xref: /openbmc/linux/fs/iomap/direct-io.c (revision 7f8256ae)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Red Hat, Inc.
4  * Copyright (c) 2016-2021 Christoph Hellwig.
5  */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/fscrypt.h>
10 #include <linux/pagemap.h>
11 #include <linux/iomap.h>
12 #include <linux/backing-dev.h>
13 #include <linux/uio.h>
14 #include <linux/task_io_accounting_ops.h>
15 #include "trace.h"
16 
17 #include "../internal.h"
18 
19 /*
20  * Private flags for iomap_dio, must not overlap with the public ones in
21  * iomap.h:
22  */
23 #define IOMAP_DIO_WRITE_FUA	(1 << 28)
24 #define IOMAP_DIO_NEED_SYNC	(1 << 29)
25 #define IOMAP_DIO_WRITE		(1 << 30)
26 #define IOMAP_DIO_DIRTY		(1 << 31)
27 
28 struct iomap_dio {
29 	struct kiocb		*iocb;
30 	const struct iomap_dio_ops *dops;
31 	loff_t			i_size;
32 	loff_t			size;
33 	atomic_t		ref;
34 	unsigned		flags;
35 	int			error;
36 	size_t			done_before;
37 	bool			wait_for_completion;
38 
39 	union {
40 		/* used during submission and for synchronous completion: */
41 		struct {
42 			struct iov_iter		*iter;
43 			struct task_struct	*waiter;
44 			struct bio		*poll_bio;
45 		} submit;
46 
47 		/* used for aio completion: */
48 		struct {
49 			struct work_struct	work;
50 		} aio;
51 	};
52 };
53 
54 static struct bio *iomap_dio_alloc_bio(const struct iomap_iter *iter,
55 		struct iomap_dio *dio, unsigned short nr_vecs, blk_opf_t opf)
56 {
57 	if (dio->dops && dio->dops->bio_set)
58 		return bio_alloc_bioset(iter->iomap.bdev, nr_vecs, opf,
59 					GFP_KERNEL, dio->dops->bio_set);
60 	return bio_alloc(iter->iomap.bdev, nr_vecs, opf, GFP_KERNEL);
61 }
62 
63 static void iomap_dio_submit_bio(const struct iomap_iter *iter,
64 		struct iomap_dio *dio, struct bio *bio, loff_t pos)
65 {
66 	atomic_inc(&dio->ref);
67 
68 	/* Sync dio can't be polled reliably */
69 	if ((dio->iocb->ki_flags & IOCB_HIPRI) && !is_sync_kiocb(dio->iocb)) {
70 		bio_set_polled(bio, dio->iocb);
71 		dio->submit.poll_bio = bio;
72 	}
73 
74 	if (dio->dops && dio->dops->submit_io)
75 		dio->dops->submit_io(iter, bio, pos);
76 	else
77 		submit_bio(bio);
78 }
79 
80 ssize_t iomap_dio_complete(struct iomap_dio *dio)
81 {
82 	const struct iomap_dio_ops *dops = dio->dops;
83 	struct kiocb *iocb = dio->iocb;
84 	struct inode *inode = file_inode(iocb->ki_filp);
85 	loff_t offset = iocb->ki_pos;
86 	ssize_t ret = dio->error;
87 
88 	if (dops && dops->end_io)
89 		ret = dops->end_io(iocb, dio->size, ret, dio->flags);
90 
91 	if (likely(!ret)) {
92 		ret = dio->size;
93 		/* check for short read */
94 		if (offset + ret > dio->i_size &&
95 		    !(dio->flags & IOMAP_DIO_WRITE))
96 			ret = dio->i_size - offset;
97 		iocb->ki_pos += ret;
98 	}
99 
100 	/*
101 	 * Try again to invalidate clean pages which might have been cached by
102 	 * non-direct readahead, or faulted in by get_user_pages() if the source
103 	 * of the write was an mmap'ed region of the file we're writing.  Either
104 	 * one is a pretty crazy thing to do, so we don't support it 100%.  If
105 	 * this invalidation fails, tough, the write still worked...
