xref: /openbmc/linux/fs/iomap/direct-io.c (revision d6e2d652)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Red Hat, Inc.
4  * Copyright (c) 2016-2021 Christoph Hellwig.
5  */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/fscrypt.h>
10 #include <linux/pagemap.h>
11 #include <linux/iomap.h>
12 #include <linux/backing-dev.h>
13 #include <linux/uio.h>
14 #include <linux/task_io_accounting_ops.h>
15 #include "trace.h"
16 
17 #include "../internal.h"
18 
19 /*
20  * Private flags for iomap_dio, must not overlap with the public ones in
21  * iomap.h:
22  */
23 #define IOMAP_DIO_WRITE_FUA	(1 << 28)
24 #define IOMAP_DIO_NEED_SYNC	(1 << 29)
25 #define IOMAP_DIO_WRITE		(1 << 30)
26 #define IOMAP_DIO_DIRTY		(1 << 31)
27 
28 struct iomap_dio {
29 	struct kiocb		*iocb;
30 	const struct iomap_dio_ops *dops;
31 	loff_t			i_size;
32 	loff_t			size;
33 	atomic_t		ref;
34 	unsigned		flags;
35 	int			error;
36 	size_t			done_before;
37 	bool			wait_for_completion;
38 
39 	union {
40 		/* used during submission and for synchronous completion: */
41 		struct {
42 			struct iov_iter		*iter;
43 			struct task_struct	*waiter;
44 			struct bio		*poll_bio;
45 		} submit;
46 
47 		/* used for aio completion: */
48 		struct {
49 			struct work_struct	work;
50 		} aio;
51 	};
52 };
53 
54 static struct bio *iomap_dio_alloc_bio(const struct iomap_iter *iter,
55 		struct iomap_dio *dio, unsigned short nr_vecs, blk_opf_t opf)
56 {
57 	if (dio->dops && dio->dops->bio_set)
58 		return bio_alloc_bioset(iter->iomap.bdev, nr_vecs, opf,
59 					GFP_KERNEL, dio->dops->bio_set);
60 	return bio_alloc(iter->iomap.bdev, nr_vecs, opf, GFP_KERNEL);
61 }
62 
63 static void iomap_dio_submit_bio(const struct iomap_iter *iter,
64 		struct iomap_dio *dio, struct bio *bio, loff_t pos)
65 {
66 	atomic_inc(&dio->ref);
67 
68 	/* Sync dio can't be polled reliably */
69 	if ((dio->iocb->ki_flags & IOCB_HIPRI) && !is_sync_kiocb(dio->iocb)) {
70 		bio_set_polled(bio, dio->iocb);
71 		dio->submit.poll_bio = bio;
72 	}
73 
74 	if (dio->dops && dio->dops->submit_io)
75 		dio->dops->submit_io(iter, bio, pos);
76 	else
77 		submit_bio(bio);
78 }
79 
80 ssize_t iomap_dio_complete(struct iomap_dio *dio)
81 {
82 	const struct iomap_dio_ops *dops = dio->dops;
83 	struct kiocb *iocb = dio->iocb;
84 	loff_t offset = iocb->ki_pos;
85 	ssize_t ret = dio->error;
86 
87 	if (dops && dops->end_io)
88 		ret = dops->end_io(iocb, dio->size, ret, dio->flags);
89 
90 	if (likely(!ret)) {
91 		ret = dio->size;
92 		/* check for short read */
93 		if (offset + ret > dio->i_size &&
94 		    !(dio->flags & IOMAP_DIO_WRITE))
95 			ret = dio->i_size - offset;
96 	}
97 
98 	/*
99 	 * Try again to invalidate clean pages which might have been cached by
100 	 * non-direct readahead, or faulted in by get_user_pages() if the source
101 	 * of the write was an mmap'ed region of the file we're writing.  Either
102 	 * one is a pretty crazy thing to do, so we don't support it 100%.  If
103 	 * this invalidation fails, tough, the write still worked...
104 	 *
105 	 * And this page cache invalidation has to be after ->end_io(), as some
106 	 * filesystems convert unwritten extents to real allocations in
107 	 * ->end_io() when necessary, otherwise a racing buffer read would cache
108 	 * zeros from unwritten extents.
