xref: /openbmc/linux/fs/iomap/direct-io.c (revision 2fa5ebe3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Red Hat, Inc.
4  * Copyright (c) 2016-2021 Christoph Hellwig.
5  */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/fscrypt.h>
10 #include <linux/pagemap.h>
11 #include <linux/iomap.h>
12 #include <linux/backing-dev.h>
13 #include <linux/uio.h>
14 #include <linux/task_io_accounting_ops.h>
15 #include "trace.h"
16 
17 #include "../internal.h"
18 
19 /*
20  * Private flags for iomap_dio, must not overlap with the public ones in
21  * iomap.h:
22  */
23 #define IOMAP_DIO_WRITE_FUA	(1 << 28)
24 #define IOMAP_DIO_NEED_SYNC	(1 << 29)
25 #define IOMAP_DIO_WRITE		(1 << 30)
26 #define IOMAP_DIO_DIRTY		(1 << 31)
27 
28 struct iomap_dio {
29 	struct kiocb		*iocb;
30 	const struct iomap_dio_ops *dops;
31 	loff_t			i_size;
32 	loff_t			size;
33 	atomic_t		ref;
34 	unsigned		flags;
35 	int			error;
36 	size_t			done_before;
37 	bool			wait_for_completion;
38 
39 	union {
40 		/* used during submission and for synchronous completion: */
41 		struct {
42 			struct iov_iter		*iter;
43 			struct task_struct	*waiter;
44 			struct bio		*poll_bio;
45 		} submit;
46 
47 		/* used for aio completion: */
48 		struct {
49 			struct work_struct	work;
50 		} aio;
51 	};
52 };
53 
54 static struct bio *iomap_dio_alloc_bio(const struct iomap_iter *iter,
55 		struct iomap_dio *dio, unsigned short nr_vecs, blk_opf_t opf)
56 {
57 	if (dio->dops && dio->dops->bio_set)
58 		return bio_alloc_bioset(iter->iomap.bdev, nr_vecs, opf,
59 					GFP_KERNEL, dio->dops->bio_set);
60 	return bio_alloc(iter->iomap.bdev, nr_vecs, opf, GFP_KERNEL);
61 }
62 
63 static void iomap_dio_submit_bio(const struct iomap_iter *iter,
64 		struct iomap_dio *dio, struct bio *bio, loff_t pos)
65 {
66 	atomic_inc(&dio->ref);
67 
68 	/* Sync dio can't be polled reliably */
69 	if ((dio->iocb->ki_flags & IOCB_HIPRI) && !is_sync_kiocb(dio->iocb)) {
70 		bio_set_polled(bio, dio->iocb);
71 		dio->submit.poll_bio = bio;
72 	}
73 
74 	if (dio->dops && dio->dops->submit_io)
75 		dio->dops->submit_io(iter, bio, pos);
76 	else
77 		submit_bio(bio);
78 }
79 
80 ssize_t iomap_dio_complete(struct iomap_dio *dio)
81 {
82 	const struct iomap_dio_ops *dops = dio->dops;
83 	struct kiocb *iocb = dio->iocb;
84 	struct inode *inode = file_inode(iocb->ki_filp);
85 	loff_t offset = iocb->ki_pos;
86 	ssize_t ret = dio->error;
87 
88 	if (dops && dops->end_io)
89 		ret = dops->end_io(iocb, dio->size, ret, dio->flags);
90 
91 	if (likely(!ret)) {
92 		ret = dio->size;
93 		/* check for short read */
94 		if (offset + ret > dio->i_size &&
95 		    !(dio->flags & IOMAP_DIO_WRITE))
96 			ret = dio->i_size - offset;
97 		iocb->ki_pos += ret;
98 	}
99 
100 	/*
101 	 * Try again to invalidate clean pages which might have been cached by
102 	 * non-direct readahead, or faulted in by get_user_pages() if the source
103 	 * of the write was an mmap'ed region of the file we're writing.  Either
104 	 * one is a pretty crazy thing to do, so we don't support it 100%.  If
105 	 * this invalidation fails, tough, the write still worked...
