xref: /openbmc/linux/fs/iomap/direct-io.c (revision c699ce1a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Red Hat, Inc.
4  * Copyright (c) 2016-2021 Christoph Hellwig.
5  */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/fscrypt.h>
10 #include <linux/pagemap.h>
11 #include <linux/iomap.h>
12 #include <linux/backing-dev.h>
13 #include <linux/uio.h>
14 #include <linux/task_io_accounting_ops.h>
15 #include "trace.h"
16 
17 #include "../internal.h"
18 
19 /*
20  * Private flags for iomap_dio, must not overlap with the public ones in
21  * iomap.h:
22  */
23 #define IOMAP_DIO_WRITE_FUA	(1 << 28)
24 #define IOMAP_DIO_NEED_SYNC	(1 << 29)
25 #define IOMAP_DIO_WRITE		(1 << 30)
26 #define IOMAP_DIO_DIRTY		(1 << 31)
27 
28 struct iomap_dio {
29 	struct kiocb		*iocb;
30 	const struct iomap_dio_ops *dops;
31 	loff_t			i_size;
32 	loff_t			size;
33 	atomic_t		ref;
34 	unsigned		flags;
35 	int			error;
36 	size_t			done_before;
37 	bool			wait_for_completion;
38 
39 	union {
40 		/* used during submission and for synchronous completion: */
41 		struct {
42 			struct iov_iter		*iter;
43 			struct task_struct	*waiter;
44 			struct bio		*poll_bio;
45 		} submit;
46 
47 		/* used for aio completion: */
48 		struct {
49 			struct work_struct	work;
50 		} aio;
51 	};
52 };
53 
54 static struct bio *iomap_dio_alloc_bio(const struct iomap_iter *iter,
55 		struct iomap_dio *dio, unsigned short nr_vecs, blk_opf_t opf)
56 {
57 	if (dio->dops && dio->dops->bio_set)
58 		return bio_alloc_bioset(iter->iomap.bdev, nr_vecs, opf,
59 					GFP_KERNEL, dio->dops->bio_set);
60 	return bio_alloc(iter->iomap.bdev, nr_vecs, opf, GFP_KERNEL);
61 }
62 
63 static void iomap_dio_submit_bio(const struct iomap_iter *iter,
64 		struct iomap_dio *dio, struct bio *bio, loff_t pos)
65 {
66 	atomic_inc(&dio->ref);
67 
68 	/* Sync dio can't be polled reliably */
69 	if ((dio->iocb->ki_flags & IOCB_HIPRI) && !is_sync_kiocb(dio->iocb)) {
70 		bio_set_polled(bio, dio->iocb);
71 		dio->submit.poll_bio = bio;
72 	}
73 
74 	if (dio->dops && dio->dops->submit_io)
75 		dio->dops->submit_io(iter, bio, pos);
76 	else
77 		submit_bio(bio);
78 }
79 
80 ssize_t iomap_dio_complete(struct iomap_dio *dio)
81 {
82 	const struct iomap_dio_ops *dops = dio->dops;
83 	struct kiocb *iocb = dio->iocb;
84 	struct inode *inode = file_inode(iocb->ki_filp);
85 	loff_t offset = iocb->ki_pos;
86 	ssize_t ret = dio->error;
87 
88 	if (dops && dops->end_io)
89 		ret = dops->end_io(iocb, dio->size, ret, dio->flags);
90 
91 	if (likely(!ret)) {
92 		ret = dio->size;
93 		/* check for short read */
94 		if (offset + ret > dio->i_size &&
95 		    !(dio->flags & IOMAP_DIO_WRITE))
96 			ret = dio->i_size - offset;
97 		iocb->ki_pos += ret;
98 	}
99 
100 	/*
101 	 * Try again to invalidate clean pages which might have been cached by
102 	 * non-direct readahead, or faulted in by get_user_pages() if the source
103 	 * of the write was an mmap'ed region of the file we're writing.  Either
104 	 * one is a pretty crazy thing to do, so we don't support it 100%.  If
105 	 * this invalidation fails, tough, the write still worked...
