1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Red Hat, Inc. 4 * Copyright (c) 2016-2021 Christoph Hellwig. 5 */ 6 #include <linux/module.h> 7 #include <linux/compiler.h> 8 #include <linux/fs.h> 9 #include <linux/iomap.h> 10 #include <linux/backing-dev.h> 11 #include <linux/uio.h> 12 #include <linux/task_io_accounting_ops.h> 13 #include "trace.h" 14 15 #include "../internal.h" 16 17 /* 18 * Private flags for iomap_dio, must not overlap with the public ones in 19 * iomap.h: 20 */ 21 #define IOMAP_DIO_WRITE_FUA (1 << 28) 22 #define IOMAP_DIO_NEED_SYNC (1 << 29) 23 #define IOMAP_DIO_WRITE (1 << 30) 24 #define IOMAP_DIO_DIRTY (1 << 31) 25 26 struct iomap_dio { 27 struct kiocb *iocb; 28 const struct iomap_dio_ops *dops; 29 loff_t i_size; 30 loff_t size; 31 atomic_t ref; 32 unsigned flags; 33 int error; 34 bool wait_for_completion; 35 36 union { 37 /* used during submission and for synchronous completion: */ 38 struct { 39 struct iov_iter *iter; 40 struct task_struct *waiter; 41 struct bio *poll_bio; 42 } submit; 43 44 /* used for aio completion: */ 45 struct { 46 struct work_struct work; 47 } aio; 48 }; 49 }; 50 51 static void iomap_dio_submit_bio(const struct iomap_iter *iter, 52 struct iomap_dio *dio, struct bio *bio, loff_t pos) 53 { 54 atomic_inc(&dio->ref); 55 56 if (dio->iocb->ki_flags & IOCB_HIPRI) { 57 bio_set_polled(bio, dio->iocb); 58 dio->submit.poll_bio = bio; 59 } 60 61 if (dio->dops && dio->dops->submit_io) 62 dio->dops->submit_io(iter, bio, pos); 63 else 64 submit_bio(bio); 65 } 66 67 ssize_t iomap_dio_complete(struct iomap_dio *dio) 68 { 69 const struct iomap_dio_ops *dops = dio->dops; 70 struct kiocb *iocb = dio->iocb; 71 struct inode *inode = file_inode(iocb->ki_filp); 72 loff_t offset = iocb->ki_pos; 73 ssize_t ret = dio->error; 74 75 if (dops && dops->end_io) 76 ret = dops->end_io(iocb, dio->size, ret, dio->flags); 77 78 if (likely(!ret)) { 79 ret = dio->size; 80 /* check for short read */ 81 if (offset + ret > dio->i_size && 82 !(dio->flags & IOMAP_DIO_WRITE)) 83 ret = dio->i_size - offset; 84 iocb->ki_pos += ret; 85 } 86 87 /* 88 * Try again to invalidate clean pages which might have been cached by 89 * non-direct readahead, or faulted in by get_user_pages() if the source 90 * of the write was an mmap'ed region of the file we're writing. Either 91 * one is a pretty crazy thing to do, so we don't support it 100%. If 92 * this invalidation fails, tough, the write still worked... 93 * 94 * And this page cache invalidation has to be after ->end_io(), as some 95 * filesystems convert unwritten extents to real allocations in 96 * ->end_io() when necessary, otherwise a racing buffer read would cache 97 * zeros from unwritten extents. 98 */ 99 if (!dio->error && dio->size && 100 (dio->flags & IOMAP_DIO_WRITE) && inode->i_mapping->nrpages) { 101 int err; 102 err = invalidate_inode_pages2_range(inode->i_mapping, 103 offset >> PAGE_SHIFT, 104 (offset + dio->size - 1) >> PAGE_SHIFT); 105 if (err) 106 dio_warn_stale_pagecache(iocb->ki_filp); 107 } 108 109 inode_dio_end(file_inode(iocb->ki_filp)); 110 /* 111 * If this is a DSYNC write, make sure we push it to stable storage now 112 * that we've written data. 113 */ 114 if (ret > 0 && (dio->flags & IOMAP_DIO_NEED_SYNC)) 115 ret = generic_write_sync(iocb, ret); 