106 	 *
107 	 * And this page cache invalidation has to be after ->end_io(), as some
108 	 * filesystems convert unwritten extents to real allocations in
109 	 * ->end_io() when necessary, otherwise a racing buffer read would cache
110 	 * zeros from unwritten extents.
111 	 */
112 	if (!dio->error && dio->size &&
113 	    (dio->flags & IOMAP_DIO_WRITE) && inode->i_mapping->nrpages) {
114 		int err;
115 		err = invalidate_inode_pages2_range(inode->i_mapping,
116 				offset >> PAGE_SHIFT,
117 				(offset + dio->size - 1) >> PAGE_SHIFT);
118 		if (err)
119 			dio_warn_stale_pagecache(iocb->ki_filp);
120 	}
121 
122 	inode_dio_end(file_inode(iocb->ki_filp));
123 	/*
124 	 * If this is a DSYNC write, make sure we push it to stable storage now
125 	 * that we've written data.
126 	 */
127 	if (ret > 0 && (dio->flags & IOMAP_DIO_NEED_SYNC))
128 		ret = generic_write_sync(iocb, ret);
129 
130 	if (ret > 0)
131 		ret += dio->done_before;
132 
133 	kfree(dio);
134 
135 	return ret;
136 }
137 EXPORT_SYMBOL_GPL(iomap_dio_complete);
138 
139 static void iomap_dio_complete_work(struct work_struct *work)
140 {
141 	struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work);
142 	struct kiocb *iocb = dio->iocb;
143 
144 	iocb->ki_complete(iocb, iomap_dio_complete(dio));
145 }
146 
147 /*
148  * Set an error in the dio if none is set yet.  We have to use cmpxchg
149  * as the submission context and the completion context(s) can race to
150  * update the error.
151  */
152 static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret)
153 {
154 	cmpxchg(&dio->error, 0, ret);
155 }
156 
157 void iomap_dio_bio_end_io(struct bio *bio)
158 {
159 	struct iomap_dio *dio = bio->bi_private;
160 	bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY);
161 
162 	if (bio->bi_status)
163 		iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status));
164 
165 	if (atomic_dec_and_test(&dio->ref)) {
166 		if (dio->wait_for_completion) {
167 			struct task_struct *waiter = dio->submit.waiter;
168 			WRITE_ONCE(dio->submit.waiter, NULL);
169 			blk_wake_io_task(waiter);
170 		} else if (dio->flags & IOMAP_DIO_WRITE) {
171 			struct inode *inode = file_inode(dio->iocb->ki_filp);
172 
173 			WRITE_ONCE(dio->iocb->private, NULL);
174 			INIT_WORK(&dio->aio.work, iomap_dio_complete_work);
175 			queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work);
176 		} else {
177 			WRITE_ONCE(dio->iocb->private, NULL);
178 			iomap_dio_complete_work(&dio->aio.work);
179 		}
180 	}
181 
182 	if (should_dirty) {
183 		bio_check_pages_dirty(bio);
184 	} else {
185 		bio_release_pages(bio, false);
186 		bio_put(bio);
187 	}
188 }
189 EXPORT_SYMBOL_GPL(iomap_dio_bio_end_io);
190 
191 static void iomap_dio_zero(const struct iomap_iter *iter, struct iomap_dio *dio,
192 		loff_t pos, unsigned len)
193 {
194 	struct inode *inode = file_inode(dio->iocb->ki_filp);
195 	struct page *page = ZERO_PAGE(0);
196 	struct bio *bio;
197 
198 	bio = iomap_dio_alloc_bio(iter, dio, 1, REQ_OP_WRITE | REQ_SYNC | REQ_IDLE);
199 	fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits,
200 				  GFP_KERNEL);
201 	bio->bi_iter.bi_sector = iomap_sector(&iter->iomap, pos);
202 	bio->bi_private = dio;
203 	bio->bi_end_io = iomap_dio_bio_end_io;
204 
205 	get_page(page);
206 	__bio_add_page(bio, page, len, 0);
207 	iomap_dio_submit_bio(iter, dio, bio, pos);
208 }
209 
210 /*
211  * Figure out the bio's operation flags from the dio request, the
212  * mapping, and whether or not we want FUA.  Note that we can end up
213  * clearing the WRITE_FUA flag in the dio request.
