1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Red Hat, Inc. 4 * Copyright (c) 2016-2021 Christoph Hellwig. 5 */ 6 #include <linux/module.h> 7 #include <linux/compiler.h> 8 #include <linux/fs.h> 9 #include <linux/fscrypt.h> 10 #include <linux/pagemap.h> 11 #include <linux/iomap.h> 12 #include <linux/backing-dev.h> 13 #include <linux/uio.h> 14 #include <linux/task_io_accounting_ops.h> 15 #include "trace.h" 16 17 #include "../internal.h" 18 19 /* 20 * Private flags for iomap_dio, must not overlap with the public ones in 21 * iomap.h: 22 */ 23 #define IOMAP_DIO_WRITE_FUA (1 << 28) 24 #define IOMAP_DIO_NEED_SYNC (1 << 29) 25 #define IOMAP_DIO_WRITE (1 << 30) 26 #define IOMAP_DIO_DIRTY (1 << 31) 27 28 struct iomap_dio { 29 struct kiocb *iocb; 30 const struct iomap_dio_ops *dops; 31 loff_t i_size; 32 loff_t size; 33 atomic_t ref; 34 unsigned flags; 35 int error; 36 size_t done_before; 37 bool wait_for_completion; 38 39 union { 40 /* used during submission and for synchronous completion: */ 41 struct { 42 struct iov_iter *iter; 43 struct task_struct *waiter; 44 struct bio *poll_bio; 45 } submit; 46 47 /* used for aio completion: */ 48 struct { 49 struct work_struct work; 50 } aio; 51 }; 52 }; 53 54 static struct bio *iomap_dio_alloc_bio(const struct iomap_iter *iter, 55 struct iomap_dio *dio, unsigned short nr_vecs, blk_opf_t opf) 56 { 57 if (dio->dops && dio->dops->bio_set) 58 return bio_alloc_bioset(iter->iomap.bdev, nr_vecs, opf, 59 GFP_KERNEL, dio->dops->bio_set); 60 return bio_alloc(iter->iomap.bdev, nr_vecs, opf, GFP_KERNEL); 61 } 62 63 static void iomap_dio_submit_bio(const struct iomap_iter *iter, 64 struct iomap_dio *dio, struct bio *bio, loff_t pos) 65 { 66 atomic_inc(&dio->ref); 67 68 /* Sync dio can't be polled reliably */ 69 if ((dio->iocb->ki_flags & IOCB_HIPRI) && !is_sync_kiocb(dio->iocb)) { 70 bio_set_polled(bio, dio->iocb); 71 dio->submit.poll_bio = bio; 72 } 73 74 if (dio->dops && dio->dops->submit_io) 75 dio->dops->submit_io(iter, bio, pos); 76 else 77 submit_bio(bio); 78 } 79 80 ssize_t iomap_dio_complete(struct iomap_dio *dio) 81 { 82 const struct iomap_dio_ops *dops = dio->dops; 83 struct kiocb *iocb = dio->iocb; 84 struct inode *inode = file_inode(iocb->ki_filp); 85 loff_t offset = iocb->ki_pos; 86 ssize_t ret = dio->error; 87 88 if (dops && dops->end_io) 89 ret = dops->end_io(iocb, dio->size, ret, dio->flags); 90 91 if (likely(!ret)) { 92 ret = dio->size; 93 /* check for short read */ 94 if (offset + ret > dio->i_size && 95 !(dio->flags & IOMAP_DIO_WRITE)) 96 ret = dio->i_size - offset; 97 iocb->ki_pos += ret; 98 } 99 100 /* 101 * Try again to invalidate clean pages which might have been cached by 102 * non-direct readahead, or faulted in by get_user_pages() if the source 103 * of the write was an mmap'ed region of the file we're writing. Either 104 * one is a pretty crazy thing to do, so we don't support it 100%. If 105 * this invalidation fails, tough, the write still worked... 106 * 107 * And this page cache invalidation has to be after ->end_io(), as some 108 * filesystems convert unwritten extents to real allocations in 109 * ->end_io() when necessary, otherwise a racing buffer read would cache 110 * zeros from unwritten extents. 