xref: /openbmc/linux/fs/iomap/direct-io.c (revision b10fdeea)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Red Hat, Inc.
4  * Copyright (c) 2016-2021 Christoph Hellwig.
5  */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/fscrypt.h>
10 #include <linux/pagemap.h>
11 #include <linux/iomap.h>
12 #include <linux/backing-dev.h>
13 #include <linux/uio.h>
14 #include <linux/task_io_accounting_ops.h>
15 #include "trace.h"
16 
17 #include "../internal.h"
18 
19 /*
20  * Private flags for iomap_dio, must not overlap with the public ones in
21  * iomap.h:
22  */
23 #define IOMAP_DIO_WRITE_FUA	(1 << 28)
24 #define IOMAP_DIO_NEED_SYNC	(1 << 29)
25 #define IOMAP_DIO_WRITE		(1 << 30)
26 #define IOMAP_DIO_DIRTY		(1 << 31)
27 
28 struct iomap_dio {
29 	struct kiocb		*iocb;
30 	const struct iomap_dio_ops *dops;
31 	loff_t			i_size;
32 	loff_t			size;
33 	atomic_t		ref;
34 	unsigned		flags;
35 	int			error;
36 	size_t			done_before;
37 	bool			wait_for_completion;
38 
39 	union {
40 		/* used during submission and for synchronous completion: */
41 		struct {
42 			struct iov_iter		*iter;
43 			struct task_struct	*waiter;
44 			struct bio		*poll_bio;
45 		} submit;
46 
47 		/* used for aio completion: */
48 		struct {
49 			struct work_struct	work;
50 		} aio;
51 	};
52 };
53 
54 static struct bio *iomap_dio_alloc_bio(const struct iomap_iter *iter,
55 		struct iomap_dio *dio, unsigned short nr_vecs, blk_opf_t opf)
56 {
57 	if (dio->dops && dio->dops->bio_set)
58 		return bio_alloc_bioset(iter->iomap.bdev, nr_vecs, opf,
59 					GFP_KERNEL, dio->dops->bio_set);
60 	return bio_alloc(iter->iomap.bdev, nr_vecs, opf, GFP_KERNEL);
61 }
62 
63 static void iomap_dio_submit_bio(const struct iomap_iter *iter,
64 		struct iomap_dio *dio, struct bio *bio, loff_t pos)
65 {
66 	atomic_inc(&dio->ref);
67 
68 	/* Sync dio can't be polled reliably */
69 	if ((dio->iocb->ki_flags & IOCB_HIPRI) && !is_sync_kiocb(dio->iocb)) {
70 		bio_set_polled(bio, dio->iocb);
71 		dio->submit.poll_bio = bio;
72 	}
73 
74 	if (dio->dops && dio->dops->submit_io)
75 		dio->dops->submit_io(iter, bio, pos);
76 	else
77 		submit_bio(bio);
78 }
79 
80 ssize_t iomap_dio_complete(struct iomap_dio *dio)
81 {
82 	const struct iomap_dio_ops *dops = dio->dops;
83 	struct kiocb *iocb = dio->iocb;
84 	struct inode *inode = file_inode(iocb->ki_filp);
85 	loff_t offset = iocb->ki_pos;
86 	ssize_t ret = dio->error;
87 
88 	if (dops && dops->end_io)
89 		ret = dops->end_io(iocb, dio->size, ret, dio->flags);
90 
91 	if (likely(!ret)) {
92 		ret = dio->size;
93 		/* check for short read */
94 		if (offset + ret > dio->i_size &&
95 		    !(dio->flags & IOMAP_DIO_WRITE))
96 			ret = dio->i_size - offset;
97 		iocb->ki_pos += ret;
98 	}
99 
100 	/*
101 	 * Try again to invalidate clean pages which might have been cached by
102 	 * non-direct readahead, or faulted in by get_user_pages() if the source
103 	 * of the write was an mmap'ed region of the file we're writing.  Either
104 	 * one is a pretty crazy thing to do, so we don't support it 100%.  If
105 	 * this invalidation fails, tough, the write still worked...
