1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Red Hat, Inc. 4 * Copyright (c) 2016-2018 Christoph Hellwig. 5 */ 6 #include <linux/module.h> 7 #include <linux/compiler.h> 8 #include <linux/fs.h> 9 #include <linux/iomap.h> 10 #include <linux/backing-dev.h> 11 #include <linux/uio.h> 12 #include <linux/task_io_accounting_ops.h> 13 #include "trace.h" 14 15 #include "../internal.h" 16 17 /* 18 * Private flags for iomap_dio, must not overlap with the public ones in 19 * iomap.h: 20 */ 21 #define IOMAP_DIO_WRITE_FUA (1 << 28) 22 #define IOMAP_DIO_NEED_SYNC (1 << 29) 23 #define IOMAP_DIO_WRITE (1 << 30) 24 #define IOMAP_DIO_DIRTY (1 << 31) 25 26 struct iomap_dio { 27 struct kiocb *iocb; 28 const struct iomap_dio_ops *dops; 29 loff_t i_size; 30 loff_t size; 31 atomic_t ref; 32 unsigned flags; 33 int error; 34 bool wait_for_completion; 35 36 union { 37 /* used during submission and for synchronous completion: */ 38 struct { 39 struct iov_iter *iter; 40 struct task_struct *waiter; 41 struct request_queue *last_queue; 42 blk_qc_t cookie; 43 } submit; 44 45 /* used for aio completion: */ 46 struct { 47 struct work_struct work; 48 } aio; 49 }; 50 }; 51 52 int iomap_dio_iopoll(struct kiocb *kiocb, bool spin) 53 { 54 struct request_queue *q = READ_ONCE(kiocb->private); 55 56 if (!q) 57 return 0; 58 return blk_poll(q, READ_ONCE(kiocb->ki_cookie), spin); 59 } 60 EXPORT_SYMBOL_GPL(iomap_dio_iopoll); 61 62 static void iomap_dio_submit_bio(struct iomap_dio *dio, struct iomap *iomap, 63 struct bio *bio, loff_t pos) 64 { 65 atomic_inc(&dio->ref); 66 67 if (dio->iocb->ki_flags & IOCB_HIPRI) 68 bio_set_polled(bio, dio->iocb); 69 70 dio->submit.last_queue = bdev_get_queue(iomap->bdev); 71 if (dio->dops && dio->dops->submit_io) 72 dio->submit.cookie = dio->dops->submit_io( 73 file_inode(dio->iocb->ki_filp), 74 iomap, bio, pos); 75 else 76 dio->submit.cookie = submit_bio(bio); 77 } 78 79 ssize_t iomap_dio_complete(struct iomap_dio *dio) 80 { 81 const struct iomap_dio_ops *dops = dio->dops; 82 struct kiocb *iocb = dio->iocb; 83 struct inode *inode = file_inode(iocb->ki_filp); 84 loff_t offset = iocb->ki_pos; 85 ssize_t ret = dio->error; 86 87 if (dops && dops->end_io) 88 ret = dops->end_io(iocb, dio->size, ret, dio->flags); 89 90 if (likely(!ret)) { 91 ret = dio->size; 92 /* check for short read */ 93 if (offset + ret > dio->i_size && 94 !(dio->flags & IOMAP_DIO_WRITE)) 95 ret = dio->i_size - offset; 96 iocb->ki_pos += ret; 97 } 98 99 /* 100 * Try again to invalidate clean pages which might have been cached by 101 * non-direct readahead, or faulted in by get_user_pages() if the source 102 * of the write was an mmap'ed region of the file we're writing. Either 103 * one is a pretty crazy thing to do, so we don't support it 100%. If 104 * this invalidation fails, tough, the write still worked... 105 * 106 * And this page cache invalidation has to be after ->end_io(), as some 107 * filesystems convert unwritten extents to real allocations in 108 * ->end_io() when necessary, otherwise a racing buffer read would cache 109 * zeros from unwritten extents. 110 */ 111 if (!dio->error && dio->size && 112 (dio->flags & IOMAP_DIO_WRITE) && inode->i_mapping->nrpages) { 113 int err; 114 err = invalidate_inode_pages2_range(inode->i_mapping, 115 offset >> PAGE_SHIFT, 116 (offset + dio->size - 1) >> PAGE_SHIFT); 117 if (err) 118 dio_warn_stale_pagecache(iocb->ki_filp); 119 } 120 121 inode_dio_end(file_inode(iocb->ki_filp)); 122 /* 123 * If this is a DSYNC write, make sure we push it to stable storage now 124 * that we've written data. 125 */ 126 if (ret > 0 && (dio->flags & IOMAP_DIO_NEED_SYNC)) 127 ret = generic_write_sync(iocb, ret); 128 129 kfree(dio); 130 131 return ret; 132 } 133 EXPORT_SYMBOL_GPL(iomap_dio_complete); 134 135 static void iomap_dio_complete_work(struct work_struct *work) 136 { 137 struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work); 138 struct kiocb *iocb = dio->iocb; 139 140 iocb->ki_complete(iocb, iomap_dio_complete(dio), 0); 141 } 142 143 /* 144 * Set an error in the dio if none is set yet. We have to use cmpxchg 145 * as the submission context and the completion context(s) can race to 146 * update the error. 