111 */ 112 if (!dio->error && dio->size && 113 (dio->flags & IOMAP_DIO_WRITE) && inode->i_mapping->nrpages) { 114 int err; 115 err = invalidate_inode_pages2_range(inode->i_mapping, 116 offset >> PAGE_SHIFT, 117 (offset + dio->size - 1) >> PAGE_SHIFT); 118 if (err) 119 dio_warn_stale_pagecache(iocb->ki_filp); 120 } 121 122 inode_dio_end(file_inode(iocb->ki_filp)); 123 /* 124 * If this is a DSYNC write, make sure we push it to stable storage now 125 * that we've written data. 126 */ 127 if (ret > 0 && (dio->flags & IOMAP_DIO_NEED_SYNC)) 128 ret = generic_write_sync(iocb, ret); 129 130 if (ret > 0) 131 ret += dio->done_before; 132 133 trace_iomap_dio_complete(iocb, dio->error, ret); 134 kfree(dio); 135 136 return ret; 137 } 138 EXPORT_SYMBOL_GPL(iomap_dio_complete); 139 140 static void iomap_dio_complete_work(struct work_struct *work) 141 { 142 struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work); 143 struct kiocb *iocb = dio->iocb; 144 145 iocb->ki_complete(iocb, iomap_dio_complete(dio)); 146 } 147 148 /* 149 * Set an error in the dio if none is set yet. We have to use cmpxchg 150 * as the submission context and the completion context(s) can race to 151 * update the error. 152 */ 153 static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret) 154 { 155 cmpxchg(&dio->error, 0, ret); 156 } 157 158 void iomap_dio_bio_end_io(struct bio *bio) 159 { 160 struct iomap_dio *dio = bio->bi_private; 161 bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY); 162 163 if (bio->bi_status) 164 iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status)); 165 166 if (atomic_dec_and_test(&dio->ref)) { 167 if (dio->wait_for_completion) { 168 struct task_struct *waiter = dio->submit.waiter; 169 WRITE_ONCE(dio->submit.waiter, NULL); 170 blk_wake_io_task(waiter); 171 } else if (dio->flags & IOMAP_DIO_WRITE) { 172 struct inode *inode = file_inode(dio->iocb->ki_filp); 173 174 WRITE_ONCE(dio->iocb->private, NULL); 175 INIT_WORK(&dio->aio.work, iomap_dio_complete_work); 176 queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work); 177 } else { 178 WRITE_ONCE(dio->iocb->private, NULL); 179 iomap_dio_complete_work(&dio->aio.work); 180 } 181 } 182 183 if (should_dirty) { 184 bio_check_pages_dirty(bio); 185 } else { 186 bio_release_pages(bio, false); 187 bio_put(bio); 188 } 189 } 190 EXPORT_SYMBOL_GPL(iomap_dio_bio_end_io); 191 192 static void iomap_dio_zero(const struct iomap_iter *iter, struct iomap_dio *dio, 193 loff_t pos, unsigned len) 194 { 195 struct inode *inode = file_inode(dio->iocb->ki_filp); 196 struct page *page = ZERO_PAGE(0); 197 struct bio *bio; 198 199 bio = iomap_dio_alloc_bio(iter, dio, 1, REQ_OP_WRITE | REQ_SYNC | REQ_IDLE); 200 fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits, 201 GFP_KERNEL); 202 bio->bi_iter.bi_sector = iomap_sector(&iter->iomap, pos); 203 bio->bi_private = dio; 204 bio->bi_end_io = iomap_dio_bio_end_io; 205 206 get_page(page); 207 __bio_add_page(bio, page, len, 0); 208 iomap_dio_submit_bio(iter, dio, bio, pos); 209 } 210 211 /* 212 * Figure out the bio's operation flags from the dio request, the 213 * mapping, and whether or not we want FUA. Note that we can end up 214 * clearing the WRITE_FUA flag in the dio request. 215 */ 216 static inline blk_opf_t iomap_dio_bio_opflags(struct iomap_dio *dio, 217 const struct iomap *iomap, bool use_fua) 218 { 219 blk_opf_t opflags = REQ_SYNC | REQ_IDLE; 220 221 if (!