106 	 *
107 	 * And this page cache invalidation has to be after ->end_io(), as some
108 	 * filesystems convert unwritten extents to real allocations in
109 	 * ->end_io() when necessary, otherwise a racing buffer read would cache
110 	 * zeros from unwritten extents.
111 	 */
112 	if (!dio->error && dio->size &&
113 	    (dio->flags & IOMAP_DIO_WRITE) && inode->i_mapping->nrpages) {
114 		int err;
115 		err = invalidate_inode_pages2_range(inode->i_mapping,
116 				offset >> PAGE_SHIFT,
117 				(offset + dio->size - 1) >> PAGE_SHIFT);
118 		if (err)
119 			dio_warn_stale_pagecache(iocb->ki_filp);
120 	}
121 
122 	inode_dio_end(file_inode(iocb->ki_filp));
123 	/*
124 	 * If this is a DSYNC write, make sure we push it to stable storage now
125 	 * that we've written data.
126 	 */
127 	if (ret > 0 && (dio->flags & IOMAP_DIO_NEED_SYNC))
128 		ret = generic_write_sync(iocb, ret);
129 
130 	if (ret > 0)
131 		ret += dio->done_before;
132 
133 	trace_iomap_dio_complete(iocb, dio->error, ret);
134 	kfree(dio);
135 
136 	return ret;
137 }
138 EXPORT_SYMBOL_GPL(iomap_dio_complete);
139 
140 static void iomap_dio_complete_work(struct work_struct *work)
141 {
142 	struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work);
143 	struct kiocb *iocb = dio->iocb;
144 
145 	iocb->ki_complete(iocb, iomap_dio_complete(dio));
146 }
147 
148 /*
149  * Set an error in the dio if none is set yet.  We have to use cmpxchg
150  * as the submission context and the completion context(s) can race to
151  * update the error.
152  */
153 static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret)
154 {
155 	cmpxchg(&dio->error, 0, ret);
156 }
157 
158 void iomap_dio_bio_end_io(struct bio *bio)
159 {
160 	struct iomap_dio *dio = bio->bi_private;
161 	bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY);
162 
163 	if (bio->bi_status)
164 		iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status));
165 
166 	if (atomic_dec_and_test(&dio->ref)) {
167 		if (dio->wait_for_completion) {
168 			struct task_struct *waiter = dio->submit.waiter;
169 			WRITE_ONCE(dio->submit.waiter, NULL);
170 			blk_wake_io_task(waiter);
171 		} else if (dio->flags & IOMAP_DIO_WRITE) {
172 			struct inode *inode = file_inode(dio->iocb->ki_filp);
173 
174 			WRITE_ONCE(dio->iocb->private, NULL);
175 			INIT_WORK(&dio->aio.work, iomap_dio_complete_work);
176 			queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work);
177 		} else {
178 			WRITE_ONCE(dio->iocb->private, NULL);
179 			iomap_dio_complete_work(&dio->aio.work);
180 		}
181 	}
182 
183 	if (should_dirty) {
184 		bio_check_pages_dirty(bio);
185 	} else {
186 		bio_release_pages(bio, false);
187 		bio_put(bio);
188 	}
189 }
190 EXPORT_SYMBOL_GPL(iomap_dio_bio_end_io);
191 
192 static void iomap_dio_zero(const struct iomap_iter *iter, struct iomap_dio *dio,
193 		loff_t pos, unsigned len)
194 {
195 	struct inode *inode = file_inode(dio->iocb->ki_filp);
196 	struct page *page = ZERO_PAGE(0);
197 	struct bio *bio;
198 
199 	bio = iomap_dio_alloc_bio(iter, dio, 1, REQ_OP_WRITE | REQ_SYNC | REQ_IDLE);
200 	fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits,
201 				  GFP_KERNEL);
202 	bio->bi_iter.bi_sector = iomap_sector(&iter->iomap, pos);
203 	bio->bi_private = dio;
204 	bio->bi_end_io = iomap_dio_bio_end_io;
205 
206 	get_page(page);
207 	__bio_add_page(bio, page, len, 0);
208 	iomap_dio_submit_bio(iter, dio, bio, pos);
209 }
210 
211 /*
212  * Figure out the bio's operation flags from the dio request, the
213  * mapping, and whether or not we want FUA.  Note that we can end up
214  * clearing the WRITE_FUA flag in the dio request.
