1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Red Hat, Inc. 4 * Copyright (c) 2016-2018 Christoph Hellwig. 5 */ 6 #include <linux/module.h> 7 #include <linux/compiler.h> 8 #include <linux/fs.h> 9 #include <linux/iomap.h> 10 #include <linux/backing-dev.h> 11 #include <linux/uio.h> 12 #include <linux/task_io_accounting_ops.h> 13 #include "trace.h" 14 15 #include "../internal.h" 16 17 /* 18 * Private flags for iomap_dio, must not overlap with the public ones in 19 * iomap.h: 20 */ 21 #define IOMAP_DIO_WRITE_FUA (1 << 28) 22 #define IOMAP_DIO_NEED_SYNC (1 << 29) 23 #define IOMAP_DIO_WRITE (1 << 30) 24 #define IOMAP_DIO_DIRTY (1 << 31) 25 26 struct iomap_dio { 27 struct kiocb *iocb; 28 const struct iomap_dio_ops *dops; 29 loff_t i_size; 30 loff_t size; 31 atomic_t ref; 32 unsigned flags; 33 int error; 34 bool wait_for_completion; 35 36 union { 37 /* used during submission and for synchronous completion: */ 38 struct { 39 struct iov_iter *iter; 40 struct task_struct *waiter; 41 struct request_queue *last_queue; 42 blk_qc_t cookie; 43 } submit; 44 45 /* used for aio completion: */ 46 struct { 47 struct work_struct work; 48 } aio; 49 }; 50 }; 51 52 int iomap_dio_iopoll(struct kiocb *kiocb, bool spin) 53 { 54 struct request_queue *q = READ_ONCE(kiocb->private); 55 56 if (!q) 57 return 0; 58 return blk_poll(q, READ_ONCE(kiocb->ki_cookie), spin); 59 } 60 EXPORT_SYMBOL_GPL(iomap_dio_iopoll); 61 62 static void iomap_dio_submit_bio(struct iomap_dio *dio, struct iomap *iomap, 63 struct bio *bio, loff_t pos) 64 { 65 atomic_inc(&dio->ref); 66 67 if (dio->iocb->ki_flags & IOCB_HIPRI) 68 bio_set_polled(bio, dio->iocb); 69 70 dio->submit.last_queue = bdev_get_queue(iomap->bdev); 71 if (dio->dops && dio->dops->submit_io) 72 dio->submit.cookie = dio->dops->submit_io( 73 file_inode(dio->iocb->ki_filp), 74 iomap, bio, pos); 75 else 76 dio->submit.cookie = submit_bio(bio); 77 } 78 79 ssize_t iomap_dio_complete(struct iomap_dio *dio) 80 { 81 const struct iomap_dio_ops *dops = dio->dops; 82 struct kiocb *iocb = dio->iocb; 83 struct inode *inode = file_inode(iocb->ki_filp); 84 loff_t offset = iocb->ki_pos; 85 ssize_t ret = dio->error; 86 87 if (dops && dops->end_io) 88 ret = dops->end_io(iocb, dio->size, ret, dio->flags); 89 90 if (likely(!ret)) { 91 ret = dio->size; 92 /* check for short read */ 93 if (offset + ret > dio->i_size && 94 !(dio->flags & IOMAP_DIO_WRITE)) 95 ret = dio->i_size - offset; 96 iocb->ki_pos += ret; 97 } 98 99 /* 100 * Try again to invalidate clean pages which might have been cached by 101 * non-direct readahead, or faulted in by get_user_pages() if the source 102 * of the write was an mmap'ed region of the file we're writing. Either 103 * one is a pretty crazy thing to do, so we don't support it 100%. If 104 * this invalidation fails, tough, the write still worked... 105 * 106 * And this page cache invalidation has to be after ->end_io(), as some 107 * filesystems convert unwritten extents to real allocations in 108 * ->end_io() when necessary, otherwise a racing buffer read would cache 109 * zeros from unwritten extents. 