147 */ 148 static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret) 149 { 150 cmpxchg(&dio->error, 0, ret); 151 } 152 153 static void iomap_dio_bio_end_io(struct bio *bio) 154 { 155 struct iomap_dio *dio = bio->bi_private; 156 bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY); 157 158 if (bio->bi_status) 159 iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status)); 160 161 if (atomic_dec_and_test(&dio->ref)) { 162 if (dio->wait_for_completion) { 163 struct task_struct *waiter = dio->submit.waiter; 164 WRITE_ONCE(dio->submit.waiter, NULL); 165 blk_wake_io_task(waiter); 166 } else if (dio->flags & IOMAP_DIO_WRITE) { 167 struct inode *inode = file_inode(dio->iocb->ki_filp); 168 169 INIT_WORK(&dio->aio.work, iomap_dio_complete_work); 170 queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work); 171 } else { 172 iomap_dio_complete_work(&dio->aio.work); 173 } 174 } 175 176 if (should_dirty) { 177 bio_check_pages_dirty(bio); 178 } else { 179 bio_release_pages(bio, false); 180 bio_put(bio); 181 } 182 } 183 184 static void 185 iomap_dio_zero(struct iomap_dio *dio, struct iomap *iomap, loff_t pos, 186 unsigned len) 187 { 188 struct page *page = ZERO_PAGE(0); 189 int flags = REQ_SYNC | REQ_IDLE; 190 struct bio *bio; 191 192 bio = bio_alloc(GFP_KERNEL, 1); 193 bio_set_dev(bio, iomap->bdev); 194 bio->bi_iter.bi_sector = iomap_sector(iomap, pos); 195 bio->bi_private = dio; 196 bio->bi_end_io = iomap_dio_bio_end_io; 197 198 get_page(page); 199 __bio_add_page(bio, page, len, 0); 200 bio_set_op_attrs(bio, REQ_OP_WRITE, flags); 201 iomap_dio_submit_bio(dio, iomap, bio, pos); 202 } 203 204 static loff_t 205 iomap_dio_bio_actor(struct inode *inode, loff_t pos, loff_t length, 206 struct iomap_dio *dio, struct iomap *iomap) 207 { 208 unsigned int blkbits = blksize_bits(bdev_logical_block_size(iomap->bdev)); 209 unsigned int fs_block_size = i_blocksize(inode), pad; 210 unsigned int align = iov_iter_alignment(dio->submit.iter); 211 struct bio *bio; 212 bool need_zeroout = false; 213 bool use_fua = false; 214 int nr_pages, ret = 0; 215 size_t copied = 0; 216 size_t orig_count; 217 218 if ((pos | length | align) & ((1 << blkbits) - 1)) 219 return -EINVAL; 220 221 if (iomap->type == IOMAP_UNWRITTEN) { 222 dio->flags |= IOMAP_DIO_UNWRITTEN; 223 need_zeroout = true; 224 } 225 226 if (iomap->flags & IOMAP_F_SHARED) 227 dio->flags |= IOMAP_DIO_COW; 228 229 if (iomap->flags & IOMAP_F_NEW) { 230 need_zeroout = true; 231 } else if (iomap->type == IOMAP_MAPPED) { 232 /* 233 * Use a FUA write if we need datasync semantics, this is a pure 234 * data IO that doesn't require any metadata updates (including 235 * after IO completion such as unwritten extent conversion) and 236 * the underlying device supports FUA. This allows us to avoid 237 * cache flushes on IO completion. 