215  */
216 static inline blk_opf_t iomap_dio_bio_opflags(struct iomap_dio *dio,
217 		const struct iomap *iomap, bool use_fua)
218 {
219 	blk_opf_t opflags = REQ_SYNC | REQ_IDLE;
220 
221 	if (!(dio->flags & IOMAP_DIO_WRITE))
222 		return REQ_OP_READ;
223 
224 	opflags |= REQ_OP_WRITE;
225 	if (use_fua)
226 		opflags |= REQ_FUA;
227 	else
228 		dio->flags &= ~IOMAP_DIO_WRITE_FUA;
229 
230 	return opflags;
231 }
232 
233 static loff_t iomap_dio_bio_iter(const struct iomap_iter *iter,
234 		struct iomap_dio *dio)
235 {
236 	const struct iomap *iomap = &iter->iomap;
237 	struct inode *inode = iter->inode;
238 	unsigned int fs_block_size = i_blocksize(inode), pad;
239 	loff_t length = iomap_length(iter);
240 	loff_t pos = iter->pos;
241 	blk_opf_t bio_opf;
242 	struct bio *bio;
243 	bool need_zeroout = false;
244 	bool use_fua = false;
245 	int nr_pages, ret = 0;
246 	size_t copied = 0;
247 	size_t orig_count;
248 
249 	if ((pos | length) & (bdev_logical_block_size(iomap->bdev) - 1) ||
250 	    !bdev_iter_is_aligned(iomap->bdev, dio->submit.iter))
251 		return -EINVAL;
252 
253 	if (iomap->type == IOMAP_UNWRITTEN) {
254 		dio->flags |= IOMAP_DIO_UNWRITTEN;
255 		need_zeroout = true;
256 	}
257 
258 	if (iomap->flags & IOMAP_F_SHARED)
259 		dio->flags |= IOMAP_DIO_COW;
260 
261 	if (iomap->flags & IOMAP_F_NEW) {
262 		need_zeroout = true;
263 	} else if (iomap->type == IOMAP_MAPPED) {
264 		/*
265 		 * Use a FUA write if we need datasync semantics, this is a pure
266 		 * data IO that doesn't require any metadata updates (including
267 		 * after IO completion such as unwritten extent conversion) and
268 		 * the underlying device supports FUA. This allows us to avoid
269 		 * cache flushes on IO completion.
270 		 */
271 		if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) &&
272 		    (dio->flags & IOMAP_DIO_WRITE_FUA) && bdev_fua(iomap->bdev))
273 			use_fua = true;
274 	}
275 
276 	/*
277 	 * Save the original count and trim the iter to just the extent we
278 	 * are operating on right now.  The iter will be re-expanded once
279 	 * we are done.
280 	 */
281 	orig_count = iov_iter_count(dio->submit.iter);
282 	iov_iter_truncate(dio->submit.iter, length);
283 
284 	if (!iov_iter_count(dio->submit.iter))
285 		goto out;
286 
287 	/*
288 	 * We can only poll for single bio I/Os.
289 	 */
290 	if (need_zeroout ||
291 	    ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode)))
292 		dio->iocb->ki_flags &= ~IOCB_HIPRI;
293 
294 	if (need_zeroout) {
295 		/* zero out from the start of the block to the write offset */
296 		pad = pos & (fs_block_size - 1);
297 		if (pad)
298 			iomap_dio_zero(iter, dio, pos - pad, pad);
299 	}
300 
301 	/*
302 	 * Set the operation flags early so that bio_iov_iter_get_pages
303 	 * can set up the page vector appropriately for a ZONE_APPEND
304 	 * operation.