116 117 kfree(dio); 118 119 return ret; 120 } 121 EXPORT_SYMBOL_GPL(iomap_dio_complete); 122 123 static void iomap_dio_complete_work(struct work_struct *work) 124 { 125 struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work); 126 struct kiocb *iocb = dio->iocb; 127 128 iocb->ki_complete(iocb, iomap_dio_complete(dio)); 129 } 130 131 /* 132 * Set an error in the dio if none is set yet. We have to use cmpxchg 133 * as the submission context and the completion context(s) can race to 134 * update the error. 135 */ 136 static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret) 137 { 138 cmpxchg(&dio->error, 0, ret); 139 } 140 141 static void iomap_dio_bio_end_io(struct bio *bio) 142 { 143 struct iomap_dio *dio = bio->bi_private; 144 bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY); 145 146 if (bio->bi_status) 147 iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status)); 148 149 if (atomic_dec_and_test(&dio->ref)) { 150 if (dio->wait_for_completion) { 151 struct task_struct *waiter = dio->submit.waiter; 152 WRITE_ONCE(dio->submit.waiter, NULL); 153 blk_wake_io_task(waiter); 154 } else if (dio->flags & IOMAP_DIO_WRITE) { 155 struct inode *inode = file_inode(dio->iocb->ki_filp); 156 157 WRITE_ONCE(dio->iocb->private, NULL); 158 INIT_WORK(&dio->aio.work, iomap_dio_complete_work); 159 queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work); 160 } else { 161 WRITE_ONCE(dio->iocb->private, NULL); 162 iomap_dio_complete_work(&dio->aio.work); 163 } 164 } 165 166 if (should_dirty) { 167 bio_check_pages_dirty(bio); 168 } else { 169 bio_release_pages(bio, false); 170 bio_put(bio); 171 } 172 } 173 174 static void iomap_dio_zero(const struct iomap_iter *iter, struct iomap_dio *dio, 175 loff_t pos, unsigned len) 176 { 177 struct page *page = ZERO_PAGE(0); 178 int flags = REQ_SYNC | REQ_IDLE; 179 struct bio *bio; 180 181 bio = bio_alloc(GFP_KERNEL, 1); 182 bio_set_dev(bio, iter->iomap.bdev); 183 bio->bi_iter.bi_sector = iomap_sector(&iter->iomap, pos); 184 bio->bi_private = dio; 185 bio->bi_end_io = iomap_dio_bio_end_io; 186 187 get_page(page); 188 __bio_add_page(bio, page, len, 0); 189 bio_set_op_attrs(bio, REQ_OP_WRITE, flags); 190 iomap_dio_submit_bio(iter, dio, bio, pos); 191 } 192 193 /* 194 * Figure out the bio's operation flags from the dio request, the 195 * mapping, and whether or not we want FUA. Note that we can end up 196 * clearing the WRITE_FUA flag in the dio request. 197 */ 198 static inline unsigned int iomap_dio_bio_opflags(struct iomap_dio *dio, 199 const struct iomap *iomap, bool use_fua) 200 { 201 unsigned int opflags = REQ_SYNC | REQ_IDLE; 202 203 if (!(dio->flags & IOMAP_DIO_WRITE)) { 204 WARN_ON_ONCE(iomap->flags & IOMAP_F_ZONE_APPEND); 205 return REQ_OP_READ; 206 } 207 208 if (iomap->flags & IOMAP_F_ZONE_APPEND) 209 opflags |= REQ_OP_ZONE_APPEND; 210 else 211 opflags |= REQ_OP_WRITE; 212 213 if (use_fua) 214 opflags |= REQ_FUA; 215 else 216 dio->flags &= ~IOMAP_DIO_WRITE_FUA; 217 218 return opflags; 219 } 220 221 static loff_t iomap_dio_bio_iter(const struct iomap_iter *iter, 222 struct iomap_dio *dio) 223 { 224 const struct iomap *iomap = &iter->iomap; 225 struct inode *inode = iter->inode; 226 unsigned int blkbits = blksize_bits(bdev_logical_block_size(iomap->bdev)); 227 unsigned