109 	 */
110 	if (!dio->error && dio->size && (dio->flags & IOMAP_DIO_WRITE))
111 		kiocb_invalidate_post_direct_write(iocb, dio->size);
112 
113 	inode_dio_end(file_inode(iocb->ki_filp));
114 
115 	if (ret > 0) {
116 		iocb->ki_pos += ret;
117 
118 		/*
119 		 * If this is a DSYNC write, make sure we push it to stable
120 		 * storage now that we've written data.
121 		 */
122 		if (dio->flags & IOMAP_DIO_NEED_SYNC)
123 			ret = generic_write_sync(iocb, ret);
124 		if (ret > 0)
125 			ret += dio->done_before;
126 	}
127 	trace_iomap_dio_complete(iocb, dio->error, ret);
128 	kfree(dio);
129 	return ret;
130 }
131 EXPORT_SYMBOL_GPL(iomap_dio_complete);
132 
133 static void iomap_dio_complete_work(struct work_struct *work)
134 {
135 	struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work);
136 	struct kiocb *iocb = dio->iocb;
137 
138 	iocb->ki_complete(iocb, iomap_dio_complete(dio));
139 }
140 
141 /*
142  * Set an error in the dio if none is set yet.  We have to use cmpxchg
143  * as the submission context and the completion context(s) can race to
144  * update the error.
145  */
146 static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret)
147 {
148 	cmpxchg(&dio->error, 0, ret);
149 }
150 
151 void iomap_dio_bio_end_io(struct bio *bio)
152 {
153 	struct iomap_dio *dio = bio->bi_private;
154 	bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY);
155 
156 	if (bio->bi_status)
157 		iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status));
158 
159 	if (atomic_dec_and_test(&dio->ref)) {
160 		if (dio->wait_for_completion) {
161 			struct task_struct *waiter = dio->submit.waiter;
162 			WRITE_ONCE(dio->submit.waiter, NULL);
163 			blk_wake_io_task(waiter);
164 		} else if (dio->flags & IOMAP_DIO_WRITE) {
165 			struct inode *inode = file_inode(dio->iocb->ki_filp);
166 
167 			WRITE_ONCE(dio->iocb->private, NULL);
168 			INIT_WORK(&dio->aio.work, iomap_dio_complete_work);
169 			queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work);
170 		} else {
171 			WRITE_ONCE(dio->iocb->private, NULL);
172 			iomap_dio_complete_work(&dio->aio.work);
173 		}
174 	}
175 
176 	if (should_dirty) {
177 		bio_check_pages_dirty(bio);
178 	} else {
179 		bio_release_pages(bio, false);
180 		bio_put(bio);
181 	}
182 }
183 EXPORT_SYMBOL_GPL(iomap_dio_bio_end_io);
184 
185 static void iomap_dio_zero(const struct iomap_iter *iter, struct iomap_dio *dio,
186 		loff_t pos, unsigned len)
187 {
188 	struct inode *inode = file_inode(dio->iocb->ki_filp);
189 	struct page *page = ZERO_PAGE(0);
190 	struct bio *bio;
191 
192 	bio = iomap_dio_alloc_bio(iter, dio, 1, REQ_OP_WRITE | REQ_SYNC | REQ_IDLE);
193 	fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits,
194 				  GFP_KERNEL);
195 	bio->bi_iter.bi_sector = iomap_sector(&iter->iomap, pos);
196 	bio->bi_private = dio;
197 	bio->bi_end_io = iomap_dio_bio_end_io;
198 
199 	__bio_add_page(bio, page, len, 0);
200 	iomap_dio_submit_bio(iter, dio, bio, pos);
201 }
202 
203 /*
204  * Figure out the bio's operation flags from the dio request, the
205  * mapping, and whether or not we want FUA.  Note that we can end up
206  * clearing the WRITE_FUA flag in the dio request.