106 	 *
107 	 * And this page cache invalidation has to be after ->end_io(), as some
108 	 * filesystems convert unwritten extents to real allocations in
109 	 * ->end_io() when necessary, otherwise a racing buffer read would cache
110 	 * zeros from unwritten extents.
111 	 */
112 	if (!dio->error && dio->size &&
113 	    (dio->flags & IOMAP_DIO_WRITE) && inode->i_mapping->nrpages) {
114 		int err;
115 		err = invalidate_inode_pages2_range(inode->i_mapping,
116 				offset >> PAGE_SHIFT,
117 				(offset + dio->size - 1) >> PAGE_SHIFT);
118 		if (err)
119 			dio_warn_stale_pagecache(iocb->ki_filp);
120 	}
121 
122 	inode_dio_end(file_inode(iocb->ki_filp));
123 	/*
124 	 * If this is a DSYNC write, make sure we push it to stable storage now
125 	 * that we've written data.
126 	 */
127 	if (ret > 0 && (dio->flags & IOMAP_DIO_NEED_SYNC))
128 		ret = generic_write_sync(iocb, ret);
129 
130 	if (ret > 0)
131 		ret += dio->done_before;
132 
133 	kfree(dio);
134 
135 	return ret;
136 }
137 EXPORT_SYMBOL_GPL(iomap_dio_complete);
138 
139 static void iomap_dio_complete_work(struct work_struct *work)
140 {
141 	struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work);
142 	struct kiocb *iocb = dio->iocb;
143 
144 	iocb->ki_complete(iocb, iomap_dio_complete(dio));
145 }
146 
147 /*
148  * Set an error in the dio if none is set yet.  We have to use cmpxchg
149  * as the submission context and the completion context(s) can race to
150  * update the error.
151  */
152 static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret)
153 {
154 	cmpxchg(&dio->error, 0, ret);
155 }
156 
157 void iomap_dio_bio_end_io(struct bio *bio)
158 {
159 	struct iomap_dio *dio = bio->bi_private;
160 	bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY);
161 
162 	if (bio->bi_status)
163 		iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status));
164 
165 	if (atomic_dec_and_test(&dio->ref)) {
166 		if (dio->wait_for_completion) {
167 			struct task_struct *waiter = dio->submit.waiter;
168 			WRITE_ONCE(dio->submit.waiter, NULL);
169 			blk_wake_io_task(waiter);
170 		} else if (dio->flags & IOMAP_DIO_WRITE) {
171 			struct inode *inode = file_inode(dio->iocb->ki_filp);
172 
173 			WRITE_ONCE(dio->iocb->private, NULL);
174 			INIT_WORK(&dio->aio.work, iomap_dio_complete_work);
175 			queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work);
176 		} else {
177 			WRITE_ONCE(dio->iocb->private, NULL);
178 			iomap_dio_complete_work(&dio->aio.work);
179 		}
180 	}
181 
182 	if (should_dirty) {
183 		bio_check_pages_dirty(bio);
184 	} else {
185 		bio_release_pages(bio, false);
186 		bio_put(bio);
187 	}
188 }
189 EXPORT_SYMBOL_GPL(iomap_dio_bio_end_io);
190 
191 static void iomap_dio_zero(const struct iomap_iter *iter, struct iomap_dio *dio,
192 		loff_t pos, unsigned len)
193 {
194 	struct inode *inode = file_inode(dio->iocb->ki_filp);
195 	struct page *page = ZERO_PAGE(0);
196 	struct bio *bio;
197 
198 	bio = iomap_dio_alloc_bio(iter, dio, 1, REQ_OP_WRITE | REQ_SYNC | REQ_IDLE);
199 	fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits,
200 				  GFP_KERNEL);
201 	bio->bi_iter.bi_sector = iomap_sector(&iter->iomap, pos);
202 	bio->bi_private = dio;
203 	bio->bi_end_io = iomap_dio_bio_end_io;
204 
205 	get_page(page);
206 	__bio_add_page(bio, page, len, 0);
207 	iomap_dio_submit_bio(iter, dio, bio, pos);
208 }
209 
210 /*
211  * Figure out the bio's operation flags from the dio request, the
212  * mapping, and whether or not we want FUA.  Note that we can end up
213  * clearing the WRITE_FUA flag in the dio request.
