xref: /openbmc/linux/fs/iomap/buffered-io.c (revision f94909ce)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Red Hat, Inc.
4  * Copyright (C) 2016-2019 Christoph Hellwig.
5  */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/iomap.h>
10 #include <linux/pagemap.h>
11 #include <linux/uio.h>
12 #include <linux/buffer_head.h>
13 #include <linux/dax.h>
14 #include <linux/writeback.h>
15 #include <linux/list_sort.h>
16 #include <linux/swap.h>
17 #include <linux/bio.h>
18 #include <linux/sched/signal.h>
19 #include <linux/migrate.h>
20 #include "trace.h"
21 
22 #include "../internal.h"
23 
24 /*
25  * Structure allocated for each page or THP when block size < page size
26  * to track sub-page uptodate status and I/O completions.
27  */
28 struct iomap_page {
29 	atomic_t		read_bytes_pending;
30 	atomic_t		write_bytes_pending;
31 	spinlock_t		uptodate_lock;
32 	unsigned long		uptodate[];
33 };
34 
35 static inline struct iomap_page *to_iomap_page(struct page *page)
36 {
37 	/*
38 	 * per-block data is stored in the head page.  Callers should
39 	 * not be dealing with tail pages, and if they are, they can
40 	 * call thp_head() first.
41 	 */
42 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
43 
44 	if (page_has_private(page))
45 		return (struct iomap_page *)page_private(page);
46 	return NULL;
47 }
48 
49 static struct bio_set iomap_ioend_bioset;
50 
51 static struct iomap_page *
52 iomap_page_create(struct inode *inode, struct page *page)
53 {
54 	struct iomap_page *iop = to_iomap_page(page);
55 	unsigned int nr_blocks = i_blocks_per_page(inode, page);
56 
57 	if (iop || nr_blocks <= 1)
58 		return iop;
59 
60 	iop = kzalloc(struct_size(iop, uptodate, BITS_TO_LONGS(nr_blocks)),
61 			GFP_NOFS | __GFP_NOFAIL);
62 	spin_lock_init(&iop->uptodate_lock);
63 	if (PageUptodate(page))
64 		bitmap_fill(iop->uptodate, nr_blocks);
65 	attach_page_private(page, iop);
66 	return iop;
67 }
68 
69 static void
70 iomap_page_release(struct page *page)
71 {
72 	struct iomap_page *iop = detach_page_private(page);
73 	unsigned int nr_blocks = i_blocks_per_page(page->mapping->host, page);
74 
75 	if (!iop)
76 		return;
77 	WARN_ON_ONCE(atomic_read(&iop->read_bytes_pending));
78 	WARN_ON_ONCE(atomic_read(&iop->write_bytes_pending));
79 	WARN_ON_ONCE(bitmap_full(iop->uptodate, nr_blocks) !=
80 			PageUptodate(page));
81 	kfree(iop);
82 }
83 
84 /*
85  * Calculate the range inside the page that we actually need to read.
86  */
87 static void
88 iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop,
89 		loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp)
90 {
91 	loff_t orig_pos = *pos;
92 	loff_t isize = i_size_read(inode);
93 	unsigned block_bits = inode->i_blkbits;
94 	unsigned block_size = (1 << block_bits);
95 	unsigned poff = offset_in_page(*pos);
96 	unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length);
97 	unsigned first = poff >> block_bits;
98 	unsigned last = (poff + plen - 1) >> block_bits;
99 
100 	/*
101 	 * If the block size is smaller than the page size, we need to check the
102 	 * per-block uptodate status and adjust the offset and length if needed
103 	 * to avoid reading in already uptodate ranges.