214  */
215 static inline blk_opf_t iomap_dio_bio_opflags(struct iomap_dio *dio,
216 		const struct iomap *iomap, bool use_fua)
217 {
218 	blk_opf_t opflags = REQ_SYNC | REQ_IDLE;
219 
220 	if (!(dio->flags & IOMAP_DIO_WRITE))
221 		return REQ_OP_READ;
222 
223 	opflags |= REQ_OP_WRITE;
224 	if (use_fua)
225 		opflags |= REQ_FUA;
226 	else
227 		dio->flags &= ~IOMAP_DIO_WRITE_FUA;
228 
229 	return opflags;
230 }
231 
232 static loff_t iomap_dio_bio_iter(const struct iomap_iter *iter,
233 		struct iomap_dio *dio)
234 {
235 	const struct iomap *iomap = &iter->iomap;
236 	struct inode *inode = iter->inode;
237 	unsigned int fs_block_size = i_blocksize(inode), pad;
238 	loff_t length = iomap_length(iter);
239 	loff_t pos = iter->pos;
240 	blk_opf_t bio_opf;
241 	struct bio *bio;
242 	bool need_zeroout = false;
243 	bool use_fua = false;
244 	int nr_pages, ret = 0;
245 	size_t copied = 0;
246 	size_t orig_count;
247 
248 	if ((pos | length) & (bdev_logical_block_size(iomap->bdev) - 1) ||
249 	    !bdev_iter_is_aligned(iomap->bdev, dio->submit.iter))
250 		return -EINVAL;
251 
252 	if (iomap->type == IOMAP_UNWRITTEN) {
253 		dio->flags |= IOMAP_DIO_UNWRITTEN;
254 		need_zeroout = true;
255 	}
256 
257 	if (iomap->flags & IOMAP_F_SHARED)
258 		dio->flags |= IOMAP_DIO_COW;
259 
260 	if (iomap->flags & IOMAP_F_NEW) {
261 		need_zeroout = true;
262 	} else if (iomap->type == IOMAP_MAPPED) {
263 		/*
264 		 * Use a FUA write if we need datasync semantics, this is a pure
265 		 * data IO that doesn't require any metadata updates (including
266 		 * after IO completion such as unwritten extent conversion) and
267 		 * the underlying device supports FUA. This allows us to avoid
268 		 * cache flushes on IO completion.
269 		 */
270 		if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) &&
271 		    (dio->flags & IOMAP_DIO_WRITE_FUA) && bdev_fua(iomap->bdev))
272 			use_fua = true;
273 	}
274 
275 	/*
276 	 * Save the original count and trim the iter to just the extent we
277 	 * are operating on right now.  The iter will be re-expanded once
278 	 * we are done.
279 	 */
280 	orig_count = iov_iter_count(dio->submit.iter);
281 	iov_iter_truncate(dio->submit.iter, length);
282 
283 	if (!iov_iter_count(dio->submit.iter))
284 		goto out;
285 
286 	/*
287 	 * We can only poll for single bio I/Os.
288 	 */
289 	if (need_zeroout ||
290 	    ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode)))
291 		dio->iocb->ki_flags &= ~IOCB_HIPRI;
292 
293 	if (need_zeroout) {
294 		/* zero out from the start of the block to the write offset */
295 		pad = pos & (fs_block_size - 1);
296 		if (pad)
297 			iomap_dio_zero(iter, dio, pos - pad, pad);
298 	}
299 
300 	/*
301 	 * Set the operation flags early so that bio_iov_iter_get_pages
302 	 * can set up the page vector appropriately for a ZONE_APPEND
303 	 * operation.