106 	 *
107 	 * And this page cache invalidation has to be after ->end_io(), as some
108 	 * filesystems convert unwritten extents to real allocations in
109 	 * ->end_io() when necessary, otherwise a racing buffer read would cache
110 	 * zeros from unwritten extents.
111 	 */
112 	if (!dio->error && dio->size &&
113 	    (dio->flags & IOMAP_DIO_WRITE) && inode->i_mapping->nrpages) {
114 		int err;
115 		err = invalidate_inode_pages2_range(inode->i_mapping,
116 				offset >> PAGE_SHIFT,
117 				(offset + dio->size - 1) >> PAGE_SHIFT);
118 		if (err)
119 			dio_warn_stale_pagecache(iocb->ki_filp);
120 	}
121 
122 	inode_dio_end(file_inode(iocb->ki_filp));
123 	/*
124 	 * If this is a DSYNC write, make sure we push it to stable storage now
125 	 * that we've written data.
126 	 */
127 	if (ret > 0 && (dio->flags & IOMAP_DIO_NEED_SYNC))
128 		ret = generic_write_sync(iocb, ret);
129 
130 	if (ret > 0)
131 		ret += dio->done_before;
132 
133 	kfree(dio);
134 
135 	return ret;
136 }
137 EXPORT_SYMBOL_GPL(iomap_dio_complete);
138 
139 static void iomap_dio_complete_work(struct work_struct *work)
140 {
141 	struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work);
142 	struct kiocb *iocb = dio->iocb;
143 
144 	iocb->ki_complete(iocb, iomap_dio_complete(dio));
145 }
146 
147 /*
148  * Set an error in the dio if none is set yet.  We have to use cmpxchg
149  * as the submission context and the completion context(s) can race to
150  * update the error.
151  */
152 static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret)
153 {
154 	cmpxchg(&dio->error, 0, ret);
155 }
156 
157 void iomap_dio_bio_end_io(struct bio *bio)
158 {
159 	struct iomap_dio *dio = bio->bi_private;
160 	bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY);
161 
162 	if (bio->bi_status)
163 		iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status));
164 
165 	if (atomic_dec_and_test(&dio->ref)) {
166 		if (dio->wait_for_completion) {
167 			struct task_struct *waiter = dio->submit.waiter;
168 			WRITE_ONCE(dio->submit.waiter, NULL);
169 			blk_wake_io_task(waiter);
170 		} else if (dio->flags & IOMAP_DIO_WRITE) {
171 			struct inode *inode = file_inode(dio->iocb->ki_filp);
172 
173 			WRITE_ONCE(dio->iocb->private, NULL);
174 			INIT_WORK(&dio->aio.work, iomap_dio_complete_work);
175 			queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work);
176 		} else {
177 			WRITE_ONCE(dio->iocb->private, NULL);
178 			iomap_dio_complete_work(&dio->aio.work);
179 		}
180 	}
181 
182 	if (should_dirty) {
183 		bio_check_pages_dirty(bio);
184 	} else {
185 		bio_release_pages(bio, false);
186 		bio_put(bio);
187 	}
188 }
189 EXPORT_SYMBOL_GPL(iomap_dio_bio_end_io);
190 
191 static void iomap_dio_zero(const struct iomap_iter *iter, struct iomap_dio *dio,
192 		loff_t pos, unsigned len)
193 {
194 	struct inode *inode = file_inode(dio->iocb->ki_filp);
195 	struct page *page = ZERO_PAGE(0);
196 	struct bio *bio;
197 
198 	bio = iomap_dio_alloc_bio(iter, dio, 1, REQ_OP_WRITE | REQ_SYNC | REQ_IDLE);
199 	fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits,
200 				  GFP_KERNEL);
201 	bio->bi_iter.bi_sector = iomap_sector(&iter->iomap, pos);
202 	bio->bi_private = dio;
203 	bio->bi_end_io = iomap_dio_bio_end_io;
204 
205 	get_page(page);
206 	__bio_add_page(bio, page, len, 0);
207 	iomap_dio_submit_bio(iter, dio, bio, pos);
208 }
209 
210 /*
211  * Figure out the bio's operation flags from the dio request, the
212  * mapping, and whether or not we want FUA.  Note that we can end up
213  * clearing the WRITE_FUA flag in the dio request.
