xref: /openbmc/linux/fs/isofs/compress.c (revision 3b23dc52)
1 /* -*- linux-c -*- ------------------------------------------------------- *
2  *
3  *   Copyright 2001 H. Peter Anvin - All Rights Reserved
4  *
5  *   This program is free software; you can redistribute it and/or modify
6  *   it under the terms of the GNU General Public License as published by
7  *   the Free Software Foundation, Inc., 675 Mass Ave, Cambridge MA 02139,
8  *   USA; either version 2 of the License, or (at your option) any later
9  *   version; incorporated herein by reference.
10  *
11  * ----------------------------------------------------------------------- */
12 
13 /*
14  * linux/fs/isofs/compress.c
15  *
16  * Transparent decompression of files on an iso9660 filesystem
17  */
18 
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/bio.h>
22 
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/zlib.h>
26 
27 #include "isofs.h"
28 #include "zisofs.h"
29 
30 /* This should probably be global. */
31 static char zisofs_sink_page[PAGE_SIZE];
32 
33 /*
34  * This contains the zlib memory allocation and the mutex for the
35  * allocation; this avoids failures at block-decompression time.
36  */
37 static void *zisofs_zlib_workspace;
38 static DEFINE_MUTEX(zisofs_zlib_lock);
39 
40 /*
41  * Read data of @inode from @block_start to @block_end and uncompress
42  * to one zisofs block. Store the data in the @pages array with @pcount
43  * entries. Start storing at offset @poffset of the first page.
44  */
45 static loff_t zisofs_uncompress_block(struct inode *inode, loff_t block_start,
46 				      loff_t block_end, int pcount,
47 				      struct page **pages, unsigned poffset,
48 				      int *errp)
49 {
50 	unsigned int zisofs_block_shift = ISOFS_I(inode)->i_format_parm[1];
51 	unsigned int bufsize = ISOFS_BUFFER_SIZE(inode);
52 	unsigned int bufshift = ISOFS_BUFFER_BITS(inode);
53 	unsigned int bufmask = bufsize - 1;
54 	int i, block_size = block_end - block_start;
55 	z_stream stream = { .total_out = 0,
56 			    .avail_in = 0,
57 			    .avail_out = 0, };
58 	int zerr;
59 	int needblocks = (block_size + (block_start & bufmask) + bufmask)
60 				>> bufshift;
61 	int haveblocks;
62 	blkcnt_t blocknum;
63 	struct buffer_head **bhs;
64 	int curbh, curpage;
65 
66 	if (block_size > deflateBound(1UL << zisofs_block_shift)) {
67 		*errp = -EIO;
68 		return 0;
69 	}
70 	/* Empty block? */
71 	if (block_size == 0) {
72 		for ( i = 0 ; i < pcount ; i++ ) {
73 			if (!pages[i])
74 				continue;
75 			memset(page_address(pages[i]), 0, PAGE_SIZE);
76 			flush_dcache_page(pages[i]);
77 			SetPageUptodate(pages[i]);
78 		}
79 		return ((loff_t)pcount) << PAGE_SHIFT;
80 	}
81 
82 	/* Because zlib is not thread-safe, do all the I/O at the top. */
83 	blocknum = block_start >> bufshift;
84 	bhs = kcalloc(needblocks + 1, sizeof(*bhs), GFP_KERNEL);
85 	if (!bhs) {
86 		*errp = -ENOMEM;
87 		return 0;
88 	}
89 	haveblocks = isofs_get_blocks(inode, blocknum, bhs, needblocks);
90 	ll_rw_block(REQ_OP_READ, 0, haveblocks, bhs);
91 
92 	curbh = 0;
93 	curpage = 0;
94 	/*
95 	 * First block is special since it may be fractional.  We also wait for
96 	 * it before grabbing the zlib mutex; odds are that the subsequent
97 	 * blocks are going to come in in short order so we don't hold the zlib
98 	 * mutex longer than necessary.