304 	 */
305 	bio_opf = iomap_dio_bio_opflags(dio, iomap, use_fua);
306 
307 	nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, BIO_MAX_VECS);
308 	do {
309 		size_t n;
310 		if (dio->error) {
311 			iov_iter_revert(dio->submit.iter, copied);
312 			copied = ret = 0;
313 			goto out;
314 		}
315 
316 		bio = iomap_dio_alloc_bio(iter, dio, nr_pages, bio_opf);
317 		fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits,
318 					  GFP_KERNEL);
319 		bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
320 		bio->bi_ioprio = dio->iocb->ki_ioprio;
321 		bio->bi_private = dio;
322 		bio->bi_end_io = iomap_dio_bio_end_io;
323 
324 		ret = bio_iov_iter_get_pages(bio, dio->submit.iter);
325 		if (unlikely(ret)) {
326 			/*
327 			 * We have to stop part way through an IO. We must fall
328 			 * through to the sub-block tail zeroing here, otherwise
329 			 * this short IO may expose stale data in the tail of
330 			 * the block we haven't written data to.
331 			 */
332 			bio_put(bio);
333 			goto zero_tail;
334 		}
335 
336 		n = bio->bi_iter.bi_size;
337 		if (dio->flags & IOMAP_DIO_WRITE) {
338 			task_io_account_write(n);
339 		} else {
340 			if (dio->flags & IOMAP_DIO_DIRTY)
341 				bio_set_pages_dirty(bio);
342 		}
343 
344 		dio->size += n;
345 		copied += n;
346 
347 		nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter,
348 						 BIO_MAX_VECS);
349 		/*
350 		 * We can only poll for single bio I/Os.
351 		 */
352 		if (nr_pages)
353 			dio->iocb->ki_flags &= ~IOCB_HIPRI;
354 		iomap_dio_submit_bio(iter, dio, bio, pos);
355 		pos += n;
356 	} while (nr_pages);
357 
358 	/*
359 	 * We need to zeroout the tail of a sub-block write if the extent type
360 	 * requires zeroing or the write extends beyond EOF. If we don't zero
361 	 * the block tail in the latter case, we can expose stale data via mmap
362 	 * reads of the EOF block.
363 	 */
364 zero_tail:
365 	if (need_zeroout ||
366 	    ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) {
367 		/* zero out from the end of the write to the end of the block */
368 		pad = pos & (fs_block_size - 1);
369 		if (pad)
370 			iomap_dio_zero(iter, dio, pos, fs_block_size - pad);
371 	}
372 out:
373 	/* Undo iter limitation to current extent */
374 	iov_iter_reexpand(dio->submit.iter, orig_count - copied);
375 	if (copied)
376 		return copied;
377 	return ret;
378 }
379 
380 static loff_t iomap_dio_hole_iter(const struct iomap_iter *iter,
381 		struct iomap_dio *dio)
382 {
383 	loff_t length = iov_iter_zero(iomap_length(iter), dio->submit.iter);
384 
385 	dio->size += length;
386 	if (!length)
387 		return -EFAULT;
388 	return length;
389 }
390 
391 static loff_t iomap_dio_inline_iter(const struct iomap_iter *iomi,
392 		struct iomap_dio *dio)
393 {
394 	const struct iomap *iomap = &iomi->iomap;
395 	struct iov_iter *iter = dio->submit.iter;
396 	void *inline_data = iomap_inline_data(iomap, iomi->pos);
397 	loff_t length = iomap_length(iomi);
398 	loff_t pos = iomi->pos;