214  */
215 static inline blk_opf_t iomap_dio_bio_opflags(struct iomap_dio *dio,
216 		const struct iomap *iomap, bool use_fua)
217 {
218 	blk_opf_t opflags = REQ_SYNC | REQ_IDLE;
219 
220 	if (!(dio->flags & IOMAP_DIO_WRITE)) {
221 		WARN_ON_ONCE(iomap->flags & IOMAP_F_ZONE_APPEND);
222 		return REQ_OP_READ;
223 	}
224 
225 	if (iomap->flags & IOMAP_F_ZONE_APPEND)
226 		opflags |= REQ_OP_ZONE_APPEND;
227 	else
228 		opflags |= REQ_OP_WRITE;
229 
230 	if (use_fua)
231 		opflags |= REQ_FUA;
232 	else
233 		dio->flags &= ~IOMAP_DIO_WRITE_FUA;
234 
235 	return opflags;
236 }
237 
238 static loff_t iomap_dio_bio_iter(const struct iomap_iter *iter,
239 		struct iomap_dio *dio)
240 {
241 	const struct iomap *iomap = &iter->iomap;
242 	struct inode *inode = iter->inode;
243 	unsigned int fs_block_size = i_blocksize(inode), pad;
244 	loff_t length = iomap_length(iter);
245 	loff_t pos = iter->pos;
246 	blk_opf_t bio_opf;
247 	struct bio *bio;
248 	bool need_zeroout = false;
249 	bool use_fua = false;
250 	int nr_pages, ret = 0;
251 	size_t copied = 0;
252 	size_t orig_count;
253 
254 	if ((pos | length) & (bdev_logical_block_size(iomap->bdev) - 1) ||
255 	    !bdev_iter_is_aligned(iomap->bdev, dio->submit.iter))
256 		return -EINVAL;
257 
258 	if (iomap->type == IOMAP_UNWRITTEN) {
259 		dio->flags |= IOMAP_DIO_UNWRITTEN;
260 		need_zeroout = true;
261 	}
262 
263 	if (iomap->flags & IOMAP_F_SHARED)
264 		dio->flags |= IOMAP_DIO_COW;
265 
266 	if (iomap->flags & IOMAP_F_NEW) {
267 		need_zeroout = true;
268 	} else if (iomap->type == IOMAP_MAPPED) {
269 		/*
270 		 * Use a FUA write if we need datasync semantics, this is a pure
271 		 * data IO that doesn't require any metadata updates (including
272 		 * after IO completion such as unwritten extent conversion) and
273 		 * the underlying device supports FUA. This allows us to avoid
274 		 * cache flushes on IO completion.
275 		 */
276 		if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) &&
277 		    (dio->flags & IOMAP_DIO_WRITE_FUA) && bdev_fua(iomap->bdev))
278 			use_fua = true;
279 	}
280 
281 	/*
282 	 * Save the original count and trim the iter to just the extent we
283 	 * are operating on right now.  The iter will be re-expanded once
284 	 * we are done.
285 	 */
286 	orig_count = iov_iter_count(dio->submit.iter);
287 	iov_iter_truncate(dio->submit.iter, length);
288 
289 	if (!iov_iter_count(dio->submit.iter))
290 		goto out;
291 
292 	/*
293 	 * We can only poll for single bio I/Os.