305 	 */
306 	bio_opf = iomap_dio_bio_opflags(dio, iomap, use_fua);
307 
308 	nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, BIO_MAX_VECS);
309 	do {
310 		size_t n;
311 		if (dio->error) {
312 			iov_iter_revert(dio->submit.iter, copied);
313 			copied = ret = 0;
314 			goto out;
315 		}
316 
317 		bio = iomap_dio_alloc_bio(iter, dio, nr_pages, bio_opf);
318 		fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits,
319 					  GFP_KERNEL);
320 		bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
321 		bio->bi_ioprio = dio->iocb->ki_ioprio;
322 		bio->bi_private = dio;
323 		bio->bi_end_io = iomap_dio_bio_end_io;
324 
325 		ret = bio_iov_iter_get_pages(bio, dio->submit.iter);
326 		if (unlikely(ret)) {
327 			/*
328 			 * We have to stop part way through an IO. We must fall
329 			 * through to the sub-block tail zeroing here, otherwise
330 			 * this short IO may expose stale data in the tail of
331 			 * the block we haven't written data to.
332 			 */
333 			bio_put(bio);
334 			goto zero_tail;
335 		}
336 
337 		n = bio->bi_iter.bi_size;
338 		if (dio->flags & IOMAP_DIO_WRITE) {
339 			task_io_account_write(n);
340 		} else {
341 			if (dio->flags & IOMAP_DIO_DIRTY)
342 				bio_set_pages_dirty(bio);
343 		}
344 
345 		dio->size += n;
346 		copied += n;
347 
348 		nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter,
349 						 BIO_MAX_VECS);
350 		/*
351 		 * We can only poll for single bio I/Os.
352 		 */
353 		if (nr_pages)
354 			dio->iocb->ki_flags &= ~IOCB_HIPRI;
355 		iomap_dio_submit_bio(iter, dio, bio, pos);
356 		pos += n;
357 	} while (nr_pages);
358 
359 	/*
360 	 * We need to zeroout the tail of a sub-block write if the extent type
361 	 * requires zeroing or the write extends beyond EOF. If we don't zero
362 	 * the block tail in the latter case, we can expose stale data via mmap
363 	 * reads of the EOF block.
364 	 */
365 zero_tail:
366 	if (need_zeroout ||
367 	    ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) {
368 		/* zero out from the end of the write to the end of the block */
369 		pad = pos & (fs_block_size - 1);
370 		if (pad)
371 			iomap_dio_zero(iter, dio, pos, fs_block_size - pad);
372 	}
373 out:
374 	/* Undo iter limitation to current extent */
375 	iov_iter_reexpand(dio->submit.iter, orig_count - copied);
376 	if (copied)
377 		return copied;
378 	return ret;
379 }
380 
381 static loff_t iomap_dio_hole_iter(const struct iomap_iter *iter,
382 		struct iomap_dio *dio)
383 {
384 	loff_t length = iov_iter_zero(iomap_length(iter), dio->submit.iter);
385 
386 	dio->size += length;
387 	if (!length)
388 		return -EFAULT;
389 	return length;
390 }
391 
392 static loff_t iomap_dio_inline_iter(const struct iomap_iter *iomi,
393 		struct iomap_dio *dio)
394 {
395 	const struct iomap *iomap = &iomi->iomap;
396 	struct iov_iter *iter = dio->submit.iter;
397 	void *inline_data = iomap_inline_data(iomap, iomi->pos);
398 	loff_t length = iomap_length(iomi);
399 	loff_t pos = iomi->pos;