104 	 */
105 	if (iop) {
106 		unsigned int i;
107 
108 		/* move forward for each leading block marked uptodate */
109 		for (i = first; i <= last; i++) {
110 			if (!test_bit(i, iop->uptodate))
111 				break;
112 			*pos += block_size;
113 			poff += block_size;
114 			plen -= block_size;
115 			first++;
116 		}
117 
118 		/* truncate len if we find any trailing uptodate block(s) */
119 		for ( ; i <= last; i++) {
120 			if (test_bit(i, iop->uptodate)) {
121 				plen -= (last - i + 1) * block_size;
122 				last = i - 1;
123 				break;
124 			}
125 		}
126 	}
127 
128 	/*
129 	 * If the extent spans the block that contains the i_size, we need to
130 	 * handle both halves separately so that we properly zero data in the
131 	 * page cache for blocks that are entirely outside of i_size.
132 	 */
133 	if (orig_pos <= isize && orig_pos + length > isize) {
134 		unsigned end = offset_in_page(isize - 1) >> block_bits;
135 
136 		if (first <= end && last > end)
137 			plen -= (last - end) * block_size;
138 	}
139 
140 	*offp = poff;
141 	*lenp = plen;
142 }
143 
144 static void
145 iomap_iop_set_range_uptodate(struct page *page, unsigned off, unsigned len)
146 {
147 	struct iomap_page *iop = to_iomap_page(page);
148 	struct inode *inode = page->mapping->host;
149 	unsigned first = off >> inode->i_blkbits;
150 	unsigned last = (off + len - 1) >> inode->i_blkbits;
151 	unsigned long flags;
152 
153 	spin_lock_irqsave(&iop->uptodate_lock, flags);
154 	bitmap_set(iop->uptodate, first, last - first + 1);
155 	if (bitmap_full(iop->uptodate, i_blocks_per_page(inode, page)))
156 		SetPageUptodate(page);
157 	spin_unlock_irqrestore(&iop->uptodate_lock, flags);
158 }
159 
160 static void
161 iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len)
162 {
163 	if (PageError(page))
164 		return;
165 
166 	if (page_has_private(page))
167 		iomap_iop_set_range_uptodate(page, off, len);
168 	else
169 		SetPageUptodate(page);
170 }
171 
172 static void
173 iomap_read_page_end_io(struct bio_vec *bvec, int error)
174 {
175 	struct page *page = bvec->bv_page;
176 	struct iomap_page *iop = to_iomap_page(page);
177 
178 	if (unlikely(error)) {
179 		ClearPageUptodate(page);
180 		SetPageError(page);
181 	} else {
182 		iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len);
183 	}
184 
185 	if (!iop || atomic_sub_and_test(bvec->bv_len, &iop->read_bytes_pending))
186 		unlock_page(page);
187 }
188 
189 static void
190 iomap_read_end_io(struct bio *bio)
191 {
192 	int error = blk_status_to_errno(bio->bi_status);
193 	struct bio_vec *bvec;
194 	struct bvec_iter_all iter_all;
195 
196 	bio_for_each_segment_all(bvec, bio, iter_all)
197 		iomap_read_page_end_io(bvec, error);
198 	bio_put(bio);
199 }
200 
201 struct iomap_readpage_ctx {
202 	struct page		*cur_page;
203 	bool			cur_page_in_bio;
204 	struct bio		*bio;
205 	struct readahead_control *rac;
206 };
207 
208 /**
209  * iomap_read_inline_data - copy inline data into the page cache
210  * @iter: iteration structure
211  * @page: page to copy to
212  *
213  * Copy the inline data in @iter into @page and zero out the rest of the page.
214  * Only a single IOMAP_INLINE extent is allowed at the end of each file.
215  * Returns zero for success to complete the read, or the usual negative errno.
