xref: /openbmc/linux/fs/iomap/direct-io.c (revision c6fddb28)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Red Hat, Inc.
4  * Copyright (c) 2016-2018 Christoph Hellwig.
5  */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/iomap.h>
10 #include <linux/backing-dev.h>
11 #include <linux/uio.h>
12 #include <linux/task_io_accounting_ops.h>
13 
14 #include "../internal.h"
15 
16 /*
17  * Private flags for iomap_dio, must not overlap with the public ones in
18  * iomap.h:
19  */
20 #define IOMAP_DIO_WRITE_FUA	(1 << 28)
21 #define IOMAP_DIO_NEED_SYNC	(1 << 29)
22 #define IOMAP_DIO_WRITE		(1 << 30)
23 #define IOMAP_DIO_DIRTY		(1 << 31)
24 
25 struct iomap_dio {
26 	struct kiocb		*iocb;
27 	const struct iomap_dio_ops *dops;
28 	loff_t			i_size;
29 	loff_t			size;
30 	atomic_t		ref;
31 	unsigned		flags;
32 	int			error;
33 	bool			wait_for_completion;
34 
35 	union {
36 		/* used during submission and for synchronous completion: */
37 		struct {
38 			struct iov_iter		*iter;
39 			struct task_struct	*waiter;
40 			struct request_queue	*last_queue;
41 			blk_qc_t		cookie;
42 		} submit;
43 
44 		/* used for aio completion: */
45 		struct {
46 			struct work_struct	work;
47 		} aio;
48 	};
49 };
50 
51 int iomap_dio_iopoll(struct kiocb *kiocb, bool spin)
52 {
53 	struct request_queue *q = READ_ONCE(kiocb->private);
54 
55 	if (!q)
56 		return 0;
57 	return blk_poll(q, READ_ONCE(kiocb->ki_cookie), spin);
58 }
59 EXPORT_SYMBOL_GPL(iomap_dio_iopoll);
60 
61 static void iomap_dio_submit_bio(struct iomap_dio *dio, struct iomap *iomap,
62 		struct bio *bio)
63 {
64 	atomic_inc(&dio->ref);
65 
66 	if (dio->iocb->ki_flags & IOCB_HIPRI)
67 		bio_set_polled(bio, dio->iocb);
68 
69 	dio->submit.last_queue = bdev_get_queue(iomap->bdev);
70 	dio->submit.cookie = submit_bio(bio);
71 }
72 
73 static ssize_t iomap_dio_complete(struct iomap_dio *dio)
74 {
75 	const struct iomap_dio_ops *dops = dio->dops;
76 	struct kiocb *iocb = dio->iocb;
77 	struct inode *inode = file_inode(iocb->ki_filp);
78 	loff_t offset = iocb->ki_pos;
79 	ssize_t ret = dio->error;
80 
81 	if (dops && dops->end_io)
82 		ret = dops->end_io(iocb, dio->size, ret, dio->flags);
83 
84 	if (likely(!ret)) {
85 		ret = dio->size;
86 		/* check for short read */
87 		if (offset + ret > dio->i_size &&
88 		    !(dio->flags & IOMAP_DIO_WRITE))
89 			ret = dio->i_size - offset;
90 		iocb->ki_pos += ret;
91 	}
92 
93 	/*
94 	 * Try again to invalidate clean pages which might have been cached by
95 	 * non-direct readahead, or faulted in by get_user_pages() if the source
96 	 * of the write was an mmap'ed region of the file we're writing.  Either
97 	 * one is a pretty crazy thing to do, so we don't support it 100%.  If
98 	 * this invalidation fails, tough, the write still worked...
99 	 *
100 	 * And this page cache invalidation has to be after ->end_io(), as some
101 	 * filesystems convert unwritten extents to real allocations in
102 	 * ->end_io() when necessary, otherwise a racing buffer read would cache
103 	 * zeros from unwritten extents.
104 	 */
105 	if (!dio->error &&
106 	    (dio->flags & IOMAP_DIO_WRITE) && inode->i_mapping->nrpages) {
107 		int err;
108 		err = invalidate_inode_pages2_range(inode->i_mapping,
109 				offset >> PAGE_SHIFT,
110 				(offset + dio->size - 1) >> PAGE_SHIFT);
111 		if (err)
112 			dio_warn_stale_pagecache(iocb->ki_filp);
113 	}
114 
115 	/*
116 	 * If this is a DSYNC write, make sure we push it to stable storage now
117 	 * that we've written data.