110 */ 111 if (!dio->error && dio->size && 112 (dio->flags & IOMAP_DIO_WRITE) && inode->i_mapping->nrpages) { 113 int err; 114 err = invalidate_inode_pages2_range(inode->i_mapping, 115 offset >> PAGE_SHIFT, 116 (offset + dio->size - 1) >> PAGE_SHIFT); 117 if (err) 118 dio_warn_stale_pagecache(iocb->ki_filp); 119 } 120 121 inode_dio_end(file_inode(iocb->ki_filp)); 122 /* 123 * If this is a DSYNC write, make sure we push it to stable storage now 124 * that we've written data. 125 */ 126 if (ret > 0 && (dio->flags & IOMAP_DIO_NEED_SYNC)) 127 ret = generic_write_sync(iocb, ret); 128 129 kfree(dio); 130 131 return ret; 132 } 133 EXPORT_SYMBOL_GPL(iomap_dio_complete); 134 135 static void iomap_dio_complete_work(struct work_struct *work) 136 { 137 struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work); 138 struct kiocb *iocb = dio->iocb; 139 140 iocb->ki_complete(iocb, iomap_dio_complete(dio), 0); 141 } 142 143 /* 144 * Set an error in the dio if none is set yet. We have to use cmpxchg 145 * as the submission context and the completion context(s) can race to 146 * update the error. 147 */ 148 static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret) 149 { 150 cmpxchg(&dio->error, 0, ret); 151 } 152 153 static void iomap_dio_bio_end_io(struct bio *bio) 154 { 155 struct iomap_dio *dio = bio->bi_private; 156 bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY); 157 158 if (bio->bi_status) 159 iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status)); 160 161 if (atomic_dec_and_test(&dio->ref)) { 162 if (dio->wait_for_completion) { 163 struct task_struct *waiter = dio->submit.waiter; 164 WRITE_ONCE(dio->submit.waiter, NULL); 165 blk_wake_io_task(waiter); 166 } else if (dio->flags & IOMAP_DIO_WRITE) { 167 struct inode *inode = file_inode(dio->iocb->ki_filp); 168 169 INIT_WORK(&dio->aio.work, iomap_dio_complete_work); 170 queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work); 171 } else { 172 iomap_dio_complete_work(&dio->aio.work); 173 } 174 } 175 176 if (should_dirty) { 177 bio_check_pages_dirty(bio); 178 } else { 179 bio_release_pages(bio, false); 180 bio_put(bio); 181 } 182 } 183 184 static void 185 iomap_dio_zero(struct iomap_dio *dio, struct iomap *iomap, loff_t pos, 186 unsigned len) 187 { 188 struct page *page = ZERO_PAGE(0); 189 int flags = REQ_SYNC | REQ_IDLE; 190 struct bio *bio; 191 192 bio = bio_alloc(GFP_KERNEL, 1); 193 bio_set_dev(bio, iomap->bdev); 194 bio->bi_iter.bi_sector = iomap_sector(iomap, pos); 195 bio->bi_private = dio; 196 bio->bi_end_io = iomap_dio_bio_end_io; 197 198 get_page(page); 199 __bio_add_page(bio, page, len, 0); 200 bio_set_op_attrs(bio, REQ_OP_WRITE, flags); 201 iomap_dio_submit_bio(dio, iomap, bio, pos); 202 } 203 204 /* 205 * Figure out the bio's operation flags from the dio request, the 206 * mapping, and whether or not we want FUA. Note that we can end up 207 * clearing the WRITE_FUA flag in the dio request. 208 */ 209 static inline unsigned int 210 iomap_dio_bio_opflags(struct iomap_dio *dio, struct iomap *iomap, bool use_fua) 211 { 212 unsigned int opflags = REQ_SYNC | REQ_IDLE; 213 214 if (!