238 */ 239 if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) && 240 (dio->flags & IOMAP_DIO_WRITE_FUA) && 241 blk_queue_fua(bdev_get_queue(iomap->bdev))) 242 use_fua = true; 243 } 244 245 /* 246 * Save the original count and trim the iter to just the extent we 247 * are operating on right now. The iter will be re-expanded once 248 * we are done. 249 */ 250 orig_count = iov_iter_count(dio->submit.iter); 251 iov_iter_truncate(dio->submit.iter, length); 252 253 nr_pages = iov_iter_npages(dio->submit.iter, BIO_MAX_PAGES); 254 if (nr_pages <= 0) { 255 ret = nr_pages; 256 goto out; 257 } 258 259 if (need_zeroout) { 260 /* zero out from the start of the block to the write offset */ 261 pad = pos & (fs_block_size - 1); 262 if (pad) 263 iomap_dio_zero(dio, iomap, pos - pad, pad); 264 } 265 266 do { 267 size_t n; 268 if (dio->error) { 269 iov_iter_revert(dio->submit.iter, copied); 270 copied = ret = 0; 271 goto out; 272 } 273 274 bio = bio_alloc(GFP_KERNEL, nr_pages); 275 bio_set_dev(bio, iomap->bdev); 276 bio->bi_iter.bi_sector = iomap_sector(iomap, pos); 277 bio->bi_write_hint = dio->iocb->ki_hint; 278 bio->bi_ioprio = dio->iocb->ki_ioprio; 279 bio->bi_private = dio; 280 bio->bi_end_io = iomap_dio_bio_end_io; 281 282 ret = bio_iov_iter_get_pages(bio, dio->submit.iter); 283 if (unlikely(ret)) { 284 /* 285 * We have to stop part way through an IO. We must fall 286 * through to the sub-block tail zeroing here, otherwise 287 * this short IO may expose stale data in the tail of 288 * the block we haven't written data to. 289 */ 290 bio_put(bio); 291 goto zero_tail; 292 } 293 294 n = bio->bi_iter.bi_size; 295 if (dio->flags & IOMAP_DIO_WRITE) { 296 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE; 297 if (use_fua) 298 bio->bi_opf |= REQ_FUA; 299 else 300 dio->flags &= ~IOMAP_DIO_WRITE_FUA; 301 task_io_account_write(n); 302 } else { 303 bio->bi_opf = REQ_OP_READ; 304 if (dio->flags & IOMAP_DIO_DIRTY) 305 bio_set_pages_dirty(bio); 306 } 307 308 dio->size += n; 309 copied += n; 310 311 nr_pages = iov_iter_npages(dio->submit.iter, BIO_MAX_PAGES); 312 iomap_dio_submit_bio(dio, iomap, bio, pos); 313 pos += n; 314 } while (nr_pages); 315 316 /* 317 * We need to zeroout the tail of a sub-block write if the extent type 318 * requires zeroing or the write extends beyond EOF. If we don't zero 319 * the block tail in the latter case, we can expose stale data via mmap 320 * reads of the EOF block. 321 */ 322 zero_tail: 323 if (need_zeroout || 324 ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) { 325 /* zero out from the end of the write to the end of the block */ 326 pad = pos & (fs_block_size - 1); 327 if (pad) 328 iomap_dio_zero(dio, iomap, pos, fs_block_size - pad); 329 } 330 out: 331 /* Undo iter limitation to current extent */ 332 iov_iter_reexpand(dio->submit.iter, orig_count - copied); 333 if (copied) 334 return copied; 335 return ret; 336 } 337 338 static loff_t 339 iomap_dio_hole_actor(loff_t length, struct iomap_dio *dio) 340 { 341 length = iov_iter_zero(length, dio->submit.iter); 342 dio->size += length; 343 return length; 344 } 345 346 static loff_t 347 iomap_dio_inline_actor(struct inode *inode, loff_t pos, loff_t length, 348 struct iomap_dio *dio, struct iomap *iomap) 349 { 350 struct iov_iter *iter = dio->submit.iter; 351 size_t copied; 352 353 BUG_ON(pos + length > PAGE_SIZE - offset_in_page(iomap->inline_data)); 354 355 if (dio->flags & IOMAP_DIO_WRITE) { 356 loff_t size = inode->i_size; 357 358 if (pos > size) 359 memset(iomap->inline_data + size, 0, pos - size); 360 copied = copy_from_iter(iomap->inline_data + pos, length, iter); 361 if (copied) { 362 if (pos + copied > size) 363 i_size_write(inode, pos + copied); 364 mark_inode_dirty(inode); 365 } 366 } else { 367 copied = copy_to_iter(iomap->inline_data + pos, length, iter); 368 } 369 dio->size += copied; 370 return copied; 371 } 372 373 static loff_t 374 iomap_dio_actor(struct inode *inode, loff_t pos, loff_t length, 375 void *data, struct iomap *iomap, struct iomap *srcmap) 376 { 377 struct iomap_dio *dio = data; 378 379 switch (iomap->type) { 380 case IOMAP_HOLE: 381 if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE)) 382 return -EIO; 383 return iomap_dio_hole_actor(length, dio); 384 case IOMAP_UNWRITTEN: 385 if (!