1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/journal.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Generic filesystem journal-writing code; part of the ext2fs 10 * journaling system. 11 * 12 * This file manages journals: areas of disk reserved for logging 13 * transactional updates. This includes the kernel journaling thread 14 * which is responsible for scheduling updates to the log. 15 * 16 * We do not actually manage the physical storage of the journal in this 17 * file: that is left to a per-journal policy function, which allows us 18 * to store the journal within a filesystem-specified area for ext2 19 * journaling (ext2 can use a reserved inode for storing the log). 20 */ 21 22 #include <linux/module.h> 23 #include <linux/time.h> 24 #include <linux/fs.h> 25 #include <linux/jbd2.h> 26 #include <linux/errno.h> 27 #include <linux/slab.h> 28 #include <linux/init.h> 29 #include <linux/mm.h> 30 #include <linux/freezer.h> 31 #include <linux/pagemap.h> 32 #include <linux/kthread.h> 33 #include <linux/poison.h> 34 #include <linux/proc_fs.h> 35 #include <linux/seq_file.h> 36 #include <linux/math64.h> 37 #include <linux/hash.h> 38 #include <linux/log2.h> 39 #include <linux/vmalloc.h> 40 #include <linux/backing-dev.h> 41 #include <linux/bitops.h> 42 #include <linux/ratelimit.h> 43 #include <linux/sched/mm.h> 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/jbd2.h> 47 48 #include <linux/uaccess.h> 49 #include <asm/page.h> 50 51 #ifdef CONFIG_JBD2_DEBUG 52 static ushort jbd2_journal_enable_debug __read_mostly; 53 54 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644); 55 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2"); 56 #endif 57 58 EXPORT_SYMBOL(jbd2_journal_extend); 59 EXPORT_SYMBOL(jbd2_journal_stop); 60 EXPORT_SYMBOL(jbd2_journal_lock_updates); 61 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 62 EXPORT_SYMBOL(jbd2_journal_get_write_access); 63 EXPORT_SYMBOL(jbd2_journal_get_create_access); 64 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 65 EXPORT_SYMBOL(jbd2_journal_set_triggers); 66 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 67 EXPORT_SYMBOL(jbd2_journal_forget); 68 EXPORT_SYMBOL(jbd2_journal_flush); 69 EXPORT_SYMBOL(jbd2_journal_revoke); 70 71 EXPORT_SYMBOL(jbd2_journal_init_dev); 72 EXPORT_SYMBOL(jbd2_journal_init_inode); 73 EXPORT_SYMBOL(jbd2_journal_check_used_features); 74 EXPORT_SYMBOL(jbd2_journal_check_available_features); 75 EXPORT_SYMBOL(jbd2_journal_set_features); 76 EXPORT_SYMBOL(jbd2_journal_load); 77 EXPORT_SYMBOL(jbd2_journal_destroy); 78 EXPORT_SYMBOL(jbd2_journal_abort); 79 EXPORT_SYMBOL(jbd2_journal_errno); 80 EXPORT_SYMBOL(jbd2_journal_ack_err); 81 EXPORT_SYMBOL(jbd2_journal_clear_err); 82 EXPORT_SYMBOL(jbd2_log_wait_commit); 83 EXPORT_SYMBOL(jbd2_journal_start_commit); 84 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 85 EXPORT_SYMBOL(jbd2_journal_wipe); 86 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 87 EXPORT_SYMBOL(jbd2_journal_invalidate_folio); 88 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 89 EXPORT_SYMBOL(jbd2_journal_force_commit); 90 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write); 91 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait); 92 EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers); 93 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 94 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 95 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 96 EXPORT_SYMBOL(jbd2_inode_cache); 97 98 static int jbd2_journal_create_slab(size_t slab_size); 99 100 #ifdef CONFIG_JBD2_DEBUG 101 void __jbd2_debug(int level, const char *file, const char *func, 102 unsigned int line, const char *fmt, ...) 103 { 104 struct va_format vaf; 105 va_list args; 106 107 if (level > jbd2_journal_enable_debug) 108 return; 109 va_start(args, fmt); 110 vaf.fmt = fmt; 111 vaf.va = &args; 112 printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf); 113 va_end(args); 114 } 115 #endif 116 117 /* Checksumming functions */ 118 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb) 119 { 120 __u32 csum; 121 __be32 old_csum; 122 123 old_csum = sb->s_checksum; 124 sb->s_checksum = 0; 125 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t)); 126 sb->s_checksum = old_csum; 127 128 return cpu_to_be32(csum); 129 } 130 131 /* 132 * Helper function used to manage commit timeouts 133 */ 134 135 static void commit_timeout(struct timer_list *t) 136 { 137 journal_t *journal = from_timer(journal, t, j_commit_timer); 138 139 wake_up_process(journal->j_task); 140 } 141 142 /* 143 * kjournald2: The main thread function used to manage a logging device 144 * journal. 145 * 146 * This kernel thread is responsible for two things: 147 * 148 * 1) COMMIT: Every so often we need to commit the current state of the 149 * filesystem to disk. The journal thread is responsible for writing 150 * all of the metadata buffers to disk. If a fast commit is ongoing 151 * journal thread waits until it's done and then continues from 152 * there on. 153 * 154 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 155 * of the data in that part of the log has been rewritten elsewhere on 156 * the disk. Flushing these old buffers to reclaim space in the log is 157 * known as checkpointing, and this thread is responsible for that job. 158 */ 159 160 static int kjournald2(void *arg) 161 { 162 journal_t *journal = arg; 163 transaction_t *transaction; 164 165 /* 166 * Set up an interval timer which can be used to trigger a commit wakeup 167 * after the commit interval expires 168 */ 169 timer_setup(&journal->j_commit_timer, commit_timeout, 0); 170 171 set_freezable(); 172 173 /* Record that the journal thread is running */ 174 journal->j_task = current; 175 wake_up(&journal->j_wait_done_commit); 176 177 /* 178 * Make sure that no allocations from this kernel thread will ever 179 * recurse to the fs layer because we are responsible for the 180 * transaction commit and any fs involvement might get stuck waiting for 181 * the trasn. commit. 182 */ 183 memalloc_nofs_save(); 184 185 /* 186 * And now, wait forever for commit wakeup events. 187 */ 188 write_lock(&journal->j_state_lock); 189 190 loop: 191 if (journal->j_flags & JBD2_UNMOUNT) 192 goto end_loop; 193 194 jbd2_debug(1, "commit_sequence=%u, commit_request=%u\n", 195 journal->j_commit_sequence, journal->j_commit_request); 196 197 if (journal->j_commit_sequence != journal->j_commit_request) { 198 jbd2_debug(1, "OK, requests differ\n"); 199 write_unlock(&journal->j_state_lock); 200 del_timer_sync(&journal->j_commit_timer); 201 jbd2_journal_commit_transaction(journal); 202 write_lock(&journal->j_state_lock); 203 goto loop; 204 } 205 206 wake_up(&journal->j_wait_done_commit); 207 if (freezing(current)) { 208 /* 209 * The simpler the better. Flushing journal isn't a 210 * good idea, because that depends on threads that may 211 * be already stopped. 212 */ 213 jbd2_debug(1, "Now suspending kjournald2\n"); 214 write_unlock(&journal->j_state_lock); 215 try_to_freeze(); 216 write_lock(&journal->j_state_lock); 217 } else { 218 /* 219 * We assume on resume that commits are already there, 220 * so we don't sleep 221 */ 222 DEFINE_WAIT(wait); 223 int should_sleep = 1; 224 225 prepare_to_wait(&journal->j_wait_commit, &wait, 226 TASK_INTERRUPTIBLE); 227 if (journal->j_commit_sequence != journal->j_commit_request) 228 should_sleep = 0; 229 transaction = journal->j_running_transaction; 230 if (transaction && time_after_eq(jiffies, 231 transaction->t_expires)) 232 should_sleep = 0; 233 if (journal->j_flags & JBD2_UNMOUNT) 234 should_sleep = 0; 235 if (should_sleep) { 236 write_unlock(&journal->j_state_lock); 237 schedule(); 238 write_lock(&journal->j_state_lock); 239 } 240 finish_wait(&journal->j_wait_commit, &wait); 241 } 242 243 jbd2_debug(1, "kjournald2 wakes\n"); 244 245 /* 246 * Were we woken up by a commit wakeup event? 247 */ 248 transaction = journal->j_running_transaction; 249 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 250 journal->j_commit_request = transaction->t_tid; 251 jbd2_debug(1, "woke because of timeout\n"); 252 } 253 goto loop; 254 255 end_loop: 256 del_timer_sync(&journal->j_commit_timer); 257 journal->j_task = NULL; 258 wake_up(&journal->j_wait_done_commit); 259 jbd2_debug(1, "Journal thread exiting.\n"); 260 write_unlock(&journal->j_state_lock); 261 return 0; 262 } 263 264 static int jbd2_journal_start_thread(journal_t *journal) 265 { 266 struct task_struct *t; 267 268 t = kthread_run(kjournald2, journal, "jbd2/%s", 269 journal->j_devname); 270 if (IS_ERR(t)) 271 return PTR_ERR(t); 272 273 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 274 return 0; 275 } 276 277 static void journal_kill_thread(journal_t *journal) 278 { 279 write_lock(&journal->j_state_lock); 280 journal->j_flags |= JBD2_UNMOUNT; 281 282 while (journal->j_task) { 283 write_unlock(&journal->j_state_lock); 284 wake_up(&journal->j_wait_commit); 285 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 286 write_lock(&journal->j_state_lock); 287 } 288 write_unlock(&journal->j_state_lock); 289 } 290 291 /* 292 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 293 * 294 * Writes a metadata buffer to a given disk block. The actual IO is not 295 * performed but a new buffer_head is constructed which labels the data 296 * to be written with the correct destination disk block. 297 * 298 * Any magic-number escaping which needs to be done will cause a 299 * copy-out here. If the buffer happens to start with the 300 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 301 * magic number is only written to the log for descripter blocks. In 302 * this case, we copy the data and replace the first word with 0, and we 303 * return a result code which indicates that this buffer needs to be 304 * marked as an escaped buffer in the corresponding log descriptor 305 * block. The missing word can then be restored when the block is read 306 * during recovery. 307 * 308 * If the source buffer has already been modified by a new transaction 309 * since we took the last commit snapshot, we use the frozen copy of 310 * that data for IO. If we end up using the existing buffer_head's data 311 * for the write, then we have to make sure nobody modifies it while the 312 * IO is in progress. do_get_write_access() handles this. 313 * 314 * The function returns a pointer to the buffer_head to be used for IO. 315 * 316 * 317 * Return value: 318 * <0: Error 319 * >=0: Finished OK 320 * 321 * On success: 322 * Bit 0 set == escape performed on the data 323 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 324 */ 325 326 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 327 struct journal_head *jh_in, 328 struct buffer_head **bh_out, 329 sector_t blocknr) 330 { 331 int need_copy_out = 0; 332 int done_copy_out = 0; 333 int do_escape = 0; 334 char *mapped_data; 335 struct buffer_head *new_bh; 336 struct folio *new_folio; 337 unsigned int new_offset; 338 struct buffer_head *bh_in = jh2bh(jh_in); 339 journal_t *journal = transaction->t_journal; 340 341 /* 342 * The buffer really shouldn't be locked: only the current committing 343 * transaction is allowed to write it, so nobody else is allowed 344 * to do any IO. 345 * 346 * akpm: except if we're journalling data, and write() output is 347 * also part of a shared mapping, and another thread has 348 * decided to launch a writepage() against this buffer. 349 */ 350 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 351 352 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL); 353 354 /* keep subsequent assertions sane */ 355 atomic_set(&new_bh->b_count, 1); 356 357 spin_lock(&jh_in->b_state_lock); 358 repeat: 359 /* 360 * If a new transaction has already done a buffer copy-out, then 361 * we use that version of the data for the commit. 362 */ 363 if (jh_in->b_frozen_data) { 364 done_copy_out = 1; 365 new_folio = virt_to_folio(jh_in->b_frozen_data); 366 new_offset = offset_in_folio(new_folio, jh_in->b_frozen_data); 367 } else { 368 new_folio = jh2bh(jh_in)->b_folio; 369 new_offset = offset_in_folio(new_folio, jh2bh(jh_in)->b_data); 370 } 371 372 mapped_data = kmap_local_folio(new_folio, new_offset); 373 /* 374 * Fire data frozen trigger if data already wasn't frozen. Do this 375 * before checking for escaping, as the trigger may modify the magic 376 * offset. If a copy-out happens afterwards, it will have the correct 377 * data in the buffer. 