400 	size_t copied;
401 
402 	if (WARN_ON_ONCE(!iomap_inline_data_valid(iomap)))
403 		return -EIO;
404 
405 	if (dio->flags & IOMAP_DIO_WRITE) {
406 		loff_t size = iomi->inode->i_size;
407 
408 		if (pos > size)
409 			memset(iomap_inline_data(iomap, size), 0, pos - size);
410 		copied = copy_from_iter(inline_data, length, iter);
411 		if (copied) {
412 			if (pos + copied > size)
413 				i_size_write(iomi->inode, pos + copied);
414 			mark_inode_dirty(iomi->inode);
415 		}
416 	} else {
417 		copied = copy_to_iter(inline_data, length, iter);
418 	}
419 	dio->size += copied;
420 	if (!copied)
421 		return -EFAULT;
422 	return copied;
423 }
424 
425 static loff_t iomap_dio_iter(const struct iomap_iter *iter,
426 		struct iomap_dio *dio)
427 {
428 	switch (iter->iomap.type) {
429 	case IOMAP_HOLE:
430 		if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE))
431 			return -EIO;
432 		return iomap_dio_hole_iter(iter, dio);
433 	case IOMAP_UNWRITTEN:
434 		if (!(dio->flags & IOMAP_DIO_WRITE))
435 			return iomap_dio_hole_iter(iter, dio);
436 		return iomap_dio_bio_iter(iter, dio);
437 	case IOMAP_MAPPED:
438 		return iomap_dio_bio_iter(iter, dio);
439 	case IOMAP_INLINE:
440 		return iomap_dio_inline_iter(iter, dio);
441 	case IOMAP_DELALLOC:
442 		/*
443 		 * DIO is not serialised against mmap() access at all, and so
444 		 * if the page_mkwrite occurs between the writeback and the
445 		 * iomap_iter() call in the DIO path, then it will see the
446 		 * DELALLOC block that the page-mkwrite allocated.
447 		 */
448 		pr_warn_ratelimited("Direct I/O collision with buffered writes! File: %pD4 Comm: %.20s\n",
449 				    dio->iocb->ki_filp, current->comm);
450 		return -EIO;
451 	default:
452 		WARN_ON_ONCE(1);
453 		return -EIO;
454 	}
455 }
456 
457 /*
458  * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO
459  * is being issued as AIO or not.  This allows us to optimise pure data writes
460  * to use REQ_FUA rather than requiring generic_write_sync() to issue a
461  * REQ_FLUSH post write. This is slightly tricky because a single request here
462  * can be mapped into multiple disjoint IOs and only a subset of the IOs issued
463  * may be pure data writes. In that case, we still need to do a full data sync
464  * completion.
465  *
466  * When page faults are disabled and @dio_flags includes IOMAP_DIO_PARTIAL,
467  * __iomap_dio_rw can return a partial result if it encounters a non-resident
468  * page in @iter after preparing a transfer.  In that case, the non-resident
469  * pages can be faulted in and the request resumed with @done_before set to the
470  * number of bytes previously transferred.  The request will then complete with
471  * the correct total number of bytes transferred; this is essential for
472  * completing partial requests asynchronously.
473  *
474  * Returns -ENOTBLK In case of a page invalidation invalidation failure for
475  * writes.  The callers needs to fall back to buffered I/O in this case.