216  */
217 static int iomap_read_inline_data(const struct iomap_iter *iter,
218 		struct page *page)
219 {
220 	const struct iomap *iomap = iomap_iter_srcmap(iter);
221 	size_t size = i_size_read(iter->inode) - iomap->offset;
222 	size_t poff = offset_in_page(iomap->offset);
223 	void *addr;
224 
225 	if (PageUptodate(page))
226 		return 0;
227 
228 	if (WARN_ON_ONCE(size > PAGE_SIZE - poff))
229 		return -EIO;
230 	if (WARN_ON_ONCE(size > PAGE_SIZE -
231 			 offset_in_page(iomap->inline_data)))
232 		return -EIO;
233 	if (WARN_ON_ONCE(size > iomap->length))
234 		return -EIO;
235 	if (poff > 0)
236 		iomap_page_create(iter->inode, page);
237 
238 	addr = kmap_local_page(page) + poff;
239 	memcpy(addr, iomap->inline_data, size);
240 	memset(addr + size, 0, PAGE_SIZE - poff - size);
241 	kunmap_local(addr);
242 	iomap_set_range_uptodate(page, poff, PAGE_SIZE - poff);
243 	return 0;
244 }
245 
246 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter,
247 		loff_t pos)
248 {
249 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
250 
251 	return srcmap->type != IOMAP_MAPPED ||
252 		(srcmap->flags & IOMAP_F_NEW) ||
253 		pos >= i_size_read(iter->inode);
254 }
255 
256 static loff_t iomap_readpage_iter(const struct iomap_iter *iter,
257 		struct iomap_readpage_ctx *ctx, loff_t offset)
258 {
259 	const struct iomap *iomap = &iter->iomap;
260 	loff_t pos = iter->pos + offset;
261 	loff_t length = iomap_length(iter) - offset;
262 	struct page *page = ctx->cur_page;
263 	struct iomap_page *iop;
264 	loff_t orig_pos = pos;
265 	unsigned poff, plen;
266 	sector_t sector;
267 
268 	if (iomap->type == IOMAP_INLINE)
269 		return iomap_read_inline_data(iter, page);
270 
271 	/* zero post-eof blocks as the page may be mapped */
272 	iop = iomap_page_create(iter->inode, page);
273 	iomap_adjust_read_range(iter->inode, iop, &pos, length, &poff, &plen);
274 	if (plen == 0)
275 		goto done;
276 
277 	if (iomap_block_needs_zeroing(iter, pos)) {
278 		zero_user(page, poff, plen);
279 		iomap_set_range_uptodate(page, poff, plen);
280 		goto done;
281 	}
282 
283 	ctx->cur_page_in_bio = true;
284 	if (iop)
285 		atomic_add(plen, &iop->read_bytes_pending);
286 
287 	sector = iomap_sector(iomap, pos);
288 	if (!ctx->bio ||
289 	    bio_end_sector(ctx->bio) != sector ||
290 	    bio_add_page(ctx->bio, page, plen, poff) != plen) {
291 		gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
292 		gfp_t orig_gfp = gfp;
293 		unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE);
294 
295 		if (ctx->bio)
296 			submit_bio(ctx->bio);
297 
298 		if (ctx->rac) /* same as readahead_gfp_mask */
299 			gfp |= __GFP_NORETRY | __GFP_NOWARN;
300 		ctx->bio = bio_alloc(gfp, bio_max_segs(nr_vecs));
301 		/*
302 		 * If the bio_alloc fails, try it again for a single page to
303 		 * avoid having to deal with partial page reads.  This emulates
304 		 * what do_mpage_readpage does.
305 		 */
306 		if (!ctx->bio)
307 			ctx->bio = bio_alloc(orig_gfp, 1);
308 		ctx->bio->bi_opf = REQ_OP_READ;
309 		if (ctx->rac)
310 			ctx->bio->bi_opf |= REQ_RAHEAD;
311 		ctx->bio->bi_iter.bi_sector = sector;
312 		bio_set_dev(ctx->bio, iomap->bdev);
313 		ctx->bio->bi_end_io = iomap_read_end_io;
314 		__bio_add_page(ctx->bio, page, plen, poff);
315 	}
316 done:
317 	/*
318 	 * Move the caller beyond our range so that it keeps making progress.
319 	 * For that, we have to include any leading non-uptodate ranges, but
320 	 * we can skip trailing ones as they will be handled in the next
321 	 * iteration.