378 */ 379 if (!done_copy_out) 380 jbd2_buffer_frozen_trigger(jh_in, mapped_data, 381 jh_in->b_triggers); 382 383 /* 384 * Check for escaping 385 */ 386 if (*((__be32 *)mapped_data) == cpu_to_be32(JBD2_MAGIC_NUMBER)) { 387 need_copy_out = 1; 388 do_escape = 1; 389 } 390 kunmap_local(mapped_data); 391 392 /* 393 * Do we need to do a data copy? 394 */ 395 if (need_copy_out && !done_copy_out) { 396 char *tmp; 397 398 spin_unlock(&jh_in->b_state_lock); 399 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS); 400 if (!tmp) { 401 brelse(new_bh); 402 free_buffer_head(new_bh); 403 return -ENOMEM; 404 } 405 spin_lock(&jh_in->b_state_lock); 406 if (jh_in->b_frozen_data) { 407 jbd2_free(tmp, bh_in->b_size); 408 goto repeat; 409 } 410 411 jh_in->b_frozen_data = tmp; 412 memcpy_from_folio(tmp, new_folio, new_offset, bh_in->b_size); 413 414 new_folio = virt_to_folio(tmp); 415 new_offset = offset_in_folio(new_folio, tmp); 416 done_copy_out = 1; 417 418 /* 419 * This isn't strictly necessary, as we're using frozen 420 * data for the escaping, but it keeps consistency with 421 * b_frozen_data usage. 422 */ 423 jh_in->b_frozen_triggers = jh_in->b_triggers; 424 } 425 426 /* 427 * Did we need to do an escaping? Now we've done all the 428 * copying, we can finally do so. 429 */ 430 if (do_escape) { 431 mapped_data = kmap_local_folio(new_folio, new_offset); 432 *((unsigned int *)mapped_data) = 0; 433 kunmap_local(mapped_data); 434 } 435 436 folio_set_bh(new_bh, new_folio, new_offset); 437 new_bh->b_size = bh_in->b_size; 438 new_bh->b_bdev = journal->j_dev; 439 new_bh->b_blocknr = blocknr; 440 new_bh->b_private = bh_in; 441 set_buffer_mapped(new_bh); 442 set_buffer_dirty(new_bh); 443 444 *bh_out = new_bh; 445 446 /* 447 * The to-be-written buffer needs to get moved to the io queue, 448 * and the original buffer whose contents we are shadowing or 449 * copying is moved to the transaction's shadow queue. 450 */ 451 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 452 spin_lock(&journal->j_list_lock); 453 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 454 spin_unlock(&journal->j_list_lock); 455 set_buffer_shadow(bh_in); 456 spin_unlock(&jh_in->b_state_lock); 457 458 return do_escape | (done_copy_out << 1); 459 } 460 461 /* 462 * Allocation code for the journal file. Manage the space left in the 463 * journal, so that we can begin checkpointing when appropriate. 464 */ 465 466 /* 467 * Called with j_state_lock locked for writing. 468 * Returns true if a transaction commit was started. 469 */ 470 static int __jbd2_log_start_commit(journal_t *journal, tid_t target) 471 { 472 /* Return if the txn has already requested to be committed */ 473 if (journal->j_commit_request == target) 474 return 0; 475 476 /* 477 * The only transaction we can possibly wait upon is the 478 * currently running transaction (if it exists). Otherwise, 479 * the target tid must be an old one. 480 */ 481 if (journal->j_running_transaction && 482 journal->j_running_transaction->t_tid == target) { 483 /* 484 * We want a new commit: OK, mark the request and wakeup the 485 * commit thread. We do _not_ do the commit ourselves. 486 */ 487 488 journal->j_commit_request = target; 489 jbd2_debug(1, "JBD2: requesting commit %u/%u\n", 490 journal->j_commit_request, 491 journal->j_commit_sequence); 492 journal->j_running_transaction->t_requested = jiffies; 493 wake_up(&journal->j_wait_commit); 494 return 1; 495 } else if (!tid_geq(journal->j_commit_request, target)) 496 /* This should never happen, but if it does, preserve 497 the evidence before kjournald goes into a loop and 498 increments j_commit_sequence beyond all recognition. */ 499 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n", 500 journal->j_commit_request, 501 journal->j_commit_sequence, 502 target, journal->j_running_transaction ? 503 journal->j_running_transaction->t_tid : 0); 504 return 0; 505 } 506 507 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 508 { 509 int ret; 510 511 write_lock(&journal->j_state_lock); 512 ret = __jbd2_log_start_commit(journal, tid); 513 write_unlock(&journal->j_state_lock); 514 return ret; 515 } 516 517 /* 518 * Force and wait any uncommitted transactions. We can only force the running 519 * transaction if we don't have an active handle, otherwise, we will deadlock. 520 * Returns: <0 in case of error, 521 * 0 if nothing to commit, 522 * 1 if transaction was successfully committed. 523 */ 524 static int __jbd2_journal_force_commit(journal_t *journal) 525 { 526 transaction_t *transaction = NULL; 527 tid_t tid; 528 int need_to_start = 0, ret = 0; 529 530 read_lock(&journal->j_state_lock); 531 if (journal->j_running_transaction && !current->journal_info) { 532 transaction = journal->j_running_transaction; 533 if (!tid_geq(journal->j_commit_request, transaction->t_tid)) 534 need_to_start = 1; 535 } else if (journal->j_committing_transaction) 536 transaction = journal->j_committing_transaction; 537 538 if (!transaction) { 539 /* Nothing to commit */ 540 read_unlock(&journal->j_state_lock); 541 return 0; 542 } 543 tid = transaction->t_tid; 544 read_unlock(&journal->j_state_lock); 545 if (need_to_start) 546 jbd2_log_start_commit(journal, tid); 547 ret = jbd2_log_wait_commit(journal, tid); 548 if (!ret) 549 ret = 1; 550 551 return ret; 552 } 553 554 /** 555 * jbd2_journal_force_commit_nested - Force and wait upon a commit if the 556 * calling process is not within transaction. 557 * 558 * @journal: journal to force 559 * Returns true if progress was made. 560 * 561 * This is used for forcing out undo-protected data which contains 562 * bitmaps, when the fs is running out of space. 563 */ 564 int jbd2_journal_force_commit_nested(journal_t *journal) 565 { 566 int ret; 567 568 ret = __jbd2_journal_force_commit(journal); 569 return ret > 0; 570 } 571 572 /** 573 * jbd2_journal_force_commit() - force any uncommitted transactions 574 * @journal: journal to force 575 * 576 * Caller want unconditional commit. We can only force the running transaction 577 * if we don't have an active handle, otherwise, we will deadlock. 578 */ 579 int jbd2_journal_force_commit(journal_t *journal) 580 { 581 int ret; 582 583 J_ASSERT(!current->journal_info); 584 ret = __jbd2_journal_force_commit(journal); 585 if (ret > 0) 586 ret = 0; 587 return ret; 588 } 589 590 /* 591 * Start a commit of the current running transaction (if any). Returns true 592 * if a transaction is going to be committed (or is currently already 593 * committing), and fills its tid in at *ptid 594 */ 595 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 596 { 597 int ret = 0; 598 599 write_lock(&journal->j_state_lock); 600 if (journal->j_running_transaction) { 601 tid_t tid = journal->j_running_transaction->t_tid; 602 603 __jbd2_log_start_commit(journal, tid); 604 /* There's a running transaction and we've just made sure 605 * it's commit has been scheduled. */ 606 if (ptid) 607 *ptid = tid; 608 ret = 1; 609 } else if (journal->j_committing_transaction) { 610 /* 611 * If commit has been started, then we have to wait for 612 * completion of that transaction. 613 */ 614 if (ptid) 615 *ptid = journal->j_committing_transaction->t_tid; 616 ret = 1; 617 } 618 write_unlock(&journal->j_state_lock); 619 return ret; 620 } 621 622 /* 623 * Return 1 if a given transaction has not yet sent barrier request 624 * connected with a transaction commit. If 0 is returned, transaction 625 * may or may not have sent the barrier. Used to avoid sending barrier 626 * twice in common cases. 627 */ 628 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid) 629 { 630 int ret = 0; 631 transaction_t *commit_trans; 632 633 if (!(journal->j_flags & JBD2_BARRIER)) 634 return 0; 635 read_lock(&journal->j_state_lock); 636 /* Transaction already committed? */ 637 if (tid_geq(journal->j_commit_sequence, tid)) 638 goto out; 639 commit_trans = journal->j_committing_transaction; 640 if (!commit_trans || commit_trans->t_tid != tid) { 641 ret = 1; 642 goto out; 643 } 644 /* 645 * Transaction is being committed and we already proceeded to 646 * submitting a flush to fs partition? 647 */ 648 if (journal->j_fs_dev != journal->j_dev) { 649 if (!commit_trans->t_need_data_flush || 650 commit_trans->t_state >= T_COMMIT_DFLUSH) 651 goto out; 652 } else { 653 if (commit_trans->t_state >= T_COMMIT_JFLUSH) 654 goto out; 655 } 656 ret = 1; 657 out: 658 read_unlock(&journal->j_state_lock); 659 return ret; 660 } 661 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier); 662 663 /* 664 * Wait for a specified commit to complete. 665 * The caller may not hold the journal lock. 666 */ 667 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 668 { 669 int err = 0; 670 671 read_lock(&journal->j_state_lock); 672 #ifdef CONFIG_PROVE_LOCKING 673 /* 674 * Some callers make sure transaction is already committing and in that 675 * case we cannot block on open handles anymore. So don't warn in that 676 * case. 677 */ 678 if (tid_gt(tid, journal->j_commit_sequence) && 679 (!journal->j_committing_transaction || 680 journal->j_committing_transaction->t_tid != tid)) { 681 read_unlock(&journal->j_state_lock); 682 jbd2_might_wait_for_commit(journal); 683 read_lock(&journal->j_state_lock); 684 } 685 #endif 686 #ifdef CONFIG_JBD2_DEBUG 687 if (!tid_geq(journal->j_commit_request, tid)) { 688 printk(KERN_ERR 689 "%s: error: j_commit_request=%u, tid=%u\n", 690 __func__, journal->j_commit_request, tid); 691 } 692 #endif 693 while (tid_gt(tid, journal->j_commit_sequence)) { 694 jbd2_debug(1, "JBD2: want %u, j_commit_sequence=%u\n", 695 tid, journal->j_commit_sequence); 696 read_unlock(&journal->j_state_lock); 697 wake_up(&journal->j_wait_commit); 698 wait_event(journal->j_wait_done_commit, 699 !tid_gt(tid, journal->j_commit_sequence)); 700 read_lock(&journal->j_state_lock); 701 } 702 read_unlock(&journal->j_state_lock); 703 704 if (unlikely(is_journal_aborted(journal))) 705 err = -EIO; 706 return err; 707 } 708 709 /* 710 * Start a fast commit. If there's an ongoing fast or full commit wait for 711 * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY 712 * if a fast commit is not needed, either because there's an already a commit 713 * going on or this tid has already been committed. Returns -EINVAL if no jbd2 714 * commit has yet been performed. 715 */ 716 int jbd2_fc_begin_commit(journal_t *journal, tid_t tid) 717 { 718 if (unlikely(is_journal_aborted(journal))) 719 return -EIO; 720 /* 721 * Fast commits only allowed if at least one full commit has 722 * been processed. 723 */ 724 if (!journal->j_stats.ts_tid) 725 return -EINVAL; 726 727 write_lock(&journal->j_state_lock); 728 if (tid <= journal->j_commit_sequence) { 729 write_unlock(&journal->j_state_lock); 730 return -EALREADY; 731 } 732 733 if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING || 734 (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) { 735 DEFINE_WAIT(wait); 736 737 prepare_to_wait(&journal->j_fc_wait, &wait, 738 TASK_UNINTERRUPTIBLE); 739 write_unlock(&journal->j_state_lock); 740 schedule(); 741 finish_wait(&journal->j_fc_wait, &wait); 742 return -EALREADY; 743 } 744 journal->j_flags |= JBD2_FAST_COMMIT_ONGOING; 745 write_unlock(&journal->j_state_lock); 746 jbd2_journal_lock_updates(journal); 747 748 return 0; 749 } 750 EXPORT_SYMBOL(jbd2_fc_begin_commit); 751 752 /* 753 * Stop a fast commit. If fallback is set, this function starts commit of 754 * TID tid before any other fast commit can start. 755 */ 756 static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback) 757 { 758 jbd2_journal_unlock_updates(journal); 759 if (journal->j_fc_cleanup_callback) 760 journal->j_fc_cleanup_callback(journal, 0, tid); 761 write_lock(&journal->j_state_lock); 762 journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING; 763 if (fallback) 764 journal->j_flags |= JBD2_FULL_COMMIT_ONGOING; 765 write_unlock(&journal->j_state_lock); 766 wake_up(&journal->j_fc_wait); 767 if (fallback) 768 return jbd2_complete_transaction(journal, tid); 769 return 0; 770 } 771 772 int jbd2_fc_end_commit(journal_t *journal) 773 { 774 return __jbd2_fc_end_commit(journal, 0, false); 775 } 776 EXPORT_SYMBOL(jbd2_fc_end_commit); 777 778 int jbd2_fc_end_commit_fallback(journal_t *journal) 779 { 780 tid_t tid; 781 782 read_lock(&journal->j_state_lock); 783 tid = journal->j_running_transaction ? 784 journal->j_running_transaction->t_tid : 0; 785 read_unlock(&journal->j_state_lock); 786 return __jbd2_fc_end_commit(journal, tid, true); 787 } 788 EXPORT_SYMBOL(jbd2_fc_end_commit_fallback); 789 790 /* Return 1 when transaction with given tid has already committed. */ 791 int jbd2_transaction_committed(journal_t *journal, tid_t tid) 792 { 793 int ret = 1; 794 795 read_lock(&journal->j_state_lock); 796 if (journal->j_running_transaction && 797 journal->j_running_transaction->t_tid == tid) 798 ret = 0; 799 if (journal->j_committing_transaction && 800 journal->j_committing_transaction->t_tid == tid) 801 ret = 0; 802 read_unlock(&journal->j_state_lock); 803 return ret; 804 } 805 EXPORT_SYMBOL(jbd2_transaction_committed); 806 807 /* 808 * When this function returns the transaction corresponding to tid 809 * will be completed. If the transaction has currently running, start 810 * committing that transaction before waiting for it to complete. If 811 * the transaction id is stale, it is by definition already completed, 812 * so just return SUCCESS. 