(dio->flags & IOMAP_DIO_WRITE)) 386 return iomap_dio_hole_actor(length, dio); 387 return iomap_dio_bio_actor(inode, pos, length, dio, iomap); 388 case IOMAP_MAPPED: 389 return iomap_dio_bio_actor(inode, pos, length, dio, iomap); 390 case IOMAP_INLINE: 391 return iomap_dio_inline_actor(inode, pos, length, dio, iomap); 392 case IOMAP_DELALLOC: 393 /* 394 * DIO is not serialised against mmap() access at all, and so 395 * if the page_mkwrite occurs between the writeback and the 396 * iomap_apply() call in the DIO path, then it will see the 397 * DELALLOC block that the page-mkwrite allocated. 398 */ 399 pr_warn_ratelimited("Direct I/O collision with buffered writes! File: %pD4 Comm: %.20s\n", 400 dio->iocb->ki_filp, current->comm); 401 return -EIO; 402 default: 403 WARN_ON_ONCE(1); 404 return -EIO; 405 } 406 } 407 408 /* 409 * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO 410 * is being issued as AIO or not. This allows us to optimise pure data writes 411 * to use REQ_FUA rather than requiring generic_write_sync() to issue a 412 * REQ_FLUSH post write. This is slightly tricky because a single request here 413 * can be mapped into multiple disjoint IOs and only a subset of the IOs issued 414 * may be pure data writes. In that case, we still need to do a full data sync 415 * completion. 416 * 417 * Returns -ENOTBLK In case of a page invalidation invalidation failure for 418 * writes. The callers needs to fall back to buffered I/O in this case. 419 */ 420 struct iomap_dio * 421 __iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter, 422 const struct iomap_ops *ops, const struct iomap_dio_ops *dops, 423 bool wait_for_completion) 424 { 425 struct address_space *mapping = iocb->ki_filp->f_mapping; 426 struct inode *inode = file_inode(iocb->ki_filp); 427 size_t count = iov_iter_count(iter); 428 loff_t pos = iocb->ki_pos; 429 loff_t end = iocb->ki_pos + count - 1, ret = 0; 430 unsigned int flags = IOMAP_DIRECT; 431 struct blk_plug plug; 432 struct iomap_dio *dio; 433 434 if (!count) 435 return NULL; 436 437 if (WARN_ON(is_sync_kiocb(iocb) && !wait_for_completion)) 438 return ERR_PTR(-EIO); 439 440 dio = kmalloc(sizeof(*dio), GFP_KERNEL); 441 if (!dio) 442 return ERR_PTR(-ENOMEM); 443 444 dio->iocb = iocb; 445 atomic_set(&dio->ref, 1); 446 dio->size = 0; 447 dio->i_size = i_size_read(inode); 448 dio->dops = dops; 449 dio->error = 0; 450 dio->flags = 0; 451 452 dio->submit.iter = iter; 453 dio->submit.waiter = current; 454 dio->submit.cookie = BLK_QC_T_NONE; 455 dio->submit.last_queue = NULL; 456 457 if (iov_iter_rw(iter) == READ) { 458 if (pos >= dio->i_size) 459 goto out_free_dio; 460 461 if (iter_is_iovec(iter)) 462 dio->flags |= IOMAP_DIO_DIRTY; 463 } else { 464 flags |= IOMAP_WRITE; 465 dio->flags |= IOMAP_DIO_WRITE; 466 467 /* for data sync or sync, we need sync completion processing */ 468 if (iocb->ki_flags & IOCB_DSYNC) 469 dio->flags |= IOMAP_DIO_NEED_SYNC; 470 471 /* 472 * For datasync only writes, we optimistically try using FUA for 473 * this IO. Any non-FUA write that occurs will clear this flag, 474 * hence we know before completion whether a cache flush is 475 * necessary. 476 */ 477 if ((iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC)) == IOCB_DSYNC) 478 dio->flags |= IOMAP_DIO_WRITE_FUA; 479 } 480 481 if (iocb->ki_flags & IOCB_NOWAIT) { 482 if (filemap_range_has_page(mapping, pos, end)) { 483 ret = -EAGAIN; 484 goto out_free_dio; 485 } 486 flags |= IOMAP_NOWAIT; 487 } 488 489 ret = filemap_write_and_wait_range(mapping, pos, end); 490 if (ret) 491 goto out_free_dio; 492 493 if (iov_iter_rw(iter) == WRITE) { 494 /* 495 * Try to invalidate cache pages for the range we are writing. 