118 	 */
119 	if (ret > 0 && (dio->flags & IOMAP_DIO_NEED_SYNC))
120 		ret = generic_write_sync(iocb, ret);
121 
122 	inode_dio_end(file_inode(iocb->ki_filp));
123 	kfree(dio);
124 
125 	return ret;
126 }
127 
128 static void iomap_dio_complete_work(struct work_struct *work)
129 {
130 	struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work);
131 	struct kiocb *iocb = dio->iocb;
132 
133 	iocb->ki_complete(iocb, iomap_dio_complete(dio), 0);
134 }
135 
136 /*
137  * Set an error in the dio if none is set yet.  We have to use cmpxchg
138  * as the submission context and the completion context(s) can race to
139  * update the error.
140  */
141 static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret)
142 {
143 	cmpxchg(&dio->error, 0, ret);
144 }
145 
146 static void iomap_dio_bio_end_io(struct bio *bio)
147 {
148 	struct iomap_dio *dio = bio->bi_private;
149 	bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY);
150 
151 	if (bio->bi_status)
152 		iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status));
153 
154 	if (atomic_dec_and_test(&dio->ref)) {
155 		if (dio->wait_for_completion) {
156 			struct task_struct *waiter = dio->submit.waiter;
157 			WRITE_ONCE(dio->submit.waiter, NULL);
158 			blk_wake_io_task(waiter);
159 		} else if (dio->flags & IOMAP_DIO_WRITE) {
160 			struct inode *inode = file_inode(dio->iocb->ki_filp);
161 
162 			INIT_WORK(&dio->aio.work, iomap_dio_complete_work);
163 			queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work);
164 		} else {
165 			iomap_dio_complete_work(&dio->aio.work);
166 		}
167 	}
168 
169 	if (should_dirty) {
170 		bio_check_pages_dirty(bio);
171 	} else {
172 		bio_release_pages(bio, false);
173 		bio_put(bio);
174 	}
175 }
176 
177 static void
178 iomap_dio_zero(struct iomap_dio *dio, struct iomap *iomap, loff_t pos,
179 		unsigned len)
180 {
181 	struct page *page = ZERO_PAGE(0);
182 	int flags = REQ_SYNC | REQ_IDLE;
183 	struct bio *bio;
184 
185 	bio = bio_alloc(GFP_KERNEL, 1);
186 	bio_set_dev(bio, iomap->bdev);
187 	bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
188 	bio->bi_private = dio;
189 	bio->bi_end_io = iomap_dio_bio_end_io;
190 
191 	get_page(page);
192 	__bio_add_page(bio, page, len, 0);
193 	bio_set_op_attrs(bio, REQ_OP_WRITE, flags);
194 	iomap_dio_submit_bio(dio, iomap, bio);
195 }
196 
197 static loff_t
198 iomap_dio_bio_actor(struct inode *inode, loff_t pos, loff_t length,
199 		struct iomap_dio *dio, struct iomap *iomap)
200 {
201 	unsigned int blkbits = blksize_bits(bdev_logical_block_size(iomap->bdev));
202 	unsigned int fs_block_size = i_blocksize(inode), pad;
203 	unsigned int align = iov_iter_alignment(dio->submit.iter);
204 	struct bio *bio;
205 	bool need_zeroout = false;
206 	bool use_fua = false;
207 	int nr_pages, ret = 0;
208 	size_t copied = 0;
209 	size_t orig_count;
210 
211 	if ((pos | length | align) & ((1 << blkbits) - 1))
212 		return -EINVAL;
213 
214 	if (iomap->type == IOMAP_UNWRITTEN) {
215 		dio->flags |= IOMAP_DIO_UNWRITTEN;
216 		need_zeroout = true;
217 	}
218 
219 	if (iomap->flags & IOMAP_F_SHARED)
220 		dio->flags |= IOMAP_DIO_COW;
221 
222 	if (iomap->flags & IOMAP_F_NEW) {
223 		need_zeroout = true;
224 	} else if (iomap->type == IOMAP_MAPPED) {
225 		/*
226 		 * Use a FUA write if we need datasync semantics, this is a pure
227 		 * data IO that doesn't require any metadata updates (including
228 		 * after IO completion such as unwritten extent conversion) and
229 		 * the underlying device supports FUA. This allows us to avoid
230 		 * cache flushes on IO completion.
