 * without calling abort this will be 0. 2044 * 2045 * If the journal has been aborted on this mount time -EROFS will 2046 * be returned. 2047 */ 2048 int jbd2_journal_errno(journal_t *journal) 2049 { 2050 int err; 2051 2052 read_lock(&journal->j_state_lock); 2053 if (journal->j_flags & JBD2_ABORT) 2054 err = -EROFS; 2055 else 2056 err = journal->j_errno; 2057 read_unlock(&journal->j_state_lock); 2058 return err; 2059 } 2060 2061 /** 2062 * int jbd2_journal_clear_err () - clears the journal's error state 2063 * @journal: journal to act on. 2064 * 2065 * An error must be cleared or acked to take a FS out of readonly 2066 * mode. 2067 */ 2068 int jbd2_journal_clear_err(journal_t *journal) 2069 { 2070 int err = 0; 2071 2072 write_lock(&journal->j_state_lock); 2073 if (journal->j_flags & JBD2_ABORT) 2074 err = -EROFS; 2075 else 2076 journal->j_errno = 0; 2077 write_unlock(&journal->j_state_lock); 2078 return err; 2079 } 2080 2081 /** 2082 * void jbd2_journal_ack_err() - Ack journal err. 2083 * @journal: journal to act on. 2084 * 2085 * An error must be cleared or acked to take a FS out of readonly 2086 * mode. 2087 */ 2088 void jbd2_journal_ack_err(journal_t *journal) 2089 { 2090 write_lock(&journal->j_state_lock); 2091 if (journal->j_errno) 2092 journal->j_flags |= JBD2_ACK_ERR; 2093 write_unlock(&journal->j_state_lock); 2094 } 2095 2096 int jbd2_journal_blocks_per_page(struct inode *inode) 2097 { 2098 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 2099 } 2100 2101 /* 2102 * helper functions to deal with 32 or 64bit block numbers. 2103 */ 2104 size_t journal_tag_bytes(journal_t *journal) 2105 { 2106 journal_block_tag_t tag; 2107 size_t x = 0; 2108 2109 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) 2110 x += sizeof(tag.t_checksum); 2111 2112 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT)) 2113 return x + JBD2_TAG_SIZE64; 2114 else 2115 return x + JBD2_TAG_SIZE32; 2116 } 2117 2118 /* 2119 * JBD memory management 2120 * 2121 * These functions are used to allocate block-sized chunks of memory 2122 * used for making copies of buffer_head data. Very often it will be 2123 * page-sized chunks of data, but sometimes it will be in 2124 * sub-page-size chunks. (For example, 16k pages on Power systems 2125 * with a 4k block file system.) For blocks smaller than a page, we 2126 * use a SLAB allocator. There are slab caches for each block size, 2127 * which are allocated at mount time, if necessary, and we only free 2128 * (all of) the slab caches when/if the jbd2 module is unloaded. For 2129 * this reason we don't need to a mutex to protect access to 2130 * jbd2_slab[] allocating or releasing memory; only in 2131 * jbd2_journal_create_slab(). 2132 */ 2133 #define JBD2_MAX_SLABS 8 2134 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS]; 2135 2136 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = { 2137 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k", 2138 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k" 2139 }; 2140 2141 2142 static void jbd2_journal_destroy_slabs(void) 2143 { 2144 int i; 2145 2146 for (i = 0; i < JBD2_MAX_SLABS; i++) { 2147 if (jbd2_slab[i]) 2148 kmem_cache_destroy(jbd2_slab[i]); 2149 jbd2_slab[i] = NULL; 2150 } 2151 } 2152 2153 static int jbd2_journal_create_slab(size_t size) 2154 { 2155 static