399 	size_t copied;
400 
401 	if (WARN_ON_ONCE(!iomap_inline_data_valid(iomap)))
402 		return -EIO;
403 
404 	if (dio->flags & IOMAP_DIO_WRITE) {
405 		loff_t size = iomi->inode->i_size;
406 
407 		if (pos > size)
408 			memset(iomap_inline_data(iomap, size), 0, pos - size);
409 		copied = copy_from_iter(inline_data, length, iter);
410 		if (copied) {
411 			if (pos + copied > size)
412 				i_size_write(iomi->inode, pos + copied);
413 			mark_inode_dirty(iomi->inode);
414 		}
415 	} else {
416 		copied = copy_to_iter(inline_data, length, iter);
417 	}
418 	dio->size += copied;
419 	if (!copied)
420 		return -EFAULT;
421 	return copied;
422 }
423 
424 static loff_t iomap_dio_iter(const struct iomap_iter *iter,
425 		struct iomap_dio *dio)
426 {
427 	switch (iter->iomap.type) {
428 	case IOMAP_HOLE:
429 		if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE))
430 			return -EIO;
431 		return iomap_dio_hole_iter(iter, dio);
432 	case IOMAP_UNWRITTEN:
433 		if (!(dio->flags & IOMAP_DIO_WRITE))
434 			return iomap_dio_hole_iter(iter, dio);
435 		return iomap_dio_bio_iter(iter, dio);
436 	case IOMAP_MAPPED:
437 		return iomap_dio_bio_iter(iter, dio);
438 	case IOMAP_INLINE:
439 		return iomap_dio_inline_iter(iter, dio);
440 	case IOMAP_DELALLOC:
441 		/*
442 		 * DIO is not serialised against mmap() access at all, and so
443 		 * if the page_mkwrite occurs between the writeback and the
444 		 * iomap_iter() call in the DIO path, then it will see the
445 		 * DELALLOC block that the page-mkwrite allocated.
446 		 */
447 		pr_warn_ratelimited("Direct I/O collision with buffered writes! File: %pD4 Comm: %.20s\n",
448 				    dio->iocb->ki_filp, current->comm);
449 		return -EIO;
450 	default:
451 		WARN_ON_ONCE(1);
452 		return -EIO;
453 	}
454 }
455 
456 /*
457  * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO
458  * is being issued as AIO or not.  This allows us to optimise pure data writes
459  * to use REQ_FUA rather than requiring generic_write_sync() to issue a
460  * REQ_FLUSH post write. This is slightly tricky because a single request here
461  * can be mapped into multiple disjoint IOs and only a subset of the IOs issued
462  * may be pure data writes. In that case, we still need to do a full data sync
463  * completion.
464  *
465  * When page faults are disabled and @dio_flags includes IOMAP_DIO_PARTIAL,
466  * __iomap_dio_rw can return a partial result if it encounters a non-resident
467  * page in @iter after preparing a transfer.  In that case, the non-resident
468  * pages can be faulted in and the request resumed with @done_before set to the
469  * number of bytes previously transferred.  The request will then complete with
470  * the correct total number of bytes transferred; this is essential for
471  * completing partial requests asynchronously.
472  *
473  * Returns -ENOTBLK In case of a page invalidation invalidation failure for
474  * writes.  The callers needs to fall back to buffered I/O in this case.