(dio->flags & IOMAP_DIO_WRITE)) 222 return REQ_OP_READ; 223 224 opflags |= REQ_OP_WRITE; 225 if (use_fua) 226 opflags |= REQ_FUA; 227 else 228 dio->flags &= ~IOMAP_DIO_WRITE_FUA; 229 230 return opflags; 231 } 232 233 static loff_t iomap_dio_bio_iter(const struct iomap_iter *iter, 234 struct iomap_dio *dio) 235 { 236 const struct iomap *iomap = &iter->iomap; 237 struct inode *inode = iter->inode; 238 unsigned int fs_block_size = i_blocksize(inode), pad; 239 loff_t length = iomap_length(iter); 240 loff_t pos = iter->pos; 241 blk_opf_t bio_opf; 242 struct bio *bio; 243 bool need_zeroout = false; 244 bool use_fua = false; 245 int nr_pages, ret = 0; 246 size_t copied = 0; 247 size_t orig_count; 248 249 if ((pos | length) & (bdev_logical_block_size(iomap->bdev) - 1) || 250 !bdev_iter_is_aligned(iomap->bdev, dio->submit.iter)) 251 return -EINVAL; 252 253 if (iomap->type == IOMAP_UNWRITTEN) { 254 dio->flags |= IOMAP_DIO_UNWRITTEN; 255 need_zeroout = true; 256 } 257 258 if (iomap->flags & IOMAP_F_SHARED) 259 dio->flags |= IOMAP_DIO_COW; 260 261 if (iomap->flags & IOMAP_F_NEW) { 262 need_zeroout = true; 263 } else if (iomap->type == IOMAP_MAPPED) { 264 /* 265 * Use a FUA write if we need datasync semantics, this is a pure 266 * data IO that doesn't require any metadata updates (including 267 * after IO completion such as unwritten extent conversion) and 268 * the underlying device supports FUA. This allows us to avoid 269 * cache flushes on IO completion. 270 */ 271 if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) && 272 (dio->flags & IOMAP_DIO_WRITE_FUA) && bdev_fua(iomap->bdev)) 273 use_fua = true; 274 } 275 276 /* 277 * Save the original count and trim the iter to just the extent we 278 * are operating on right now. The iter will be re-expanded once 279 * we are done. 280 */ 281 orig_count = iov_iter_count(dio->submit.iter); 282 iov_iter_truncate(dio->submit.iter, length); 283 284 if (!iov_iter_count(dio->submit.iter)) 285 goto out; 286 287 /* 288 * We can only poll for single bio I/Os. 289 */ 290 if (need_zeroout || 291 ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) 292 dio->iocb->ki_flags &= ~IOCB_HIPRI; 293 294 if (need_zeroout) { 295 /* zero out from the start of the block to the write offset */ 296 pad = pos & (fs_block_size - 1); 297 if (pad) 298 iomap_dio_zero(iter, dio, pos - pad, pad); 299 } 300 301 /* 302 * Set the operation flags early so that bio_iov_iter_get_pages 303 * can set up the page vector appropriately for a ZONE_APPEND 304 * operation. 305 */ 306 bio_opf = iomap_dio_bio_opflags(dio, iomap, use_fua); 307 308 nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, BIO_MAX_VECS); 309 do { 310 size_t n; 311 if (dio->error) { 312 iov_iter_revert(dio->submit.iter, copied); 313 copied = ret = 0; 314 goto out; 315 } 316 317 bio = iomap_dio_alloc_bio(iter, dio, nr_pages, bio_opf); 318 fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits, 319 GFP_KERNEL); 320 bio->bi_iter.bi_sector = iomap_sector(iomap, pos); 321 bio->bi_ioprio = dio->iocb->ki_ioprio; 322 bio->bi_private = dio; 323 bio->bi_end_io = iomap_dio_bio_end_io; 324 325 ret = bio_iov_iter_get_pages(bio, dio->submit.iter); 326 if (unlikely(ret)) { 327 /* 328 * We have to stop part way through an IO. We must fall 329 * through to the sub-block tail zeroing here, otherwise 330 * this short IO may expose stale data in the tail of 331 * the block we haven't written data to. 332 */ 333 bio_put(bio); 334 goto zero_tail; 335 } 336 337 n = bio->bi_iter.bi_size; 338 if (dio->flags & IOMAP_DIO_WRITE) { 339 task_io_account_write(n); 340 } else { 341 if (dio->flags & IOMAP_DIO_DIRTY) 342 bio_set_pages_dirty(bio); 343 } 344 345 dio->size += n; 346 copied += n; 347 348 nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, 349 BIO_MAX_VECS); 350 /* 351 * We can only poll for single bio I/Os. 352 */ 353 if (nr_pages) 354 dio->iocb->ki_flags &= ~IOCB_HIPRI; 355 iomap_dio_submit_bio(iter, dio, bio, pos); 356 pos += n; 357 } while (nr_pages); 358 359 /* 360 * We need to zeroout the tail of a sub-block write if the extent type 361 * requires zeroing or the write extends beyond EOF. If we don't zero 362 * the block tail in the latter case, we can expose stale data via mmap 363 * reads of the EOF block. 