DEFINE_MUTEX(jbd2_slab_create_mutex); 2156 int i = order_base_2(size) - 10; 2157 size_t slab_size; 2158 2159 if (size == PAGE_SIZE) 2160 return 0; 2161 2162 if (i >= JBD2_MAX_SLABS) 2163 return -EINVAL; 2164 2165 if (unlikely(i < 0)) 2166 i = 0; 2167 mutex_lock(&jbd2_slab_create_mutex); 2168 if (jbd2_slab[i]) { 2169 mutex_unlock(&jbd2_slab_create_mutex); 2170 return 0; /* Already created */ 2171 } 2172 2173 slab_size = 1 << (i+10); 2174 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size, 2175 slab_size, 0, NULL); 2176 mutex_unlock(&jbd2_slab_create_mutex); 2177 if (!jbd2_slab[i]) { 2178 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n"); 2179 return -ENOMEM; 2180 } 2181 return 0; 2182 } 2183 2184 static struct kmem_cache *get_slab(size_t size) 2185 { 2186 int i = order_base_2(size) - 10; 2187 2188 BUG_ON(i >= JBD2_MAX_SLABS); 2189 if (unlikely(i < 0)) 2190 i = 0; 2191 BUG_ON(jbd2_slab[i] == NULL); 2192 return jbd2_slab[i]; 2193 } 2194 2195 void *jbd2_alloc(size_t size, gfp_t flags) 2196 { 2197 void *ptr; 2198 2199 BUG_ON(size & (size-1)); /* Must be a power of 2 */ 2200 2201 flags |= __GFP_REPEAT; 2202 if (size == PAGE_SIZE) 2203 ptr = (void *)__get_free_pages(flags, 0); 2204 else if (size > PAGE_SIZE) { 2205 int order = get_order(size); 2206 2207 if (order < 3) 2208 ptr = (void *)__get_free_pages(flags, order); 2209 else 2210 ptr = vmalloc(size); 2211 } else 2212 ptr = kmem_cache_alloc(get_slab(size), flags); 2213 2214 /* Check alignment; SLUB has gotten this wrong in the past, 2215 * and this can lead to user data corruption! */ 2216 BUG_ON(((unsigned long) ptr) & (size-1)); 2217 2218 return ptr; 2219 } 2220 2221 void jbd2_free(void *ptr, size_t size) 2222 { 2223 if (size == PAGE_SIZE) { 2224 free_pages((unsigned long)ptr, 0); 2225 return; 2226 } 2227 if (size > PAGE_SIZE) { 2228 int order = get_order(size); 2229 2230 if (order < 3) 2231 free_pages((unsigned long)ptr, order); 2232 else 2233 vfree(ptr); 2234 return; 2235 } 2236 kmem_cache_free(get_slab(size), ptr); 2237 }; 2238 2239 /* 2240 * Journal_head storage management 2241 */ 2242 static struct kmem_cache *jbd2_journal_head_cache; 2243 #ifdef CONFIG_JBD2_DEBUG 2244 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 2245 #endif 2246 2247 static int jbd2_journal_init_journal_head_cache(void) 2248 { 2249 int retval; 2250 2251 J_ASSERT(jbd2_journal_head_cache == NULL); 2252 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 2253 sizeof(struct journal_head), 2254 0, /* offset */ 2255 SLAB_TEMPORARY, /* flags */ 2256 NULL); /* ctor */ 2257 retval = 0; 2258 if (!jbd2_journal_head_cache) { 2259 retval = -ENOMEM; 2260 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n"); 2261 } 2262 return retval; 2263 } 2264 2265 static void jbd2_journal_destroy_journal_head_cache(void) 2266 { 2267 if (jbd2_journal_head_cache) { 2268 kmem_cache_destroy(jbd2_journal_head_cache); 2269 jbd2_journal_head_cache = NULL; 2270 } 2271 } 2272 2273 /* 2274 * journal_head splicing and dicing 2275 */ 2276 static struct journal_head *journal_alloc_journal_head(void) 2277 { 2278 struct journal_head *ret; 2279 2280 #ifdef CONFIG_JBD2_DEBUG 2281 atomic_inc(&nr_journal_heads); 2282 #endif 2283 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS); 2284 if (!ret) { 2285 jbd_debug(1, "out of memory for journal_head\n"); 2286 