99 	 */
100 
101 	if (!bhs[0])
102 		goto b_eio;
103 
104 	wait_on_buffer(bhs[0]);
105 	if (!buffer_uptodate(bhs[0])) {
106 		*errp = -EIO;
107 		goto b_eio;
108 	}
109 
110 	stream.workspace = zisofs_zlib_workspace;
111 	mutex_lock(&zisofs_zlib_lock);
112 
113 	zerr = zlib_inflateInit(&stream);
114 	if (zerr != Z_OK) {
115 		if (zerr == Z_MEM_ERROR)
116 			*errp = -ENOMEM;
117 		else
118 			*errp = -EIO;
119 		printk(KERN_DEBUG "zisofs: zisofs_inflateInit returned %d\n",
120 			       zerr);
121 		goto z_eio;
122 	}
123 
124 	while (curpage < pcount && curbh < haveblocks &&
125 	       zerr != Z_STREAM_END) {
126 		if (!stream.avail_out) {
127 			if (pages[curpage]) {
128 				stream.next_out = page_address(pages[curpage])
129 						+ poffset;
130 				stream.avail_out = PAGE_SIZE - poffset;
131 				poffset = 0;
132 			} else {
133 				stream.next_out = (void *)&zisofs_sink_page;
134 				stream.avail_out = PAGE_SIZE;
135 			}
136 		}
137 		if (!stream.avail_in) {
138 			wait_on_buffer(bhs[curbh]);
139 			if (!buffer_uptodate(bhs[curbh])) {
140 				*errp = -EIO;
141 				break;
142 			}
143 			stream.next_in  = bhs[curbh]->b_data +
144 						(block_start & bufmask);
145 			stream.avail_in = min_t(unsigned, bufsize -
146 						(block_start & bufmask),
147 						block_size);
148 			block_size -= stream.avail_in;
149 			block_start = 0;
150 		}
151 
152 		while (stream.avail_out && stream.avail_in) {
153 			zerr = zlib_inflate(&stream, Z_SYNC_FLUSH);
154 			if (zerr == Z_BUF_ERROR && stream.avail_in == 0)
155 				break;
156 			if (zerr == Z_STREAM_END)
157 				break;
158 			if (zerr != Z_OK) {
159 				/* EOF, error, or trying to read beyond end of input */
160 				if (zerr == Z_MEM_ERROR)
161 					*errp = -ENOMEM;
162 				else {
163 					printk(KERN_DEBUG
164 					       "zisofs: zisofs_inflate returned"
165 					       " %d, inode = %lu,"
166 					       " page idx = %d, bh idx = %d,"
167 					       " avail_in = %ld,"
168 					       " avail_out = %ld\n",
169 					       zerr, inode->i_ino, curpage,
170 					       curbh, stream.avail_in,
171 					       stream.avail_out);
172 					*errp = -EIO;
173 				}
174 				goto inflate_out;
175 			}
176 		}
177 
178 		if (!stream.avail_out) {
179 			/* This page completed */
180 			if (pages[curpage]) {
181 				flush_dcache_page(pages[curpage]);
182 				SetPageUptodate(pages[curpage]);
183 			}
184 			curpage++;
185 		}
186 		if (!stream.avail_in)
187 			curbh++;
188 	}
189 inflate_out:
190 	zlib_inflateEnd(&stream);
191 
192 z_eio:
193 	mutex_unlock(&zisofs_zlib_lock);
194 
195 b_eio:
196 	for (i = 0; i < haveblocks; i++)
197 		brelse(bhs[i]);
198 	kfree(bhs);
199 	return stream.total_out;
200 }
201 
202 /*
203  * Uncompress data so that pages[full_page] is fully uptodate and possibly
204  * fills in other pages if we have data for them.
205  */
206 static int zisofs_fill_pages(struct inode *inode, int full_page, int pcount,
207 			     struct page **pages)
208 {
209 	loff_t start_off, end_off;
210 	loff_t block_start, block_end;
211 	unsigned int header_size = ISOFS_I(inode)->i_format_parm[0];
212 	unsigned int zisofs_block_shift = ISOFS_I(inode)->i_format_parm[1];
213 	unsigned int blockptr;
214 	loff_t poffset = 0;
215 	blkcnt_t cstart_block, cend_block;
216 	struct buffer_head *bh;
217 	unsigned int blkbits = ISOFS_BUFFER_BITS(inode);
218 	unsigned int blksize = 1 << blkbits;
219 	int err;
220 	loff_t ret;
221 
222 	BUG_ON(!pages[full_page]);
223 
224 	/*
225 	 * We want to read at least 'full_page' page. Because we have to
226 	 * uncompress the whole compression block anyway, fill the surrounding
227 	 * pages with the data we have anyway...
228 	 */
229 	start_off = page_offset(pages[full_page]);
230 	end_off = min_t(loff_t, start_off + PAGE_SIZE, inode->i_size);
231 
232 	cstart_block = start_off >> zisofs_block_shift;
233 	cend_block = (end_off + (1 << zisofs_block_shift) - 1)
234 			>> zisofs_block_shift;
235 
236 	WARN_ON(start_off - (full_page << PAGE_SHIFT) !=
237 		((cstart_block << zisofs_block_shift) & PAGE_MASK));
238 
239 	/* Find the pointer to this specific chunk */
240 	/* Note: we're not using isonum_731() here because the data is known aligned */
241 	/* Note: header_size is in 32-bit words (4 bytes) */
242 	blockptr = (header_size + cstart_block) << 2;
243 	bh = isofs_bread(inode, blockptr >> blkbits);
244 	if (!bh)
245 		return -EIO;
246 	block_start = le32_to_cpu(*(__le32 *)
247 				(bh->b_data + (blockptr & (blksize - 1))));
248 
249 	while (cstart_block < cend_block && pcount > 0) {
250 		/* Load end of the compressed block in the file */
251 		blockptr += 4;
252 		/* Traversed to next block? */
253 		if (!(blockptr & (blksize - 1))) {
254 			brelse(bh);
255 
256 			bh = isofs_bread(inode, blockptr >> blkbits);
257 			if (!bh)
258 				return -EIO;
259 		}
260 		block_end = le32_to_cpu(*(__le32 *)
261 				(bh->b_data + (blockptr & (blksize - 1))));
262 		if (block_start > block_end) {
263 			brelse(bh);
264 			return -EIO;
265 		}
266 		err = 0;
267 		ret = zisofs_uncompress_block(inode, block_start, block_end,
268 					      pcount, pages, poffset, &err);
269 		poffset += ret;
270 		pages += poffset >> PAGE_SHIFT;
271 		pcount -= poffset >> PAGE_SHIFT;
272 		full_page -= poffset >> PAGE_SHIFT;
273 		poffset &= ~PAGE_MASK;
274 
275 		if (err) {
276 			brelse(bh);
277 			/*
278 			 * Did we finish reading the page we really wanted
279 			 * to read?