364 */ 365 zero_tail: 366 if (need_zeroout || 367 ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) { 368 /* zero out from the end of the write to the end of the block */ 369 pad = pos & (fs_block_size - 1); 370 if (pad) 371 iomap_dio_zero(iter, dio, pos, fs_block_size - pad); 372 } 373 out: 374 /* Undo iter limitation to current extent */ 375 iov_iter_reexpand(dio->submit.iter, orig_count - copied); 376 if (copied) 377 return copied; 378 return ret; 379 } 380 381 static loff_t iomap_dio_hole_iter(const struct iomap_iter *iter, 382 struct iomap_dio *dio) 383 { 384 loff_t length = iov_iter_zero(iomap_length(iter), dio->submit.iter); 385 386 dio->size += length; 387 if (!length) 388 return -EFAULT; 389 return length; 390 } 391 392 static loff_t iomap_dio_inline_iter(const struct iomap_iter *iomi, 393 struct iomap_dio *dio) 394 { 395 const struct iomap *iomap = &iomi->iomap; 396 struct iov_iter *iter = dio->submit.iter; 397 void *inline_data = iomap_inline_data(iomap, iomi->pos); 398 loff_t length = iomap_length(iomi); 399 loff_t pos = iomi->pos; 400 size_t copied; 401 402 if (WARN_ON_ONCE(!iomap_inline_data_valid(iomap))) 403 return -EIO; 404 405 if (dio->flags & IOMAP_DIO_WRITE) { 406 loff_t size = iomi->inode->i_size; 407 408 if (pos > size) 409 memset(iomap_inline_data(iomap, size), 0, pos - size); 410 copied = copy_from_iter(inline_data, length, iter); 411 if (copied) { 412 if (pos + copied > size) 413 i_size_write(iomi->inode, pos + copied); 414 mark_inode_dirty(iomi->inode); 415 } 416 } else { 417 copied = copy_to_iter(inline_data, length, iter); 418 } 419 dio->size += copied; 420 if (!copied) 421 return -EFAULT; 422 return copied; 423 } 424 425 static loff_t iomap_dio_iter(const struct iomap_iter *iter, 426 struct iomap_dio *dio) 427 { 428 switch (iter->iomap.type) { 429 case IOMAP_HOLE: 430 if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE)) 431 return -EIO; 432 return iomap_dio_hole_iter(iter, dio); 433 case IOMAP_UNWRITTEN: 434 if (!(dio->flags & IOMAP_DIO_WRITE)) 435 return iomap_dio_hole_iter(iter, dio); 436 return iomap_dio_bio_iter(iter, dio); 437 case IOMAP_MAPPED: 438 return iomap_dio_bio_iter(iter, dio); 439 case IOMAP_INLINE: 440 return iomap_dio_inline_iter(iter, dio); 441 case IOMAP_DELALLOC: 442 /* 443 * DIO is not serialised against mmap() access at all, and so 444 * if the page_mkwrite occurs between the writeback and the 445 * iomap_iter() call in the DIO path, then it will see the 446 * DELALLOC block that the page-mkwrite allocated. 447 */ 448 pr_warn_ratelimited("Direct I/O collision with buffered writes! File: %pD4 Comm: %.20s\n", 449 dio->iocb->ki_filp, current->comm); 450 return -EIO; 451 default: 452 WARN_ON_ONCE(1); 453 return -EIO; 454 } 455 } 456 457 /* 458 * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO 459 * is being issued as AIO or not. This allows us to optimise pure data writes 460 * to use REQ_FUA rather than requiring generic_write_sync() to issue a 461 * REQ_FLUSH post write. This is slightly tricky because a single request here 462 * can be mapped into multiple disjoint IOs and only a subset of the IOs issued 463 * may be pure data writes. In that case, we still need to do a full data sync 464 * completion. 