214  */
215 static inline blk_opf_t iomap_dio_bio_opflags(struct iomap_dio *dio,
216 		const struct iomap *iomap, bool use_fua)
217 {
218 	blk_opf_t opflags = REQ_SYNC | REQ_IDLE;
219 
220 	if (!(dio->flags & IOMAP_DIO_WRITE)) {
221 		WARN_ON_ONCE(iomap->flags & IOMAP_F_ZONE_APPEND);
222 		return REQ_OP_READ;
223 	}
224 
225 	if (iomap->flags & IOMAP_F_ZONE_APPEND)
226 		opflags |= REQ_OP_ZONE_APPEND;
227 	else
228 		opflags |= REQ_OP_WRITE;
229 
230 	if (use_fua)
231 		opflags |= REQ_FUA;
232 	else
233 		dio->flags &= ~IOMAP_DIO_WRITE_FUA;
234 
235 	return opflags;
236 }
237 
238 static loff_t iomap_dio_bio_iter(const struct iomap_iter *iter,
239 		struct iomap_dio *dio)
240 {
241 	const struct iomap *iomap = &iter->iomap;
242 	struct inode *inode = iter->inode;
243 	unsigned int blkbits = blksize_bits(bdev_logical_block_size(iomap->bdev));
244 	unsigned int fs_block_size = i_blocksize(inode), pad;
245 	loff_t length = iomap_length(iter);
246 	loff_t pos = iter->pos;
247 	blk_opf_t bio_opf;
248 	struct bio *bio;
249 	bool need_zeroout = false;
250 	bool use_fua = false;
251 	int nr_pages, ret = 0;
252 	size_t copied = 0;
253 	size_t orig_count;
254 
255 	if ((pos | length) & ((1 << blkbits) - 1) ||
256 	    !bdev_iter_is_aligned(iomap->bdev, dio->submit.iter))
257 		return -EINVAL;
258 
259 	if (iomap->type == IOMAP_UNWRITTEN) {
260 		dio->flags |= IOMAP_DIO_UNWRITTEN;
261 		need_zeroout = true;
262 	}
263 
264 	if (iomap->flags & IOMAP_F_SHARED)
265 		dio->flags |= IOMAP_DIO_COW;
266 
267 	if (iomap->flags & IOMAP_F_NEW) {
268 		need_zeroout = true;
269 	} else if (iomap->type == IOMAP_MAPPED) {
270 		/*
271 		 * Use a FUA write if we need datasync semantics, this is a pure
272 		 * data IO that doesn't require any metadata updates (including
273 		 * after IO completion such as unwritten extent conversion) and
274 		 * the underlying device supports FUA. This allows us to avoid
275 		 * cache flushes on IO completion.
276 		 */
277 		if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) &&
278 		    (dio->flags & IOMAP_DIO_WRITE_FUA) && bdev_fua(iomap->bdev))
279 			use_fua = true;
280 	}
281 
282 	/*
283 	 * Save the original count and trim the iter to just the extent we
284 	 * are operating on right now.  The iter will be re-expanded once
285 	 * we are done.
286 	 */
287 	orig_count = iov_iter_count(dio->submit.iter);
288 	iov_iter_truncate(dio->submit.iter, length);
289 
290 	if (!iov_iter_count(dio->submit.iter))
291 		goto out;
292 
293 	/*
294 	 * We can only poll for single bio I/Os.