322 	 */
323 	return pos - orig_pos + plen;
324 }
325 
326 int
327 iomap_readpage(struct page *page, const struct iomap_ops *ops)
328 {
329 	struct iomap_iter iter = {
330 		.inode		= page->mapping->host,
331 		.pos		= page_offset(page),
332 		.len		= PAGE_SIZE,
333 	};
334 	struct iomap_readpage_ctx ctx = {
335 		.cur_page	= page,
336 	};
337 	int ret;
338 
339 	trace_iomap_readpage(page->mapping->host, 1);
340 
341 	while ((ret = iomap_iter(&iter, ops)) > 0)
342 		iter.processed = iomap_readpage_iter(&iter, &ctx, 0);
343 
344 	if (ret < 0)
345 		SetPageError(page);
346 
347 	if (ctx.bio) {
348 		submit_bio(ctx.bio);
349 		WARN_ON_ONCE(!ctx.cur_page_in_bio);
350 	} else {
351 		WARN_ON_ONCE(ctx.cur_page_in_bio);
352 		unlock_page(page);
353 	}
354 
355 	/*
356 	 * Just like mpage_readahead and block_read_full_page, we always
357 	 * return 0 and just mark the page as PageError on errors.  This
358 	 * should be cleaned up throughout the stack eventually.
359 	 */
360 	return 0;
361 }
362 EXPORT_SYMBOL_GPL(iomap_readpage);
363 
364 static loff_t iomap_readahead_iter(const struct iomap_iter *iter,
365 		struct iomap_readpage_ctx *ctx)
366 {
367 	loff_t length = iomap_length(iter);
368 	loff_t done, ret;
369 
370 	for (done = 0; done < length; done += ret) {
371 		if (ctx->cur_page && offset_in_page(iter->pos + done) == 0) {
372 			if (!ctx->cur_page_in_bio)
373 				unlock_page(ctx->cur_page);
374 			put_page(ctx->cur_page);
375 			ctx->cur_page = NULL;
376 		}
377 		if (!ctx->cur_page) {
378 			ctx->cur_page = readahead_page(ctx->rac);
379 			ctx->cur_page_in_bio = false;
380 		}
381 		ret = iomap_readpage_iter(iter, ctx, done);
382 		if (ret <= 0)
383 			return ret;
384 	}
385 
386 	return done;
387 }
388 
389 /**
390  * iomap_readahead - Attempt to read pages from a file.
391  * @rac: Describes the pages to be read.
392  * @ops: The operations vector for the filesystem.
393  *
394  * This function is for filesystems to call to implement their readahead
395  * address_space operation.
396  *
397  * Context: The @ops callbacks may submit I/O (eg to read the addresses of
398  * blocks from disc), and may wait for it.  The caller may be trying to
399  * access a different page, and so sleeping excessively should be avoided.
400  * It may allocate memory, but should avoid costly allocations.  This
401  * function is called with memalloc_nofs set, so allocations will not cause
402  * the filesystem to be reentered.
403  */
404 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops)
405 {
406 	struct iomap_iter iter = {
407 		.inode	= rac->mapping->host,
408 		.pos	= readahead_pos(rac),
409 		.len	= readahead_length(rac),
410 	};
411 	struct iomap_readpage_ctx ctx = {
412 		.rac	= rac,
413 	};
414 
415 	trace_iomap_readahead(rac->mapping->host, readahead_count(rac));
416 
417 	while (iomap_iter(&iter, ops) > 0)
418 		iter.processed = iomap_readahead_iter(&iter, &ctx);
419 
420 	if (ctx.bio)
421 		submit_bio(ctx.bio);
422 	if (ctx.cur_page) {
423 		if (!ctx.cur_page_in_bio)
424 			unlock_page(ctx.cur_page);
425 		put_page(ctx.cur_page);
426 	}
427 }
428 EXPORT_SYMBOL_GPL(iomap_readahead);
429 
430 /*
431  * iomap_is_partially_uptodate checks whether blocks within a page are
432  * uptodate or not.
433  *
434  * Returns true if all blocks which correspond to a file portion
435  * we want to read within the page are uptodate.