207  */
208 static inline blk_opf_t iomap_dio_bio_opflags(struct iomap_dio *dio,
209 		const struct iomap *iomap, bool use_fua)
210 {
211 	blk_opf_t opflags = REQ_SYNC | REQ_IDLE;
212 
213 	if (!(dio->flags & IOMAP_DIO_WRITE))
214 		return REQ_OP_READ;
215 
216 	opflags |= REQ_OP_WRITE;
217 	if (use_fua)
218 		opflags |= REQ_FUA;
219 	else
220 		dio->flags &= ~IOMAP_DIO_WRITE_FUA;
221 
222 	return opflags;
223 }
224 
225 static loff_t iomap_dio_bio_iter(const struct iomap_iter *iter,
226 		struct iomap_dio *dio)
227 {
228 	const struct iomap *iomap = &iter->iomap;
229 	struct inode *inode = iter->inode;
230 	unsigned int fs_block_size = i_blocksize(inode), pad;
231 	loff_t length = iomap_length(iter);
232 	loff_t pos = iter->pos;
233 	blk_opf_t bio_opf;
234 	struct bio *bio;
235 	bool need_zeroout = false;
236 	bool use_fua = false;
237 	int nr_pages, ret = 0;
238 	size_t copied = 0;
239 	size_t orig_count;
240 
241 	if ((pos | length) & (bdev_logical_block_size(iomap->bdev) - 1) ||
242 	    !bdev_iter_is_aligned(iomap->bdev, dio->submit.iter))
243 		return -EINVAL;
244 
245 	if (iomap->type == IOMAP_UNWRITTEN) {
246 		dio->flags |= IOMAP_DIO_UNWRITTEN;
247 		need_zeroout = true;
248 	}
249 
250 	if (iomap->flags & IOMAP_F_SHARED)
251 		dio->flags |= IOMAP_DIO_COW;
252 
253 	if (iomap->flags & IOMAP_F_NEW) {
254 		need_zeroout = true;
255 	} else if (iomap->type == IOMAP_MAPPED) {
256 		/*
257 		 * Use a FUA write if we need datasync semantics, this is a pure
258 		 * data IO that doesn't require any metadata updates (including
259 		 * after IO completion such as unwritten extent conversion) and
260 		 * the underlying device supports FUA. This allows us to avoid
261 		 * cache flushes on IO completion.
262 		 */
263 		if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) &&
264 		    (dio->flags & IOMAP_DIO_WRITE_FUA) && bdev_fua(iomap->bdev))
265 			use_fua = true;
266 	}
267 
268 	/*
269 	 * Save the original count and trim the iter to just the extent we
270 	 * are operating on right now.  The iter will be re-expanded once
271 	 * we are done.
272 	 */
273 	orig_count = iov_iter_count(dio->submit.iter);
274 	iov_iter_truncate(dio->submit.iter, length);
275 
276 	if (!iov_iter_count(dio->submit.iter))
277 		goto out;
278 
279 	/*
280 	 * We can only poll for single bio I/Os.
281 	 */
282 	if (need_zeroout ||
283 	    ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode)))
284 		dio->iocb->ki_flags &= ~IOCB_HIPRI;
285 
286 	if (need_zeroout) {
287 		/* zero out from the start of the block to the write offset */
288 		pad = pos & (fs_block_size - 1);
289 		if (pad)
290 			iomap_dio_zero(iter, dio, pos - pad, pad);
291 	}
292 
293 	/*
294 	 * Set the operation flags early so that bio_iov_iter_get_pages
295 	 * can set up the page vector appropriately for a ZONE_APPEND
296 	 * operation.
297 	 */
298 	bio_opf = iomap_dio_bio_opflags(dio, iomap, use_fua);
299 
300 	nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, BIO_MAX_VECS);
301 	do {
302 		size_t n;
303 		if (dio->error) {
304 			iov_iter_revert(dio->submit.iter, copied);
305 			copied = ret = 0;
306 			goto out;
307 		}
308 
309 		bio = iomap_dio_alloc_bio(iter, dio, nr_pages, bio_opf);
310 		fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits,
311 					  GFP_KERNEL);
312 		bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
313 		bio->bi_ioprio = dio->iocb->ki_ioprio;
314 		bio->bi_private = dio;
315 		bio->bi_end_io = iomap_dio_bio_end_io;
316 
317 		ret = bio_iov_iter_get_pages(bio, dio->submit.iter);
318 		if (unlikely(ret)) {
319 			/*
320 			 * We have to stop part way through an IO. We must fall
321 			 * through to the sub-block tail zeroing here, otherwise
322 			 * this short IO may expose stale data in the tail of
323 			 * the block we haven't written data to.
324 			 */
325 			bio_put(bio);
326 			goto zero_tail;
327 		}
328 
329 		n = bio->bi_iter.bi_size;
330 		if (dio->flags & IOMAP_DIO_WRITE) {
331 			task_io_account_write(n);
332 		} else {
333 			if (dio->flags & IOMAP_DIO_DIRTY)
334 				bio_set_pages_dirty(bio);
335 		}
336 
337 		dio->size += n;
338 		copied += n;
339 
340 		nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter,
341 						 BIO_MAX_VECS);
342 		/*
343 		 * We can only poll for single bio I/Os.