231 		 */
232 		if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) &&
233 		    (dio->flags & IOMAP_DIO_WRITE_FUA) &&
234 		    blk_queue_fua(bdev_get_queue(iomap->bdev)))
235 			use_fua = true;
236 	}
237 
238 	/*
239 	 * Save the original count and trim the iter to just the extent we
240 	 * are operating on right now.  The iter will be re-expanded once
241 	 * we are done.
242 	 */
243 	orig_count = iov_iter_count(dio->submit.iter);
244 	iov_iter_truncate(dio->submit.iter, length);
245 
246 	nr_pages = iov_iter_npages(dio->submit.iter, BIO_MAX_PAGES);
247 	if (nr_pages <= 0) {
248 		ret = nr_pages;
249 		goto out;
250 	}
251 
252 	if (need_zeroout) {
253 		/* zero out from the start of the block to the write offset */
254 		pad = pos & (fs_block_size - 1);
255 		if (pad)
256 			iomap_dio_zero(dio, iomap, pos - pad, pad);
257 	}
258 
259 	do {
260 		size_t n;
261 		if (dio->error) {
262 			iov_iter_revert(dio->submit.iter, copied);
263 			copied = ret = 0;
264 			goto out;
265 		}
266 
267 		bio = bio_alloc(GFP_KERNEL, nr_pages);
268 		bio_set_dev(bio, iomap->bdev);
269 		bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
270 		bio->bi_write_hint = dio->iocb->ki_hint;
271 		bio->bi_ioprio = dio->iocb->ki_ioprio;
272 		bio->bi_private = dio;
273 		bio->bi_end_io = iomap_dio_bio_end_io;
274 
275 		ret = bio_iov_iter_get_pages(bio, dio->submit.iter);
276 		if (unlikely(ret)) {
277 			/*
278 			 * We have to stop part way through an IO. We must fall
279 			 * through to the sub-block tail zeroing here, otherwise
280 			 * this short IO may expose stale data in the tail of
281 			 * the block we haven't written data to.
282 			 */
283 			bio_put(bio);
284 			goto zero_tail;
285 		}
286 
287 		n = bio->bi_iter.bi_size;
288 		if (dio->flags & IOMAP_DIO_WRITE) {
289 			bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
290 			if (use_fua)
291 				bio->bi_opf |= REQ_FUA;
292 			else
293 				dio->flags &= ~IOMAP_DIO_WRITE_FUA;
294 			task_io_account_write(n);
295 		} else {
296 			bio->bi_opf = REQ_OP_READ;
297 			if (dio->flags & IOMAP_DIO_DIRTY)
298 				bio_set_pages_dirty(bio);
299 		}
300 
301 		dio->size += n;
302 		pos += n;
303 		copied += n;
304 
305 		nr_pages = iov_iter_npages(dio->submit.iter, BIO_MAX_PAGES);
306 		iomap_dio_submit_bio(dio, iomap, bio);
307 	} while (nr_pages);
308 
309 	/*
310 	 * We need to zeroout the tail of a sub-block write if the extent type
311 	 * requires zeroing or the write extends beyond EOF. If we don't zero
312 	 * the block tail in the latter case, we can expose stale data via mmap
313 	 * reads of the EOF block.