475  */
476 struct iomap_dio *
477 __iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
478 		const struct iomap_ops *ops, const struct iomap_dio_ops *dops,
479 		unsigned int dio_flags, void *private, size_t done_before)
480 {
481 	struct address_space *mapping = iocb->ki_filp->f_mapping;
482 	struct inode *inode = file_inode(iocb->ki_filp);
483 	struct iomap_iter iomi = {
484 		.inode		= inode,
485 		.pos		= iocb->ki_pos,
486 		.len		= iov_iter_count(iter),
487 		.flags		= IOMAP_DIRECT,
488 		.private	= private,
489 	};
490 	loff_t end = iomi.pos + iomi.len - 1, ret = 0;
491 	bool wait_for_completion =
492 		is_sync_kiocb(iocb) || (dio_flags & IOMAP_DIO_FORCE_WAIT);
493 	struct blk_plug plug;
494 	struct iomap_dio *dio;
495 
496 	if (!iomi.len)
497 		return NULL;
498 
499 	dio = kmalloc(sizeof(*dio), GFP_KERNEL);
500 	if (!dio)
501 		return ERR_PTR(-ENOMEM);
502 
503 	dio->iocb = iocb;
504 	atomic_set(&dio->ref, 1);
505 	dio->size = 0;
506 	dio->i_size = i_size_read(inode);
507 	dio->dops = dops;
508 	dio->error = 0;
509 	dio->flags = 0;
510 	dio->done_before = done_before;
511 
512 	dio->submit.iter = iter;
513 	dio->submit.waiter = current;
514 	dio->submit.poll_bio = NULL;
515 
516 	if (iov_iter_rw(iter) == READ) {
517 		if (iomi.pos >= dio->i_size)
518 			goto out_free_dio;
519 
520 		if (iocb->ki_flags & IOCB_NOWAIT) {
521 			if (filemap_range_needs_writeback(mapping, iomi.pos,
522 					end)) {
523 				ret = -EAGAIN;
524 				goto out_free_dio;
525 			}
526 			iomi.flags |= IOMAP_NOWAIT;
527 		}
528 
529 		if (user_backed_iter(iter))
530 			dio->flags |= IOMAP_DIO_DIRTY;
531 	} else {
532 		iomi.flags |= IOMAP_WRITE;
533 		dio->flags |= IOMAP_DIO_WRITE;
534 
535 		if (iocb->ki_flags & IOCB_NOWAIT) {
536 			if (filemap_range_has_page(mapping, iomi.pos, end)) {
537 				ret = -EAGAIN;
538 				goto out_free_dio;
539 			}
540 			iomi.flags |= IOMAP_NOWAIT;
541 		}
542 
543 		/* for data sync or sync, we need sync completion processing */
544 		if (iocb_is_dsync(iocb) && !(dio_flags & IOMAP_DIO_NOSYNC)) {
545 			dio->flags |= IOMAP_DIO_NEED_SYNC;
546 
547 		       /*
548 			* For datasync only writes, we optimistically try
549 			* using FUA for this IO.  Any non-FUA write that
550 			* occurs will clear this flag, hence we know before
551 			* completion whether a cache flush is necessary.
552 			*/
553 			if (!(iocb->ki_flags & IOCB_SYNC))
554 				dio->flags |= IOMAP_DIO_WRITE_FUA;
555 		}
556 	}
557 
558 	if (dio_flags & IOMAP_DIO_OVERWRITE_ONLY) {
559 		ret = -EAGAIN;
560 		if (iomi.pos >= dio->i_size ||
561 		    iomi.pos + iomi.len > dio->i_size)
562 			goto out_free_dio;
563 		iomi.flags |= IOMAP_OVERWRITE_ONLY;
564 	}
565 
566 	ret = filemap_write_and_wait_range(mapping, iomi.pos, end);
567 	if (ret)
568 		goto out_free_dio;
569 
570 	if (iov_iter_rw(iter) == WRITE) {
571 		/*
572 		 * Try to invalidate cache pages for the range we are writing.
573 		 * If this invalidation fails, let the caller fall back to
574 		 * buffered I/O.
575 		 */
576 		if (invalidate_inode_pages2_range(mapping,
577 				iomi.pos >> PAGE_SHIFT, end >> PAGE_SHIFT)) {
578 			trace_iomap_dio_invalidate_fail(inode, iomi.pos,
579 							iomi.len);
580 			ret = -ENOTBLK;
581 			goto out_free_dio;
582 		}
583 
584 		if (!wait_for_completion && !inode->i_sb->s_dio_done_wq) {
585 			ret = sb_init_dio_done_wq(inode->i_sb);
586 			if (ret < 0)
587 				goto out_free_dio;
588 		}
589 	}
590 
591 	inode_dio_begin(inode);
592 
593 	blk_start_plug(&plug);
594 	while ((ret = iomap_iter(&iomi, ops)) > 0) {
595 		iomi.processed = iomap_dio_iter(&iomi, dio);
596 
597 		/*
598 		 * We can only poll for single bio I/Os.