344 		 */
345 		if (nr_pages)
346 			dio->iocb->ki_flags &= ~IOCB_HIPRI;
347 		iomap_dio_submit_bio(iter, dio, bio, pos);
348 		pos += n;
349 	} while (nr_pages);
350 
351 	/*
352 	 * We need to zeroout the tail of a sub-block write if the extent type
353 	 * requires zeroing or the write extends beyond EOF. If we don't zero
354 	 * the block tail in the latter case, we can expose stale data via mmap
355 	 * reads of the EOF block.
356 	 */
357 zero_tail:
358 	if (need_zeroout ||
359 	    ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) {
360 		/* zero out from the end of the write to the end of the block */
361 		pad = pos & (fs_block_size - 1);
362 		if (pad)
363 			iomap_dio_zero(iter, dio, pos, fs_block_size - pad);
364 	}
365 out:
366 	/* Undo iter limitation to current extent */
367 	iov_iter_reexpand(dio->submit.iter, orig_count - copied);
368 	if (copied)
369 		return copied;
370 	return ret;
371 }
372 
373 static loff_t iomap_dio_hole_iter(const struct iomap_iter *iter,
374 		struct iomap_dio *dio)
375 {
376 	loff_t length = iov_iter_zero(iomap_length(iter), dio->submit.iter);
377 
378 	dio->size += length;
379 	if (!length)
380 		return -EFAULT;
381 	return length;
382 }
383 
384 static loff_t iomap_dio_inline_iter(const struct iomap_iter *iomi,
385 		struct iomap_dio *dio)
386 {
387 	const struct iomap *iomap = &iomi->iomap;
388 	struct iov_iter *iter = dio->submit.iter;
389 	void *inline_data = iomap_inline_data(iomap, iomi->pos);
390 	loff_t length = iomap_length(iomi);
391 	loff_t pos = iomi->pos;
392 	size_t copied;
393 
394 	if (WARN_ON_ONCE(!iomap_inline_data_valid(iomap)))
395 		return -EIO;
396 
397 	if (dio->flags & IOMAP_DIO_WRITE) {
398 		loff_t size = iomi->inode->i_size;
399 
400 		if (pos > size)
401 			memset(iomap_inline_data(iomap, size), 0, pos - size);
402 		copied = copy_from_iter(inline_data, length, iter);
403 		if (copied) {
404 			if (pos + copied > size)
405 				i_size_write(iomi->inode, pos + copied);
406 			mark_inode_dirty(iomi->inode);
407 		}
408 	} else {
409 		copied = copy_to_iter(inline_data, length, iter);
410 	}
411 	dio->size += copied;
412 	if (!copied)
413 		return -EFAULT;
414 	return copied;
415 }
416 
417 static loff_t iomap_dio_iter(const struct iomap_iter *iter,
418 		struct iomap_dio *dio)
419 {
420 	switch (iter->iomap.type) {
421 	case IOMAP_HOLE:
422 		if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE))
423 			return -EIO;
424 		return iomap_dio_hole_iter(iter, dio);
425 	case IOMAP_UNWRITTEN:
426 		if (!(dio->flags & IOMAP_DIO_WRITE))
427 			return iomap_dio_hole_iter(iter, dio);
428 		return iomap_dio_bio_iter(iter, dio);
429 	case IOMAP_MAPPED:
430 		return iomap_dio_bio_iter(iter, dio);
431 	case IOMAP_INLINE:
432 		return iomap_dio_inline_iter(iter, dio);
433 	case IOMAP_DELALLOC:
434 		/*
435 		 * DIO is not serialised against mmap() access at all, and so
436 		 * if the page_mkwrite occurs between the writeback and the
437 		 * iomap_iter() call in the DIO path, then it will see the
438 		 * DELALLOC block that the page-mkwrite allocated.
439 		 */
440 		pr_warn_ratelimited("Direct I/O collision with buffered writes! File: %pD4 Comm: %.20s\n",
441 				    dio->iocb->ki_filp, current->comm);
442 		return -EIO;
443 	default:
444 		WARN_ON_ONCE(1);
445 		return -EIO;
446 	}
447 }
448 
449 /*
450  * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO
451  * is being issued as AIO or not.  This allows us to optimise pure data writes
452  * to use REQ_FUA rather than requiring generic_write_sync() to issue a
453  * REQ_FLUSH post write. This is slightly tricky because a single request here
454  * can be mapped into multiple disjoint IOs and only a subset of the IOs issued
455  * may be pure data writes. In that case, we still need to do a full data sync
456  * completion.