295 	 */
296 	if (need_zeroout ||
297 	    ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode)))
298 		dio->iocb->ki_flags &= ~IOCB_HIPRI;
299 
300 	if (need_zeroout) {
301 		/* zero out from the start of the block to the write offset */
302 		pad = pos & (fs_block_size - 1);
303 		if (pad)
304 			iomap_dio_zero(iter, dio, pos - pad, pad);
305 	}
306 
307 	/*
308 	 * Set the operation flags early so that bio_iov_iter_get_pages
309 	 * can set up the page vector appropriately for a ZONE_APPEND
310 	 * operation.
311 	 */
312 	bio_opf = iomap_dio_bio_opflags(dio, iomap, use_fua);
313 
314 	nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, BIO_MAX_VECS);
315 	do {
316 		size_t n;
317 		if (dio->error) {
318 			iov_iter_revert(dio->submit.iter, copied);
319 			copied = ret = 0;
320 			goto out;
321 		}
322 
323 		bio = iomap_dio_alloc_bio(iter, dio, nr_pages, bio_opf);
324 		fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits,
325 					  GFP_KERNEL);
326 		bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
327 		bio->bi_ioprio = dio->iocb->ki_ioprio;
328 		bio->bi_private = dio;
329 		bio->bi_end_io = iomap_dio_bio_end_io;
330 
331 		ret = bio_iov_iter_get_pages(bio, dio->submit.iter);
332 		if (unlikely(ret)) {
333 			/*
334 			 * We have to stop part way through an IO. We must fall
335 			 * through to the sub-block tail zeroing here, otherwise
336 			 * this short IO may expose stale data in the tail of
337 			 * the block we haven't written data to.
338 			 */
339 			bio_put(bio);
340 			goto zero_tail;
341 		}
342 
343 		n = bio->bi_iter.bi_size;
344 		if (dio->flags & IOMAP_DIO_WRITE) {
345 			task_io_account_write(n);
346 		} else {
347 			if (dio->flags & IOMAP_DIO_DIRTY)
348 				bio_set_pages_dirty(bio);
349 		}
350 
351 		dio->size += n;
352 		copied += n;
353 
354 		nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter,
355 						 BIO_MAX_VECS);
356 		/*
357 		 * We can only poll for single bio I/Os.
358 		 */
359 		if (nr_pages)
360 			dio->iocb->ki_flags &= ~IOCB_HIPRI;
361 		iomap_dio_submit_bio(iter, dio, bio, pos);
362 		pos += n;
363 	} while (nr_pages);
364 
365 	/*
366 	 * We need to zeroout the tail of a sub-block write if the extent type
367 	 * requires zeroing or the write extends beyond EOF. If we don't zero
368 	 * the block tail in the latter case, we can expose stale data via mmap
369 	 * reads of the EOF block.
370 	 */
371 zero_tail:
372 	if (need_zeroout ||
373 	    ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) {
374 		/* zero out from the end of the write to the end of the block */
375 		pad = pos & (fs_block_size - 1);
376 		if (pad)
377 			iomap_dio_zero(iter, dio, pos, fs_block_size - pad);
378 	}
379 out:
380 	/* Undo iter limitation to current extent */
381 	iov_iter_reexpand(dio->submit.iter, orig_count - copied);
382 	if (copied)
383 		return copied;
384 	return ret;
385 }
386 
387 static loff_t iomap_dio_hole_iter(const struct iomap_iter *iter,
388 		struct iomap_dio *dio)
389 {
390 	loff_t length = iov_iter_zero(iomap_length(iter), dio->submit.iter);
391 
392 	dio->size += length;
393 	if (!length)
394 		return -EFAULT;
395 	return length;
396 }
397 
398 static loff_t iomap_dio_inline_iter(const struct iomap_iter *iomi,