813 */ 814 int jbd2_complete_transaction(journal_t *journal, tid_t tid) 815 { 816 int need_to_wait = 1; 817 818 read_lock(&journal->j_state_lock); 819 if (journal->j_running_transaction && 820 journal->j_running_transaction->t_tid == tid) { 821 if (journal->j_commit_request != tid) { 822 /* transaction not yet started, so request it */ 823 read_unlock(&journal->j_state_lock); 824 jbd2_log_start_commit(journal, tid); 825 goto wait_commit; 826 } 827 } else if (!(journal->j_committing_transaction && 828 journal->j_committing_transaction->t_tid == tid)) 829 need_to_wait = 0; 830 read_unlock(&journal->j_state_lock); 831 if (!need_to_wait) 832 return 0; 833 wait_commit: 834 return jbd2_log_wait_commit(journal, tid); 835 } 836 EXPORT_SYMBOL(jbd2_complete_transaction); 837 838 /* 839 * Log buffer allocation routines: 840 */ 841 842 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 843 { 844 unsigned long blocknr; 845 846 write_lock(&journal->j_state_lock); 847 J_ASSERT(journal->j_free > 1); 848 849 blocknr = journal->j_head; 850 journal->j_head++; 851 journal->j_free--; 852 if (journal->j_head == journal->j_last) 853 journal->j_head = journal->j_first; 854 write_unlock(&journal->j_state_lock); 855 return jbd2_journal_bmap(journal, blocknr, retp); 856 } 857 858 /* Map one fast commit buffer for use by the file system */ 859 int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out) 860 { 861 unsigned long long pblock; 862 unsigned long blocknr; 863 int ret = 0; 864 struct buffer_head *bh; 865 int fc_off; 866 867 *bh_out = NULL; 868 869 if (journal->j_fc_off + journal->j_fc_first < journal->j_fc_last) { 870 fc_off = journal->j_fc_off; 871 blocknr = journal->j_fc_first + fc_off; 872 journal->j_fc_off++; 873 } else { 874 ret = -EINVAL; 875 } 876 877 if (ret) 878 return ret; 879 880 ret = jbd2_journal_bmap(journal, blocknr, &pblock); 881 if (ret) 882 return ret; 883 884 bh = __getblk(journal->j_dev, pblock, journal->j_blocksize); 885 if (!bh) 886 return -ENOMEM; 887 888 889 journal->j_fc_wbuf[fc_off] = bh; 890 891 *bh_out = bh; 892 893 return 0; 894 } 895 EXPORT_SYMBOL(jbd2_fc_get_buf); 896 897 /* 898 * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf 899 * for completion. 900 */ 901 int jbd2_fc_wait_bufs(journal_t *journal, int num_blks) 902 { 903 struct buffer_head *bh; 904 int i, j_fc_off; 905 906 j_fc_off = journal->j_fc_off; 907 908 /* 909 * Wait in reverse order to minimize chances of us being woken up before 910 * all IOs have completed 911 */ 912 for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) { 913 bh = journal->j_fc_wbuf[i]; 914 wait_on_buffer(bh); 915 /* 916 * Update j_fc_off so jbd2_fc_release_bufs can release remain 917 * buffer head. 918 */ 919 if (unlikely(!buffer_uptodate(bh))) { 920 journal->j_fc_off = i + 1; 921 return -EIO; 922 } 923 put_bh(bh); 924 journal->j_fc_wbuf[i] = NULL; 925 } 926 927 return 0; 928 } 929 EXPORT_SYMBOL(jbd2_fc_wait_bufs); 930 931 int jbd2_fc_release_bufs(journal_t *journal) 932 { 933 struct buffer_head *bh; 934 int i, j_fc_off; 935 936 j_fc_off = journal->j_fc_off; 937 938 for (i = j_fc_off - 1; i >= 0; i--) { 939 bh = journal->j_fc_wbuf[i]; 940 if (!bh) 941 break; 942 put_bh(bh); 943 journal->j_fc_wbuf[i] = NULL; 944 } 945 946 return 0; 947 } 948 EXPORT_SYMBOL(jbd2_fc_release_bufs); 949 950 /* 951 * Conversion of logical to physical block numbers for the journal 952 * 953 * On external journals the journal blocks are identity-mapped, so 954 * this is a no-op. If needed, we can use j_blk_offset - everything is 955 * ready. 956 */ 957 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 958 unsigned long long *retp) 959 { 960 int err = 0; 961 unsigned long long ret; 962 sector_t block = blocknr; 963 964 if (journal->j_bmap) { 965 err = journal->j_bmap(journal, &block); 966 if (err == 0) 967 *retp = block; 968 } else if (journal->j_inode) { 969 ret = bmap(journal->j_inode, &block); 970 971 if (ret || !block) { 972 printk(KERN_ALERT "%s: journal block not found " 973 "at offset %lu on %s\n", 974 __func__, blocknr, journal->j_devname); 975 err = -EIO; 976 jbd2_journal_abort(journal, err); 977 } else { 978 *retp = block; 979 } 980 981 } else { 982 *retp = blocknr; /* +journal->j_blk_offset */ 983 } 984 return err; 985 } 986 987 /* 988 * We play buffer_head aliasing tricks to write data/metadata blocks to 989 * the journal without copying their contents, but for journal 990 * descriptor blocks we do need to generate bona fide buffers. 991 * 992 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 993 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 994 * But we don't bother doing that, so there will be coherency problems with 995 * mmaps of blockdevs which hold live JBD-controlled filesystems. 996 */ 997 struct buffer_head * 998 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type) 999 { 1000 journal_t *journal = transaction->t_journal; 1001 struct buffer_head *bh; 1002 unsigned long long blocknr; 1003 journal_header_t *header; 1004 int err; 1005 1006 err = jbd2_journal_next_log_block(journal, &blocknr); 1007 1008 if (err) 1009 return NULL; 1010 1011 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 1012 if (!bh) 1013 return NULL; 1014 atomic_dec(&transaction->t_outstanding_credits); 1015 lock_buffer(bh); 1016 memset(bh->b_data, 0, journal->j_blocksize); 1017 header = (journal_header_t *)bh->b_data; 1018 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER); 1019 header->h_blocktype = cpu_to_be32(type); 1020 header->h_sequence = cpu_to_be32(transaction->t_tid); 1021 set_buffer_uptodate(bh); 1022 unlock_buffer(bh); 1023 BUFFER_TRACE(bh, "return this buffer"); 1024 return bh; 1025 } 1026 1027 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh) 1028 { 1029 struct jbd2_journal_block_tail *tail; 1030 __u32 csum; 1031 1032 if (!jbd2_journal_has_csum_v2or3(j)) 1033 return; 1034 1035 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize - 1036 sizeof(struct jbd2_journal_block_tail)); 1037 tail->t_checksum = 0; 1038 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize); 1039 tail->t_checksum = cpu_to_be32(csum); 1040 } 1041 1042 /* 1043 * Return tid of the oldest transaction in the journal and block in the journal 1044 * where the transaction starts. 1045 * 1046 * If the journal is now empty, return which will be the next transaction ID 1047 * we will write and where will that transaction start. 1048 * 1049 * The return value is 0 if journal tail cannot be pushed any further, 1 if 1050 * it can. 1051 */ 1052 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid, 1053 unsigned long *block) 1054 { 1055 transaction_t *transaction; 1056 int ret; 1057 1058 read_lock(&journal->j_state_lock); 1059 spin_lock(&journal->j_list_lock); 1060 transaction = journal->j_checkpoint_transactions; 1061 if (transaction) { 1062 *tid = transaction->t_tid; 1063 *block = transaction->t_log_start; 1064 } else if ((transaction = journal->j_committing_transaction) != NULL) { 1065 *tid = transaction->t_tid; 1066 *block = transaction->t_log_start; 1067 } else if ((transaction = journal->j_running_transaction) != NULL) { 1068 *tid = transaction->t_tid; 1069 *block = journal->j_head; 1070 } else { 1071 *tid = journal->j_transaction_sequence; 1072 *block = journal->j_head; 1073 } 1074 ret = tid_gt(*tid, journal->j_tail_sequence); 1075 spin_unlock(&journal->j_list_lock); 1076 read_unlock(&journal->j_state_lock); 1077 1078 return ret; 1079 } 1080 1081 /* 1082 * Update information in journal structure and in on disk journal superblock 1083 * about log tail. This function does not check whether information passed in 1084 * really pushes log tail further. It's responsibility of the caller to make 1085 * sure provided log tail information is valid (e.g. by holding 1086 * j_checkpoint_mutex all the time between computing log tail and calling this 1087 * function as is the case with jbd2_cleanup_journal_tail()). 1088 * 1089 * Requires j_checkpoint_mutex 1090 */ 1091 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 1092 { 1093 unsigned long freed; 1094 int ret; 1095 1096 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1097 1098 /* 1099 * We cannot afford for write to remain in drive's caches since as 1100 * soon as we update j_tail, next transaction can start reusing journal 1101 * space and if we lose sb update during power failure we'd replay 1102 * old transaction with possibly newly overwritten data. 1103 */ 1104 ret = jbd2_journal_update_sb_log_tail(journal, tid, block, REQ_FUA); 1105 if (ret) 1106 goto out; 1107 1108 write_lock(&journal->j_state_lock); 1109 freed = block - journal->j_tail; 1110 if (block < journal->j_tail) 1111 freed += journal->j_last - journal->j_first; 1112 1113 trace_jbd2_update_log_tail(journal, tid, block, freed); 1114 jbd2_debug(1, 1115 "Cleaning journal tail from %u to %u (offset %lu), " 1116 "freeing %lu\n", 1117 journal->j_tail_sequence, tid, block, freed); 1118 1119 journal->j_free += freed; 1120 journal->j_tail_sequence = tid; 1121 journal->j_tail = block; 1122 write_unlock(&journal->j_state_lock); 1123 1124 out: 1125 return ret; 1126 } 1127 1128 /* 1129 * This is a variation of __jbd2_update_log_tail which checks for validity of 1130 * provided log tail and locks j_checkpoint_mutex. So it is safe against races 1131 * with other threads updating log tail. 1132 */ 1133 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 1134 { 1135 mutex_lock_io(&journal->j_checkpoint_mutex); 1136 if (tid_gt(tid, journal->j_tail_sequence)) 1137 __jbd2_update_log_tail(journal, tid, block); 1138 mutex_unlock(&journal->j_checkpoint_mutex); 1139 } 1140 1141 struct jbd2_stats_proc_session { 1142 journal_t *journal; 1143 struct transaction_stats_s *stats; 1144 int start; 1145 int max; 1146 }; 1147 1148 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 1149 { 1150 return *pos ? NULL : SEQ_START_TOKEN; 1151 } 1152 1153 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 1154 { 1155 (*pos)++; 1156 return NULL; 1157 } 1158 1159 static int jbd2_seq_info_show(struct seq_file *seq, void *v) 1160 { 1161 struct jbd2_stats_proc_session *s = seq->private; 1162 1163 if (v != SEQ_START_TOKEN) 1164 return 0; 1165 seq_printf(seq, "%lu transactions (%lu requested), " 1166 "each up to %u blocks\n", 1167 s->stats->ts_tid, s->stats->ts_requested, 1168 s->journal->j_max_transaction_buffers); 1169 if (s->stats->ts_tid == 0) 1170 return 0; 1171 seq_printf(seq, "average: \n %ums waiting for transaction\n", 1172 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); 1173 seq_printf(seq, " %ums request delay\n", 1174 (s->stats->ts_requested == 0) ? 0 : 1175 jiffies_to_msecs(s->stats->run.rs_request_delay / 1176 s->stats->ts_requested)); 1177 seq_printf(seq, " %ums running transaction\n", 1178 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); 1179 seq_printf(seq, " %ums transaction was being locked\n", 1180 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); 1181 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 1182 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); 1183 seq_printf(seq, " %ums logging transaction\n", 1184 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); 1185 seq_printf(seq, " %lluus average transaction commit time\n", 1186 div_u64(s->journal->j_average_commit_time, 1000)); 1187 seq_printf(seq, " %lu handles per transaction\n", 1188 s->stats->run.rs_handle_count / s->stats->ts_tid); 1189 seq_printf(seq, " %lu blocks per transaction\n", 1190 s->stats->run.rs_blocks / s->stats->ts_tid); 1191 seq_printf(seq, " %lu logged blocks per transaction\n", 1192 s->stats->run.rs_blocks_logged / s->stats->ts_tid); 1193 return 0; 1194 } 1195 1196 static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 1197 { 1198 } 1199 1200 static const struct seq_operations jbd2_seq_info_ops = { 1201 .start = jbd2_seq_info_start, 1202 .next = jbd2_seq_info_next, 1203 .stop = jbd2_seq_info_stop, 1204 .show = jbd2_seq_info_show, 1205 }; 1206 1207 static int jbd2_seq_info_open(struct inode *inode, struct file *file) 1208 { 1209 journal_t *journal = pde_data(inode); 1210 struct jbd2_stats_proc_session *s; 1211 int rc, size; 1212 1213 s = kmalloc(sizeof(*s), GFP_KERNEL); 1214 if (s == NULL) 1215 return -ENOMEM; 1216 size = sizeof(struct transaction_stats_s); 1217 s->stats = kmalloc(size, GFP_KERNEL); 1218 if (s->stats == NULL) { 1219 kfree(s); 1220 return -ENOMEM; 1221 } 1222 spin_lock(&journal->j_history_lock); 1223 memcpy(s->stats, &journal->j_stats, size); 1224 s->journal = journal; 1225 spin_unlock(&journal->j_history_lock); 1226 1227 rc = seq_open(file, &jbd2_seq_info_ops); 1228 if (rc == 0) { 1229 struct seq_file *m = file->private_data; 1230 m->private = s; 1231 } else { 1232 kfree(s->stats); 1233 kfree(s); 1234 } 1235 return rc; 1236 1237 } 1238 1239 static int jbd2_seq_info_release(struct inode *inode, struct file *file) 1240 { 1241 struct seq_file *seq = file->private_data; 1242 struct jbd2_stats_proc_session *s = seq->private; 1243 kfree(s->stats); 1244 kfree(s); 1245 return seq_release(inode, file); 1246 } 1247 1248 static const struct proc_ops jbd2_info_proc_ops = { 1249 .proc_open = jbd2_seq_info_open, 1250 .proc_read = seq_read, 1251 .proc_lseek = seq_lseek, 1252 .proc_release = jbd2_seq_info_release, 1253 }; 1254 1255 static struct proc_dir_entry *proc_jbd2_stats; 1256 1257 static void jbd2_stats_proc_init(journal_t *journal) 1258 { 1259 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 1260 if (journal->j_proc_entry) { 1261 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 1262 &jbd2_info_proc_ops, journal); 1263 } 1264 } 1265 1266 static void jbd2_stats_proc_exit(journal_t *journal) 1267 { 1268 remove_proc_entry("info", journal->j_proc_entry); 1269 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 1270 } 1271 1272 /* Minimum size of descriptor tag */ 1273 static int jbd2_min_tag_size(void) 1274 { 1275 /* 1276 * Tag with 32-bit block numbers does not use last four bytes of the 1277 * structure 1278 */ 1279 return sizeof(journal_block_tag_t) - 4; 1280 } 1281 1282 /** 1283 * jbd2_journal_shrink_scan() 1284 * @shrink: shrinker to work on 1285 * @sc: reclaim request to process 1286 * 1287 * Scan the checkpointed buffer on the checkpoint list and release the 1288 * journal_head. 1289 */ 1290 static unsigned long jbd2_journal_shrink_scan(struct shrinker *shrink, 1291 struct shrink_control *sc) 1292 { 1293 journal_t *journal = container_of(shrink, journal_t, j_shrinker); 1294 unsigned long nr_to_scan = sc->nr_to_scan; 1295 unsigned long nr_shrunk; 1296 unsigned long count; 1297 1298 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count); 1299 trace_jbd2_shrink_scan_enter(journal, sc->nr_to_scan, count); 1300 1301 nr_shrunk = jbd2_journal_shrink_checkpoint_list(journal, &nr_to_scan); 1302 1303 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count); 1304 trace_jbd2_shrink_scan_exit(journal, nr_to_scan, nr_shrunk, count); 1305 1306 return nr_shrunk; 1307 } 1308 1309 /** 1310 * jbd2_journal_shrink_count() 1311 * @shrink: shrinker to work on 1312 * @sc: reclaim request to process 1313 * 1314 * Count the number of checkpoint buffers on the checkpoint list. 1315 */ 1316 static unsigned long jbd2_journal_shrink_count(struct shrinker *shrink, 1317 struct shrink_control *sc) 1318 { 1319 journal_t *journal = container_of(shrink, journal_t, j_shrinker); 1320 unsigned long count; 1321 1322 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count); 1323 trace_jbd2_shrink_count(journal, sc->nr_to_scan, count); 1324 1325 return count; 1326 } 1327 1328 /* 1329 * If the journal init or create aborts, we need to mark the journal 1330 * superblock as being NULL to prevent the journal destroy from writing 1331 * back a bogus superblock. 1332 */ 1333 static void journal_fail_superblock(journal_t *journal) 1334 { 1335 struct buffer_head *bh = journal->j_sb_buffer; 1336 brelse(bh); 1337 journal->j_sb_buffer = NULL; 1338 } 1339 1340 /* 1341 * Check the superblock for a given journal, performing initial 1342 * validation of the format. 1343 */ 1344 static int journal_check_superblock(journal_t *journal) 1345 { 1346 journal_superblock_t *sb = journal->j_superblock; 1347 int num_fc_blks; 1348 int err = -EINVAL; 1349 1350 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1351 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1352 printk(KERN_WARNING "JBD2: no valid journal superblock found\n"); 1353 return err; 1354 } 1355 1356 if (be32_to_cpu(sb->s_header.h_blocktype) != JBD2_SUPERBLOCK_V1 && 1357 be32_to_cpu(sb->s_header.h_blocktype) != JBD2_SUPERBLOCK_V2) { 1358 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n"); 1359 return err; 1360 } 1361 1362 if (be32_to_cpu(sb->s_maxlen) > journal->j_total_len) { 1363 printk(KERN_WARNING "JBD2: journal file too short\n"); 1364 return err; 1365 } 1366 1367 if (be32_to_cpu(sb->s_first) == 0 || 1368 be32_to_cpu(sb->s_first) >= journal->j_total_len) { 1369 printk(KERN_WARNING 1370 "JBD2: Invalid start block of journal: %u\n", 1371 be32_to_cpu(sb->s_first)); 1372 return err; 1373 } 1374 1375 /* 1376 * If this is a V2 superblock, then we have to check the 1377 * features flags on it. 1378 */ 1379 if (!jbd2_format_support_feature(journal)) 1380 return 0; 1381 1382 if ((sb->s_feature_ro_compat & 1383 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 1384 (sb->s_feature_incompat & 1385 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 1386 printk(KERN_WARNING "JBD2: Unrecognised features on journal\n"); 1387 return err; 1388 } 1389 1390 num_fc_blks = jbd2_has_feature_fast_commit(journal) ? 1391 jbd2_journal_get_num_fc_blks(sb) : 0; 1392 if (be32_to_cpu(sb->s_maxlen) < JBD2_MIN_JOURNAL_BLOCKS || 1393 be32_to_cpu(sb->s_maxlen) - JBD2_MIN_JOURNAL_BLOCKS < num_fc_blks) { 1394 printk(KERN_ERR "JBD2: journal file too short %u,%d\n", 1395 be32_to_cpu(sb->s_maxlen), num_fc_blks); 1396 return err; 1397 } 1398 1399 if (jbd2_has_feature_csum2(journal) && 1400 jbd2_has_feature_csum3(journal)) { 1401 /* Can't have checksum v2 and v3 at the same time! */ 1402 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 " 1403 "at the same time!\n"); 1404 return err; 1405 } 1406 1407 if (jbd2_journal_has_csum_v2or3_feature(journal) && 1408 jbd2_has_feature_checksum(journal)) { 1409 /* Can't have checksum v1 and v2 on at the same time! */ 1410 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 " 1411 "at the same time!\n"); 1412 return err; 1413 } 1414 1415 /* Load the checksum driver */ 1416 if (jbd2_journal_has_csum_v2or3_feature(journal)) { 1417 if (sb->s_checksum_type != JBD2_CRC32C_CHKSUM) { 1418 printk(KERN_ERR "JBD2: Unknown checksum type\n"); 1419 return err; 1420 } 1421 1422 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 1423 if (IS_ERR(journal->j_chksum_driver)) { 1424 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 1425 err = PTR_ERR(journal->j_chksum_driver); 1426 journal->j_chksum_driver = NULL; 1427 return err; 1428 } 1429 /* Check superblock checksum */ 1430 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) { 1431 printk(KERN_ERR "JBD2: journal checksum error\n"); 1432 err = -EFSBADCRC; 1433 return err; 1434 } 1435 } 1436 1437 return 0; 1438 } 1439 1440 static int journal_revoke_records_per_block(journal_t *journal) 1441 { 1442 int record_size; 1443 int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t); 1444 1445 if (jbd2_has_feature_64bit(journal)) 1446 record_size = 8; 1447 else 1448 record_size = 4; 1449 1450 if (jbd2_journal_has_csum_v2or3(journal)) 1451 space -= sizeof(struct jbd2_journal_block_tail); 1452 return space / record_size; 1453 } 1454 1455 static int jbd2_journal_get_max_txn_bufs(journal_t *journal) 1456 { 1457 return (journal->j_total_len - journal->j_fc_wbufsize) / 4; 1458 } 1459 1460 /* 1461 * Base amount of descriptor blocks we reserve for each transaction. 1462 */ 1463 static int jbd2_descriptor_blocks_per_trans(journal_t *journal) 1464 { 1465 int tag_space = journal->j_blocksize - sizeof(journal_header_t); 1466 int tags_per_block; 1467 1468 /* Subtract UUID */ 1469 tag_space -= 16; 1470 if (jbd2_journal_has_csum_v2or3(journal)) 1471 tag_space -= sizeof(struct jbd2_journal_block_tail); 1472 /* Commit code leaves a slack space of 16 bytes at the end of block */ 1473 tags_per_block = (tag_space - 16) / journal_tag_bytes(journal); 1474 /* 1475 * Revoke descriptors are accounted separately so we need to reserve 1476 * space for commit block and normal transaction descriptor blocks. 1477 */ 1478 return 1 + DIV_ROUND_UP(jbd2_journal_get_max_txn_bufs(journal), 1479 tags_per_block); 1480 } 1481 1482 /* 1483 * Initialize number of blocks each transaction reserves for its bookkeeping 1484 * and maximum number of blocks a transaction can use. This needs to be called 1485 * after the journal size and the fastcommit area size are initialized. 1486 */ 1487 static void jbd2_journal_init_transaction_limits(journal_t *journal) 1488 { 1489 journal->j_revoke_records_per_block = 1490 journal_revoke_records_per_block(journal); 1491 journal->j_transaction_overhead_buffers = 1492 jbd2_descriptor_blocks_per_trans(journal); 1493 journal->j_max_transaction_buffers = 1494 jbd2_journal_get_max_txn_bufs(journal); 1495 } 1496 1497 /* 1498 * Load the on-disk journal superblock and read the key fields into the 1499 * journal_t. 1500 */ 1501 static int journal_load_superblock(journal_t *journal) 1502 { 1503 int err; 1504 struct buffer_head *bh; 1505 journal_superblock_t *sb; 1506 1507 bh = getblk_unmovable(journal->j_dev, journal->j_blk_offset, 1508 journal->j_blocksize); 1509 if (bh) 1510 err = bh_read(bh, 0); 1511 if (!bh || err < 0) { 1512 pr_err("%s: Cannot read journal superblock\n", __func__); 1513 brelse(bh); 1514 return -EIO; 1515 } 1516 1517 journal->j_sb_buffer = bh; 1518 sb = (journal_superblock_t *)bh->b_data; 1519 journal->j_superblock = sb; 1520 err = journal_check_superblock(journal); 1521 if (err) { 1522 journal_fail_superblock(journal); 1523 return err; 1524 } 1525 1526 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1527 journal->j_tail = be32_to_cpu(sb->s_start); 1528 journal->j_first = be32_to_cpu(sb->s_first); 1529 journal->j_errno = be32_to_cpu(sb->s_errno); 1530 journal->j_last = be32_to_cpu(sb->s_maxlen); 1531 1532 if (be32_to_cpu(sb->s_maxlen) < journal->j_total_len) 1533 journal->j_total_len = be32_to_cpu(sb->s_maxlen); 1534 /* Precompute checksum seed for all metadata */ 1535 if (jbd2_journal_has_csum_v2or3(journal)) 1536 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 1537 sizeof(sb->s_uuid)); 1538 /* After journal features are set, we can compute transaction limits */ 1539 jbd2_journal_init_transaction_limits(journal); 1540 1541 if (jbd2_has_feature_fast_commit(journal)) { 1542 journal->j_fc_last = be32_to_cpu(sb->s_maxlen); 1543 journal->j_last = journal->j_fc_last - 1544 jbd2_journal_get_num_fc_blks(sb); 1545 journal->j_fc_first = journal->j_last + 1; 1546 journal->j_fc_off = 0; 1547 } 1548 1549 return 0; 1550 } 1551 1552 1553 /* 1554 * Management for journal control blocks: functions to create and 1555 * destroy journal_t structures, and to initialise and read existing 1556 * journal blocks from disk. */ 1557 1558 /* First: create and setup a journal_t object in memory. We initialise 1559 * very few fields yet: that has to wait until we have created the 1560 * journal structures from from scratch, or loaded them from disk. */ 1561 1562 static journal_t *journal_init_common(struct block_device *bdev, 1563 struct block_device *fs_dev, 1564 unsigned long long start, int len, int blocksize) 1565 { 1566 static struct lock_class_key jbd2_trans_commit_key; 1567 journal_t *journal; 1568 int err; 1569 int n; 1570 1571 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 1572 if (!journal) 1573 return ERR_PTR(-ENOMEM); 1574 1575 journal->j_blocksize = blocksize; 1576 journal->j_dev = bdev; 1577 journal->j_fs_dev = fs_dev; 1578 journal->j_blk_offset = start; 1579 journal->j_total_len = len; 1580 1581 err = journal_load_superblock(journal); 1582 if (err) 1583 goto err_cleanup; 1584 1585 init_waitqueue_head(&journal->j_wait_transaction_locked); 1586 init_waitqueue_head(&journal->j_wait_done_commit); 1587 init_waitqueue_head(&journal->j_wait_commit); 1588 init_waitqueue_head(&journal->j_wait_updates); 1589 init_waitqueue_head(&journal->j_wait_reserved); 1590 init_waitqueue_head(&journal->j_fc_wait); 1591 mutex_init(&journal->j_abort_mutex); 1592 mutex_init(&journal->j_barrier); 1593 mutex_init(&journal->j_checkpoint_mutex); 1594 spin_lock_init(&journal->j_revoke_lock); 1595 spin_lock_init(&journal->j_list_lock); 1596 spin_lock_init(&journal->j_history_lock); 1597 rwlock_init(&journal->j_state_lock); 1598 1599 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 1600 journal->j_min_batch_time = 0; 1601 journal->j_max_batch_time = 15000; /* 15ms */ 1602 atomic_set(&journal->j_reserved_credits, 0); 1603 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle", 1604 &jbd2_trans_commit_key, 0); 1605 1606 /* The journal is marked for error until we succeed with recovery! */ 1607 journal->j_flags = JBD2_ABORT; 1608 1609 /* Set up a default-sized revoke table for the new mount. */ 1610 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 1611 if (err) 1612 goto err_cleanup; 1613 1614 /* 1615 * journal descriptor can store up to n blocks, we need enough 1616 * buffers to write out full descriptor block. 