476  */
477 struct iomap_dio *
478 __iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
479 		const struct iomap_ops *ops, const struct iomap_dio_ops *dops,
480 		unsigned int dio_flags, void *private, size_t done_before)
481 {
482 	struct address_space *mapping = iocb->ki_filp->f_mapping;
483 	struct inode *inode = file_inode(iocb->ki_filp);
484 	struct iomap_iter iomi = {
485 		.inode		= inode,
486 		.pos		= iocb->ki_pos,
487 		.len		= iov_iter_count(iter),
488 		.flags		= IOMAP_DIRECT,
489 		.private	= private,
490 	};
491 	loff_t end = iomi.pos + iomi.len - 1, ret = 0;
492 	bool wait_for_completion =
493 		is_sync_kiocb(iocb) || (dio_flags & IOMAP_DIO_FORCE_WAIT);
494 	struct blk_plug plug;
495 	struct iomap_dio *dio;
496 
497 	trace_iomap_dio_rw_begin(iocb, iter, dio_flags, done_before);
498 
499 	if (!iomi.len)
500 		return NULL;
501 
502 	dio = kmalloc(sizeof(*dio), GFP_KERNEL);
503 	if (!dio)
504 		return ERR_PTR(-ENOMEM);
505 
506 	dio->iocb = iocb;
507 	atomic_set(&dio->ref, 1);
508 	dio->size = 0;
509 	dio->i_size = i_size_read(inode);
510 	dio->dops = dops;
511 	dio->error = 0;
512 	dio->flags = 0;
513 	dio->done_before = done_before;
514 
515 	dio->submit.iter = iter;
516 	dio->submit.waiter = current;
517 	dio->submit.poll_bio = NULL;
518 
519 	if (iov_iter_rw(iter) == READ) {
520 		if (iomi.pos >= dio->i_size)
521 			goto out_free_dio;
522 
523 		if (iocb->ki_flags & IOCB_NOWAIT) {
524 			if (filemap_range_needs_writeback(mapping, iomi.pos,
525 					end)) {
526 				ret = -EAGAIN;
527 				goto out_free_dio;
528 			}
529 			iomi.flags |= IOMAP_NOWAIT;
530 		}
531 
532 		if (user_backed_iter(iter))
533 			dio->flags |= IOMAP_DIO_DIRTY;
534 	} else {
535 		iomi.flags |= IOMAP_WRITE;
536 		dio->flags |= IOMAP_DIO_WRITE;
537 
538 		if (iocb->ki_flags & IOCB_NOWAIT) {
539 			if (filemap_range_has_page(mapping, iomi.pos, end)) {
540 				ret = -EAGAIN;
541 				goto out_free_dio;
542 			}
543 			iomi.flags |= IOMAP_NOWAIT;
544 		}
545 
546 		/* for data sync or sync, we need sync completion processing */
547 		if (iocb_is_dsync(iocb)) {
548 			dio->flags |= IOMAP_DIO_NEED_SYNC;
549 
550 		       /*
551 			* For datasync only writes, we optimistically try
552 			* using FUA for this IO.  Any non-FUA write that
553 			* occurs will clear this flag, hence we know before
554 			* completion whether a cache flush is necessary.
555 			*/
556 			if (!(iocb->ki_flags & IOCB_SYNC))
557 				dio->flags |= IOMAP_DIO_WRITE_FUA;
558 		}
559 	}
560 
561 	if (dio_flags & IOMAP_DIO_OVERWRITE_ONLY) {
562 		ret = -EAGAIN;
563 		if (iomi.pos >= dio->i_size ||
564 		    iomi.pos + iomi.len > dio->i_size)
565 			goto out_free_dio;
566 		iomi.flags |= IOMAP_OVERWRITE_ONLY;
567 	}
568 
569 	ret = filemap_write_and_wait_range(mapping, iomi.pos, end);
570 	if (ret)
571 		goto out_free_dio;
572 
573 	if (iov_iter_rw(iter) == WRITE) {
574 		/*
575 		 * Try to invalidate cache pages for the range we are writing.
576 		 * If this invalidation fails, let the caller fall back to
577 		 * buffered I/O.
578 		 */
579 		if (invalidate_inode_pages2_range(mapping,
580 				iomi.pos >> PAGE_SHIFT, end >> PAGE_SHIFT)) {
581 			trace_iomap_dio_invalidate_fail(inode, iomi.pos,
582 							iomi.len);
583 			ret = -ENOTBLK;
584 			goto out_free_dio;
585 		}
586 
587 		if (!wait_for_completion && !inode->i_sb->s_dio_done_wq) {
588 			ret = sb_init_dio_done_wq(inode->i_sb);
589 			if (ret < 0)
590 				goto out_free_dio;
591 		}
592 	}
593 
594 	inode_dio_begin(inode);
595 
596 	blk_start_plug(&plug);
597 	while ((ret = iomap_iter(&iomi, ops)) > 0) {
598 		iomi.processed = iomap_dio_iter(&iomi, dio);
599 
600 		/*
601 		 * We can only poll for single bio I/Os.