294 	 */
295 	if (need_zeroout ||
296 	    ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode)))
297 		dio->iocb->ki_flags &= ~IOCB_HIPRI;
298 
299 	if (need_zeroout) {
300 		/* zero out from the start of the block to the write offset */
301 		pad = pos & (fs_block_size - 1);
302 		if (pad)
303 			iomap_dio_zero(iter, dio, pos - pad, pad);
304 	}
305 
306 	/*
307 	 * Set the operation flags early so that bio_iov_iter_get_pages
308 	 * can set up the page vector appropriately for a ZONE_APPEND
309 	 * operation.
310 	 */
311 	bio_opf = iomap_dio_bio_opflags(dio, iomap, use_fua);
312 
313 	nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, BIO_MAX_VECS);
314 	do {
315 		size_t n;
316 		if (dio->error) {
317 			iov_iter_revert(dio->submit.iter, copied);
318 			copied = ret = 0;
319 			goto out;
320 		}
321 
322 		bio = iomap_dio_alloc_bio(iter, dio, nr_pages, bio_opf);
323 		fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits,
324 					  GFP_KERNEL);
325 		bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
326 		bio->bi_ioprio = dio->iocb->ki_ioprio;
327 		bio->bi_private = dio;
328 		bio->bi_end_io = iomap_dio_bio_end_io;
329 
330 		ret = bio_iov_iter_get_pages(bio, dio->submit.iter);
331 		if (unlikely(ret)) {
332 			/*
333 			 * We have to stop part way through an IO. We must fall
334 			 * through to the sub-block tail zeroing here, otherwise
335 			 * this short IO may expose stale data in the tail of
336 			 * the block we haven't written data to.
337 			 */
338 			bio_put(bio);
339 			goto zero_tail;
340 		}
341 
342 		n = bio->bi_iter.bi_size;
343 		if (dio->flags & IOMAP_DIO_WRITE) {
344 			task_io_account_write(n);
345 		} else {
346 			if (dio->flags & IOMAP_DIO_DIRTY)
347 				bio_set_pages_dirty(bio);
348 		}
349 
350 		dio->size += n;
351 		copied += n;
352 
353 		nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter,
354 						 BIO_MAX_VECS);
355 		/*
356 		 * We can only poll for single bio I/Os.
357 		 */
358 		if (nr_pages)
359 			dio->iocb->ki_flags &= ~IOCB_HIPRI;
360 		iomap_dio_submit_bio(iter, dio, bio, pos);
361 		pos += n;
362 	} while (nr_pages);
363 
364 	/*
365 	 * We need to zeroout the tail of a sub-block write if the extent type
366 	 * requires zeroing or the write extends beyond EOF. If we don't zero
367 	 * the block tail in the latter case, we can expose stale data via mmap
368 	 * reads of the EOF block.
369 	 */
370 zero_tail:
371 	if (need_zeroout ||
372 	    ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) {
373 		/* zero out from the end of the write to the end of the block */
374 		pad = pos & (fs_block_size - 1);
375 		if (pad)
376 			iomap_dio_zero(iter, dio, pos, fs_block_size - pad);
377 	}
378 out:
379 	/* Undo iter limitation to current extent */
380 	iov_iter_reexpand(dio->submit.iter, orig_count - copied);
381 	if (copied)
382 		return copied;
383 	return ret;
384 }
385 
386 static loff_t iomap_dio_hole_iter(const struct iomap_iter *iter,
387 		struct iomap_dio *dio)
388 {
389 	loff_t length = iov_iter_zero(iomap_length(iter), dio->submit.iter);
390 
391 	dio->size += length;
392 	if (!length)
393 		return -EFAULT;
394 	return length;
395 }
396 
397 static loff_t iomap_dio_inline_iter(const struct iomap_iter *iomi,