int fs_block_size = i_blocksize(inode), pad; 228 unsigned int align = iov_iter_alignment(dio->submit.iter); 229 loff_t length = iomap_length(iter); 230 loff_t pos = iter->pos; 231 unsigned int bio_opf; 232 struct bio *bio; 233 bool need_zeroout = false; 234 bool use_fua = false; 235 int nr_pages, ret = 0; 236 size_t copied = 0; 237 size_t orig_count; 238 239 if ((pos | length | align) & ((1 << blkbits) - 1)) 240 return -EINVAL; 241 242 if (iomap->type == IOMAP_UNWRITTEN) { 243 dio->flags |= IOMAP_DIO_UNWRITTEN; 244 need_zeroout = true; 245 } 246 247 if (iomap->flags & IOMAP_F_SHARED) 248 dio->flags |= IOMAP_DIO_COW; 249 250 if (iomap->flags & IOMAP_F_NEW) { 251 need_zeroout = true; 252 } else if (iomap->type == IOMAP_MAPPED) { 253 /* 254 * Use a FUA write if we need datasync semantics, this is a pure 255 * data IO that doesn't require any metadata updates (including 256 * after IO completion such as unwritten extent conversion) and 257 * the underlying device supports FUA. This allows us to avoid 258 * cache flushes on IO completion. 259 */ 260 if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) && 261 (dio->flags & IOMAP_DIO_WRITE_FUA) && 262 blk_queue_fua(bdev_get_queue(iomap->bdev))) 263 use_fua = true; 264 } 265 266 /* 267 * Save the original count and trim the iter to just the extent we 268 * are operating on right now. The iter will be re-expanded once 269 * we are done. 270 */ 271 orig_count = iov_iter_count(dio->submit.iter); 272 iov_iter_truncate(dio->submit.iter, length); 273 274 if (!iov_iter_count(dio->submit.iter)) 275 goto out; 276 277 /* 278 * We can only poll for single bio I/Os. 279 */ 280 if (need_zeroout || 281 ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) 282 dio->iocb->ki_flags &= ~IOCB_HIPRI; 283 284 if (need_zeroout) { 285 /* zero out from the start of the block to the write offset */ 286 pad = pos & (fs_block_size - 1); 287 if (pad) 288 iomap_dio_zero(iter, dio, pos - pad, pad); 289 } 290 291 /* 292 * Set the operation flags early so that bio_iov_iter_get_pages 293 * can set up the page vector appropriately for a ZONE_APPEND 294 * operation. 295 */ 296 bio_opf = iomap_dio_bio_opflags(dio, iomap, use_fua); 297 298 nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, BIO_MAX_VECS); 299 do { 300 size_t n; 301 if (dio->error) { 302 iov_iter_revert(dio->submit.iter, copied); 303 copied = ret = 0; 304 goto out; 305 } 306 307 bio = bio_alloc(GFP_KERNEL, nr_pages); 308 bio_set_dev(bio, iomap->bdev); 309 bio->bi_iter.bi_sector = iomap_sector(iomap, pos); 310 bio->bi_write_hint = dio->iocb->ki_hint; 311 bio->bi_ioprio = dio->iocb->ki_ioprio; 312 bio->bi_private = dio; 313 bio->bi_end_io = iomap_dio_bio_end_io; 314 bio->bi_opf = bio_opf; 315 316 ret = bio_iov_iter_get_pages(bio, dio->submit.iter); 317 if (unlikely(ret)) { 318 /* 319 * We have to stop part way through an IO. We must fall 320 * through to the sub-block tail zeroing here, otherwise 321 * this short IO may expose stale data in the tail of 322 * the block we haven't written data to. 323 */ 324 bio_put(bio); 325 goto zero_tail; 326 } 327 328 n = bio->bi_iter.bi_size; 329 if (dio->flags & IOMAP_DIO_WRITE) { 330 task_io_account_write(n); 331 } else { 332 if (dio->flags & IOMAP_DIO_DIRTY) 333 bio_set_pages_dirty(bio); 334 } 335 