457  *
458  * When page faults are disabled and @dio_flags includes IOMAP_DIO_PARTIAL,
459  * __iomap_dio_rw can return a partial result if it encounters a non-resident
460  * page in @iter after preparing a transfer.  In that case, the non-resident
461  * pages can be faulted in and the request resumed with @done_before set to the
462  * number of bytes previously transferred.  The request will then complete with
463  * the correct total number of bytes transferred; this is essential for
464  * completing partial requests asynchronously.
465  *
466  * Returns -ENOTBLK In case of a page invalidation invalidation failure for
467  * writes.  The callers needs to fall back to buffered I/O in this case.
468  */
469 struct iomap_dio *
470 __iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
471 		const struct iomap_ops *ops, const struct iomap_dio_ops *dops,
472 		unsigned int dio_flags, void *private, size_t done_before)
473 {
474 	struct inode *inode = file_inode(iocb->ki_filp);
475 	struct iomap_iter iomi = {
476 		.inode		= inode,
477 		.pos		= iocb->ki_pos,
478 		.len		= iov_iter_count(iter),
479 		.flags		= IOMAP_DIRECT,
480 		.private	= private,
481 	};
482 	bool wait_for_completion =
483 		is_sync_kiocb(iocb) || (dio_flags & IOMAP_DIO_FORCE_WAIT);
484 	struct blk_plug plug;
485 	struct iomap_dio *dio;
486 	loff_t ret = 0;
487 
488 	trace_iomap_dio_rw_begin(iocb, iter, dio_flags, done_before);
489 
490 	if (!iomi.len)
491 		return NULL;
492 
493 	dio = kmalloc(sizeof(*dio), GFP_KERNEL);
494 	if (!dio)
495 		return ERR_PTR(-ENOMEM);
496 
497 	dio->iocb = iocb;
498 	atomic_set(&dio->ref, 1);
499 	dio->size = 0;
500 	dio->i_size = i_size_read(inode);
501 	dio->dops = dops;
502 	dio->error = 0;
503 	dio->flags = 0;
504 	dio->done_before = done_before;
505 
506 	dio->submit.iter = iter;
507 	dio->submit.waiter = current;
508 	dio->submit.poll_bio = NULL;
509 
510 	if (iocb->ki_flags & IOCB_NOWAIT)
511 		iomi.flags |= IOMAP_NOWAIT;
512 
513 	if (iov_iter_rw(iter) == READ) {
514 		if (iomi.pos >= dio->i_size)
515 			goto out_free_dio;
516 
517 		if (user_backed_iter(iter))
518 			dio->flags |= IOMAP_DIO_DIRTY;
519 
520 		ret = kiocb_write_and_wait(iocb, iomi.len);
521 		if (ret)
522 			goto out_free_dio;
523 	} else {
524 		iomi.flags |= IOMAP_WRITE;
525 		dio->flags |= IOMAP_DIO_WRITE;
526 
527 		if (dio_flags & IOMAP_DIO_OVERWRITE_ONLY) {
528 			ret = -EAGAIN;
529 			if (iomi.pos >= dio->i_size ||
530 			    iomi.pos + iomi.len > dio->i_size)
531 				goto out_free_dio;
532 			iomi.flags |= IOMAP_OVERWRITE_ONLY;
533 		}
534 
535 		/* for data sync or sync, we need sync completion processing */
536 		if (iocb_is_dsync(iocb)) {
537 			dio->flags |= IOMAP_DIO_NEED_SYNC;
538 
539 		       /*
540 			* For datasync only writes, we optimistically try
541 			* using FUA for this IO.  Any non-FUA write that
542 			* occurs will clear this flag, hence we know before
543 			* completion whether a cache flush is necessary.
544 			*/
545 			if (!(iocb->ki_flags & IOCB_SYNC))
546 				dio->flags |= IOMAP_DIO_WRITE_FUA;
547 		}
548 
549 		/*
550 		 * Try to invalidate cache pages for the range we are writing.
551 		 * If this invalidation fails, let the caller fall back to
552 		 * buffered I/O.