602 		 */
603 		iocb->ki_flags &= ~IOCB_HIPRI;
604 	}
605 
606 	blk_finish_plug(&plug);
607 
608 	/*
609 	 * We only report that we've read data up to i_size.
610 	 * Revert iter to a state corresponding to that as some callers (such
611 	 * as the splice code) rely on it.
612 	 */
613 	if (iov_iter_rw(iter) == READ && iomi.pos >= dio->i_size)
614 		iov_iter_revert(iter, iomi.pos - dio->i_size);
615 
616 	if (ret == -EFAULT && dio->size && (dio_flags & IOMAP_DIO_PARTIAL)) {
617 		if (!(iocb->ki_flags & IOCB_NOWAIT))
618 			wait_for_completion = true;
619 		ret = 0;
620 	}
621 
622 	/* magic error code to fall back to buffered I/O */
623 	if (ret == -ENOTBLK) {
624 		wait_for_completion = true;
625 		ret = 0;
626 	}
627 	if (ret < 0)
628 		iomap_dio_set_error(dio, ret);
629 
630 	/*
631 	 * If all the writes we issued were FUA, we don't need to flush the
632 	 * cache on IO completion. Clear the sync flag for this case.
633 	 */
634 	if (dio->flags & IOMAP_DIO_WRITE_FUA)
635 		dio->flags &= ~IOMAP_DIO_NEED_SYNC;
636 
637 	WRITE_ONCE(iocb->private, dio->submit.poll_bio);
638 
639 	/*
640 	 * We are about to drop our additional submission reference, which
641 	 * might be the last reference to the dio.  There are three different
642 	 * ways we can progress here:
643 	 *
644 	 *  (a) If this is the last reference we will always complete and free
645 	 *	the dio ourselves.
646 	 *  (b) If this is not the last reference, and we serve an asynchronous
647 	 *	iocb, we must never touch the dio after the decrement, the
648 	 *	I/O completion handler will complete and free it.
649 	 *  (c) If this is not the last reference, but we serve a synchronous
650 	 *	iocb, the I/O completion handler will wake us up on the drop
651 	 *	of the final reference, and we will complete and free it here
652 	 *	after we got woken by the I/O completion handler.
653 	 */
654 	dio->wait_for_completion = wait_for_completion;
655 	if (!atomic_dec_and_test(&dio->ref)) {
656 		if (!wait_for_completion) {
657 			trace_iomap_dio_rw_queued(inode, iomi.pos, iomi.len);
658 			return ERR_PTR(-EIOCBQUEUED);
659 		}
660 
661 		for (;;) {
662 			set_current_state(TASK_UNINTERRUPTIBLE);
663 			if (!READ_ONCE(dio->submit.waiter))
664 				break;
665 
666 			blk_io_schedule();
667 		}
668 		__set_current_state(TASK_RUNNING);
669 	}
670 
671 	return dio;
672 
673 out_free_dio:
674 	kfree(dio);
675 	if (ret)
676 		return ERR_PTR(ret);
677 	return NULL;
678 }
679 EXPORT_SYMBOL_GPL(__iomap_dio_rw);
680 
681 ssize_t
682 iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
683 		const struct iomap_ops *ops, const struct iomap_dio_ops *dops,
684 		unsigned int dio_flags, void *private, size_t done_before)
685 {
686 	struct iomap_dio *dio;
687 
688 	dio = __iomap_dio_rw(iocb, iter, ops, dops, dio_flags, private,
689 			     done_before);
690 	if (IS_ERR_OR_NULL(dio))
691 		return PTR_ERR_OR_ZERO(dio);
692 	return iomap_dio_complete(dio);
693 }
694 EXPORT_SYMBOL_GPL(iomap_dio_rw);
695