496 * If this invalidation fails, let the caller fall back to 497 * buffered I/O. 498 */ 499 if (invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, 500 end >> PAGE_SHIFT)) { 501 trace_iomap_dio_invalidate_fail(inode, pos, count); 502 ret = -ENOTBLK; 503 goto out_free_dio; 504 } 505 506 if (!wait_for_completion && !inode->i_sb->s_dio_done_wq) { 507 ret = sb_init_dio_done_wq(inode->i_sb); 508 if (ret < 0) 509 goto out_free_dio; 510 } 511 } 512 513 inode_dio_begin(inode); 514 515 blk_start_plug(&plug); 516 do { 517 ret = iomap_apply(inode, pos, count, flags, ops, dio, 518 iomap_dio_actor); 519 if (ret <= 0) { 520 /* magic error code to fall back to buffered I/O */ 521 if (ret == -ENOTBLK) { 522 wait_for_completion = true; 523 ret = 0; 524 } 525 break; 526 } 527 pos += ret; 528 529 if (iov_iter_rw(iter) == READ && pos >= dio->i_size) { 530 /* 531 * We only report that we've read data up to i_size. 532 * Revert iter to a state corresponding to that as 533 * some callers (such as splice code) rely on it. 534 */ 535 iov_iter_revert(iter, pos - dio->i_size); 536 break; 537 } 538 } while ((count = iov_iter_count(iter)) > 0); 539 blk_finish_plug(&plug); 540 541 if (ret < 0) 542 iomap_dio_set_error(dio, ret); 543 544 /* 545 * If all the writes we issued were FUA, we don't need to flush the 546 * cache on IO completion. Clear the sync flag for this case. 547 */ 548 if (dio->flags & IOMAP_DIO_WRITE_FUA) 549 dio->flags &= ~IOMAP_DIO_NEED_SYNC; 550 551 WRITE_ONCE(iocb->ki_cookie, dio->submit.cookie); 552 WRITE_ONCE(iocb->private, dio->submit.last_queue); 553 554 /* 555 * We are about to drop our additional submission reference, which 556 * might be the last reference to the dio. There are three different 557 * ways we can progress here: 558 * 559 * (a) If this is the last reference we will always complete and free 560 * the dio ourselves. 561 * (b) If this is not the last reference, and we serve an asynchronous 562 * iocb, we must never touch the dio after the decrement, the 563 * I/O completion handler will complete and free it. 564 * (c) If this is not the last reference, but we serve a synchronous 565 * iocb, the I/O completion handler will wake us up on the drop 566 * of the final reference, and we will complete and free it here 567 * after we got woken by the I/O completion handler. 568 */ 569 dio->wait_for_completion = wait_for_completion; 570 if (!atomic_dec_and_test(&dio->ref)) { 571 if (!wait_for_completion) 572 return ERR_PTR(-EIOCBQUEUED); 573 574 for (;;) { 575 set_current_state(TASK_UNINTERRUPTIBLE); 576 if (!READ_ONCE(dio->submit.waiter)) 577 break; 578 579 if (!(iocb->ki_flags & IOCB_HIPRI) || 580 !dio->submit.last_queue || 581 !blk_poll(dio->submit.last_queue, 582 dio->submit.cookie, true)) 583 blk_io_schedule(); 584 } 585 __set_current_state(TASK_RUNNING); 586 } 587 588 return dio; 589 590 out_free_dio: 591 kfree(dio); 592 if (ret) 593 return ERR_PTR(ret); 594 return NULL; 595 } 596 EXPORT_SYMBOL_GPL(__iomap_dio_rw); 597 598 ssize_t 599 iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter, 600 const struct iomap_ops *ops, const struct iomap_dio_ops *dops, 601 bool wait_for_completion) 602 { 603 struct iomap_dio *dio; 604 605 dio = __iomap_dio_rw(iocb, iter, ops, dops, wait_for_completion); 606 if (IS_ERR_OR_NULL(dio)) 607 return PTR_ERR_OR_ZERO(dio); 608 return iomap_dio_complete(dio); 609 } 610 EXPORT_SYMBOL_GPL(iomap_dio_rw); 611