1617 */ 1618 err = -ENOMEM; 1619 n = journal->j_blocksize / jbd2_min_tag_size(); 1620 journal->j_wbufsize = n; 1621 journal->j_fc_wbuf = NULL; 1622 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *), 1623 GFP_KERNEL); 1624 if (!journal->j_wbuf) 1625 goto err_cleanup; 1626 1627 err = percpu_counter_init(&journal->j_checkpoint_jh_count, 0, 1628 GFP_KERNEL); 1629 if (err) 1630 goto err_cleanup; 1631 1632 journal->j_shrink_transaction = NULL; 1633 journal->j_shrinker.scan_objects = jbd2_journal_shrink_scan; 1634 journal->j_shrinker.count_objects = jbd2_journal_shrink_count; 1635 journal->j_shrinker.seeks = DEFAULT_SEEKS; 1636 journal->j_shrinker.batch = journal->j_max_transaction_buffers; 1637 err = register_shrinker(&journal->j_shrinker, "jbd2-journal:(%u:%u)", 1638 MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev)); 1639 if (err) 1640 goto err_cleanup; 1641 1642 return journal; 1643 1644 err_cleanup: 1645 percpu_counter_destroy(&journal->j_checkpoint_jh_count); 1646 if (journal->j_chksum_driver) 1647 crypto_free_shash(journal->j_chksum_driver); 1648 kfree(journal->j_wbuf); 1649 jbd2_journal_destroy_revoke(journal); 1650 journal_fail_superblock(journal); 1651 kfree(journal); 1652 return ERR_PTR(err); 1653 } 1654 1655 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 1656 * 1657 * Create a journal structure assigned some fixed set of disk blocks to 1658 * the journal. We don't actually touch those disk blocks yet, but we 1659 * need to set up all of the mapping information to tell the journaling 1660 * system where the journal blocks are. 1661 * 1662 */ 1663 1664 /** 1665 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 1666 * @bdev: Block device on which to create the journal 1667 * @fs_dev: Device which hold journalled filesystem for this journal. 1668 * @start: Block nr Start of journal. 1669 * @len: Length of the journal in blocks. 1670 * @blocksize: blocksize of journalling device 1671 * 1672 * Returns: a newly created journal_t * 1673 * 1674 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 1675 * range of blocks on an arbitrary block device. 1676 * 1677 */ 1678 journal_t *jbd2_journal_init_dev(struct block_device *bdev, 1679 struct block_device *fs_dev, 1680 unsigned long long start, int len, int blocksize) 1681 { 1682 journal_t *journal; 1683 1684 journal = journal_init_common(bdev, fs_dev, start, len, blocksize); 1685 if (IS_ERR(journal)) 1686 return ERR_CAST(journal); 1687 1688 snprintf(journal->j_devname, sizeof(journal->j_devname), 1689 "%pg", journal->j_dev); 1690 strreplace(journal->j_devname, '/', '!'); 1691 jbd2_stats_proc_init(journal); 1692 1693 return journal; 1694 } 1695 1696 /** 1697 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 1698 * @inode: An inode to create the journal in 1699 * 1700 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 1701 * the journal. The inode must exist already, must support bmap() and 1702 * must have all data blocks preallocated. 1703 */ 1704 journal_t *jbd2_journal_init_inode(struct inode *inode) 1705 { 1706 journal_t *journal; 1707 sector_t blocknr; 1708 int err = 0; 1709 1710 blocknr = 0; 1711 err = bmap(inode, &blocknr); 1712 if (err || !blocknr) { 1713 pr_err("%s: Cannot locate journal superblock\n", __func__); 1714 return err ? ERR_PTR(err) : ERR_PTR(-EINVAL); 1715 } 1716 1717 jbd2_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n", 1718 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size, 1719 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 1720 1721 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev, 1722 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits, 1723 inode->i_sb->s_blocksize); 1724 if (IS_ERR(journal)) 1725 return ERR_CAST(journal); 1726 1727 journal->j_inode = inode; 1728 snprintf(journal->j_devname, sizeof(journal->j_devname), 1729 "%pg-%lu", journal->j_dev, journal->j_inode->i_ino); 1730 strreplace(journal->j_devname, '/', '!'); 1731 jbd2_stats_proc_init(journal); 1732 1733 return journal; 1734 } 1735 1736 /* 1737 * Given a journal_t structure, initialise the various fields for 1738 * startup of a new journaling session. We use this both when creating 1739 * a journal, and after recovering an old journal to reset it for 1740 * subsequent use. 1741 */ 1742 1743 static int journal_reset(journal_t *journal) 1744 { 1745 journal_superblock_t *sb = journal->j_superblock; 1746 unsigned long long first, last; 1747 1748 first = be32_to_cpu(sb->s_first); 1749 last = be32_to_cpu(sb->s_maxlen); 1750 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1751 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n", 1752 first, last); 1753 journal_fail_superblock(journal); 1754 return -EINVAL; 1755 } 1756 1757 journal->j_first = first; 1758 journal->j_last = last; 1759 1760 if (journal->j_head != 0 && journal->j_flags & JBD2_CYCLE_RECORD) { 1761 /* 1762 * Disable the cycled recording mode if the journal head block 1763 * number is not correct. 1764 */ 1765 if (journal->j_head < first || journal->j_head >= last) { 1766 printk(KERN_WARNING "JBD2: Incorrect Journal head block %lu, " 1767 "disable journal_cycle_record\n", 1768 journal->j_head); 1769 journal->j_head = journal->j_first; 1770 } 1771 } else { 1772 journal->j_head = journal->j_first; 1773 } 1774 journal->j_tail = journal->j_head; 1775 journal->j_free = journal->j_last - journal->j_first; 1776 1777 journal->j_tail_sequence = journal->j_transaction_sequence; 1778 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1779 journal->j_commit_request = journal->j_commit_sequence; 1780 1781 /* 1782 * Now that journal recovery is done, turn fast commits off here. This 1783 * way, if fast commit was enabled before the crash but if now FS has 1784 * disabled it, we don't enable fast commits. 1785 */ 1786 jbd2_clear_feature_fast_commit(journal); 1787 1788 /* 1789 * As a special case, if the on-disk copy is already marked as needing 1790 * no recovery (s_start == 0), then we can safely defer the superblock 1791 * update until the next commit by setting JBD2_FLUSHED. This avoids 1792 * attempting a write to a potential-readonly device. 1793 */ 1794 if (sb->s_start == 0) { 1795 jbd2_debug(1, "JBD2: Skipping superblock update on recovered sb " 1796 "(start %ld, seq %u, errno %d)\n", 1797 journal->j_tail, journal->j_tail_sequence, 1798 journal->j_errno); 1799 journal->j_flags |= JBD2_FLUSHED; 1800 } else { 1801 /* Lock here to make assertions happy... */ 1802 mutex_lock_io(&journal->j_checkpoint_mutex); 1803 /* 1804 * Update log tail information. We use REQ_FUA since new 1805 * transaction will start reusing journal space and so we 1806 * must make sure information about current log tail is on 1807 * disk before that. 1808 */ 1809 jbd2_journal_update_sb_log_tail(journal, 1810 journal->j_tail_sequence, 1811 journal->j_tail, REQ_FUA); 1812 mutex_unlock(&journal->j_checkpoint_mutex); 1813 } 1814 return jbd2_journal_start_thread(journal); 1815 } 1816 1817 /* 1818 * This function expects that the caller will have locked the journal 1819 * buffer head, and will return with it unlocked 1820 */ 1821 static int jbd2_write_superblock(journal_t *journal, blk_opf_t write_flags) 1822 { 1823 struct buffer_head *bh = journal->j_sb_buffer; 1824 journal_superblock_t *sb = journal->j_superblock; 1825 int ret = 0; 1826 1827 /* Buffer got discarded which means block device got invalidated */ 1828 if (!buffer_mapped(bh)) { 1829 unlock_buffer(bh); 1830 return -EIO; 1831 } 1832 1833 /* 1834 * Always set high priority flags to exempt from block layer's 1835 * QOS policies, e.g. writeback throttle. 1836 */ 1837 write_flags |= JBD2_JOURNAL_REQ_FLAGS; 1838 if (!(journal->j_flags & JBD2_BARRIER)) 1839 write_flags &= ~(REQ_FUA | REQ_PREFLUSH); 1840 1841 trace_jbd2_write_superblock(journal, write_flags); 1842 1843 if (buffer_write_io_error(bh)) { 1844 /* 1845 * Oh, dear. A previous attempt to write the journal 1846 * superblock failed. This could happen because the 1847 * USB device was yanked out. Or it could happen to 1848 * be a transient write error and maybe the block will 1849 * be remapped. Nothing we can do but to retry the 1850 * write and hope for the best. 1851 */ 1852 printk(KERN_ERR "JBD2: previous I/O error detected " 1853 "for journal superblock update for %s.\n", 1854 journal->j_devname); 1855 clear_buffer_write_io_error(bh); 1856 set_buffer_uptodate(bh); 1857 } 1858 if (jbd2_journal_has_csum_v2or3(journal)) 1859 sb->s_checksum = jbd2_superblock_csum(journal, sb); 1860 get_bh(bh); 1861 bh->b_end_io = end_buffer_write_sync; 1862 submit_bh(REQ_OP_WRITE | write_flags, bh); 1863 wait_on_buffer(bh); 1864 if (buffer_write_io_error(bh)) { 1865 clear_buffer_write_io_error(bh); 1866 set_buffer_uptodate(bh); 1867 ret = -EIO; 1868 } 1869 if (ret) { 1870 printk(KERN_ERR "JBD2: I/O error when updating journal superblock for %s.\n", 1871 journal->j_devname); 1872 if (!is_journal_aborted(journal)) 1873 jbd2_journal_abort(journal, ret); 1874 } 1875 1876 return ret; 1877 } 1878 1879 /** 1880 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk. 1881 * @journal: The journal to update. 1882 * @tail_tid: TID of the new transaction at the tail of the log 1883 * @tail_block: The first block of the transaction at the tail of the log 1884 * @write_flags: Flags for the journal sb write operation 1885 * 1886 * Update a journal's superblock information about log tail and write it to 1887 * disk, waiting for the IO to complete. 1888 */ 1889 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid, 1890 unsigned long tail_block, 1891 blk_opf_t write_flags) 1892 { 1893 journal_superblock_t *sb = journal->j_superblock; 1894 int ret; 1895 1896 if (is_journal_aborted(journal)) 1897 return -EIO; 1898 if (test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags)) { 1899 jbd2_journal_abort(journal, -EIO); 1900 return -EIO; 1901 } 1902 1903 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1904 jbd2_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n", 1905 tail_block, tail_tid); 1906 1907 lock_buffer(journal->j_sb_buffer); 1908 sb->s_sequence = cpu_to_be32(tail_tid); 1909 sb->s_start = cpu_to_be32(tail_block); 1910 1911 ret = jbd2_write_superblock(journal, write_flags); 1912 if (ret) 1913 goto out; 1914 1915 /* Log is no longer empty */ 1916 write_lock(&journal->j_state_lock); 1917 WARN_ON(!sb->s_sequence); 1918 journal->j_flags &= ~JBD2_FLUSHED; 1919 write_unlock(&journal->j_state_lock); 1920 1921 out: 1922 return ret; 1923 } 1924 1925 /** 1926 * jbd2_mark_journal_empty() - Mark on disk journal as empty. 1927 * @journal: The journal to update. 1928 * @write_flags: Flags for the journal sb write operation 1929 * 1930 * Update a journal's dynamic superblock fields to show that journal is empty. 1931 * Write updated superblock to disk waiting for IO to complete. 1932 */ 1933 static void jbd2_mark_journal_empty(journal_t *journal, blk_opf_t write_flags) 1934 { 1935 journal_superblock_t *sb = journal->j_superblock; 1936 bool had_fast_commit = false; 1937 1938 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1939 lock_buffer(journal->j_sb_buffer); 1940 if (sb->s_start == 0) { /* Is it already empty? */ 1941 unlock_buffer(journal->j_sb_buffer); 1942 return; 1943 } 1944 1945 jbd2_debug(1, "JBD2: Marking journal as empty (seq %u)\n", 1946 journal->j_tail_sequence); 1947 1948 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1949 sb->s_start = cpu_to_be32(0); 1950 sb->s_head = cpu_to_be32(journal->j_head); 1951 if (jbd2_has_feature_fast_commit(journal)) { 1952 /* 1953 * When journal is clean, no need to commit fast commit flag and 1954 * make file system incompatible with older kernels. 1955 */ 1956 jbd2_clear_feature_fast_commit(journal); 1957 had_fast_commit = true; 1958 } 1959 1960 jbd2_write_superblock(journal, write_flags); 1961 1962 if (had_fast_commit) 1963 jbd2_set_feature_fast_commit(journal); 1964 1965 /* Log is no longer empty */ 1966 write_lock(&journal->j_state_lock); 1967 journal->j_flags |= JBD2_FLUSHED; 1968 write_unlock(&journal->j_state_lock); 1969 } 1970 1971 /** 1972 * __jbd2_journal_erase() - Discard or zeroout journal blocks (excluding superblock) 1973 * @journal: The journal to erase. 1974 * @flags: A discard/zeroout request is sent for each physically contigous 1975 * region of the journal. Either JBD2_JOURNAL_FLUSH_DISCARD or 1976 * JBD2_JOURNAL_FLUSH_ZEROOUT must be set to determine which operation 1977 * to perform. 1978 * 1979 * Note: JBD2_JOURNAL_FLUSH_ZEROOUT attempts to use hardware offload. Zeroes 1980 * will be explicitly written if no hardware offload is available, see 1981 * blkdev_issue_zeroout for more details. 