(dio->flags & IOMAP_DIO_WRITE)) { 215 WARN_ON_ONCE(iomap->flags & IOMAP_F_ZONE_APPEND); 216 return REQ_OP_READ; 217 } 218 219 if (iomap->flags & IOMAP_F_ZONE_APPEND) 220 opflags |= REQ_OP_ZONE_APPEND; 221 else 222 opflags |= REQ_OP_WRITE; 223 224 if (use_fua) 225 opflags |= REQ_FUA; 226 else 227 dio->flags &= ~IOMAP_DIO_WRITE_FUA; 228 229 return opflags; 230 } 231 232 static loff_t 233 iomap_dio_bio_actor(struct inode *inode, loff_t pos, loff_t length, 234 struct iomap_dio *dio, struct iomap *iomap) 235 { 236 unsigned int blkbits = blksize_bits(bdev_logical_block_size(iomap->bdev)); 237 unsigned int fs_block_size = i_blocksize(inode), pad; 238 unsigned int align = iov_iter_alignment(dio->submit.iter); 239 unsigned int bio_opf; 240 struct bio *bio; 241 bool need_zeroout = false; 242 bool use_fua = false; 243 int nr_pages, ret = 0; 244 size_t copied = 0; 245 size_t orig_count; 246 247 if ((pos | length | align) & ((1 << blkbits) - 1)) 248 return -EINVAL; 249 250 if (iomap->type == IOMAP_UNWRITTEN) { 251 dio->flags |= IOMAP_DIO_UNWRITTEN; 252 need_zeroout = true; 253 } 254 255 if (iomap->flags & IOMAP_F_SHARED) 256 dio->flags |= IOMAP_DIO_COW; 257 258 if (iomap->flags & IOMAP_F_NEW) { 259 need_zeroout = true; 260 } else if (iomap->type == IOMAP_MAPPED) { 261 /* 262 * Use a FUA write if we need datasync semantics, this is a pure 263 * data IO that doesn't require any metadata updates (including 264 * after IO completion such as unwritten extent conversion) and 265 * the underlying device supports FUA. This allows us to avoid 266 * cache flushes on IO completion. 267 */ 268 if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) && 269 (dio->flags & IOMAP_DIO_WRITE_FUA) && 270 blk_queue_fua(bdev_get_queue(iomap->bdev))) 271 use_fua = true; 272 } 273 274 /* 275 * Save the original count and trim the iter to just the extent we 276 * are operating on right now. The iter will be re-expanded once 277 * we are done. 278 */ 279 orig_count = iov_iter_count(dio->submit.iter); 280 iov_iter_truncate(dio->submit.iter, length); 281 282 if (!iov_iter_count(dio->submit.iter)) 283 goto out; 284 285 if (need_zeroout) { 286 /* zero out from the start of the block to the write offset */ 287 pad = pos & (fs_block_size - 1); 288 if (pad) 289 iomap_dio_zero(dio, iomap, pos - pad, pad); 290 } 291 292 /* 293 * Set the operation flags early so that bio_iov_iter_get_pages 294 * can set up the page vector appropriately for a ZONE_APPEND 295 * operation. 296 */ 297 bio_opf = iomap_dio_bio_opflags(dio, iomap, use_fua); 298 299 nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, BIO_MAX_VECS); 300 do { 301 size_t n; 302 if (dio->error) { 303 iov_iter_revert(dio->submit.iter, copied); 304 copied = ret = 0; 305 goto out; 306 } 307 308 bio = bio_alloc(GFP_KERNEL, nr_pages); 309 bio_set_dev(bio, iomap->bdev); 310 bio->bi_iter.bi_sector = iomap_sector(iomap, pos); 311 bio->bi_write_hint = dio->iocb->ki_hint; 312 bio->bi_ioprio = dio->iocb->ki_ioprio; 313 bio->bi_private = dio; 314 bio->bi_end_io = iomap_dio_bio_end_io; 315 bio->bi_opf = bio_opf; 316 317 ret = bio_iov_iter_get_pages(bio, dio->submit.iter); 318 if (unlikely(ret)) { 319 /* 320 * We have to stop part way through an IO. We must fall 321 * through to the sub-block tail zeroing here, otherwise 322 * this short IO may expose stale data in the tail of 323 * the block we haven't written data to. 324 */ 325 bio_put(bio); 326 goto zero_tail; 327 } 328 329 n = bio->bi_iter.bi_size; 330 if (dio->flags & IOMAP_DIO_WRITE) { 331 