399 		struct iomap_dio *dio)
400 {
401 	const struct iomap *iomap = &iomi->iomap;
402 	struct iov_iter *iter = dio->submit.iter;
403 	void *inline_data = iomap_inline_data(iomap, iomi->pos);
404 	loff_t length = iomap_length(iomi);
405 	loff_t pos = iomi->pos;
406 	size_t copied;
407 
408 	if (WARN_ON_ONCE(!iomap_inline_data_valid(iomap)))
409 		return -EIO;
410 
411 	if (dio->flags & IOMAP_DIO_WRITE) {
412 		loff_t size = iomi->inode->i_size;
413 
414 		if (pos > size)
415 			memset(iomap_inline_data(iomap, size), 0, pos - size);
416 		copied = copy_from_iter(inline_data, length, iter);
417 		if (copied) {
418 			if (pos + copied > size)
419 				i_size_write(iomi->inode, pos + copied);
420 			mark_inode_dirty(iomi->inode);
421 		}
422 	} else {
423 		copied = copy_to_iter(inline_data, length, iter);
424 	}
425 	dio->size += copied;
426 	if (!copied)
427 		return -EFAULT;
428 	return copied;
429 }
430 
431 static loff_t iomap_dio_iter(const struct iomap_iter *iter,
432 		struct iomap_dio *dio)
433 {
434 	switch (iter->iomap.type) {
435 	case IOMAP_HOLE:
436 		if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE))
437 			return -EIO;
438 		return iomap_dio_hole_iter(iter, dio);
439 	case IOMAP_UNWRITTEN:
440 		if (!(dio->flags & IOMAP_DIO_WRITE))
441 			return iomap_dio_hole_iter(iter, dio);
442 		return iomap_dio_bio_iter(iter, dio);
443 	case IOMAP_MAPPED:
444 		return iomap_dio_bio_iter(iter, dio);
445 	case IOMAP_INLINE:
446 		return iomap_dio_inline_iter(iter, dio);
447 	case IOMAP_DELALLOC:
448 		/*
449 		 * DIO is not serialised against mmap() access at all, and so
450 		 * if the page_mkwrite occurs between the writeback and the
451 		 * iomap_iter() call in the DIO path, then it will see the
452 		 * DELALLOC block that the page-mkwrite allocated.
453 		 */
454 		pr_warn_ratelimited("Direct I/O collision with buffered writes! File: %pD4 Comm: %.20s\n",
455 				    dio->iocb->ki_filp, current->comm);
456 		return -EIO;
457 	default:
458 		WARN_ON_ONCE(1);
459 		return -EIO;
460 	}
461 }
462 
463 /*
464  * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO
465  * is being issued as AIO or not.  This allows us to optimise pure data writes
466  * to use REQ_FUA rather than requiring generic_write_sync() to issue a
467  * REQ_FLUSH post write. This is slightly tricky because a single request here
468  * can be mapped into multiple disjoint IOs and only a subset of the IOs issued
469  * may be pure data writes. In that case, we still need to do a full data sync
470  * completion.
471  *
472  * When page faults are disabled and @dio_flags includes IOMAP_DIO_PARTIAL,
473  * __iomap_dio_rw can return a partial result if it encounters a non-resident
474  * page in @iter after preparing a transfer.  In that case, the non-resident
475  * pages can be faulted in and the request resumed with @done_before set to the
476  * number of bytes previously transferred.  The request will then complete with
477  * the correct total number of bytes transferred; this is essential for
478  * completing partial requests asynchronously.
479  *
480  * Returns -ENOTBLK In case of a page invalidation invalidation failure for
481  * writes.  The callers needs to fall back to buffered I/O in this case.
