1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Red Hat, Inc. 4 * Copyright (c) 2016-2021 Christoph Hellwig. 5 */ 6 #include <linux/module.h> 7 #include <linux/compiler.h> 8 #include <linux/fs.h> 9 #include <linux/fscrypt.h> 10 #include <linux/pagemap.h> 11 #include <linux/iomap.h> 12 #include <linux/backing-dev.h> 13 #include <linux/uio.h> 14 #include <linux/task_io_accounting_ops.h> 15 #include "trace.h" 16 17 #include "../internal.h" 18 19 /* 20 * Private flags for iomap_dio, must not overlap with the public ones in 21 * iomap.h: 22 */ 23 #define IOMAP_DIO_WRITE_FUA (1 << 28) 24 #define IOMAP_DIO_NEED_SYNC (1 << 29) 25 #define IOMAP_DIO_WRITE (1 << 30) 26 #define IOMAP_DIO_DIRTY (1 << 31) 27 28 struct iomap_dio { 29 struct kiocb *iocb; 30 const struct iomap_dio_ops *dops; 31 loff_t i_size; 32 loff_t size; 33 atomic_t ref; 34 unsigned flags; 35 int error; 36 size_t done_before; 37 bool wait_for_completion; 38 39 union { 40 /* used during submission and for synchronous completion: */ 41 struct { 42 struct iov_iter *iter; 43 struct task_struct *waiter; 44 struct bio *poll_bio; 45 } submit; 46 47 /* used for aio completion: */ 48 struct { 49 struct work_struct work; 50 } aio; 51 }; 52 }; 53 54 static struct bio *iomap_dio_alloc_bio(const struct iomap_iter *iter, 55 struct iomap_dio *dio, unsigned short nr_vecs, blk_opf_t opf) 56 { 57 if (dio->dops && dio->dops->bio_set) 58 return bio_alloc_bioset(iter->iomap.bdev, nr_vecs, opf, 59 GFP_KERNEL, dio->dops->bio_set); 60 return bio_alloc(iter->iomap.bdev, nr_vecs, opf, GFP_KERNEL); 61 } 62 63 static void iomap_dio_submit_bio(const struct iomap_iter *iter, 64 struct iomap_dio *dio, struct bio *bio, loff_t pos) 65 { 66 atomic_inc(&dio->ref); 67 68 /* Sync dio can't be polled reliably */ 69 if ((dio->iocb->ki_flags & IOCB_HIPRI) && !is_sync_kiocb(dio->iocb)) { 70 bio_set_polled(bio, dio->iocb); 71 dio->submit.poll_bio = bio; 72 } 73 74 if (dio->dops && dio->dops->submit_io) 75 dio->dops->submit_io(iter, bio, pos); 76 else 77 submit_bio(bio); 78 } 79 80 ssize_t iomap_dio_complete(struct iomap_dio *dio) 81 { 82 const struct iomap_dio_ops *dops = dio->dops; 83 struct kiocb *iocb = dio->iocb; 84 loff_t offset = iocb->ki_pos; 85 ssize_t ret = dio->error; 86 87 if (dops && dops->end_io) 88 ret = dops->end_io(iocb, dio->size, ret, dio->flags); 89 90 if (likely(!ret)) { 91 ret = dio->size; 92 /* check for short read */ 93 if (offset + ret > dio->i_size && 94 !(dio->flags & IOMAP_DIO_WRITE)) 95 ret = dio->i_size - offset; 96 } 97 98 /* 99 * Try again to invalidate clean pages which might have been cached by 100 * non-direct readahead, or faulted in by get_user_pages() if the source 101 * of the write was an mmap'ed region of the file we're writing. Either 102 * one is a pretty crazy thing to do, so we don't support it 100%. If 103 * this invalidation fails, tough, the write still worked... 104 * 105 * And this page cache invalidation has to be after ->end_io(), as some 106 * filesystems convert unwritten extents to real allocations in 107 * ->end_io() when necessary, otherwise a racing buffer read would cache 108 * zeros from unwritten extents. 