398 		struct iomap_dio *dio)
399 {
400 	const struct iomap *iomap = &iomi->iomap;
401 	struct iov_iter *iter = dio->submit.iter;
402 	void *inline_data = iomap_inline_data(iomap, iomi->pos);
403 	loff_t length = iomap_length(iomi);
404 	loff_t pos = iomi->pos;
405 	size_t copied;
406 
407 	if (WARN_ON_ONCE(!iomap_inline_data_valid(iomap)))
408 		return -EIO;
409 
410 	if (dio->flags & IOMAP_DIO_WRITE) {
411 		loff_t size = iomi->inode->i_size;
412 
413 		if (pos > size)
414 			memset(iomap_inline_data(iomap, size), 0, pos - size);
415 		copied = copy_from_iter(inline_data, length, iter);
416 		if (copied) {
417 			if (pos + copied > size)
418 				i_size_write(iomi->inode, pos + copied);
419 			mark_inode_dirty(iomi->inode);
420 		}
421 	} else {
422 		copied = copy_to_iter(inline_data, length, iter);
423 	}
424 	dio->size += copied;
425 	if (!copied)
426 		return -EFAULT;
427 	return copied;
428 }
429 
430 static loff_t iomap_dio_iter(const struct iomap_iter *iter,
431 		struct iomap_dio *dio)
432 {
433 	switch (iter->iomap.type) {
434 	case IOMAP_HOLE:
435 		if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE))
436 			return -EIO;
437 		return iomap_dio_hole_iter(iter, dio);
438 	case IOMAP_UNWRITTEN:
439 		if (!(dio->flags & IOMAP_DIO_WRITE))
440 			return iomap_dio_hole_iter(iter, dio);
441 		return iomap_dio_bio_iter(iter, dio);
442 	case IOMAP_MAPPED:
443 		return iomap_dio_bio_iter(iter, dio);
444 	case IOMAP_INLINE:
445 		return iomap_dio_inline_iter(iter, dio);
446 	case IOMAP_DELALLOC:
447 		/*
448 		 * DIO is not serialised against mmap() access at all, and so
449 		 * if the page_mkwrite occurs between the writeback and the
450 		 * iomap_iter() call in the DIO path, then it will see the
451 		 * DELALLOC block that the page-mkwrite allocated.
452 		 */
453 		pr_warn_ratelimited("Direct I/O collision with buffered writes! File: %pD4 Comm: %.20s\n",
454 				    dio->iocb->ki_filp, current->comm);
455 		return -EIO;
456 	default:
457 		WARN_ON_ONCE(1);
458 		return -EIO;
459 	}
460 }
461 
462 /*
463  * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO
464  * is being issued as AIO or not.  This allows us to optimise pure data writes
465  * to use REQ_FUA rather than requiring generic_write_sync() to issue a
466  * REQ_FLUSH post write. This is slightly tricky because a single request here
467  * can be mapped into multiple disjoint IOs and only a subset of the IOs issued
468  * may be pure data writes. In that case, we still need to do a full data sync
469  * completion.
470  *
471  * When page faults are disabled and @dio_flags includes IOMAP_DIO_PARTIAL,
472  * __iomap_dio_rw can return a partial result if it encounters a non-resident
473  * page in @iter after preparing a transfer.  In that case, the non-resident
474  * pages can be faulted in and the request resumed with @done_before set to the
475  * number of bytes previously transferred.  The request will then complete with
476  * the correct total number of bytes transferred; this is essential for
477  * completing partial requests asynchronously.
478  *
479  * Returns -ENOTBLK In case of a page invalidation invalidation failure for
480  * writes.  The callers needs to fall back to buffered I/O in this case.