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__); 2287 while (!ret) { 2288 yield(); 2289 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS); 2290 } 2291 } 2292 return ret; 2293 } 2294 2295 static void journal_free_journal_head(struct journal_head *jh) 2296 { 2297 #ifdef CONFIG_JBD2_DEBUG 2298 atomic_dec(&nr_journal_heads); 2299 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 2300 #endif 2301 kmem_cache_free(jbd2_journal_head_cache, jh); 2302 } 2303 2304 /* 2305 * A journal_head is attached to a buffer_head whenever JBD has an 2306 * interest in the buffer. 2307 * 2308 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 2309 * is set. This bit is tested in core kernel code where we need to take 2310 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 2311 * there. 2312 * 2313 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 2314 * 2315 * When a buffer has its BH_JBD bit set it is immune from being released by 2316 * core kernel code, mainly via ->b_count. 2317 * 2318 * A journal_head is detached from its buffer_head when the journal_head's 2319 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint 2320 * transaction (b_cp_transaction) hold their references to b_jcount. 2321 * 2322 * Various places in the kernel want to attach a journal_head to a buffer_head 2323 * _before_ attaching the journal_head to a transaction. To protect the 2324 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 2325 * journal_head's b_jcount refcount by one. The caller must call 2326 * jbd2_journal_put_journal_head() to undo this. 2327 * 2328 * So the typical usage would be: 2329 * 2330 * (Attach a journal_head if needed. Increments b_jcount) 2331 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 2332 * ... 2333 * (Get another reference for transaction) 2334 * jbd2_journal_grab_journal_head(bh); 2335 * jh->b_transaction = xxx; 2336 * (Put original reference) 2337 * jbd2_journal_put_journal_head(jh); 2338 */ 2339 2340 /* 2341 * Give a buffer_head a journal_head. 2342 * 2343 * May sleep. 2344 */ 2345 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 2346 { 2347 struct journal_head *jh; 2348 struct journal_head *new_jh = NULL; 2349 2350 repeat: 2351 if (!buffer_jbd(bh)) { 2352 new_jh = journal_alloc_journal_head(); 2353 memset(new_jh, 0, sizeof(*new_jh)); 2354 } 2355 2356 jbd_lock_bh_journal_head(bh); 2357 if (buffer_jbd(bh)) { 2358 jh = bh2jh(bh); 2359 } else { 2360 J_ASSERT_BH(bh, 2361 (atomic_read(&bh->b_count) > 0) || 2362 (bh->b_page && bh->b_page->mapping)); 2363 2364 if (!new_jh) { 2365 jbd_unlock_bh_journal_head(bh); 2366 goto repeat; 2367 } 2368 2369 jh = new_jh; 2370 new_jh = NULL; /* We consumed it */ 2371 set_buffer_jbd(bh); 2372 bh->b_private = jh; 2373 jh->b_bh = bh; 2374 get_bh(bh); 2375 BUFFER_TRACE(bh, "added journal_head"); 2376 } 2377 jh->b_jcount++; 2378 jbd_unlock_bh_journal_head(bh); 2379 if (new_jh) 2380 journal_free_journal_head(new_jh); 2381 return bh->b_private; 2382 } 2383 2384 /* 2385 * Grab a ref against this buffer_head's journal_head. If it ended up not 2386 * having a journal_head, return NULL 2387 */ 2388 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 2389 { 2390 struct journal_head *jh = NULL; 2391 2392 jbd_lock_bh_journal_head(bh); 2393 if (buffer_jbd(bh)) { 2394 jh = bh2jh(bh); 2395 jh->b_jcount++; 2396 } 2397 