465 * 466 * When page faults are disabled and @dio_flags includes IOMAP_DIO_PARTIAL, 467 * __iomap_dio_rw can return a partial result if it encounters a non-resident 468 * page in @iter after preparing a transfer. In that case, the non-resident 469 * pages can be faulted in and the request resumed with @done_before set to the 470 * number of bytes previously transferred. The request will then complete with 471 * the correct total number of bytes transferred; this is essential for 472 * completing partial requests asynchronously. 473 * 474 * Returns -ENOTBLK In case of a page invalidation invalidation failure for 475 * writes. The callers needs to fall back to buffered I/O in this case. 476 */ 477 struct iomap_dio * 478 __iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter, 479 const struct iomap_ops *ops, const struct iomap_dio_ops *dops, 480 unsigned int dio_flags, void *private, size_t done_before) 481 { 482 struct address_space *mapping = iocb->ki_filp->f_mapping; 483 struct inode *inode = file_inode(iocb->ki_filp); 484 struct iomap_iter iomi = { 485 .inode = inode, 486 .pos = iocb->ki_pos, 487 .len = iov_iter_count(iter), 488 .flags = IOMAP_DIRECT, 489 .private = private, 490 }; 491 loff_t end = iomi.pos + iomi.len - 1, ret = 0; 492 bool wait_for_completion = 493 is_sync_kiocb(iocb) || (dio_flags & IOMAP_DIO_FORCE_WAIT); 494 struct blk_plug plug; 495 struct iomap_dio *dio; 496 497 trace_iomap_dio_rw_begin(iocb, iter, dio_flags, done_before); 498 499 if (!iomi.len) 500 return NULL; 501 502 dio = kmalloc(sizeof(*dio), GFP_KERNEL); 503 if (!dio) 504 return ERR_PTR(-ENOMEM); 505 506 dio->iocb = iocb; 507 atomic_set(&dio->ref, 1); 508 dio->size = 0; 509 dio->i_size = i_size_read(inode); 510 dio->dops = dops; 511 dio->error = 0; 512 dio->flags = 0; 513 dio->done_before = done_before; 514 515 dio->submit.iter = iter; 516 dio->submit.waiter = current; 517 dio->submit.poll_bio = NULL; 518 519 if (iov_iter_rw(iter) == READ) { 520 if (iomi.pos >= dio->i_size) 521 goto out_free_dio; 522 523 if (iocb->ki_flags & IOCB_NOWAIT) { 524 if (filemap_range_needs_writeback(mapping, iomi.pos, 525 end)) { 526 ret = -EAGAIN; 527 goto out_free_dio; 528 } 529 iomi.flags |= IOMAP_NOWAIT; 530 } 531 532 if (user_backed_iter(iter)) 533 dio->flags |= IOMAP_DIO_DIRTY; 534 } else { 535 iomi.flags |= IOMAP_WRITE; 536 dio->flags |= IOMAP_DIO_WRITE; 537 538 if (iocb->ki_flags & IOCB_NOWAIT) { 539 if (filemap_range_has_page(mapping, iomi.pos, end)) { 540 ret = -EAGAIN; 541 goto out_free_dio; 542 } 543 iomi.flags |= IOMAP_NOWAIT; 544 } 545 546 /* for data sync or sync, we need sync completion processing */ 547 if (iocb_is_dsync(iocb)) { 548 dio->flags |= IOMAP_DIO_NEED_SYNC; 549 550 /* 551 * For datasync only writes, we optimistically try 552 * using FUA for this IO. Any non-FUA write that 553 * occurs will clear this flag, hence we know before 554 * completion whether a cache flush is necessary. 555 */ 556 if (!(iocb->ki_flags & IOCB_SYNC)) 557 dio->flags |= IOMAP_DIO_WRITE_FUA; 558 } 559 } 560 561 if (dio_flags & IOMAP_DIO_OVERWRITE_ONLY) { 562 ret = -EAGAIN; 563 if (iomi.pos >= dio->i_size || 564 iomi.pos + iomi.len > dio->i_size) 565 goto out_free_dio; 566 iomi.flags |= IOMAP_OVERWRITE_ONLY; 567 } 568 569 ret = filemap_write_and_wait_range(mapping, iomi.pos, end); 570 if (ret) 571 goto out_free_dio; 572 573 if (iov_iter_rw(iter) == WRITE) { 574 /* 575 * Try to invalidate cache pages for the range we are writing. 