436  */
437 int
438 iomap_is_partially_uptodate(struct page *page, unsigned long from,
439 		unsigned long count)
440 {
441 	struct iomap_page *iop = to_iomap_page(page);
442 	struct inode *inode = page->mapping->host;
443 	unsigned len, first, last;
444 	unsigned i;
445 
446 	/* Limit range to one page */
447 	len = min_t(unsigned, PAGE_SIZE - from, count);
448 
449 	/* First and last blocks in range within page */
450 	first = from >> inode->i_blkbits;
451 	last = (from + len - 1) >> inode->i_blkbits;
452 
453 	if (iop) {
454 		for (i = first; i <= last; i++)
455 			if (!test_bit(i, iop->uptodate))
456 				return 0;
457 		return 1;
458 	}
459 
460 	return 0;
461 }
462 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
463 
464 int
465 iomap_releasepage(struct page *page, gfp_t gfp_mask)
466 {
467 	trace_iomap_releasepage(page->mapping->host, page_offset(page),
468 			PAGE_SIZE);
469 
470 	/*
471 	 * mm accommodates an old ext3 case where clean pages might not have had
472 	 * the dirty bit cleared. Thus, it can send actual dirty pages to
473 	 * ->releasepage() via shrink_active_list(); skip those here.
474 	 */
475 	if (PageDirty(page) || PageWriteback(page))
476 		return 0;
477 	iomap_page_release(page);
478 	return 1;
479 }
480 EXPORT_SYMBOL_GPL(iomap_releasepage);
481 
482 void
483 iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len)
484 {
485 	trace_iomap_invalidatepage(page->mapping->host, offset, len);
486 
487 	/*
488 	 * If we're invalidating the entire page, clear the dirty state from it
489 	 * and release it to avoid unnecessary buildup of the LRU.
490 	 */
491 	if (offset == 0 && len == PAGE_SIZE) {
492 		WARN_ON_ONCE(PageWriteback(page));
493 		cancel_dirty_page(page);
494 		iomap_page_release(page);
495 	}
496 }
497 EXPORT_SYMBOL_GPL(iomap_invalidatepage);
498 
499 #ifdef CONFIG_MIGRATION
500 int
501 iomap_migrate_page(struct address_space *mapping, struct page *newpage,
502 		struct page *page, enum migrate_mode mode)
503 {
504 	int ret;
505 
506 	ret = migrate_page_move_mapping(mapping, newpage, page, 0);
507 	if (ret != MIGRATEPAGE_SUCCESS)
508 		return ret;
509 
510 	if (page_has_private(page))
511 		attach_page_private(newpage, detach_page_private(page));
512 
513 	if (mode != MIGRATE_SYNC_NO_COPY)
514 		migrate_page_copy(newpage, page);
515 	else
516 		migrate_page_states(newpage, page);
517 	return MIGRATEPAGE_SUCCESS;
518 }
519 EXPORT_SYMBOL_GPL(iomap_migrate_page);
520 #endif /* CONFIG_MIGRATION */
521 
522 static void
523 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
524 {
525 	loff_t i_size = i_size_read(inode);
526 
527 	/*
528 	 * Only truncate newly allocated pages beyoned EOF, even if the
529 	 * write started inside the existing inode size.