314 	 */
315 zero_tail:
316 	if (need_zeroout ||
317 	    ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) {
318 		/* zero out from the end of the write to the end of the block */
319 		pad = pos & (fs_block_size - 1);
320 		if (pad)
321 			iomap_dio_zero(dio, iomap, pos, fs_block_size - pad);
322 	}
323 out:
324 	/* Undo iter limitation to current extent */
325 	iov_iter_reexpand(dio->submit.iter, orig_count - copied);
326 	if (copied)
327 		return copied;
328 	return ret;
329 }
330 
331 static loff_t
332 iomap_dio_hole_actor(loff_t length, struct iomap_dio *dio)
333 {
334 	length = iov_iter_zero(length, dio->submit.iter);
335 	dio->size += length;
336 	return length;
337 }
338 
339 static loff_t
340 iomap_dio_inline_actor(struct inode *inode, loff_t pos, loff_t length,
341 		struct iomap_dio *dio, struct iomap *iomap)
342 {
343 	struct iov_iter *iter = dio->submit.iter;
344 	size_t copied;
345 
346 	BUG_ON(pos + length > PAGE_SIZE - offset_in_page(iomap->inline_data));
347 
348 	if (dio->flags & IOMAP_DIO_WRITE) {
349 		loff_t size = inode->i_size;
350 
351 		if (pos > size)
352 			memset(iomap->inline_data + size, 0, pos - size);
353 		copied = copy_from_iter(iomap->inline_data + pos, length, iter);
354 		if (copied) {
355 			if (pos + copied > size)
356 				i_size_write(inode, pos + copied);
357 			mark_inode_dirty(inode);
358 		}
359 	} else {
360 		copied = copy_to_iter(iomap->inline_data + pos, length, iter);
361 	}
362 	dio->size += copied;
363 	return copied;
364 }
365 
366 static loff_t
367 iomap_dio_actor(struct inode *inode, loff_t pos, loff_t length,
368 		void *data, struct iomap *iomap, struct iomap *srcmap)
369 {
370 	struct iomap_dio *dio = data;
371 
372 	switch (iomap->type) {
373 	case IOMAP_HOLE:
374 		if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE))
375 			return -EIO;
376 		return iomap_dio_hole_actor(length, dio);
377 	case IOMAP_UNWRITTEN:
378 		if (!(dio->flags & IOMAP_DIO_WRITE))
379 			return iomap_dio_hole_actor(length, dio);
380 		return iomap_dio_bio_actor(inode, pos, length, dio, iomap);
381 	case IOMAP_MAPPED:
382 		return iomap_dio_bio_actor(inode, pos, length, dio, iomap);
383 	case IOMAP_INLINE:
384 		return iomap_dio_inline_actor(inode, pos, length, dio, iomap);
385 	default:
386 		WARN_ON_ONCE(1);
387 		return -EIO;
388 	}
389 }
390 
391 /*
392  * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO
393  * is being issued as AIO or not.  This allows us to optimise pure data writes
394  * to use REQ_FUA rather than requiring generic_write_sync() to issue a
395  * REQ_FLUSH post write. This is slightly tricky because a single request here
396  * can be mapped into multiple disjoint IOs and only a subset of the IOs issued
397  * may be pure data writes. In that case, we still need to do a full data sync
398  * completion.
399  */
400 ssize_t
401 iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
402 		const struct iomap_ops *ops, const struct iomap_dio_ops *dops,
403 		bool wait_for_completion)
404 {
405 	struct address_space *mapping = iocb->ki_filp->f_mapping;
406 	struct inode *inode = file_inode(iocb->ki_filp);
407 	size_t count = iov_iter_count(iter);
408 	loff_t pos = iocb->ki_pos;
409 	loff_t end = iocb->ki_pos + count - 1, ret = 0;
410 	unsigned int flags = IOMAP_DIRECT;
411 	struct blk_plug plug;
412 	struct iomap_dio *dio;
413 
414 	lockdep_assert_held(&inode->i_rwsem);
415 
416 	if (!count)
417 		return 0;
418 
419 	if (WARN_ON(is_sync_kiocb(iocb) && !wait_for_completion))
420 		return -EIO;
421 
422 	dio = kmalloc(sizeof(*dio), GFP_KERNEL);
423 	if (!dio)
424 		return -ENOMEM;
425 
426 	dio->iocb = iocb;
427 	atomic_set(&dio->ref, 1);
428 	dio->size = 0;
429 	dio->i_size = i_size_read(inode);
430 	dio->dops = dops;
431 	dio->error = 0;
432 	dio->flags = 0;
433 
434 	dio->submit.iter = iter;
435 	dio->submit.waiter = current;
436 	dio->submit.cookie = BLK_QC_T_NONE;
437 	dio->submit.last_queue = NULL;
438 
439 	if (iov_iter_rw(iter) == READ) {
440 		if (pos >= dio->i_size)
441 			goto out_free_dio;
442 
443 		if (iter_is_iovec(iter))
444 			dio->flags |= IOMAP_DIO_DIRTY;
445 	} else {
446 		flags |= IOMAP_WRITE;
447 		dio->flags |= IOMAP_DIO_WRITE;
448 
449 		/* for data sync or sync, we need sync completion processing */
450 		if (iocb->ki_flags & IOCB_DSYNC)
451 			dio->flags |= IOMAP_DIO_NEED_SYNC;
452 
453 		/*
454 		 * For datasync only writes, we optimistically try using FUA for
455 		 * this IO.  Any non-FUA write that occurs will clear this flag,
456 		 * hence we know before completion whether a cache flush is
457 		 * necessary.