482  */
483 struct iomap_dio *
484 __iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
485 		const struct iomap_ops *ops, const struct iomap_dio_ops *dops,
486 		unsigned int dio_flags, void *private, size_t done_before)
487 {
488 	struct address_space *mapping = iocb->ki_filp->f_mapping;
489 	struct inode *inode = file_inode(iocb->ki_filp);
490 	struct iomap_iter iomi = {
491 		.inode		= inode,
492 		.pos		= iocb->ki_pos,
493 		.len		= iov_iter_count(iter),
494 		.flags		= IOMAP_DIRECT,
495 		.private	= private,
496 	};
497 	loff_t end = iomi.pos + iomi.len - 1, ret = 0;
498 	bool wait_for_completion =
499 		is_sync_kiocb(iocb) || (dio_flags & IOMAP_DIO_FORCE_WAIT);
500 	struct blk_plug plug;
501 	struct iomap_dio *dio;
502 
503 	if (!iomi.len)
504 		return NULL;
505 
506 	dio = kmalloc(sizeof(*dio), GFP_KERNEL);
507 	if (!dio)
508 		return ERR_PTR(-ENOMEM);
509 
510 	dio->iocb = iocb;
511 	atomic_set(&dio->ref, 1);
512 	dio->size = 0;
513 	dio->i_size = i_size_read(inode);
514 	dio->dops = dops;
515 	dio->error = 0;
516 	dio->flags = 0;
517 	dio->done_before = done_before;
518 
519 	dio->submit.iter = iter;
520 	dio->submit.waiter = current;
521 	dio->submit.poll_bio = NULL;
522 
523 	if (iov_iter_rw(iter) == READ) {
524 		if (iomi.pos >= dio->i_size)
525 			goto out_free_dio;
526 
527 		if (iocb->ki_flags & IOCB_NOWAIT) {
528 			if (filemap_range_needs_writeback(mapping, iomi.pos,
529 					end)) {
530 				ret = -EAGAIN;
531 				goto out_free_dio;
532 			}
533 			iomi.flags |= IOMAP_NOWAIT;
534 		}
535 
536 		if (user_backed_iter(iter))
537 			dio->flags |= IOMAP_DIO_DIRTY;
538 	} else {
539 		iomi.flags |= IOMAP_WRITE;
540 		dio->flags |= IOMAP_DIO_WRITE;
541 
542 		if (iocb->ki_flags & IOCB_NOWAIT) {
543 			if (filemap_range_has_page(mapping, iomi.pos, end)) {
544 				ret = -EAGAIN;
545 				goto out_free_dio;
546 			}
547 			iomi.flags |= IOMAP_NOWAIT;
548 		}
549 
550 		/* for data sync or sync, we need sync completion processing */
551 		if (iocb_is_dsync(iocb) && !(dio_flags & IOMAP_DIO_NOSYNC)) {
552 			dio->flags |= IOMAP_DIO_NEED_SYNC;
553 
554 		       /*
555 			* For datasync only writes, we optimistically try
556 			* using FUA for this IO.  Any non-FUA write that
557 			* occurs will clear this flag, hence we know before
558 			* completion whether a cache flush is necessary.
559 			*/
560 			if (!(iocb->ki_flags & IOCB_SYNC))
561 				dio->flags |= IOMAP_DIO_WRITE_FUA;
562 		}
563 	}
564 
565 	if (dio_flags & IOMAP_DIO_OVERWRITE_ONLY) {
566 		ret = -EAGAIN;
567 		if (iomi.pos >= dio->i_size ||
568 		    iomi.pos + iomi.len > dio->i_size)
569 			goto out_free_dio;
570 		iomi.flags |= IOMAP_OVERWRITE_ONLY;
571 	}
572 
573 	ret = filemap_write_and_wait_range(mapping, iomi.pos, end);
574 	if (ret)
575 		goto out_free_dio;
576 
577 	if (iov_iter_rw(iter) == WRITE) {
578 		/*
579 		 * Try to invalidate cache pages for the range we are writing.
580 		 * If this invalidation fails, let the caller fall back to
581 		 * buffered I/O.
582 		 */
583 		if (invalidate_inode_pages2_range(mapping,
584 				iomi.pos >> PAGE_SHIFT, end >> PAGE_SHIFT)) {
585 			trace_iomap_dio_invalidate_fail(inode, iomi.pos,
586 							iomi.len);
587 			ret = -ENOTBLK;
588 			goto out_free_dio;
589 		}
590 
591 		if (!wait_for_completion && !inode->i_sb->s_dio_done_wq) {
592 			ret = sb_init_dio_done_wq(inode->i_sb);
593 			if (ret < 0)
594 				goto out_free_dio;
595 		}
596 	}
597 
598 	inode_dio_begin(inode);
599 
600 	blk_start_plug(&plug);
601 	while ((ret = iomap_iter(&iomi, ops)) > 0) {
602 		iomi.processed = iomap_dio_iter(&iomi, dio);
603 
604 		/*
605 		 * We can only poll for single bio I/Os.