576 * If this invalidation fails, let the caller fall back to 577 * buffered I/O. 578 */ 579 if (invalidate_inode_pages2_range(mapping, 580 iomi.pos >> PAGE_SHIFT, end >> PAGE_SHIFT)) { 581 trace_iomap_dio_invalidate_fail(inode, iomi.pos, 582 iomi.len); 583 ret = -ENOTBLK; 584 goto out_free_dio; 585 } 586 587 if (!wait_for_completion && !inode->i_sb->s_dio_done_wq) { 588 ret = sb_init_dio_done_wq(inode->i_sb); 589 if (ret < 0) 590 goto out_free_dio; 591 } 592 } 593 594 inode_dio_begin(inode); 595 596 blk_start_plug(&plug); 597 while ((ret = iomap_iter(&iomi, ops)) > 0) { 598 iomi.processed = iomap_dio_iter(&iomi, dio); 599 600 /* 601 * We can only poll for single bio I/Os. 602 */ 603 iocb->ki_flags &= ~IOCB_HIPRI; 604 } 605 606 blk_finish_plug(&plug); 607 608 /* 609 * We only report that we've read data up to i_size. 610 * Revert iter to a state corresponding to that as some callers (such 611 * as the splice code) rely on it. 612 */ 613 if (iov_iter_rw(iter) == READ && iomi.pos >= dio->i_size) 614 iov_iter_revert(iter, iomi.pos - dio->i_size); 615 616 if (ret == -EFAULT && dio->size && (dio_flags & IOMAP_DIO_PARTIAL)) { 617 if (!(iocb->ki_flags & IOCB_NOWAIT)) 618 wait_for_completion = true; 619 ret = 0; 620 } 621 622 /* magic error code to fall back to buffered I/O */ 623 if (ret == -ENOTBLK) { 624 wait_for_completion = true; 625 ret = 0; 626 } 627 if (ret < 0) 628 iomap_dio_set_error(dio, ret); 629 630 /* 631 * If all the writes we issued were FUA, we don't need to flush the 632 * cache on IO completion. Clear the sync flag for this case. 633 */ 634 if (dio->flags & IOMAP_DIO_WRITE_FUA) 635 dio->flags &= ~IOMAP_DIO_NEED_SYNC; 636 637 WRITE_ONCE(iocb->private, dio->submit.poll_bio); 638 639 /* 640 * We are about to drop our additional submission reference, which 641 * might be the last reference to the dio. There are three different 642 * ways we can progress here: 643 * 644 * (a) If this is the last reference we will always complete and free 645 * the dio ourselves. 646 * (b) If this is not the last reference, and we serve an asynchronous 647 * iocb, we must never touch the dio after the decrement, the 648 * I/O completion handler will complete and free it. 649 * (c) If this is not the last reference, but we serve a synchronous 650 * iocb, the I/O completion handler will wake us up on the drop 651 * of the final reference, and we will complete and free it here 652 * after we got woken by the I/O completion handler. 653 */ 654 dio->wait_for_completion = wait_for_completion; 655 if (!atomic_dec_and_test(&dio->ref)) { 656 if (!wait_for_completion) { 657 trace_iomap_dio_rw_queued(inode, iomi.pos, iomi.len); 658 return ERR_PTR(-EIOCBQUEUED); 659 } 660 661 for (;;) { 662 set_current_state(TASK_UNINTERRUPTIBLE); 663 if (!READ_ONCE(dio->submit.waiter)) 664 break; 665 666 blk_io_schedule(); 667 } 668 __set_current_state(TASK_RUNNING); 669 } 670 671 return dio; 672 673 out_free_dio: 674 kfree(dio); 675 if (ret) 676 return ERR_PTR(ret); 677 return NULL; 678 } 679 EXPORT_SYMBOL_GPL(__iomap_dio_rw); 680 681 ssize_t 682 iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter, 683 const struct iomap_ops *ops, const struct iomap_dio_ops *dops, 684 unsigned int dio_flags, void *private, size_t done_before) 685 { 686 struct iomap_dio *dio; 687 688 dio = __iomap_dio_rw(iocb, iter, ops, dops, dio_flags, private, 689 done_before); 690 if (IS_ERR_OR_NULL(dio)) 691 return PTR_ERR_OR_ZERO(dio); 692 return iomap_dio_complete(dio); 693 } 694 EXPORT_SYMBOL_GPL(iomap_dio_rw); 695