336 dio->size += n; 337 copied += n; 338 339 nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, 340 BIO_MAX_VECS); 341 /* 342 * We can only poll for single bio I/Os. 343 */ 344 if (nr_pages) 345 dio->iocb->ki_flags &= ~IOCB_HIPRI; 346 iomap_dio_submit_bio(iter, dio, bio, pos); 347 pos += n; 348 } while (nr_pages); 349 350 /* 351 * We need to zeroout the tail of a sub-block write if the extent type 352 * requires zeroing or the write extends beyond EOF. If we don't zero 353 * the block tail in the latter case, we can expose stale data via mmap 354 * reads of the EOF block. 355 */ 356 zero_tail: 357 if (need_zeroout || 358 ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) { 359 /* zero out from the end of the write to the end of the block */ 360 pad = pos & (fs_block_size - 1); 361 if (pad) 362 iomap_dio_zero(iter, dio, pos, fs_block_size - pad); 363 } 364 out: 365 /* Undo iter limitation to current extent */ 366 iov_iter_reexpand(dio->submit.iter, orig_count - copied); 367 if (copied) 368 return copied; 369 return ret; 370 } 371 372 static loff_t iomap_dio_hole_iter(const struct iomap_iter *iter, 373 struct iomap_dio *dio) 374 { 375 loff_t length = iov_iter_zero(iomap_length(iter), dio->submit.iter); 376 377 dio->size += length; 378 return length; 379 } 380 381 static loff_t iomap_dio_inline_iter(const struct iomap_iter *iomi, 382 struct iomap_dio *dio) 383 { 384 const struct iomap *iomap = &iomi->iomap; 385 struct iov_iter *iter = dio->submit.iter; 386 void *inline_data = iomap_inline_data(iomap, iomi->pos); 387 loff_t length = iomap_length(iomi); 388 loff_t pos = iomi->pos; 389 size_t copied; 390 391 if (WARN_ON_ONCE(!iomap_inline_data_valid(iomap))) 392 return -EIO; 393 394 if (dio->flags & IOMAP_DIO_WRITE) { 395 loff_t size = iomi->inode->i_size; 396 397 if (pos > size) 398 memset(iomap_inline_data(iomap, size), 0, pos - size); 399 copied = copy_from_iter(inline_data, length, iter); 400 if (copied) { 401 if (pos + copied > size) 402 i_size_write(iomi->inode, pos + copied); 403 mark_inode_dirty(iomi->inode); 404 } 405 } else { 406 copied = copy_to_iter(inline_data, length, iter); 407 } 408 dio->size += copied; 409 return copied; 410 } 411 412 static loff_t iomap_dio_iter(const struct iomap_iter *iter, 413 struct iomap_dio *dio) 414 { 415 switch (iter->iomap.type) { 416 case IOMAP_HOLE: 417 if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE)) 418 return -EIO; 419 return iomap_dio_hole_iter(iter, dio); 420 case IOMAP_UNWRITTEN: 421 if (!(dio->flags & IOMAP_DIO_WRITE)) 422 return iomap_dio_hole_iter(iter, dio); 423 return iomap_dio_bio_iter(iter, dio); 424 case IOMAP_MAPPED: 425 return iomap_dio_bio_iter(iter, dio); 426 case IOMAP_INLINE: 427 return iomap_dio_inline_iter(iter, dio); 428 case IOMAP_DELALLOC: 429 /* 430 * DIO is not serialised against mmap() access at all, and so 431 * if the page_mkwrite occurs between the writeback and the 432 * iomap_iter() call in the DIO path, then it will see the 433 * DELALLOC block that the page-mkwrite allocated. 