553 		 */
554 		ret = kiocb_invalidate_pages(iocb, iomi.len);
555 		if (ret) {
556 			if (ret != -EAGAIN) {
557 				trace_iomap_dio_invalidate_fail(inode, iomi.pos,
558 								iomi.len);
559 				ret = -ENOTBLK;
560 			}
561 			goto out_free_dio;
562 		}
563 
564 		if (!wait_for_completion && !inode->i_sb->s_dio_done_wq) {
565 			ret = sb_init_dio_done_wq(inode->i_sb);
566 			if (ret < 0)
567 				goto out_free_dio;
568 		}
569 	}
570 
571 	inode_dio_begin(inode);
572 
573 	blk_start_plug(&plug);
574 	while ((ret = iomap_iter(&iomi, ops)) > 0) {
575 		iomi.processed = iomap_dio_iter(&iomi, dio);
576 
577 		/*
578 		 * We can only poll for single bio I/Os.
579 		 */
580 		iocb->ki_flags &= ~IOCB_HIPRI;
581 	}
582 
583 	blk_finish_plug(&plug);
584 
585 	/*
586 	 * We only report that we've read data up to i_size.
587 	 * Revert iter to a state corresponding to that as some callers (such
588 	 * as the splice code) rely on it.
589 	 */
590 	if (iov_iter_rw(iter) == READ && iomi.pos >= dio->i_size)
591 		iov_iter_revert(iter, iomi.pos - dio->i_size);
592 
593 	if (ret == -EFAULT && dio->size && (dio_flags & IOMAP_DIO_PARTIAL)) {
594 		if (!(iocb->ki_flags & IOCB_NOWAIT))
595 			wait_for_completion = true;
596 		ret = 0;
597 	}
598 
599 	/* magic error code to fall back to buffered I/O */
600 	if (ret == -ENOTBLK) {
601 		wait_for_completion = true;
602 		ret = 0;
603 	}
604 	if (ret < 0)
605 		iomap_dio_set_error(dio, ret);
606 
607 	/*
608 	 * If all the writes we issued were FUA, we don't need to flush the
609 	 * cache on IO completion. Clear the sync flag for this case.
610 	 */
611 	if (dio->flags & IOMAP_DIO_WRITE_FUA)
612 		dio->flags &= ~IOMAP_DIO_NEED_SYNC;
613 
614 	WRITE_ONCE(iocb->private, dio->submit.poll_bio);
615 
616 	/*
617 	 * We are about to drop our additional submission reference, which
618 	 * might be the last reference to the dio.  There are three different
619 	 * ways we can progress here:
620 	 *
621 	 *  (a) If this is the last reference we will always complete and free
622 	 *	the dio ourselves.
623 	 *  (b) If this is not the last reference, and we serve an asynchronous
624 	 *	iocb, we must never touch the dio after the decrement, the
625 	 *	I/O completion handler will complete and free it.
626 	 *  (c) If this is not the last reference, but we serve a synchronous
627 	 *	iocb, the I/O completion handler will wake us up on the drop
628 	 *	of the final reference, and we will complete and free it here
629 	 *	after we got woken by the I/O completion handler.
630 	 */
631 	dio->wait_for_completion = wait_for_completion;
632 	if (!atomic_dec_and_test(&dio->ref)) {
633 		if (!wait_for_completion) {
634 			trace_iomap_dio_rw_queued(inode, iomi.pos, iomi.len);
635 			return ERR_PTR(-EIOCBQUEUED);
636 		}
637 
638 		for (;;) {
639 			set_current_state(TASK_UNINTERRUPTIBLE);
640 			if (!READ_ONCE(dio->submit.waiter))
641 				break;
642 
643 			blk_io_schedule();
644 		}
645 		__set_current_state(TASK_RUNNING);
646 	}
647 
648 	return dio;
649 
650 out_free_dio:
651 	kfree(dio);
652 	if (ret)
653 		return ERR_PTR(ret);
654 	return NULL;
655 }
656 EXPORT_SYMBOL_GPL(__iomap_dio_rw);
657 
658 ssize_t
659 iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
660 		const struct iomap_ops *ops, const struct iomap_dio_ops *dops,
661 		unsigned int dio_flags, void *private, size_t done_before)
662 {
663 	struct iomap_dio *dio;
664 
665 	dio = __iomap_dio_rw(iocb, iter, ops, dops, dio_flags, private,
666 			     done_before);
667 	if (IS_ERR_OR_NULL(dio))
668 		return PTR_ERR_OR_ZERO(dio);
669 	return iomap_dio_complete(dio);
670 }
671 EXPORT_SYMBOL_GPL(iomap_dio_rw);
672