109 */ 110 if (!dio->error && dio->size && (dio->flags & IOMAP_DIO_WRITE)) 111 kiocb_invalidate_post_direct_write(iocb, dio->size); 112 113 inode_dio_end(file_inode(iocb->ki_filp)); 114 115 if (ret > 0) { 116 iocb->ki_pos += ret; 117 118 /* 119 * If this is a DSYNC write, make sure we push it to stable 120 * storage now that we've written data. 121 */ 122 if (dio->flags & IOMAP_DIO_NEED_SYNC) 123 ret = generic_write_sync(iocb, ret); 124 if (ret > 0) 125 ret += dio->done_before; 126 } 127 trace_iomap_dio_complete(iocb, dio->error, ret); 128 kfree(dio); 129 return ret; 130 } 131 EXPORT_SYMBOL_GPL(iomap_dio_complete); 132 133 static void iomap_dio_complete_work(struct work_struct *work) 134 { 135 struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work); 136 struct kiocb *iocb = dio->iocb; 137 138 iocb->ki_complete(iocb, iomap_dio_complete(dio)); 139 } 140 141 /* 142 * Set an error in the dio if none is set yet. We have to use cmpxchg 143 * as the submission context and the completion context(s) can race to 144 * update the error. 145 */ 146 static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret) 147 { 148 cmpxchg(&dio->error, 0, ret); 149 } 150 151 void iomap_dio_bio_end_io(struct bio *bio) 152 { 153 struct iomap_dio *dio = bio->bi_private; 154 bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY); 155 156 if (bio->bi_status) 157 iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status)); 158 159 if (atomic_dec_and_test(&dio->ref)) { 160 if (dio->wait_for_completion) { 161 struct task_struct *waiter = dio->submit.waiter; 162 WRITE_ONCE(dio->submit.waiter, NULL); 163 blk_wake_io_task(waiter); 164 } else if (dio->flags & IOMAP_DIO_WRITE) { 165 struct inode *inode = file_inode(dio->iocb->ki_filp); 166 167 WRITE_ONCE(dio->iocb->private, NULL); 168 INIT_WORK(&dio->aio.work, iomap_dio_complete_work); 169 queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work); 170 } else { 171 WRITE_ONCE(dio->iocb->private, NULL); 172 iomap_dio_complete_work(&dio->aio.work); 173 } 174 } 175 176 if (should_dirty) { 177 bio_check_pages_dirty(bio); 178 } else { 179 bio_release_pages(bio, false); 180 bio_put(bio); 181 } 182 } 183 EXPORT_SYMBOL_GPL(iomap_dio_bio_end_io); 184 185 static void iomap_dio_zero(const struct iomap_iter *iter, struct iomap_dio *dio, 186 loff_t pos, unsigned len) 187 { 188 struct inode *inode = file_inode(dio->iocb->ki_filp); 189 struct page *page = ZERO_PAGE(0); 190 struct bio *bio; 191 192 bio = iomap_dio_alloc_bio(iter, dio, 1, REQ_OP_WRITE | REQ_SYNC | REQ_IDLE); 193 fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits, 194 GFP_KERNEL); 195 bio->bi_iter.bi_sector = iomap_sector(&iter->iomap, pos); 196 bio->bi_private = dio; 197 bio->bi_end_io = iomap_dio_bio_end_io; 198 199 __bio_add_page(bio, page, len, 0); 200 iomap_dio_submit_bio(iter, dio, bio, pos); 201 } 202 203 /* 204 * Figure out the bio's operation flags from the dio request, the 205 * mapping, and whether or not we want FUA. Note that we can end up 206 * clearing the WRITE_FUA flag in the dio request. 207 */ 208 static inline blk_opf_t iomap_dio_bio_opflags(struct iomap_dio *dio, 209 const struct iomap *iomap, bool use_fua) 210 { 211 blk_opf_t opflags = REQ_SYNC | REQ_IDLE; 212 213 if (!