434 */ 435 pr_warn_ratelimited("Direct I/O collision with buffered writes! File: %pD4 Comm: %.20s\n", 436 dio->iocb->ki_filp, current->comm); 437 return -EIO; 438 default: 439 WARN_ON_ONCE(1); 440 return -EIO; 441 } 442 } 443 444 /* 445 * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO 446 * is being issued as AIO or not. This allows us to optimise pure data writes 447 * to use REQ_FUA rather than requiring generic_write_sync() to issue a 448 * REQ_FLUSH post write. This is slightly tricky because a single request here 449 * can be mapped into multiple disjoint IOs and only a subset of the IOs issued 450 * may be pure data writes. In that case, we still need to do a full data sync 451 * completion. 452 * 453 * Returns -ENOTBLK In case of a page invalidation invalidation failure for 454 * writes. The callers needs to fall back to buffered I/O in this case. 455 */ 456 struct iomap_dio * 457 __iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter, 458 const struct iomap_ops *ops, const struct iomap_dio_ops *dops, 459 unsigned int dio_flags) 460 { 461 struct address_space *mapping = iocb->ki_filp->f_mapping; 462 struct inode *inode = file_inode(iocb->ki_filp); 463 struct iomap_iter iomi = { 464 .inode = inode, 465 .pos = iocb->ki_pos, 466 .len = iov_iter_count(iter), 467 .flags = IOMAP_DIRECT, 468 }; 469 loff_t end = iomi.pos + iomi.len - 1, ret = 0; 470 bool wait_for_completion = 471 is_sync_kiocb(iocb) || (dio_flags & IOMAP_DIO_FORCE_WAIT); 472 struct blk_plug plug; 473 struct iomap_dio *dio; 474 475 if (!iomi.len) 476 return NULL; 477 478 dio = kmalloc(sizeof(*dio), GFP_KERNEL); 479 if (!dio) 480 return ERR_PTR(-ENOMEM); 481 482 dio->iocb = iocb; 483 atomic_set(&dio->ref, 1); 484 dio->size = 0; 485 dio->i_size = i_size_read(inode); 486 dio->dops = dops; 487 dio->error = 0; 488 dio->flags = 0; 489 490 dio->submit.iter = iter; 491 dio->submit.waiter = current; 492 dio->submit.poll_bio = NULL; 493 494 if (iov_iter_rw(iter) == READ) { 495 if (iomi.pos >= dio->i_size) 496 goto out_free_dio; 497 498 if (iocb->ki_flags & IOCB_NOWAIT) { 499 if (filemap_range_needs_writeback(mapping, iomi.pos, 500 end)) { 501 ret = -EAGAIN; 502 goto out_free_dio; 503 } 504 iomi.flags |= IOMAP_NOWAIT; 505 } 506 507 if (iter_is_iovec(iter)) 508 dio->flags |= IOMAP_DIO_DIRTY; 509 } else { 510 iomi.flags |= IOMAP_WRITE; 511 dio->flags |= IOMAP_DIO_WRITE; 512 513 if (iocb->ki_flags & IOCB_NOWAIT) { 514 if (filemap_range_has_page(mapping, iomi.pos, end)) { 515 ret = -EAGAIN; 516 goto out_free_dio; 517 } 518 iomi.flags |= IOMAP_NOWAIT; 519 } 520 521 /* for data sync or sync, we need sync completion processing */ 522 if (iocb->ki_flags & IOCB_DSYNC) 523 dio->flags |= IOMAP_DIO_NEED_SYNC; 524 525 /* 526 * For datasync only writes, we optimistically try using FUA for 527 * this IO. Any non-FUA write that occurs will clear this flag, 528 * hence we know before completion whether a cache flush is 529 * necessary. 530 */ 531 if ((iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC)) == IOCB_DSYNC) 532 dio->flags |= IOMAP_DIO_WRITE_FUA; 533 } 534 535 if (dio_flags & IOMAP_DIO_OVERWRITE_ONLY) { 536 ret = -EAGAIN; 537 if (iomi.pos >= dio->i_size || 538 iomi.pos + iomi.len > dio->i_size) 539 goto out_free_dio; 540 iomi.flags |= IOMAP_OVERWRITE_ONLY; 541 } 542 543 ret = filemap_write_and_wait_range(mapping, iomi.pos, end); 544 if (ret) 545 goto out_free_dio; 546 547 if (iov_iter_rw(iter) == WRITE) { 548 /* 549 * Try to invalidate cache pages for the range we are writing. 