1982 */ 1983 static int __jbd2_journal_erase(journal_t *journal, unsigned int flags) 1984 { 1985 int err = 0; 1986 unsigned long block, log_offset; /* logical */ 1987 unsigned long long phys_block, block_start, block_stop; /* physical */ 1988 loff_t byte_start, byte_stop, byte_count; 1989 1990 /* flags must be set to either discard or zeroout */ 1991 if ((flags & ~JBD2_JOURNAL_FLUSH_VALID) || !flags || 1992 ((flags & JBD2_JOURNAL_FLUSH_DISCARD) && 1993 (flags & JBD2_JOURNAL_FLUSH_ZEROOUT))) 1994 return -EINVAL; 1995 1996 if ((flags & JBD2_JOURNAL_FLUSH_DISCARD) && 1997 !bdev_max_discard_sectors(journal->j_dev)) 1998 return -EOPNOTSUPP; 1999 2000 /* 2001 * lookup block mapping and issue discard/zeroout for each 2002 * contiguous region 2003 */ 2004 log_offset = be32_to_cpu(journal->j_superblock->s_first); 2005 block_start = ~0ULL; 2006 for (block = log_offset; block < journal->j_total_len; block++) { 2007 err = jbd2_journal_bmap(journal, block, &phys_block); 2008 if (err) { 2009 pr_err("JBD2: bad block at offset %lu", block); 2010 return err; 2011 } 2012 2013 if (block_start == ~0ULL) { 2014 block_start = phys_block; 2015 block_stop = block_start - 1; 2016 } 2017 2018 /* 2019 * last block not contiguous with current block, 2020 * process last contiguous region and return to this block on 2021 * next loop 2022 */ 2023 if (phys_block != block_stop + 1) { 2024 block--; 2025 } else { 2026 block_stop++; 2027 /* 2028 * if this isn't the last block of journal, 2029 * no need to process now because next block may also 2030 * be part of this contiguous region 2031 */ 2032 if (block != journal->j_total_len - 1) 2033 continue; 2034 } 2035 2036 /* 2037 * end of contiguous region or this is last block of journal, 2038 * take care of the region 2039 */ 2040 byte_start = block_start * journal->j_blocksize; 2041 byte_stop = block_stop * journal->j_blocksize; 2042 byte_count = (block_stop - block_start + 1) * 2043 journal->j_blocksize; 2044 2045 truncate_inode_pages_range(journal->j_dev->bd_inode->i_mapping, 2046 byte_start, byte_stop); 2047 2048 if (flags & JBD2_JOURNAL_FLUSH_DISCARD) { 2049 err = blkdev_issue_discard(journal->j_dev, 2050 byte_start >> SECTOR_SHIFT, 2051 byte_count >> SECTOR_SHIFT, 2052 GFP_NOFS); 2053 } else if (flags & JBD2_JOURNAL_FLUSH_ZEROOUT) { 2054 err = blkdev_issue_zeroout(journal->j_dev, 2055 byte_start >> SECTOR_SHIFT, 2056 byte_count >> SECTOR_SHIFT, 2057 GFP_NOFS, 0); 2058 } 2059 2060 if (unlikely(err != 0)) { 2061 pr_err("JBD2: (error %d) unable to wipe journal at physical blocks %llu - %llu", 2062 err, block_start, block_stop); 2063 return err; 2064 } 2065 2066 /* reset start and stop after processing a region */ 2067 block_start = ~0ULL; 2068 } 2069 2070 return blkdev_issue_flush(journal->j_dev); 2071 } 2072 2073 /** 2074 * jbd2_journal_update_sb_errno() - Update error in the journal. 2075 * @journal: The journal to update. 2076 * 2077 * Update a journal's errno. Write updated superblock to disk waiting for IO 2078 * to complete. 2079 */ 2080 void jbd2_journal_update_sb_errno(journal_t *journal) 2081 { 2082 journal_superblock_t *sb = journal->j_superblock; 2083 int errcode; 2084 2085 lock_buffer(journal->j_sb_buffer); 2086 errcode = journal->j_errno; 2087 if (errcode == -ESHUTDOWN) 2088 errcode = 0; 2089 jbd2_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode); 2090 sb->s_errno = cpu_to_be32(errcode); 2091 2092 jbd2_write_superblock(journal, REQ_FUA); 2093 } 2094 EXPORT_SYMBOL(jbd2_journal_update_sb_errno); 2095 2096 /** 2097 * jbd2_journal_load() - Read journal from disk. 2098 * @journal: Journal to act on. 2099 * 2100 * Given a journal_t structure which tells us which disk blocks contain 2101 * a journal, read the journal from disk to initialise the in-memory 2102 * structures. 2103 */ 2104 int jbd2_journal_load(journal_t *journal) 2105 { 2106 int err; 2107 journal_superblock_t *sb = journal->j_superblock; 2108 2109 /* 2110 * Create a slab for this blocksize 2111 */ 2112 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize)); 2113 if (err) 2114 return err; 2115 2116 /* Let the recovery code check whether it needs to recover any 2117 * data from the journal. */ 2118 err = jbd2_journal_recover(journal); 2119 if (err) { 2120 pr_warn("JBD2: journal recovery failed\n"); 2121 return err; 2122 } 2123 2124 if (journal->j_failed_commit) { 2125 printk(KERN_ERR "JBD2: journal transaction %u on %s " 2126 "is corrupt.\n", journal->j_failed_commit, 2127 journal->j_devname); 2128 return -EFSCORRUPTED; 2129 } 2130 /* 2131 * clear JBD2_ABORT flag initialized in journal_init_common 2132 * here to update log tail information with the newest seq. 2133 */ 2134 journal->j_flags &= ~JBD2_ABORT; 2135 2136 /* OK, we've finished with the dynamic journal bits: 2137 * reinitialise the dynamic contents of the superblock in memory 2138 * and reset them on disk. */ 2139 err = journal_reset(journal); 2140 if (err) { 2141 pr_warn("JBD2: journal reset failed\n"); 2142 return err; 2143 } 2144 2145 journal->j_flags |= JBD2_LOADED; 2146 return 0; 2147 } 2148 2149 /** 2150 * jbd2_journal_destroy() - Release a journal_t structure. 2151 * @journal: Journal to act on. 2152 * 2153 * Release a journal_t structure once it is no longer in use by the 2154 * journaled object. 2155 * Return <0 if we couldn't clean up the journal. 2156 */ 2157 int jbd2_journal_destroy(journal_t *journal) 2158 { 2159 int err = 0; 2160 2161 /* Wait for the commit thread to wake up and die. */ 2162 journal_kill_thread(journal); 2163 2164 /* Force a final log commit */ 2165 if (journal->j_running_transaction) 2166 jbd2_journal_commit_transaction(journal); 2167 2168 /* Force any old transactions to disk */ 2169 2170 /* Totally anal locking here... */ 2171 spin_lock(&journal->j_list_lock); 2172 while (journal->j_checkpoint_transactions != NULL) { 2173 spin_unlock(&journal->j_list_lock); 2174 mutex_lock_io(&journal->j_checkpoint_mutex); 2175 err = jbd2_log_do_checkpoint(journal); 2176 mutex_unlock(&journal->j_checkpoint_mutex); 2177 /* 2178 * If checkpointing failed, just free the buffers to avoid 2179 * looping forever 2180 */ 2181 if (err) { 2182 jbd2_journal_destroy_checkpoint(journal); 2183 spin_lock(&journal->j_list_lock); 2184 break; 2185 } 2186 spin_lock(&journal->j_list_lock); 2187 } 2188 2189 J_ASSERT(journal->j_running_transaction == NULL); 2190 J_ASSERT(journal->j_committing_transaction == NULL); 2191 J_ASSERT(journal->j_checkpoint_transactions == NULL); 2192 spin_unlock(&journal->j_list_lock); 2193 2194 /* 2195 * OK, all checkpoint transactions have been checked, now check the 2196 * write out io error flag and abort the journal if some buffer failed 2197 * to write back to the original location, otherwise the filesystem 2198 * may become inconsistent. 2199 */ 2200 if (!is_journal_aborted(journal) && 2201 test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags)) 2202 jbd2_journal_abort(journal, -EIO); 2203 2204 if (journal->j_sb_buffer) { 2205 if (!is_journal_aborted(journal)) { 2206 mutex_lock_io(&journal->j_checkpoint_mutex); 2207 2208 write_lock(&journal->j_state_lock); 2209 journal->j_tail_sequence = 2210 ++journal->j_transaction_sequence; 2211 write_unlock(&journal->j_state_lock); 2212 2213 jbd2_mark_journal_empty(journal, REQ_PREFLUSH | REQ_FUA); 2214 mutex_unlock(&journal->j_checkpoint_mutex); 2215 } else 2216 err = -EIO; 2217 brelse(journal->j_sb_buffer); 2218 } 2219 2220 if (journal->j_shrinker.flags & SHRINKER_REGISTERED) { 2221 percpu_counter_destroy(&journal->j_checkpoint_jh_count); 2222 unregister_shrinker(&journal->j_shrinker); 2223 } 2224 if (journal->j_proc_entry) 2225 jbd2_stats_proc_exit(journal); 2226 iput(journal->j_inode); 2227 if (journal->j_revoke) 2228 jbd2_journal_destroy_revoke(journal); 2229 if (journal->j_chksum_driver) 2230 crypto_free_shash(journal->j_chksum_driver); 2231 kfree(journal->j_fc_wbuf); 2232 kfree(journal->j_wbuf); 2233 kfree(journal); 2234 2235 return err; 2236 } 2237 2238 2239 /** 2240 * jbd2_journal_check_used_features() - Check if features specified are used. 2241 * @journal: Journal to check. 2242 * @compat: bitmask of compatible features 2243 * @ro: bitmask of features that force read-only mount 2244 * @incompat: bitmask of incompatible features 2245 * 2246 * Check whether the journal uses all of a given set of 2247 * features. Return true (non-zero) if it does. 2248 **/ 2249 2250 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat, 2251 unsigned long ro, unsigned long incompat) 2252 { 2253 journal_superblock_t *sb; 2254 2255 if (!compat && !ro && !incompat) 2256 return 1; 2257 if (!jbd2_format_support_feature(journal)) 2258 return 0; 2259 2260 sb = journal->j_superblock; 2261 2262 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 2263 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 2264 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 2265 return 1; 2266 2267 return 0; 2268 } 2269 2270 /** 2271 * jbd2_journal_check_available_features() - Check feature set in journalling layer 2272 * @journal: Journal to check. 2273 * @compat: bitmask of compatible features 2274 * @ro: bitmask of features that force read-only mount 2275 * @incompat: bitmask of incompatible features 2276 * 2277 * Check whether the journaling code supports the use of 2278 * all of a given set of features on this journal. Return true 2279 * (non-zero) if it can. */ 2280 2281 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat, 2282 unsigned long ro, unsigned long incompat) 2283 { 2284 if (!compat && !ro && !incompat) 2285 return 1; 2286 2287 if (!jbd2_format_support_feature(journal)) 2288 return 0; 2289 2290 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 2291 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 2292 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 2293 return 1; 2294 2295 return 0; 2296 } 2297 2298 static int 2299 jbd2_journal_initialize_fast_commit(journal_t *journal) 2300 { 2301 journal_superblock_t *sb = journal->j_superblock; 2302 unsigned long long num_fc_blks; 2303 2304 num_fc_blks = jbd2_journal_get_num_fc_blks(sb); 2305 if (journal->j_last - num_fc_blks < JBD2_MIN_JOURNAL_BLOCKS) 2306 return -ENOSPC; 2307 2308 /* Are we called twice? */ 2309 WARN_ON(journal->j_fc_wbuf != NULL); 2310 journal->j_fc_wbuf = kmalloc_array(num_fc_blks, 2311 sizeof(struct buffer_head *), GFP_KERNEL); 2312 if (!journal->j_fc_wbuf) 2313 return -ENOMEM; 2314 2315 journal->j_fc_wbufsize = num_fc_blks; 2316 journal->j_fc_last = journal->j_last; 2317 journal->j_last = journal->j_fc_last - num_fc_blks; 2318 journal->j_fc_first = journal->j_last + 1; 2319 journal->j_fc_off = 0; 2320 journal->j_free = journal->j_last - journal->j_first; 2321 2322 return 0; 2323 } 2324 2325 /** 2326 * jbd2_journal_set_features() - Mark a given journal feature in the superblock 2327 * @journal: Journal to act on. 2328 * @compat: bitmask of compatible features 2329 * @ro: bitmask of features that force read-only mount 2330 * @incompat: bitmask of incompatible features 2331 * 2332 * Mark a given journal feature as present on the 2333 * superblock. Returns true if the requested features could be set. 2334 * 2335 */ 2336 2337 int jbd2_journal_set_features(journal_t *journal, unsigned long compat, 2338 unsigned long ro, unsigned long incompat) 2339 { 2340 #define INCOMPAT_FEATURE_ON(f) \ 2341 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f))) 2342 #define COMPAT_FEATURE_ON(f) \ 2343 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f))) 2344 journal_superblock_t *sb; 2345 2346 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 2347 return 1; 2348 2349 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 2350 return 0; 2351 2352 /* If enabling v2 checksums, turn on v3 instead */ 2353 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) { 2354 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2; 2355 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3; 2356 } 2357 2358 /* Asking for checksumming v3 and v1? Only give them v3. */ 2359 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 && 2360 compat & JBD2_FEATURE_COMPAT_CHECKSUM) 2361 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM; 2362 2363 jbd2_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 2364 compat, ro, incompat); 2365 2366 sb = journal->j_superblock; 2367 2368 if (incompat & JBD2_FEATURE_INCOMPAT_FAST_COMMIT) { 2369 if (jbd2_journal_initialize_fast_commit(journal)) { 2370 pr_err("JBD2: Cannot enable fast commits.