task_io_account_write(n); 332 } else { 333 if (dio->flags & IOMAP_DIO_DIRTY) 334 bio_set_pages_dirty(bio); 335 } 336 337 dio->size += n; 338 copied += n; 339 340 nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, 341 BIO_MAX_VECS); 342 iomap_dio_submit_bio(dio, iomap, bio, pos); 343 pos += n; 344 } while (nr_pages); 345 346 /* 347 * We need to zeroout the tail of a sub-block write if the extent type 348 * requires zeroing or the write extends beyond EOF. If we don't zero 349 * the block tail in the latter case, we can expose stale data via mmap 350 * reads of the EOF block. 351 */ 352 zero_tail: 353 if (need_zeroout || 354 ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) { 355 /* zero out from the end of the write to the end of the block */ 356 pad = pos & (fs_block_size - 1); 357 if (pad) 358 iomap_dio_zero(dio, iomap, pos, fs_block_size - pad); 359 } 360 out: 361 /* Undo iter limitation to current extent */ 362 iov_iter_reexpand(dio->submit.iter, orig_count - copied); 363 if (copied) 364 return copied; 365 return ret; 366 } 367 368 static loff_t 369 iomap_dio_hole_actor(loff_t length, struct iomap_dio *dio) 370 { 371 length = iov_iter_zero(length, dio->submit.iter); 372 dio->size += length; 373 return length; 374 } 375 376 static loff_t 377 iomap_dio_inline_actor(struct inode *inode, loff_t pos, loff_t length, 378 struct iomap_dio *dio, struct iomap *iomap) 379 { 380 struct iov_iter *iter = dio->submit.iter; 381 size_t copied; 382 383 BUG_ON(pos + length > PAGE_SIZE - offset_in_page(iomap->inline_data)); 384 385 if (dio->flags & IOMAP_DIO_WRITE) { 386 loff_t size = inode->i_size; 387 388 if (pos > size) 389 memset(iomap->inline_data + size, 0, pos - size); 390 copied = copy_from_iter(iomap->inline_data + pos, length, iter); 391 if (copied) { 392 if (pos + copied > size) 393 i_size_write(inode, pos + copied); 394 mark_inode_dirty(inode); 395 } 396 } else { 397 copied = copy_to_iter(iomap->inline_data + pos, length, iter); 398 } 399 dio->size += copied; 400 return copied; 401 } 402 403 static loff_t 404 iomap_dio_actor(struct inode *inode, loff_t pos, loff_t length, 405 void *data, struct iomap *iomap, struct iomap *srcmap) 406 { 407 struct iomap_dio *dio = data; 408 409 switch (iomap->type) { 410 case IOMAP_HOLE: 411 if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE)) 412 return -EIO; 413 return iomap_dio_hole_actor(length, dio); 414 case IOMAP_UNWRITTEN: 415 if (!(dio->flags & IOMAP_DIO_WRITE)) 416 return iomap_dio_hole_actor(length, dio); 417 return iomap_dio_bio_actor(inode, pos, length, dio, iomap); 418 case IOMAP_MAPPED: 419 return iomap_dio_bio_actor(inode, pos, length, dio, iomap); 420 case IOMAP_INLINE: 421 return iomap_dio_inline_actor(inode, pos, length, dio, iomap); 422 case IOMAP_DELALLOC: 423 /* 424 * DIO is not serialised against mmap() access at all, and so 425 * if the page_mkwrite occurs between the writeback and the 426 * iomap_apply() call in the DIO path, then it will see the 427 * DELALLOC block that the page-mkwrite allocated. 