280 			 */
281 			if (full_page < 0)
282 				return 0;
283 			return err;
284 		}
285 
286 		block_start = block_end;
287 		cstart_block++;
288 	}
289 
290 	if (poffset && *pages) {
291 		memset(page_address(*pages) + poffset, 0,
292 		       PAGE_SIZE - poffset);
293 		flush_dcache_page(*pages);
294 		SetPageUptodate(*pages);
295 	}
296 	return 0;
297 }
298 
299 /*
300  * When decompressing, we typically obtain more than one page
301  * per reference.  We inject the additional pages into the page
302  * cache as a form of readahead.
303  */
304 static int zisofs_readpage(struct file *file, struct page *page)
305 {
306 	struct inode *inode = file_inode(file);
307 	struct address_space *mapping = inode->i_mapping;
308 	int err;
309 	int i, pcount, full_page;
310 	unsigned int zisofs_block_shift = ISOFS_I(inode)->i_format_parm[1];
311 	unsigned int zisofs_pages_per_cblock =
312 		PAGE_SHIFT <= zisofs_block_shift ?
313 		(1 << (zisofs_block_shift - PAGE_SHIFT)) : 0;
314 	struct page **pages;
315 	pgoff_t index = page->index, end_index;
316 
317 	end_index = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
318 	/*
319 	 * If this page is wholly outside i_size we just return zero;
320 	 * do_generic_file_read() will handle this for us
321 	 */
322 	if (index >= end_index) {
323 		SetPageUptodate(page);
324 		unlock_page(page);
325 		return 0;
326 	}
327 
328 	if (PAGE_SHIFT <= zisofs_block_shift) {
329 		/* We have already been given one page, this is the one
330 		   we must do. */
331 		full_page = index & (zisofs_pages_per_cblock - 1);
332 		pcount = min_t(int, zisofs_pages_per_cblock,
333 			end_index - (index & ~(zisofs_pages_per_cblock - 1)));
334 		index -= full_page;
335 	} else {
336 		full_page = 0;
337 		pcount = 1;
338 	}
339 	pages = kcalloc(max_t(unsigned int, zisofs_pages_per_cblock, 1),
340 					sizeof(*pages), GFP_KERNEL);
341 	if (!pages) {
342 		unlock_page(page);
343 		return -ENOMEM;
344 	}
345 	pages[full_page] = page;
346 
347 	for (i = 0; i < pcount; i++, index++) {
348 		if (i != full_page)
349 			pages[i] = grab_cache_page_nowait(mapping, index);
350 		if (pages[i]) {
351 			ClearPageError(pages[i]);
352 			kmap(pages[i]);
353 		}
354 	}
355 
356 	err = zisofs_fill_pages(inode, full_page, pcount, pages);
357 
358 	/* Release any residual pages, do not SetPageUptodate */
359 	for (i = 0; i < pcount; i++) {
360 		if (pages[i]) {
361 			flush_dcache_page(pages[i]);
362 			if (i == full_page && err)
363 				SetPageError(pages[i]);
364 			kunmap(pages[i]);
365 			unlock_page(pages[i]);
366 			if (i != full_page)
367 				put_page(pages[i]);
368 		}
369 	}
370 
371 	/* At this point, err contains 0 or -EIO depending on the "critical" page */
372 	kfree(pages);
373 	return err;
374 }
375 
376 const struct address_space_operations zisofs_aops = {
377 	.readpage = zisofs_readpage,
378 	/* No bmap operation supported */
379 };
380 
381 int __init zisofs_init(void)
382 {
383 	zisofs_zlib_workspace = vmalloc(zlib_inflate_workspacesize());
384 	if ( !zisofs_zlib_workspace )
385 		return -ENOMEM;
386 
387 	return 0;
388 }
389 
390 void zisofs_cleanup(void)
391 {
392 	vfree(zisofs_zlib_workspace);
393 }
394