jbd_unlock_bh_journal_head(bh); 2398 return jh; 2399 } 2400 2401 static void __journal_remove_journal_head(struct buffer_head *bh) 2402 { 2403 struct journal_head *jh = bh2jh(bh); 2404 2405 J_ASSERT_JH(jh, jh->b_jcount >= 0); 2406 J_ASSERT_JH(jh, jh->b_transaction == NULL); 2407 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2408 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL); 2409 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 2410 J_ASSERT_BH(bh, buffer_jbd(bh)); 2411 J_ASSERT_BH(bh, jh2bh(jh) == bh); 2412 BUFFER_TRACE(bh, "remove journal_head"); 2413 if (jh->b_frozen_data) { 2414 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__); 2415 jbd2_free(jh->b_frozen_data, bh->b_size); 2416 } 2417 if (jh->b_committed_data) { 2418 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__); 2419 jbd2_free(jh->b_committed_data, bh->b_size); 2420 } 2421 bh->b_private = NULL; 2422 jh->b_bh = NULL; /* debug, really */ 2423 clear_buffer_jbd(bh); 2424 journal_free_journal_head(jh); 2425 } 2426 2427 /* 2428 * Drop a reference on the passed journal_head. If it fell to zero then 2429 * release the journal_head from the buffer_head. 2430 */ 2431 void jbd2_journal_put_journal_head(struct journal_head *jh) 2432 { 2433 struct buffer_head *bh = jh2bh(jh); 2434 2435 jbd_lock_bh_journal_head(bh); 2436 J_ASSERT_JH(jh, jh->b_jcount > 0); 2437 --jh->b_jcount; 2438 if (!jh->b_jcount) { 2439 __journal_remove_journal_head(bh); 2440 jbd_unlock_bh_journal_head(bh); 2441 __brelse(bh); 2442 } else 2443 jbd_unlock_bh_journal_head(bh); 2444 } 2445 2446 /* 2447 * Initialize jbd inode head 2448 */ 2449 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 2450 { 2451 jinode->i_transaction = NULL; 2452 jinode->i_next_transaction = NULL; 2453 jinode->i_vfs_inode = inode; 2454 jinode->i_flags = 0; 2455 INIT_LIST_HEAD(&jinode->i_list); 2456 } 2457 2458 /* 2459 * Function to be called before we start removing inode from memory (i.e., 2460 * clear_inode() is a fine place to be called from). It removes inode from 2461 * transaction's lists. 2462 */ 2463 void jbd2_journal_release_jbd_inode(journal_t *journal, 2464 struct jbd2_inode *jinode) 2465 { 2466 if (!journal) 2467 return; 2468 restart: 2469 spin_lock(&journal->j_list_lock); 2470 /* Is commit writing out inode - we have to wait */ 2471 if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) { 2472 wait_queue_head_t *wq; 2473 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 2474 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 2475 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 2476 spin_unlock(&journal->j_list_lock); 2477 schedule(); 2478 finish_wait(wq, &wait.wait); 2479 goto restart; 2480 } 2481 2482 if (jinode->i_transaction) { 2483 list_del(&jinode->i_list); 2484 jinode->i_transaction = NULL; 2485 } 2486 spin_unlock(&journal->j_list_lock); 2487 } 2488 2489 /* 2490 * debugfs tunables 2491 */ 2492 #ifdef CONFIG_JBD2_DEBUG 2493 u8 jbd2_journal_enable_debug __read_mostly; 2494 EXPORT_SYMBOL(jbd2_journal_enable_debug); 2495 2496 #define JBD2_DEBUG_NAME "jbd2-debug" 2497 2498 static struct dentry *jbd2_debugfs_dir; 2499 static struct dentry *jbd2_debug; 2500 2501 static void __init jbd2_create_debugfs_entry(void) 2502 { 2503 jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL); 2504 if (jbd2_debugfs_dir) 2505 jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME, 2506 S_IRUGO | S_IWUSR, 2507 jbd2_debugfs_dir, 2508 &jbd2_journal_enable_debug); 2509 } 2510 2511 static void __exit jbd2_remove_debugfs_entry(void) 2512 { 2513 debugfs_remove(jbd2_debug); 2514 debugfs_remove(jbd2_debugfs_dir); 2515 } 2516 2517 #else 2518 2519 static void __init jbd2_create_debugfs_entry(void) 2520 { 2521 } 2522 2523 static void __exit jbd2_remove_debugfs_entry(void) 2524 { 2525 } 2526 2527 #endif 2528 2529 #ifdef CONFIG_PROC_FS 2530 2531 #define JBD2_STATS_PROC_NAME "fs/jbd2" 2532 2533 static void __init jbd2_create_jbd_stats_proc_entry(void) 2534 { 2535 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 2536 } 2537 2538 static void __exit jbd2_remove_jbd_stats_proc_entry(void) 2539 { 2540 if (proc_jbd2_stats) 2541 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 2542 } 2543 2544 #else 2545 2546 #define jbd2_create_jbd_stats_proc_entry() do {} while (0) 2547 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 2548 2549 #endif 2550 2551 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache; 2552 2553 static int __init jbd2_journal_init_handle_cache(void) 2554 { 2555 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY); 2556 if (jbd2_handle_cache == NULL) { 2557 printk(KERN_EMERG "JBD2: failed to create handle cache\n"); 2558 return -ENOMEM; 2559 } 2560 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0); 2561 if (jbd2_inode_cache == NULL) { 2562 printk(KERN_EMERG "JBD2: failed to create inode cache\n"); 2563 kmem_cache_destroy(jbd2_handle_cache); 2564 return -ENOMEM; 2565 } 2566 return 0; 2567 } 2568 2569 static void jbd2_journal_destroy_handle_cache(void) 2570 { 2571 if (jbd2_handle_cache) 2572 kmem_cache_destroy(jbd2_handle_cache); 2573 if (jbd2_inode_cache) 2574 kmem_cache_destroy(jbd2_inode_cache); 2575 2576 } 2577 2578 /* 2579 * Module startup and shutdown 2580 */ 2581 2582 static int __init journal_init_caches(void) 2583 { 2584 int ret; 2585 2586 ret = jbd2_journal_init_revoke_caches(); 2587 if (ret == 0) 2588 ret = jbd2_journal_init_journal_head_cache(); 2589 if (ret == 0) 2590 ret = jbd2_journal_init_handle_cache(); 2591 if (ret == 0) 2592 ret = jbd2_journal_init_transaction_cache(); 2593 return ret; 2594 } 2595 2596 static void jbd2_journal_destroy_caches(void) 2597 { 2598 jbd2_journal_destroy_revoke_caches(); 2599 jbd2_journal_destroy_journal_head_cache(); 2600 jbd2_journal_destroy_handle_cache(); 2601 jbd2_journal_destroy_transaction_cache(); 2602 jbd2_journal_destroy_slabs(); 2603 } 2604 2605 static int __init journal_init(void) 2606 { 2607 int ret; 2608 2609 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 2610 2611 ret = journal_init_caches(); 2612 if (ret == 0) { 2613 jbd2_create_debugfs_entry(); 2614 jbd2_create_jbd_stats_proc_entry(); 2615 } else { 2616 jbd2_journal_destroy_caches(); 2617 } 2618 return ret; 2619 } 2620 2621 static void __exit journal_exit(void) 2622 { 2623 #ifdef CONFIG_JBD2_DEBUG 2624 int n = atomic_read(&nr_journal_heads); 2625 if (n) 2626 printk(KERN_EMERG "JBD2: leaked %d journal_heads!\n", n); 2627 #endif 2628 jbd2_remove_debugfs_entry(); 2629 jbd2_remove_jbd_stats_proc_entry(); 2630 jbd2_journal_destroy_caches(); 2631 } 2632 2633 MODULE_LICENSE("GPL"); 2634 module_init(journal_init); 2635 module_exit(journal_exit); 2636 2637