(dio->flags & IOMAP_DIO_WRITE)) 214 return REQ_OP_READ; 215 216 opflags |= REQ_OP_WRITE; 217 if (use_fua) 218 opflags |= REQ_FUA; 219 else 220 dio->flags &= ~IOMAP_DIO_WRITE_FUA; 221 222 return opflags; 223 } 224 225 static loff_t iomap_dio_bio_iter(const struct iomap_iter *iter, 226 struct iomap_dio *dio) 227 { 228 const struct iomap *iomap = &iter->iomap; 229 struct inode *inode = iter->inode; 230 unsigned int fs_block_size = i_blocksize(inode), pad; 231 loff_t length = iomap_length(iter); 232 loff_t pos = iter->pos; 233 blk_opf_t bio_opf; 234 struct bio *bio; 235 bool need_zeroout = false; 236 bool use_fua = false; 237 int nr_pages, ret = 0; 238 size_t copied = 0; 239 size_t orig_count; 240 241 if ((pos | length) & (bdev_logical_block_size(iomap->bdev) - 1) || 242 !bdev_iter_is_aligned(iomap->bdev, dio->submit.iter)) 243 return -EINVAL; 244 245 if (iomap->type == IOMAP_UNWRITTEN) { 246 dio->flags |= IOMAP_DIO_UNWRITTEN; 247 need_zeroout = true; 248 } 249 250 if (iomap->flags & IOMAP_F_SHARED) 251 dio->flags |= IOMAP_DIO_COW; 252 253 if (iomap->flags & IOMAP_F_NEW) { 254 need_zeroout = true; 255 } else if (iomap->type == IOMAP_MAPPED) { 256 /* 257 * Use a FUA write if we need datasync semantics, this is a pure 258 * data IO that doesn't require any metadata updates (including 259 * after IO completion such as unwritten extent conversion) and 260 * the underlying device supports FUA. This allows us to avoid 261 * cache flushes on IO completion. 262 */ 263 if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) && 264 (dio->flags & IOMAP_DIO_WRITE_FUA) && bdev_fua(iomap->bdev)) 265 use_fua = true; 266 } 267 268 /* 269 * Save the original count and trim the iter to just the extent we 270 * are operating on right now. The iter will be re-expanded once 271 * we are done. 272 */ 273 orig_count = iov_iter_count(dio->submit.iter); 274 iov_iter_truncate(dio->submit.iter, length); 275 276 if (!iov_iter_count(dio->submit.iter)) 277 goto out; 278 279 /* 280 * We can only poll for single bio I/Os. 281 */ 282 if (need_zeroout || 283 ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) 284 dio->iocb->ki_flags &= ~IOCB_HIPRI; 285 286 if (need_zeroout) { 287 /* zero out from the start of the block to the write offset */ 288 pad = pos & (fs_block_size - 1); 289 if (pad) 290 iomap_dio_zero(iter, dio, pos - pad, pad); 291 } 292 293 /* 294 * Set the operation flags early so that bio_iov_iter_get_pages 295 * can set up the page vector appropriately for a ZONE_APPEND 296 * operation. 297 */ 298 bio_opf = iomap_dio_bio_opflags(dio, iomap, use_fua); 299 300 nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, BIO_MAX_VECS); 301 do { 302 size_t n; 303 if (dio->error) { 304 iov_iter_revert(dio->submit.iter, copied); 305 copied = ret = 0; 306 goto out; 307 } 308 309 bio = iomap_dio_alloc_bio(iter, dio, nr_pages, bio_opf); 310 fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits, 311 GFP_KERNEL); 312 bio->bi_iter.bi_sector = iomap_sector(iomap, pos); 313 bio->bi_ioprio = dio->iocb->ki_ioprio; 314 bio->bi_private = dio; 315 bio->bi_end_io = iomap_dio_bio_end_io; 316 317 ret = bio_iov_iter_get_pages(bio, dio->submit.iter); 318 if (unlikely(ret)) { 319 /* 320 * We have to stop part way through an IO. We must fall 321 * through to the sub-block tail zeroing here, otherwise 322 * this short IO may expose stale data in the tail of 323 * the block we haven't written data to. 324 */ 325 bio_put(bio); 326 goto zero_tail; 327 } 328 329 n = bio->bi_iter.bi_size; 330 if (dio->flags & IOMAP_DIO_WRITE) { 331 task_io_account_write(n); 332 } else { 333 if (dio->flags & IOMAP_DIO_DIRTY) 334 bio_set_pages_dirty(bio); 335 } 336 337 dio->size += n; 338 copied += n; 339 340 nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, 341 BIO_MAX_VECS); 342 /* 343 * We can only poll for single bio I/Os. 344 */ 345 if (nr_pages) 346 dio->iocb->ki_flags &= ~IOCB_HIPRI; 347 iomap_dio_submit_bio(iter, dio, bio, pos); 348 pos += n; 349 } while (nr_pages); 350 351 /* 352 * We need to zeroout the tail of a sub-block write if the extent type 353 * requires zeroing or the write extends beyond EOF. If we don't zero 354 * the block tail in the latter case, we can expose stale data via mmap 355 * reads of the EOF block. 