550 * If this invalidation fails, let the caller fall back to 551 * buffered I/O. 552 */ 553 if (invalidate_inode_pages2_range(mapping, 554 iomi.pos >> PAGE_SHIFT, end >> PAGE_SHIFT)) { 555 trace_iomap_dio_invalidate_fail(inode, iomi.pos, 556 iomi.len); 557 ret = -ENOTBLK; 558 goto out_free_dio; 559 } 560 561 if (!wait_for_completion && !inode->i_sb->s_dio_done_wq) { 562 ret = sb_init_dio_done_wq(inode->i_sb); 563 if (ret < 0) 564 goto out_free_dio; 565 } 566 } 567 568 inode_dio_begin(inode); 569 570 blk_start_plug(&plug); 571 while ((ret = iomap_iter(&iomi, ops)) > 0) { 572 iomi.processed = iomap_dio_iter(&iomi, dio); 573 574 /* 575 * We can only poll for single bio I/Os. 576 */ 577 iocb->ki_flags &= ~IOCB_HIPRI; 578 } 579 580 blk_finish_plug(&plug); 581 582 /* 583 * We only report that we've read data up to i_size. 584 * Revert iter to a state corresponding to that as some callers (such 585 * as the splice code) rely on it. 586 */ 587 if (iov_iter_rw(iter) == READ && iomi.pos >= dio->i_size) 588 iov_iter_revert(iter, iomi.pos - dio->i_size); 589 590 /* magic error code to fall back to buffered I/O */ 591 if (ret == -ENOTBLK) { 592 wait_for_completion = true; 593 ret = 0; 594 } 595 if (ret < 0) 596 iomap_dio_set_error(dio, ret); 597 598 /* 599 * If all the writes we issued were FUA, we don't need to flush the 600 * cache on IO completion. Clear the sync flag for this case. 601 */ 602 if (dio->flags & IOMAP_DIO_WRITE_FUA) 603 dio->flags &= ~IOMAP_DIO_NEED_SYNC; 604 605 WRITE_ONCE(iocb->private, dio->submit.poll_bio); 606 607 /* 608 * We are about to drop our additional submission reference, which 609 * might be the last reference to the dio. There are three different 610 * ways we can progress here: 611 * 612 * (a) If this is the last reference we will always complete and free 613 * the dio ourselves. 614 * (b) If this is not the last reference, and we serve an asynchronous 615 * iocb, we must never touch the dio after the decrement, the 616 * I/O completion handler will complete and free it. 617 * (c) If this is not the last reference, but we serve a synchronous 618 * iocb, the I/O completion handler will wake us up on the drop 619 * of the final reference, and we will complete and free it here 620 * after we got woken by the I/O completion handler. 621 */ 622 dio->wait_for_completion = wait_for_completion; 623 if (!atomic_dec_and_test(&dio->ref)) { 624 if (!wait_for_completion) 625 return ERR_PTR(-EIOCBQUEUED); 626 627 for (;;) { 628 set_current_state(TASK_UNINTERRUPTIBLE); 629 if (!READ_ONCE(dio->submit.waiter)) 630 break; 631 632 if (!dio->submit.poll_bio || 633 !bio_poll(dio->submit.poll_bio, NULL, 0)) 634 blk_io_schedule(); 635 } 636 __set_current_state(TASK_RUNNING); 637 } 638 639 return dio; 640 641 out_free_dio: 642 kfree(dio); 643 if (ret) 644 return ERR_PTR(ret); 645 return NULL; 646 } 647 EXPORT_SYMBOL_GPL(__iomap_dio_rw); 648 649 ssize_t 650 iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter, 651 const struct iomap_ops *ops, const struct iomap_dio_ops *dops, 652 unsigned int dio_flags) 653 { 654 struct iomap_dio *dio; 655 656 dio = __iomap_dio_rw(iocb, iter, ops, dops, dio_flags); 657 if (IS_ERR_OR_NULL(dio)) 658 return PTR_ERR_OR_ZERO(dio); 659 return iomap_dio_complete(dio); 660 } 661 EXPORT_SYMBOL_GPL(iomap_dio_rw); 662