428 */ 429 pr_warn_ratelimited("Direct I/O collision with buffered writes! File: %pD4 Comm: %.20s\n", 430 dio->iocb->ki_filp, current->comm); 431 return -EIO; 432 default: 433 WARN_ON_ONCE(1); 434 return -EIO; 435 } 436 } 437 438 /* 439 * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO 440 * is being issued as AIO or not. This allows us to optimise pure data writes 441 * to use REQ_FUA rather than requiring generic_write_sync() to issue a 442 * REQ_FLUSH post write. This is slightly tricky because a single request here 443 * can be mapped into multiple disjoint IOs and only a subset of the IOs issued 444 * may be pure data writes. In that case, we still need to do a full data sync 445 * completion. 446 * 447 * Returns -ENOTBLK In case of a page invalidation invalidation failure for 448 * writes. The callers needs to fall back to buffered I/O in this case. 449 */ 450 struct iomap_dio * 451 __iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter, 452 const struct iomap_ops *ops, const struct iomap_dio_ops *dops, 453 unsigned int dio_flags) 454 { 455 struct address_space *mapping = iocb->ki_filp->f_mapping; 456 struct inode *inode = file_inode(iocb->ki_filp); 457 size_t count = iov_iter_count(iter); 458 loff_t pos = iocb->ki_pos; 459 loff_t end = iocb->ki_pos + count - 1, ret = 0; 460 bool wait_for_completion = 461 is_sync_kiocb(iocb) || (dio_flags & IOMAP_DIO_FORCE_WAIT); 462 unsigned int iomap_flags = IOMAP_DIRECT; 463 struct blk_plug plug; 464 struct iomap_dio *dio; 465 466 if (!count) 467 return NULL; 468 469 dio = kmalloc(sizeof(*dio), GFP_KERNEL); 470 if (!dio) 471 return ERR_PTR(-ENOMEM); 472 473 dio->iocb = iocb; 474 atomic_set(&dio->ref, 1); 475 dio->size = 0; 476 dio->i_size = i_size_read(inode); 477 dio->dops = dops; 478 dio->error = 0; 479 dio->flags = 0; 480 481 dio->submit.iter = iter; 482 dio->submit.waiter = current; 483 dio->submit.cookie = BLK_QC_T_NONE; 484 dio->submit.last_queue = NULL; 485 486 if (iov_iter_rw(iter) == READ) { 487 if (pos >= dio->i_size) 488 goto out_free_dio; 489 490 if (iter_is_iovec(iter)) 491 dio->flags |= IOMAP_DIO_DIRTY; 492 } else { 493 iomap_flags |= IOMAP_WRITE; 494 dio->flags |= IOMAP_DIO_WRITE; 495 496 /* for data sync or sync, we need sync completion processing */ 497 if (iocb->ki_flags & IOCB_DSYNC) 498 dio->flags |= IOMAP_DIO_NEED_SYNC; 499 500 /* 501 * For datasync only writes, we optimistically try using FUA for 502 * this IO. Any non-FUA write that occurs will clear this flag, 503 * hence we know before completion whether a cache flush is 504 * necessary. 505 */ 506 if ((iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC)) == IOCB_DSYNC) 507 dio->flags |= IOMAP_DIO_WRITE_FUA; 508 } 509 510 if (iocb->ki_flags & IOCB_NOWAIT) { 511 if (filemap_range_has_page(mapping, pos, end)) { 512 ret = -EAGAIN; 513 goto out_free_dio; 514 } 515 iomap_flags |= IOMAP_NOWAIT; 516 } 517 518 if (dio_flags & IOMAP_DIO_OVERWRITE_ONLY) { 519 ret = -EAGAIN; 520 if (pos >= dio->i_size || pos + count > dio->i_size) 521 goto out_free_dio; 522 iomap_flags |= IOMAP_OVERWRITE_ONLY; 523 } 524 525 ret = filemap_write_and_wait_range(mapping, pos, end); 526 if (ret) 527 goto out_free_dio; 528 529 if (iov_iter_rw(iter) == WRITE) { 530 /* 531 * Try to invalidate cache pages for the range we are writing. 