356 */ 357 zero_tail: 358 if (need_zeroout || 359 ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) { 360 /* zero out from the end of the write to the end of the block */ 361 pad = pos & (fs_block_size - 1); 362 if (pad) 363 iomap_dio_zero(iter, dio, pos, fs_block_size - pad); 364 } 365 out: 366 /* Undo iter limitation to current extent */ 367 iov_iter_reexpand(dio->submit.iter, orig_count - copied); 368 if (copied) 369 return copied; 370 return ret; 371 } 372 373 static loff_t iomap_dio_hole_iter(const struct iomap_iter *iter, 374 struct iomap_dio *dio) 375 { 376 loff_t length = iov_iter_zero(iomap_length(iter), dio->submit.iter); 377 378 dio->size += length; 379 if (!length) 380 return -EFAULT; 381 return length; 382 } 383 384 static loff_t iomap_dio_inline_iter(const struct iomap_iter *iomi, 385 struct iomap_dio *dio) 386 { 387 const struct iomap *iomap = &iomi->iomap; 388 struct iov_iter *iter = dio->submit.iter; 389 void *inline_data = iomap_inline_data(iomap, iomi->pos); 390 loff_t length = iomap_length(iomi); 391 loff_t pos = iomi->pos; 392 size_t copied; 393 394 if (WARN_ON_ONCE(!iomap_inline_data_valid(iomap))) 395 return -EIO; 396 397 if (dio->flags & IOMAP_DIO_WRITE) { 398 loff_t size = iomi->inode->i_size; 399 400 if (pos > size) 401 memset(iomap_inline_data(iomap, size), 0, pos - size); 402 copied = copy_from_iter(inline_data, length, iter); 403 if (copied) { 404 if (pos + copied > size) 405 i_size_write(iomi->inode, pos + copied); 406 mark_inode_dirty(iomi->inode); 407 } 408 } else { 409 copied = copy_to_iter(inline_data, length, iter); 410 } 411 dio->size += copied; 412 if (!copied) 413 return -EFAULT; 414 return copied; 415 } 416 417 static loff_t iomap_dio_iter(const struct iomap_iter *iter, 418 struct iomap_dio *dio) 419 { 420 switch (iter->iomap.type) { 421 case IOMAP_HOLE: 422 if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE)) 423 return -EIO; 424 return iomap_dio_hole_iter(iter, dio); 425 case IOMAP_UNWRITTEN: 426 if (!(dio->flags & IOMAP_DIO_WRITE)) 427 return iomap_dio_hole_iter(iter, dio); 428 return iomap_dio_bio_iter(iter, dio); 429 case IOMAP_MAPPED: 430 return iomap_dio_bio_iter(iter, dio); 431 case IOMAP_INLINE: 432 return iomap_dio_inline_iter(iter, dio); 433 case IOMAP_DELALLOC: 434 /* 435 * DIO is not serialised against mmap() access at all, and so 436 * if the page_mkwrite occurs between the writeback and the 437 * iomap_iter() call in the DIO path, then it will see the 438 * DELALLOC block that the page-mkwrite allocated. 439 */ 440 pr_warn_ratelimited("Direct I/O collision with buffered writes! File: %pD4 Comm: %.20s\n", 441 dio->iocb->ki_filp, current->comm); 442 return -EIO; 443 default: 444 WARN_ON_ONCE(1); 445 return -EIO; 446 } 447 } 448 449 /* 450 * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO 451 * is being issued as AIO or not. This allows us to optimise pure data writes 452 * to use REQ_FUA rather than requiring generic_write_sync() to issue a 453 * REQ_FLUSH post write. This is slightly tricky because a single request here 454 * can be mapped into multiple disjoint IOs and only a subset of the IOs issued 455 * may be pure data writes. In that case, we still need to do a full data sync 456 * completion. 