481  */
482 struct iomap_dio *
483 __iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
484 		const struct iomap_ops *ops, const struct iomap_dio_ops *dops,
485 		unsigned int dio_flags, void *private, size_t done_before)
486 {
487 	struct address_space *mapping = iocb->ki_filp->f_mapping;
488 	struct inode *inode = file_inode(iocb->ki_filp);
489 	struct iomap_iter iomi = {
490 		.inode		= inode,
491 		.pos		= iocb->ki_pos,
492 		.len		= iov_iter_count(iter),
493 		.flags		= IOMAP_DIRECT,
494 		.private	= private,
495 	};
496 	loff_t end = iomi.pos + iomi.len - 1, ret = 0;
497 	bool wait_for_completion =
498 		is_sync_kiocb(iocb) || (dio_flags & IOMAP_DIO_FORCE_WAIT);
499 	struct blk_plug plug;
500 	struct iomap_dio *dio;
501 
502 	if (!iomi.len)
503 		return NULL;
504 
505 	dio = kmalloc(sizeof(*dio), GFP_KERNEL);
506 	if (!dio)
507 		return ERR_PTR(-ENOMEM);
508 
509 	dio->iocb = iocb;
510 	atomic_set(&dio->ref, 1);
511 	dio->size = 0;
512 	dio->i_size = i_size_read(inode);
513 	dio->dops = dops;
514 	dio->error = 0;
515 	dio->flags = 0;
516 	dio->done_before = done_before;
517 
518 	dio->submit.iter = iter;
519 	dio->submit.waiter = current;
520 	dio->submit.poll_bio = NULL;
521 
522 	if (iov_iter_rw(iter) == READ) {
523 		if (iomi.pos >= dio->i_size)
524 			goto out_free_dio;
525 
526 		if (iocb->ki_flags & IOCB_NOWAIT) {
527 			if (filemap_range_needs_writeback(mapping, iomi.pos,
528 					end)) {
529 				ret = -EAGAIN;
530 				goto out_free_dio;
531 			}
532 			iomi.flags |= IOMAP_NOWAIT;
533 		}
534 
535 		if (user_backed_iter(iter))
536 			dio->flags |= IOMAP_DIO_DIRTY;
537 	} else {
538 		iomi.flags |= IOMAP_WRITE;
539 		dio->flags |= IOMAP_DIO_WRITE;
540 
541 		if (iocb->ki_flags & IOCB_NOWAIT) {
542 			if (filemap_range_has_page(mapping, iomi.pos, end)) {
543 				ret = -EAGAIN;
544 				goto out_free_dio;
545 			}
546 			iomi.flags |= IOMAP_NOWAIT;
547 		}
548 
549 		/* for data sync or sync, we need sync completion processing */
550 		if (iocb_is_dsync(iocb) && !(dio_flags & IOMAP_DIO_NOSYNC)) {
551 			dio->flags |= IOMAP_DIO_NEED_SYNC;
552 
553 		       /*
554 			* For datasync only writes, we optimistically try
555 			* using FUA for this IO.  Any non-FUA write that
556 			* occurs will clear this flag, hence we know before
557 			* completion whether a cache flush is necessary.
558 			*/
559 			if (!(iocb->ki_flags & IOCB_SYNC))
560 				dio->flags |= IOMAP_DIO_WRITE_FUA;
561 		}
562 	}
563 
564 	if (dio_flags & IOMAP_DIO_OVERWRITE_ONLY) {
565 		ret = -EAGAIN;
566 		if (iomi.pos >= dio->i_size ||
567 		    iomi.pos + iomi.len > dio->i_size)
568 			goto out_free_dio;
569 		iomi.flags |= IOMAP_OVERWRITE_ONLY;
570 	}
571 
572 	ret = filemap_write_and_wait_range(mapping, iomi.pos, end);
573 	if (ret)
574 		goto out_free_dio;
575 
576 	if (iov_iter_rw(iter) == WRITE) {
577 		/*
578 		 * Try to invalidate cache pages for the range we are writing.
579 		 * If this invalidation fails, let the caller fall back to
580 		 * buffered I/O.
581 		 */
582 		if (invalidate_inode_pages2_range(mapping,
583 				iomi.pos >> PAGE_SHIFT, end >> PAGE_SHIFT)) {
584 			trace_iomap_dio_invalidate_fail(inode, iomi.pos,
585 							iomi.len);
586 			ret = -ENOTBLK;
587 			goto out_free_dio;
588 		}
589 
590 		if (!wait_for_completion && !inode->i_sb->s_dio_done_wq) {
591 			ret = sb_init_dio_done_wq(inode->i_sb);
592 			if (ret < 0)
593 				goto out_free_dio;
594 		}
595 	}
596 
597 	inode_dio_begin(inode);
598 
599 	blk_start_plug(&plug);
600 	while ((ret = iomap_iter(&iomi, ops)) > 0) {
601 		iomi.processed = iomap_dio_iter(&iomi, dio);
602 
603 		/*
604 		 * We can only poll for single bio I/Os.