532 * If this invalidation fails, let the caller fall back to 533 * buffered I/O. 534 */ 535 if (invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, 536 end >> PAGE_SHIFT)) { 537 trace_iomap_dio_invalidate_fail(inode, pos, count); 538 ret = -ENOTBLK; 539 goto out_free_dio; 540 } 541 542 if (!wait_for_completion && !inode->i_sb->s_dio_done_wq) { 543 ret = sb_init_dio_done_wq(inode->i_sb); 544 if (ret < 0) 545 goto out_free_dio; 546 } 547 } 548 549 inode_dio_begin(inode); 550 551 blk_start_plug(&plug); 552 do { 553 ret = iomap_apply(inode, pos, count, iomap_flags, ops, dio, 554 iomap_dio_actor); 555 if (ret <= 0) { 556 /* magic error code to fall back to buffered I/O */ 557 if (ret == -ENOTBLK) { 558 wait_for_completion = true; 559 ret = 0; 560 } 561 break; 562 } 563 pos += ret; 564 565 if (iov_iter_rw(iter) == READ && pos >= dio->i_size) { 566 /* 567 * We only report that we've read data up to i_size. 568 * Revert iter to a state corresponding to that as 569 * some callers (such as splice code) rely on it. 570 */ 571 iov_iter_revert(iter, pos - dio->i_size); 572 break; 573 } 574 } while ((count = iov_iter_count(iter)) > 0); 575 blk_finish_plug(&plug); 576 577 if (ret < 0) 578 iomap_dio_set_error(dio, ret); 579 580 /* 581 * If all the writes we issued were FUA, we don't need to flush the 582 * cache on IO completion. Clear the sync flag for this case. 583 */ 584 if (dio->flags & IOMAP_DIO_WRITE_FUA) 585 dio->flags &= ~IOMAP_DIO_NEED_SYNC; 586 587 WRITE_ONCE(iocb->ki_cookie, dio->submit.cookie); 588 WRITE_ONCE(iocb->private, dio->submit.last_queue); 589 590 /* 591 * We are about to drop our additional submission reference, which 592 * might be the last reference to the dio. There are three different 593 * ways we can progress here: 594 * 595 * (a) If this is the last reference we will always complete and free 596 * the dio ourselves. 597 * (b) If this is not the last reference, and we serve an asynchronous 598 * iocb, we must never touch the dio after the decrement, the 599 * I/O completion handler will complete and free it. 600 * (c) If this is not the last reference, but we serve a synchronous 601 * iocb, the I/O completion handler will wake us up on the drop 602 * of the final reference, and we will complete and free it here 603 * after we got woken by the I/O completion handler. 604 */ 605 dio->wait_for_completion = wait_for_completion; 606 if (!atomic_dec_and_test(&dio->ref)) { 607 if (!wait_for_completion) 608 return ERR_PTR(-EIOCBQUEUED); 609 610 for (;;) { 611 set_current_state(TASK_UNINTERRUPTIBLE); 612 if (!READ_ONCE(dio->submit.waiter)) 613 break; 614 615 if (!(iocb->ki_flags & IOCB_HIPRI) || 616 !dio->submit.last_queue || 617 !blk_poll(dio->submit.last_queue, 618 dio->submit.cookie, true)) 619 blk_io_schedule(); 620 } 621 __set_current_state(TASK_RUNNING); 622 } 623 624 return dio; 625 626 out_free_dio: 627 kfree(dio); 628 if (ret) 629 return ERR_PTR(ret); 630 return NULL; 631 } 632 EXPORT_SYMBOL_GPL(__iomap_dio_rw); 633 634 ssize_t 635 iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter, 636 const struct iomap_ops *ops, const struct iomap_dio_ops *dops, 637 unsigned int dio_flags) 638 { 639 struct iomap_dio *dio; 640 641 dio = __iomap_dio_rw(iocb, iter, ops, dops, dio_flags); 642 if (IS_ERR_OR_NULL(dio)) 643 return PTR_ERR_OR_ZERO(dio); 644 return iomap_dio_complete(dio); 645 } 646 EXPORT_SYMBOL_GPL(iomap_dio_rw); 647