457 * 458 * When page faults are disabled and @dio_flags includes IOMAP_DIO_PARTIAL, 459 * __iomap_dio_rw can return a partial result if it encounters a non-resident 460 * page in @iter after preparing a transfer. In that case, the non-resident 461 * pages can be faulted in and the request resumed with @done_before set to the 462 * number of bytes previously transferred. The request will then complete with 463 * the correct total number of bytes transferred; this is essential for 464 * completing partial requests asynchronously. 465 * 466 * Returns -ENOTBLK In case of a page invalidation invalidation failure for 467 * writes. The callers needs to fall back to buffered I/O in this case. 468 */ 469 struct iomap_dio * 470 __iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter, 471 const struct iomap_ops *ops, const struct iomap_dio_ops *dops, 472 unsigned int dio_flags, void *private, size_t done_before) 473 { 474 struct inode *inode = file_inode(iocb->ki_filp); 475 struct iomap_iter iomi = { 476 .inode = inode, 477 .pos = iocb->ki_pos, 478 .len = iov_iter_count(iter), 479 .flags = IOMAP_DIRECT, 480 .private = private, 481 }; 482 bool wait_for_completion = 483 is_sync_kiocb(iocb) || (dio_flags & IOMAP_DIO_FORCE_WAIT); 484 struct blk_plug plug; 485 struct iomap_dio *dio; 486 loff_t ret = 0; 487 488 trace_iomap_dio_rw_begin(iocb, iter, dio_flags, done_before); 489 490 if (!iomi.len) 491 return NULL; 492 493 dio = kmalloc(sizeof(*dio), GFP_KERNEL); 494 if (!dio) 495 return ERR_PTR(-ENOMEM); 496 497 dio->iocb = iocb; 498 atomic_set(&dio->ref, 1); 499 dio->size = 0; 500 dio->i_size = i_size_read(inode); 501 dio->dops = dops; 502 dio->error = 0; 503 dio->flags = 0; 504 dio->done_before = done_before; 505 506 dio->submit.iter = iter; 507 dio->submit.waiter = current; 508 dio->submit.poll_bio = NULL; 509 510 if (iocb->ki_flags & IOCB_NOWAIT) 511 iomi.flags |= IOMAP_NOWAIT; 512 513 if (iov_iter_rw(iter) == READ) { 514 if (iomi.pos >= dio->i_size) 515 goto out_free_dio; 516 517 if (user_backed_iter(iter)) 518 dio->flags |= IOMAP_DIO_DIRTY; 519 520 ret = kiocb_write_and_wait(iocb, iomi.len); 521 if (ret) 522 goto out_free_dio; 523 } else { 524 iomi.flags |= IOMAP_WRITE; 525 dio->flags |= IOMAP_DIO_WRITE; 526 527 if (dio_flags & IOMAP_DIO_OVERWRITE_ONLY) { 528 ret = -EAGAIN; 529 if (iomi.pos >= dio->i_size || 530 iomi.pos + iomi.len > dio->i_size) 531 goto out_free_dio; 532 iomi.flags |= IOMAP_OVERWRITE_ONLY; 533 } 534 535 /* for data sync or sync, we need sync completion processing */ 536 if (iocb_is_dsync(iocb)) { 537 dio->flags |= IOMAP_DIO_NEED_SYNC; 538 539 /* 540 * For datasync only writes, we optimistically try 541 * using FUA for this IO. Any non-FUA write that 542 * occurs will clear this flag, hence we know before 543 * completion whether a cache flush is necessary. 544 */ 545 if (!(iocb->ki_flags & IOCB_SYNC)) 546 dio->flags |= IOMAP_DIO_WRITE_FUA; 547 } 548 549 /* 550 * Try to invalidate cache pages for the range we are writing. 