605 		 */
606 		iocb->ki_flags &= ~IOCB_HIPRI;
607 	}
608 
609 	blk_finish_plug(&plug);
610 
611 	/*
612 	 * We only report that we've read data up to i_size.
613 	 * Revert iter to a state corresponding to that as some callers (such
614 	 * as the splice code) rely on it.
615 	 */
616 	if (iov_iter_rw(iter) == READ && iomi.pos >= dio->i_size)
617 		iov_iter_revert(iter, iomi.pos - dio->i_size);
618 
619 	if (ret == -EFAULT && dio->size && (dio_flags & IOMAP_DIO_PARTIAL)) {
620 		if (!(iocb->ki_flags & IOCB_NOWAIT))
621 			wait_for_completion = true;
622 		ret = 0;
623 	}
624 
625 	/* magic error code to fall back to buffered I/O */
626 	if (ret == -ENOTBLK) {
627 		wait_for_completion = true;
628 		ret = 0;
629 	}
630 	if (ret < 0)
631 		iomap_dio_set_error(dio, ret);
632 
633 	/*
634 	 * If all the writes we issued were FUA, we don't need to flush the
635 	 * cache on IO completion. Clear the sync flag for this case.
636 	 */
637 	if (dio->flags & IOMAP_DIO_WRITE_FUA)
638 		dio->flags &= ~IOMAP_DIO_NEED_SYNC;
639 
640 	WRITE_ONCE(iocb->private, dio->submit.poll_bio);
641 
642 	/*
643 	 * We are about to drop our additional submission reference, which
644 	 * might be the last reference to the dio.  There are three different
645 	 * ways we can progress here:
646 	 *
647 	 *  (a) If this is the last reference we will always complete and free
648 	 *	the dio ourselves.
649 	 *  (b) If this is not the last reference, and we serve an asynchronous
650 	 *	iocb, we must never touch the dio after the decrement, the
651 	 *	I/O completion handler will complete and free it.
652 	 *  (c) If this is not the last reference, but we serve a synchronous
653 	 *	iocb, the I/O completion handler will wake us up on the drop
654 	 *	of the final reference, and we will complete and free it here
655 	 *	after we got woken by the I/O completion handler.
656 	 */
657 	dio->wait_for_completion = wait_for_completion;
658 	if (!atomic_dec_and_test(&dio->ref)) {
659 		if (!wait_for_completion)
660 			return ERR_PTR(-EIOCBQUEUED);
661 
662 		for (;;) {
663 			set_current_state(TASK_UNINTERRUPTIBLE);
664 			if (!READ_ONCE(dio->submit.waiter))
665 				break;
666 
667 			blk_io_schedule();
668 		}
669 		__set_current_state(TASK_RUNNING);
670 	}
671 
672 	return dio;
673 
674 out_free_dio:
675 	kfree(dio);
676 	if (ret)
677 		return ERR_PTR(ret);
678 	return NULL;
679 }
680 EXPORT_SYMBOL_GPL(__iomap_dio_rw);
681 
682 ssize_t
683 iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
684 		const struct iomap_ops *ops, const struct iomap_dio_ops *dops,
685 		unsigned int dio_flags, void *private, size_t done_before)
686 {
687 	struct iomap_dio *dio;
688 
689 	dio = __iomap_dio_rw(iocb, iter, ops, dops, dio_flags, private,
690 			     done_before);
691 	if (IS_ERR_OR_NULL(dio))
692 		return PTR_ERR_OR_ZERO(dio);
693 	return iomap_dio_complete(dio);
694 }
695 EXPORT_SYMBOL_GPL(iomap_dio_rw);
696