\n"); 2371 return 0; 2372 } 2373 } 2374 2375 /* Load the checksum driver if necessary */ 2376 if ((journal->j_chksum_driver == NULL) && 2377 INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 2378 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 2379 if (IS_ERR(journal->j_chksum_driver)) { 2380 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 2381 journal->j_chksum_driver = NULL; 2382 return 0; 2383 } 2384 /* Precompute checksum seed for all metadata */ 2385 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 2386 sizeof(sb->s_uuid)); 2387 } 2388 2389 lock_buffer(journal->j_sb_buffer); 2390 2391 /* If enabling v3 checksums, update superblock */ 2392 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 2393 sb->s_checksum_type = JBD2_CRC32C_CHKSUM; 2394 sb->s_feature_compat &= 2395 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM); 2396 } 2397 2398 /* If enabling v1 checksums, downgrade superblock */ 2399 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM)) 2400 sb->s_feature_incompat &= 2401 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 | 2402 JBD2_FEATURE_INCOMPAT_CSUM_V3); 2403 2404 sb->s_feature_compat |= cpu_to_be32(compat); 2405 sb->s_feature_ro_compat |= cpu_to_be32(ro); 2406 sb->s_feature_incompat |= cpu_to_be32(incompat); 2407 unlock_buffer(journal->j_sb_buffer); 2408 jbd2_journal_init_transaction_limits(journal); 2409 2410 return 1; 2411 #undef COMPAT_FEATURE_ON 2412 #undef INCOMPAT_FEATURE_ON 2413 } 2414 2415 /* 2416 * jbd2_journal_clear_features() - Clear a given journal feature in the 2417 * superblock 2418 * @journal: Journal to act on. 2419 * @compat: bitmask of compatible features 2420 * @ro: bitmask of features that force read-only mount 2421 * @incompat: bitmask of incompatible features 2422 * 2423 * Clear a given journal feature as present on the 2424 * superblock. 2425 */ 2426 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 2427 unsigned long ro, unsigned long incompat) 2428 { 2429 journal_superblock_t *sb; 2430 2431 jbd2_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 2432 compat, ro, incompat); 2433 2434 sb = journal->j_superblock; 2435 2436 sb->s_feature_compat &= ~cpu_to_be32(compat); 2437 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 2438 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 2439 jbd2_journal_init_transaction_limits(journal); 2440 } 2441 EXPORT_SYMBOL(jbd2_journal_clear_features); 2442 2443 /** 2444 * jbd2_journal_flush() - Flush journal 2445 * @journal: Journal to act on. 2446 * @flags: optional operation on the journal blocks after the flush (see below) 2447 * 2448 * Flush all data for a given journal to disk and empty the journal. 2449 * Filesystems can use this when remounting readonly to ensure that 2450 * recovery does not need to happen on remount. Optionally, a discard or zeroout 2451 * can be issued on the journal blocks after flushing. 2452 * 2453 * flags: 2454 * JBD2_JOURNAL_FLUSH_DISCARD: issues discards for the journal blocks 2455 * JBD2_JOURNAL_FLUSH_ZEROOUT: issues zeroouts for the journal blocks 2456 */ 2457 int jbd2_journal_flush(journal_t *journal, unsigned int flags) 2458 { 2459 int err = 0; 2460 transaction_t *transaction = NULL; 2461 2462 write_lock(&journal->j_state_lock); 2463 2464 /* Force everything buffered to the log... */ 2465 if (journal->j_running_transaction) { 2466 transaction = journal->j_running_transaction; 2467 __jbd2_log_start_commit(journal, transaction->t_tid); 2468 } else if (journal->j_committing_transaction) 2469 transaction = journal->j_committing_transaction; 2470 2471 /* Wait for the log commit to complete... */ 2472 if (transaction) { 2473 tid_t tid = transaction->t_tid; 2474 2475 write_unlock(&journal->j_state_lock); 2476 jbd2_log_wait_commit(journal, tid); 2477 } else { 2478 write_unlock(&journal->j_state_lock); 2479 } 2480 2481 /* ...and flush everything in the log out to disk. */ 2482 spin_lock(&journal->j_list_lock); 2483 while (!err && journal->j_checkpoint_transactions != NULL) { 2484 spin_unlock(&journal->j_list_lock); 2485 mutex_lock_io(&journal->j_checkpoint_mutex); 2486 err = jbd2_log_do_checkpoint(journal); 2487 mutex_unlock(&journal->j_checkpoint_mutex); 2488 spin_lock(&journal->j_list_lock); 2489 } 2490 spin_unlock(&journal->j_list_lock); 2491 2492 if (is_journal_aborted(journal)) 2493 return -EIO; 2494 2495 mutex_lock_io(&journal->j_checkpoint_mutex); 2496 if (!err) { 2497 err = jbd2_cleanup_journal_tail(journal); 2498 if (err < 0) { 2499 mutex_unlock(&journal->j_checkpoint_mutex); 2500 goto out; 2501 } 2502 err = 0; 2503 } 2504 2505 /* Finally, mark the journal as really needing no recovery. 2506 * This sets s_start==0 in the underlying superblock, which is 2507 * the magic code for a fully-recovered superblock. Any future 2508 * commits of data to the journal will restore the current 2509 * s_start value. */ 2510 jbd2_mark_journal_empty(journal, REQ_FUA); 2511 2512 if (flags) 2513 err = __jbd2_journal_erase(journal, flags); 2514 2515 mutex_unlock(&journal->j_checkpoint_mutex); 2516 write_lock(&journal->j_state_lock); 2517 J_ASSERT(!journal->j_running_transaction); 2518 J_ASSERT(!journal->j_committing_transaction); 2519 J_ASSERT(!journal->j_checkpoint_transactions); 2520 J_ASSERT(journal->j_head == journal->j_tail); 2521 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 2522 write_unlock(&journal->j_state_lock); 2523 out: 2524 return err; 2525 } 2526 2527 /** 2528 * jbd2_journal_wipe() - Wipe journal contents 2529 * @journal: Journal to act on. 2530 * @write: flag (see below) 2531 * 2532 * Wipe out all of the contents of a journal, safely. This will produce 2533 * a warning if the journal contains any valid recovery information. 2534 * Must be called between journal_init_*() and jbd2_journal_load(). 2535 * 2536 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 2537 * we merely suppress recovery. 2538 */ 2539 2540 int jbd2_journal_wipe(journal_t *journal, int write) 2541 { 2542 int err; 2543 2544 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 2545 2546 if (!journal->j_tail) 2547 return 0; 2548 2549 printk(KERN_WARNING "JBD2: %s recovery information on journal\n", 2550 write ? "Clearing" : "Ignoring"); 2551 2552 err = jbd2_journal_skip_recovery(journal); 2553 if (write) { 2554 /* Lock to make assertions happy... */ 2555 mutex_lock_io(&journal->j_checkpoint_mutex); 2556 jbd2_mark_journal_empty(journal, REQ_FUA); 2557 mutex_unlock(&journal->j_checkpoint_mutex); 2558 } 2559 2560 return err; 2561 } 2562 2563 /** 2564 * jbd2_journal_abort () - Shutdown the journal immediately. 2565 * @journal: the journal to shutdown. 2566 * @errno: an error number to record in the journal indicating 2567 * the reason for the shutdown. 2568 * 2569 * Perform a complete, immediate shutdown of the ENTIRE 2570 * journal (not of a single transaction). This operation cannot be 2571 * undone without closing and reopening the journal. 2572 * 2573 * The jbd2_journal_abort function is intended to support higher level error 2574 * recovery mechanisms such as the ext2/ext3 remount-readonly error 2575 * mode. 2576 * 2577 * Journal abort has very specific semantics. Any existing dirty, 2578 * unjournaled buffers in the main filesystem will still be written to 2579 * disk by bdflush, but the journaling mechanism will be suspended 2580 * immediately and no further transaction commits will be honoured. 2581 * 2582 * Any dirty, journaled buffers will be written back to disk without 2583 * hitting the journal. Atomicity cannot be guaranteed on an aborted 2584 * filesystem, but we _do_ attempt to leave as much data as possible 2585 * behind for fsck to use for cleanup. 2586 * 2587 * Any attempt to get a new transaction handle on a journal which is in 2588 * ABORT state will just result in an -EROFS error return. A 2589 * jbd2_journal_stop on an existing handle will return -EIO if we have 2590 * entered abort state during the update. 2591 * 2592 * Recursive transactions are not disturbed by journal abort until the 2593 * final jbd2_journal_stop, which will receive the -EIO error. 2594 * 2595 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 2596 * which will be recorded (if possible) in the journal superblock. This 2597 * allows a client to record failure conditions in the middle of a 2598 * transaction without having to complete the transaction to record the 2599 * failure to disk. ext3_error, for example, now uses this 2600 * functionality. 2601 * 2602 */ 2603 2604 void jbd2_journal_abort(journal_t *journal, int errno) 2605 { 2606 transaction_t *transaction; 2607 2608 /* 2609 * Lock the aborting procedure until everything is done, this avoid 2610 * races between filesystem's error handling flow (e.g. ext4_abort()), 2611 * ensure panic after the error info is written into journal's 2612 * superblock. 2613 */ 2614 mutex_lock(&journal->j_abort_mutex); 2615 /* 2616 * ESHUTDOWN always takes precedence because a file system check 2617 * caused by any other journal abort error is not required after 2618 * a shutdown triggered. 2619 */ 2620 write_lock(&journal->j_state_lock); 2621 if (journal->j_flags & JBD2_ABORT) { 2622 int old_errno = journal->j_errno; 2623 2624 write_unlock(&journal->j_state_lock); 2625 if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) { 2626 journal->j_errno = errno; 2627 jbd2_journal_update_sb_errno(journal); 2628 } 2629 mutex_unlock(&journal->j_abort_mutex); 2630 return; 2631 } 2632 2633 /* 2634 * Mark the abort as occurred and start current running transaction 2635 * to release all journaled buffer. 2636 */ 2637 pr_err("Aborting journal on device %s.\n", journal->j_devname); 2638 2639 journal->j_flags |= JBD2_ABORT; 2640 journal->j_errno = errno; 2641 transaction = journal->j_running_transaction; 2642 if (transaction) 2643 __jbd2_log_start_commit(journal, transaction->t_tid); 2644 write_unlock(&journal->j_state_lock); 2645 2646 /* 2647 * Record errno to the journal super block, so that fsck and jbd2 2648 * layer could realise that a filesystem check is needed. 2649 */ 2650 jbd2_journal_update_sb_errno(journal); 2651 mutex_unlock(&journal->j_abort_mutex); 2652 } 2653 2654 /** 2655 * jbd2_journal_errno() - returns the journal's error state. 2656 * @journal: journal to examine. 2657 * 2658 * This is the errno number set with jbd2_journal_abort(), the last 2659 * time the journal was mounted - if the journal was stopped 2660 * without calling abort this will be 0. 2661 * 2662 * If the journal has been aborted on this mount time -EROFS will 2663 * be returned. 2664 */ 2665 int jbd2_journal_errno(journal_t *journal) 2666 { 2667 int err; 2668 2669 read_lock(&journal->j_state_lock); 2670 if (journal->j_flags & JBD2_ABORT) 2671 err = -EROFS; 2672 else 2673 err = journal->j_errno; 2674 read_unlock(&journal->j_state_lock); 2675 return err; 2676 } 2677 2678 /** 2679 * jbd2_journal_clear_err() - clears the journal's error state 2680 * @journal: journal to act on. 2681 * 2682 * An error must be cleared or acked to take a FS out of readonly 2683 * mode. 2684 */ 2685 int jbd2_journal_clear_err(journal_t *journal) 2686 { 2687 int err = 0; 2688 2689 write_lock(&journal->j_state_lock); 2690 if (journal->j_flags & JBD2_ABORT) 2691 err = -EROFS; 2692 else 2693 journal->j_errno = 0; 2694 write_unlock(&journal->j_state_lock); 2695 return err; 2696 } 2697 2698 /** 2699 * jbd2_journal_ack_err() - Ack journal err. 2700 * @journal: journal to act on. 2701 * 2702 * An error must be cleared or acked to take a FS out of readonly 2703 * mode. 2704 */ 2705 void jbd2_journal_ack_err(journal_t *journal) 2706 { 2707 write_lock(&journal->j_state_lock); 2708 if (journal->j_errno) 2709 journal->j_flags |= JBD2_ACK_ERR; 2710 write_unlock(&journal->j_state_lock); 2711 } 2712 2713 int jbd2_journal_blocks_per_page(struct inode *inode) 2714 { 2715 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 2716 } 2717 2718 /* 2719 * helper functions to deal with 32 or 64bit block numbers. 2720 */ 2721 size_t journal_tag_bytes(journal_t *journal) 2722 { 2723 size_t sz; 2724 2725 if (jbd2_has_feature_csum3(journal)) 2726 return sizeof(journal_block_tag3_t); 2727 2728 sz = sizeof(journal_block_tag_t); 2729 2730 if (jbd2_has_feature_csum2(journal)) 2731 sz += sizeof(__u16); 2732 2733 if (jbd2_has_feature_64bit(journal)) 2734 return sz; 2735 else 2736 return sz - sizeof(__u32); 2737 } 2738 2739 /* 2740 * JBD memory management 2741 * 2742 * These functions are used to allocate block-sized chunks of memory 2743 * used for making copies of buffer_head data. Very often it will be 2744 * page-sized chunks of data, but sometimes it will be in 2745 * sub-page-size chunks. (For example, 16k pages on Power systems 2746 * with a 4k block file system.) For blocks smaller than a page, we 2747 * use a SLAB allocator. There are slab caches for each block size, 2748 * which are allocated at mount time, if necessary, and we only free 2749 * (all of) the slab caches when/if the jbd2 module is unloaded. For 2750 * this reason we don't need to a mutex to protect access to 2751 * jbd2_slab[] allocating or releasing memory; only in 2752 * jbd2_journal_create_slab(). 