551 * If this invalidation fails, let the caller fall back to 552 * buffered I/O. 553 */ 554 ret = kiocb_invalidate_pages(iocb, iomi.len); 555 if (ret) { 556 if (ret != -EAGAIN) { 557 trace_iomap_dio_invalidate_fail(inode, iomi.pos, 558 iomi.len); 559 ret = -ENOTBLK; 560 } 561 goto out_free_dio; 562 } 563 564 if (!wait_for_completion && !inode->i_sb->s_dio_done_wq) { 565 ret = sb_init_dio_done_wq(inode->i_sb); 566 if (ret < 0) 567 goto out_free_dio; 568 } 569 } 570 571 inode_dio_begin(inode); 572 573 blk_start_plug(&plug); 574 while ((ret = iomap_iter(&iomi, ops)) > 0) { 575 iomi.processed = iomap_dio_iter(&iomi, dio); 576 577 /* 578 * We can only poll for single bio I/Os. 579 */ 580 iocb->ki_flags &= ~IOCB_HIPRI; 581 } 582 583 blk_finish_plug(&plug); 584 585 /* 586 * We only report that we've read data up to i_size. 587 * Revert iter to a state corresponding to that as some callers (such 588 * as the splice code) rely on it. 589 */ 590 if (iov_iter_rw(iter) == READ && iomi.pos >= dio->i_size) 591 iov_iter_revert(iter, iomi.pos - dio->i_size); 592 593 if (ret == -EFAULT && dio->size && (dio_flags & IOMAP_DIO_PARTIAL)) { 594 if (!(iocb->ki_flags & IOCB_NOWAIT)) 595 wait_for_completion = true; 596 ret = 0; 597 } 598 599 /* magic error code to fall back to buffered I/O */ 600 if (ret == -ENOTBLK) { 601 wait_for_completion = true; 602 ret = 0; 603 } 604 if (ret < 0) 605 iomap_dio_set_error(dio, ret); 606 607 /* 608 * If all the writes we issued were FUA, we don't need to flush the 609 * cache on IO completion. Clear the sync flag for this case. 610 */ 611 if (dio->flags & IOMAP_DIO_WRITE_FUA) 612 dio->flags &= ~IOMAP_DIO_NEED_SYNC; 613 614 WRITE_ONCE(iocb->private, dio->submit.poll_bio); 615 616 /* 617 * We are about to drop our additional submission reference, which 618 * might be the last reference to the dio. There are three different 619 * ways we can progress here: 620 * 621 * (a) If this is the last reference we will always complete and free 622 * the dio ourselves. 623 * (b) If this is not the last reference, and we serve an asynchronous 624 * iocb, we must never touch the dio after the decrement, the 625 * I/O completion handler will complete and free it. 626 * (c) If this is not the last reference, but we serve a synchronous 627 * iocb, the I/O completion handler will wake us up on the drop 628 * of the final reference, and we will complete and free it here 629 * after we got woken by the I/O completion handler. 630 */ 631 dio->wait_for_completion = wait_for_completion; 632 if (!atomic_dec_and_test(&dio->ref)) { 633 if (!wait_for_completion) { 634 trace_iomap_dio_rw_queued(inode, iomi.pos, iomi.len); 635 return ERR_PTR(-EIOCBQUEUED); 636 } 637 638 for (;;) { 639 set_current_state(TASK_UNINTERRUPTIBLE); 640 if (!READ_ONCE(dio->submit.waiter)) 641 break; 642 643 blk_io_schedule(); 644 } 645 __set_current_state(TASK_RUNNING); 646 } 647 648 return dio; 649 650 out_free_dio: 651 kfree(dio); 652 if (ret) 653 return ERR_PTR(ret); 654 return NULL; 655 } 656 EXPORT_SYMBOL_GPL(__iomap_dio_rw); 657 658 ssize_t 659 iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter, 660 const struct iomap_ops *ops, const struct iomap_dio_ops *dops, 661 unsigned int dio_flags, void *private, size_t done_before) 662 { 663 struct iomap_dio *dio; 664 665 dio = __iomap_dio_rw(iocb, iter, ops, dops, dio_flags, private, 666 done_before); 667 if (IS_ERR_OR_NULL(dio)) 668 return PTR_ERR_OR_ZERO(dio); 669 return iomap_dio_complete(dio); 670 } 671 EXPORT_SYMBOL_GPL(iomap_dio_rw); 672