599 		 */
600 		iocb->ki_flags &= ~IOCB_HIPRI;
601 	}
602 
603 	blk_finish_plug(&plug);
604 
605 	/*
606 	 * We only report that we've read data up to i_size.
607 	 * Revert iter to a state corresponding to that as some callers (such
608 	 * as the splice code) rely on it.
609 	 */
610 	if (iov_iter_rw(iter) == READ && iomi.pos >= dio->i_size)
611 		iov_iter_revert(iter, iomi.pos - dio->i_size);
612 
613 	if (ret == -EFAULT && dio->size && (dio_flags & IOMAP_DIO_PARTIAL)) {
614 		if (!(iocb->ki_flags & IOCB_NOWAIT))
615 			wait_for_completion = true;
616 		ret = 0;
617 	}
618 
619 	/* magic error code to fall back to buffered I/O */
620 	if (ret == -ENOTBLK) {
621 		wait_for_completion = true;
622 		ret = 0;
623 	}
624 	if (ret < 0)
625 		iomap_dio_set_error(dio, ret);
626 
627 	/*
628 	 * If all the writes we issued were FUA, we don't need to flush the
629 	 * cache on IO completion. Clear the sync flag for this case.
630 	 */
631 	if (dio->flags & IOMAP_DIO_WRITE_FUA)
632 		dio->flags &= ~IOMAP_DIO_NEED_SYNC;
633 
634 	WRITE_ONCE(iocb->private, dio->submit.poll_bio);
635 
636 	/*
637 	 * We are about to drop our additional submission reference, which
638 	 * might be the last reference to the dio.  There are three different
639 	 * ways we can progress here:
640 	 *
641 	 *  (a) If this is the last reference we will always complete and free
642 	 *	the dio ourselves.
643 	 *  (b) If this is not the last reference, and we serve an asynchronous
644 	 *	iocb, we must never touch the dio after the decrement, the
645 	 *	I/O completion handler will complete and free it.
646 	 *  (c) If this is not the last reference, but we serve a synchronous
647 	 *	iocb, the I/O completion handler will wake us up on the drop
648 	 *	of the final reference, and we will complete and free it here
649 	 *	after we got woken by the I/O completion handler.
650 	 */
651 	dio->wait_for_completion = wait_for_completion;
652 	if (!atomic_dec_and_test(&dio->ref)) {
653 		if (!wait_for_completion)
654 			return ERR_PTR(-EIOCBQUEUED);
655 
656 		for (;;) {
657 			set_current_state(TASK_UNINTERRUPTIBLE);
658 			if (!READ_ONCE(dio->submit.waiter))
659 				break;
660 
661 			blk_io_schedule();
662 		}
663 		__set_current_state(TASK_RUNNING);
664 	}
665 
666 	return dio;
667 
668 out_free_dio:
669 	kfree(dio);
670 	if (ret)
671 		return ERR_PTR(ret);
672 	return NULL;
673 }
674 EXPORT_SYMBOL_GPL(__iomap_dio_rw);
675 
676 ssize_t
677 iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
678 		const struct iomap_ops *ops, const struct iomap_dio_ops *dops,
679 		unsigned int dio_flags, void *private, size_t done_before)
680 {
681 	struct iomap_dio *dio;
682 
683 	dio = __iomap_dio_rw(iocb, iter, ops, dops, dio_flags, private,
684 			     done_before);
685 	if (IS_ERR_OR_NULL(dio))
686 		return PTR_ERR_OR_ZERO(dio);
687 	return iomap_dio_complete(dio);
688 }
689 EXPORT_SYMBOL_GPL(iomap_dio_rw);
690