2753 */ 2754 #define JBD2_MAX_SLABS 8 2755 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS]; 2756 2757 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = { 2758 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k", 2759 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k" 2760 }; 2761 2762 2763 static void jbd2_journal_destroy_slabs(void) 2764 { 2765 int i; 2766 2767 for (i = 0; i < JBD2_MAX_SLABS; i++) { 2768 kmem_cache_destroy(jbd2_slab[i]); 2769 jbd2_slab[i] = NULL; 2770 } 2771 } 2772 2773 static int jbd2_journal_create_slab(size_t size) 2774 { 2775 static DEFINE_MUTEX(jbd2_slab_create_mutex); 2776 int i = order_base_2(size) - 10; 2777 size_t slab_size; 2778 2779 if (size == PAGE_SIZE) 2780 return 0; 2781 2782 if (i >= JBD2_MAX_SLABS) 2783 return -EINVAL; 2784 2785 if (unlikely(i < 0)) 2786 i = 0; 2787 mutex_lock(&jbd2_slab_create_mutex); 2788 if (jbd2_slab[i]) { 2789 mutex_unlock(&jbd2_slab_create_mutex); 2790 return 0; /* Already created */ 2791 } 2792 2793 slab_size = 1 << (i+10); 2794 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size, 2795 slab_size, 0, NULL); 2796 mutex_unlock(&jbd2_slab_create_mutex); 2797 if (!jbd2_slab[i]) { 2798 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n"); 2799 return -ENOMEM; 2800 } 2801 return 0; 2802 } 2803 2804 static struct kmem_cache *get_slab(size_t size) 2805 { 2806 int i = order_base_2(size) - 10; 2807 2808 BUG_ON(i >= JBD2_MAX_SLABS); 2809 if (unlikely(i < 0)) 2810 i = 0; 2811 BUG_ON(jbd2_slab[i] == NULL); 2812 return jbd2_slab[i]; 2813 } 2814 2815 void *jbd2_alloc(size_t size, gfp_t flags) 2816 { 2817 void *ptr; 2818 2819 BUG_ON(size & (size-1)); /* Must be a power of 2 */ 2820 2821 if (size < PAGE_SIZE) 2822 ptr = kmem_cache_alloc(get_slab(size), flags); 2823 else 2824 ptr = (void *)__get_free_pages(flags, get_order(size)); 2825 2826 /* Check alignment; SLUB has gotten this wrong in the past, 2827 * and this can lead to user data corruption! */ 2828 BUG_ON(((unsigned long) ptr) & (size-1)); 2829 2830 return ptr; 2831 } 2832 2833 void jbd2_free(void *ptr, size_t size) 2834 { 2835 if (size < PAGE_SIZE) 2836 kmem_cache_free(get_slab(size), ptr); 2837 else 2838 free_pages((unsigned long)ptr, get_order(size)); 2839 }; 2840 2841 /* 2842 * Journal_head storage management 2843 */ 2844 static struct kmem_cache *jbd2_journal_head_cache; 2845 #ifdef CONFIG_JBD2_DEBUG 2846 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 2847 #endif 2848 2849 static int __init jbd2_journal_init_journal_head_cache(void) 2850 { 2851 J_ASSERT(!jbd2_journal_head_cache); 2852 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 2853 sizeof(struct journal_head), 2854 0, /* offset */ 2855 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU, 2856 NULL); /* ctor */ 2857 if (!jbd2_journal_head_cache) { 2858 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n"); 2859 return -ENOMEM; 2860 } 2861 return 0; 2862 } 2863 2864 static void jbd2_journal_destroy_journal_head_cache(void) 2865 { 2866 kmem_cache_destroy(jbd2_journal_head_cache); 2867 jbd2_journal_head_cache = NULL; 2868 } 2869 2870 /* 2871 * journal_head splicing and dicing 2872 */ 2873 static struct journal_head *journal_alloc_journal_head(void) 2874 { 2875 struct journal_head *ret; 2876 2877 #ifdef CONFIG_JBD2_DEBUG 2878 atomic_inc(&nr_journal_heads); 2879 #endif 2880 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS); 2881 if (!ret) { 2882 jbd2_debug(1, "out of memory for journal_head\n"); 2883 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__); 2884 ret = kmem_cache_zalloc(jbd2_journal_head_cache, 2885 GFP_NOFS | __GFP_NOFAIL); 2886 } 2887 if (ret) 2888 spin_lock_init(&ret->b_state_lock); 2889 return ret; 2890 } 2891 2892 static void journal_free_journal_head(struct journal_head *jh) 2893 { 2894 #ifdef CONFIG_JBD2_DEBUG 2895 atomic_dec(&nr_journal_heads); 2896 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 2897 #endif 2898 kmem_cache_free(jbd2_journal_head_cache, jh); 2899 } 2900 2901 /* 2902 * A journal_head is attached to a buffer_head whenever JBD has an 2903 * interest in the buffer. 2904 * 2905 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 2906 * is set. This bit is tested in core kernel code where we need to take 2907 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 2908 * there. 2909 * 2910 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 2911 * 2912 * When a buffer has its BH_JBD bit set it is immune from being released by 2913 * core kernel code, mainly via ->b_count. 2914 * 2915 * A journal_head is detached from its buffer_head when the journal_head's 2916 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint 2917 * transaction (b_cp_transaction) hold their references to b_jcount. 2918 * 2919 * Various places in the kernel want to attach a journal_head to a buffer_head 2920 * _before_ attaching the journal_head to a transaction. To protect the 2921 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 2922 * journal_head's b_jcount refcount by one. The caller must call 2923 * jbd2_journal_put_journal_head() to undo this. 2924 * 2925 * So the typical usage would be: 2926 * 2927 * (Attach a journal_head if needed. Increments b_jcount) 2928 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 2929 * ... 2930 * (Get another reference for transaction) 2931 * jbd2_journal_grab_journal_head(bh); 2932 * jh->b_transaction = xxx; 2933 * (Put original reference) 2934 * jbd2_journal_put_journal_head(jh); 2935 */ 2936 2937 /* 2938 * Give a buffer_head a journal_head. 2939 * 2940 * May sleep. 2941 */ 2942 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 2943 { 2944 struct journal_head *jh; 2945 struct journal_head *new_jh = NULL; 2946 2947 repeat: 2948 if (!buffer_jbd(bh)) 2949 new_jh = journal_alloc_journal_head(); 2950 2951 jbd_lock_bh_journal_head(bh); 2952 if (buffer_jbd(bh)) { 2953 jh = bh2jh(bh); 2954 } else { 2955 J_ASSERT_BH(bh, 2956 (atomic_read(&bh->b_count) > 0) || 2957 (bh->b_folio && bh->b_folio->mapping)); 2958 2959 if (!new_jh) { 2960 jbd_unlock_bh_journal_head(bh); 2961 goto repeat; 2962 } 2963 2964 jh = new_jh; 2965 new_jh = NULL; /* We consumed it */ 2966 set_buffer_jbd(bh); 2967 bh->b_private = jh; 2968 jh->b_bh = bh; 2969 get_bh(bh); 2970 BUFFER_TRACE(bh, "added journal_head"); 2971 } 2972 jh->b_jcount++; 2973 jbd_unlock_bh_journal_head(bh); 2974 if (new_jh) 2975 journal_free_journal_head(new_jh); 2976 return bh->b_private; 2977 } 2978 2979 /* 2980 * Grab a ref against this buffer_head's journal_head. If it ended up not 2981 * having a journal_head, return NULL 2982 */ 2983 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 2984 { 2985 struct journal_head *jh = NULL; 2986 2987 jbd_lock_bh_journal_head(bh); 2988 if (buffer_jbd(bh)) { 2989 jh = bh2jh(bh); 2990 jh->b_jcount++; 2991 } 2992 jbd_unlock_bh_journal_head(bh); 2993 return jh; 2994 } 2995 EXPORT_SYMBOL(jbd2_journal_grab_journal_head); 2996 2997 static void __journal_remove_journal_head(struct buffer_head *bh) 2998 { 2999 struct journal_head *jh = bh2jh(bh); 3000 3001 J_ASSERT_JH(jh, jh->b_transaction == NULL); 3002 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 3003 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL); 3004 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 3005 J_ASSERT_BH(bh, buffer_jbd(bh)); 3006 J_ASSERT_BH(bh, jh2bh(jh) == bh); 3007 BUFFER_TRACE(bh, "remove journal_head"); 3008 3009 /* Unlink before dropping the lock */ 3010 bh->b_private = NULL; 3011 jh->b_bh = NULL; /* debug, really */ 3012 clear_buffer_jbd(bh); 3013 } 3014 3015 static void journal_release_journal_head(struct journal_head *jh, size_t b_size) 3016 { 3017 if (jh->b_frozen_data) { 3018 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__); 3019 jbd2_free(jh->b_frozen_data, b_size); 3020 } 3021 if (jh->b_committed_data) { 3022 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__); 3023 jbd2_free(jh->b_committed_data, b_size); 3024 } 3025 journal_free_journal_head(jh); 3026 } 3027 3028 /* 3029 * Drop a reference on the passed journal_head. If it fell to zero then 3030 * release the journal_head from the buffer_head. 3031 */ 3032 void jbd2_journal_put_journal_head(struct journal_head *jh) 3033 { 3034 struct buffer_head *bh = jh2bh(jh); 3035 3036 jbd_lock_bh_journal_head(bh); 3037 J_ASSERT_JH(jh, jh->b_jcount > 0); 3038 --jh->b_jcount; 3039 if (!jh->b_jcount) { 3040 __journal_remove_journal_head(bh); 3041 jbd_unlock_bh_journal_head(bh); 3042 journal_release_journal_head(jh, bh->b_size); 3043 __brelse(bh); 3044 } else { 3045 jbd_unlock_bh_journal_head(bh); 3046 } 3047 } 3048 EXPORT_SYMBOL(jbd2_journal_put_journal_head); 3049 3050 /* 3051 * Initialize jbd inode head 3052 */ 3053 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 3054 { 3055 jinode->i_transaction = NULL; 3056 jinode->i_next_transaction = NULL; 3057 jinode->i_vfs_inode = inode; 3058 jinode->i_flags = 0; 3059 jinode->i_dirty_start = 0; 3060 jinode->i_dirty_end = 0; 3061 INIT_LIST_HEAD(&jinode->i_list); 3062 } 3063 3064 /* 3065 * Function to be called before we start removing inode from memory (i.e., 3066 * clear_inode() is a fine place to be called from). It removes inode from 3067 * transaction's lists. 3068 */ 3069 void jbd2_journal_release_jbd_inode(journal_t *journal, 3070 struct jbd2_inode *jinode) 3071 { 3072 if (!journal) 3073 return; 3074 restart: 3075 spin_lock(&journal->j_list_lock); 3076 /* Is commit writing out inode - we have to wait */ 3077 if (jinode->i_flags & JI_COMMIT_RUNNING) { 3078 wait_queue_head_t *wq; 3079 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 3080 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 3081 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 3082 spin_unlock(&journal->j_list_lock); 3083 schedule(); 3084 finish_wait(wq, &wait.wq_entry); 3085 goto restart; 3086 } 3087 3088 if (jinode->i_transaction) { 3089 list_del(&jinode->i_list); 3090 jinode->i_transaction = NULL; 3091 } 3092 spin_unlock(&journal->j_list_lock); 3093 } 3094 3095 3096 #ifdef CONFIG_PROC_FS 3097 3098 #define JBD2_STATS_PROC_NAME "fs/jbd2" 3099 3100 static void __init jbd2_create_jbd_stats_proc_entry(void) 3101 { 3102 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 3103 } 3104 3105 static void __exit jbd2_remove_jbd_stats_proc_entry(void) 3106 { 3107 if (proc_jbd2_stats) 3108 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 3109 } 3110 3111 #else 3112 3113 #define jbd2_create_jbd_stats_proc_entry() do {} while (0) 3114 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 3115 3116 #endif 3117 3118 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache; 3119 3120 static int __init jbd2_journal_init_inode_cache(void) 3121 { 3122 J_ASSERT(!jbd2_inode_cache); 3123 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0); 3124 if (!jbd2_inode_cache) { 3125 pr_emerg("JBD2: failed to create inode cache\n"); 3126 return -ENOMEM; 3127 } 3128 return 0; 3129 } 3130 3131 static int __init jbd2_journal_init_handle_cache(void) 3132 { 3133 J_ASSERT(!jbd2_handle_cache); 3134 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY); 3135 if (!jbd2_handle_cache) { 3136 printk(KERN_EMERG "JBD2: failed to create handle cache\n"); 3137 return -ENOMEM; 3138 } 3139 return 0; 3140 } 3141 3142 static void jbd2_journal_destroy_inode_cache(void) 3143 { 3144 kmem_cache_destroy(jbd2_inode_cache); 3145 jbd2_inode_cache = NULL; 3146 } 3147 3148 static void jbd2_journal_destroy_handle_cache(void) 3149 { 3150 kmem_cache_destroy(jbd2_handle_cache); 3151 jbd2_handle_cache = NULL; 3152 } 3153 3154 /* 3155 * Module startup and shutdown 3156 */ 3157 3158 static int __init journal_init_caches(void) 3159 { 3160 int ret; 3161 3162 ret = jbd2_journal_init_revoke_record_cache(); 3163 if (ret == 0) 3164 ret = jbd2_journal_init_revoke_table_cache(); 3165 if (ret == 0) 3166 ret = jbd2_journal_init_journal_head_cache(); 3167 if (ret == 0) 3168 ret = jbd2_journal_init_handle_cache(); 3169 if (ret == 0) 3170 ret = jbd2_journal_init_inode_cache(); 3171 if (ret == 0) 3172 ret = jbd2_journal_init_transaction_cache(); 3173 return ret; 3174 } 3175 3176 static void jbd2_journal_destroy_caches(void) 3177 { 3178 jbd2_journal_destroy_revoke_record_cache(); 3179 jbd2_journal_destroy_revoke_table_cache(); 3180 jbd2_journal_destroy_journal_head_cache(); 3181 jbd2_journal_destroy_handle_cache(); 3182 jbd2_journal_destroy_inode_cache(); 3183 jbd2_journal_destroy_transaction_cache(); 3184 jbd2_journal_destroy_slabs(); 3185 } 3186 3187 static int __init journal_init(void) 3188 { 3189 int ret; 3190 3191 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 3192 3193 ret = journal_init_caches(); 3194 if (ret == 0) { 3195 jbd2_create_jbd_stats_proc_entry(); 3196 } else { 3197 jbd2_journal_destroy_caches(); 3198 } 3199 return ret; 3200 } 3201 3202 static void __exit journal_exit(void) 3203 { 3204 #ifdef CONFIG_JBD2_DEBUG 3205 int n = atomic_read(&nr_journal_heads); 3206 if (n) 3207 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n); 3208 #endif 3209 jbd2_remove_jbd_stats_proc_entry(); 3210 jbd2_journal_destroy_caches(); 3211 } 3212 3213 MODULE_LICENSE("GPL"); 3214 module_init(journal_init); 3215 module_exit(journal_exit); 3216 3217