606 		 */
607 		iocb->ki_flags &= ~IOCB_HIPRI;
608 	}
609 
610 	blk_finish_plug(&plug);
611 
612 	/*
613 	 * We only report that we've read data up to i_size.
614 	 * Revert iter to a state corresponding to that as some callers (such
615 	 * as the splice code) rely on it.
616 	 */
617 	if (iov_iter_rw(iter) == READ && iomi.pos >= dio->i_size)
618 		iov_iter_revert(iter, iomi.pos - dio->i_size);
619 
620 	if (ret == -EFAULT && dio->size && (dio_flags & IOMAP_DIO_PARTIAL)) {
621 		if (!(iocb->ki_flags & IOCB_NOWAIT))
622 			wait_for_completion = true;
623 		ret = 0;
624 	}
625 
626 	/* magic error code to fall back to buffered I/O */
627 	if (ret == -ENOTBLK) {
628 		wait_for_completion = true;
629 		ret = 0;
630 	}
631 	if (ret < 0)
632 		iomap_dio_set_error(dio, ret);
633 
634 	/*
635 	 * If all the writes we issued were FUA, we don't need to flush the
636 	 * cache on IO completion. Clear the sync flag for this case.
637 	 */
638 	if (dio->flags & IOMAP_DIO_WRITE_FUA)
639 		dio->flags &= ~IOMAP_DIO_NEED_SYNC;
640 
641 	WRITE_ONCE(iocb->private, dio->submit.poll_bio);
642 
643 	/*
644 	 * We are about to drop our additional submission reference, which
645 	 * might be the last reference to the dio.  There are three different
646 	 * ways we can progress here:
647 	 *
648 	 *  (a) If this is the last reference we will always complete and free
649 	 *	the dio ourselves.
650 	 *  (b) If this is not the last reference, and we serve an asynchronous
651 	 *	iocb, we must never touch the dio after the decrement, the
652 	 *	I/O completion handler will complete and free it.
653 	 *  (c) If this is not the last reference, but we serve a synchronous
654 	 *	iocb, the I/O completion handler will wake us up on the drop
655 	 *	of the final reference, and we will complete and free it here
656 	 *	after we got woken by the I/O completion handler.
657 	 */
658 	dio->wait_for_completion = wait_for_completion;
659 	if (!atomic_dec_and_test(&dio->ref)) {
660 		if (!wait_for_completion)
661 			return ERR_PTR(-EIOCBQUEUED);
662 
663 		for (;;) {
664 			set_current_state(TASK_UNINTERRUPTIBLE);
665 			if (!READ_ONCE(dio->submit.waiter))
666 				break;
667 
668 			blk_io_schedule();
669 		}
670 		__set_current_state(TASK_RUNNING);
671 	}
672 
673 	return dio;
674 
675 out_free_dio:
676 	kfree(dio);
677 	if (ret)
678 		return ERR_PTR(ret);
679 	return NULL;
680 }
681 EXPORT_SYMBOL_GPL(__iomap_dio_rw);
682 
683 ssize_t
684 iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
685 		const struct iomap_ops *ops, const struct iomap_dio_ops *dops,
686 		unsigned int dio_flags, void *private, size_t done_before)
687 {
688 	struct iomap_dio *dio;
689 
690 	dio = __iomap_dio_rw(iocb, iter, ops, dops, dio_flags, private,
691 			     done_before);
692 	if (IS_ERR_OR_NULL(dio))
693 		return PTR_ERR_OR_ZERO(dio);
694 	return iomap_dio_complete(dio);
695 }
696 EXPORT_SYMBOL_GPL(iomap_dio_rw);
697