458 		 */
459 		if ((iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC)) == IOCB_DSYNC)
460 			dio->flags |= IOMAP_DIO_WRITE_FUA;
461 	}
462 
463 	if (iocb->ki_flags & IOCB_NOWAIT) {
464 		if (filemap_range_has_page(mapping, pos, end)) {
465 			ret = -EAGAIN;
466 			goto out_free_dio;
467 		}
468 		flags |= IOMAP_NOWAIT;
469 	}
470 
471 	ret = filemap_write_and_wait_range(mapping, pos, end);
472 	if (ret)
473 		goto out_free_dio;
474 
475 	/*
476 	 * Try to invalidate cache pages for the range we're direct
477 	 * writing.  If this invalidation fails, tough, the write will
478 	 * still work, but racing two incompatible write paths is a
479 	 * pretty crazy thing to do, so we don't support it 100%.
480 	 */
481 	ret = invalidate_inode_pages2_range(mapping,
482 			pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
483 	if (ret)
484 		dio_warn_stale_pagecache(iocb->ki_filp);
485 	ret = 0;
486 
487 	if (iov_iter_rw(iter) == WRITE && !wait_for_completion &&
488 	    !inode->i_sb->s_dio_done_wq) {
489 		ret = sb_init_dio_done_wq(inode->i_sb);
490 		if (ret < 0)
491 			goto out_free_dio;
492 	}
493 
494 	inode_dio_begin(inode);
495 
496 	blk_start_plug(&plug);
497 	do {
498 		ret = iomap_apply(inode, pos, count, flags, ops, dio,
499 				iomap_dio_actor);
500 		if (ret <= 0) {
501 			/* magic error code to fall back to buffered I/O */
502 			if (ret == -ENOTBLK) {
503 				wait_for_completion = true;
504 				ret = 0;
505 			}
506 			break;
507 		}
508 		pos += ret;
509 
510 		if (iov_iter_rw(iter) == READ && pos >= dio->i_size) {
511 			/*
512 			 * We only report that we've read data up to i_size.
513 			 * Revert iter to a state corresponding to that as
514 			 * some callers (such as splice code) rely on it.
515 			 */
516 			iov_iter_revert(iter, pos - dio->i_size);
517 			break;
518 		}
519 	} while ((count = iov_iter_count(iter)) > 0);
520 	blk_finish_plug(&plug);
521 
522 	if (ret < 0)
523 		iomap_dio_set_error(dio, ret);
524 
525 	/*
526 	 * If all the writes we issued were FUA, we don't need to flush the
527 	 * cache on IO completion. Clear the sync flag for this case.
528 	 */
529 	if (dio->flags & IOMAP_DIO_WRITE_FUA)
530 		dio->flags &= ~IOMAP_DIO_NEED_SYNC;
531 
532 	WRITE_ONCE(iocb->ki_cookie, dio->submit.cookie);
533 	WRITE_ONCE(iocb->private, dio->submit.last_queue);
534 
535 	/*
536 	 * We are about to drop our additional submission reference, which
537 	 * might be the last reference to the dio.  There are three different
538 	 * ways we can progress here:
539 	 *
540 	 *  (a) If this is the last reference we will always complete and free
541 	 *	the dio ourselves.
542 	 *  (b) If this is not the last reference, and we serve an asynchronous
543 	 *	iocb, we must never touch the dio after the decrement, the
544 	 *	I/O completion handler will complete and free it.
545 	 *  (c) If this is not the last reference, but we serve a synchronous
546 	 *	iocb, the I/O completion handler will wake us up on the drop
547 	 *	of the final reference, and we will complete and free it here
548 	 *	after we got woken by the I/O completion handler.
549 	 */
550 	dio->wait_for_completion = wait_for_completion;
551 	if (!atomic_dec_and_test(&dio->ref)) {
552 		if (!wait_for_completion)
553 			return -EIOCBQUEUED;
554 
555 		for (;;) {
556 			set_current_state(TASK_UNINTERRUPTIBLE);
557 			if (!READ_ONCE(dio->submit.waiter))
558 				break;
559 
560 			if (!(iocb->ki_flags & IOCB_HIPRI) ||
561 			    !dio->submit.last_queue ||
562 			    !blk_poll(dio->submit.last_queue,
563 					 dio->submit.cookie, true))
564 				io_schedule();
565 		}
566 		__set_current_state(TASK_RUNNING);
567 	}
568 
569 	return iomap_dio_complete(dio);
570 
571 out_free_dio:
572 	kfree(dio);
573 	return ret;
574 }
575 EXPORT_SYMBOL_GPL(iomap_dio_rw);
576