530 	 */
531 	if (pos + len > i_size)
532 		truncate_pagecache_range(inode, max(pos, i_size), pos + len);
533 }
534 
535 static int
536 iomap_read_page_sync(loff_t block_start, struct page *page, unsigned poff,
537 		unsigned plen, const struct iomap *iomap)
538 {
539 	struct bio_vec bvec;
540 	struct bio bio;
541 
542 	bio_init(&bio, &bvec, 1);
543 	bio.bi_opf = REQ_OP_READ;
544 	bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
545 	bio_set_dev(&bio, iomap->bdev);
546 	__bio_add_page(&bio, page, plen, poff);
547 	return submit_bio_wait(&bio);
548 }
549 
550 static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos,
551 		unsigned len, struct page *page)
552 {
553 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
554 	struct iomap_page *iop = iomap_page_create(iter->inode, page);
555 	loff_t block_size = i_blocksize(iter->inode);
556 	loff_t block_start = round_down(pos, block_size);
557 	loff_t block_end = round_up(pos + len, block_size);
558 	unsigned from = offset_in_page(pos), to = from + len, poff, plen;
559 
560 	if (PageUptodate(page))
561 		return 0;
562 	ClearPageError(page);
563 
564 	do {
565 		iomap_adjust_read_range(iter->inode, iop, &block_start,
566 				block_end - block_start, &poff, &plen);
567 		if (plen == 0)
568 			break;
569 
570 		if (!(iter->flags & IOMAP_UNSHARE) &&
571 		    (from <= poff || from >= poff + plen) &&
572 		    (to <= poff || to >= poff + plen))
573 			continue;
574 
575 		if (iomap_block_needs_zeroing(iter, block_start)) {
576 			if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE))
577 				return -EIO;
578 			zero_user_segments(page, poff, from, to, poff + plen);
579 		} else {
580 			int status = iomap_read_page_sync(block_start, page,
581 					poff, plen, srcmap);
582 			if (status)
583 				return status;
584 		}
585 		iomap_set_range_uptodate(page, poff, plen);
586 	} while ((block_start += plen) < block_end);
587 
588 	return 0;
589 }
590 
591 static int iomap_write_begin_inline(const struct iomap_iter *iter,
592 		struct page *page)
593 {
594 	/* needs more work for the tailpacking case; disable for now */
595 	if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0))
596 		return -EIO;
597 	return iomap_read_inline_data(iter, page);
598 }
599 
600 static int iomap_write_begin(const struct iomap_iter *iter, loff_t pos,
601 		unsigned len, struct page **pagep)
602 {
603 	const struct iomap_page_ops *page_ops = iter->iomap.page_ops;
604 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
605 	struct page *page;
606 	int status = 0;
607 
608 	BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length);
609 	if (srcmap != &iter->iomap)
610 		BUG_ON(pos + len > srcmap->offset + srcmap->length);
611 
612 	if (fatal_signal_pending(current))
613 		return -EINTR;
614 
615 	if (page_ops && page_ops->page_prepare) {
616 		status = page_ops->page_prepare(iter->inode, pos, len);
617 		if (status)
618 			return status;
619 	}
620 
621 	page = grab_cache_page_write_begin(iter->inode->i_mapping,
622 				pos >> PAGE_SHIFT, AOP_FLAG_NOFS);
623 	if (!page) {
624 		status = -ENOMEM;
625 		goto out_no_page;
626 	}
627 
628 	if (srcmap->type == IOMAP_INLINE)
629 		status = iomap_write_begin_inline(iter, page);
630 	else if (srcmap->flags & IOMAP_F_BUFFER_HEAD)
631 		status = __block_write_begin_int(page, pos, len, NULL, srcmap);
632 	else
633 		status = __iomap_write_begin(iter, pos, len, page);
634 
635 	if (unlikely(status))
636 		goto out_unlock;
637 
638 	*pagep = page;
639 	return 0;
640 
641 out_unlock:
642 	unlock_page(page);
643 	put_page(page);
644 	iomap_write_failed(iter->inode, pos, len);
645 
646 out_no_page:
647 	if (page_ops && page_ops->page_done)
648 		page_ops->page_done(iter->inode, pos, 0, NULL);
649 	return status;
650 }
651 
652 static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len,
653 		size_t copied, struct page *page)
654 {
655 	flush_dcache_page(page);
656 
657 	/*
658 	 * The blocks that were entirely written will now be uptodate, so we
659 	 * don't have to worry about a readpage reading them and overwriting a
660 	 * partial write.  However, if we've encountered a short write and only
661 	 * partially written into a block, it will not be marked uptodate, so a
662 	 * readpage might come in and destroy our partial write.
663 	 *
664 	 * Do the simplest thing and just treat any short write to a
665 	 * non-uptodate page as a zero-length write, and force the caller to
666 	 * redo the whole thing.
667 	 */
668 	if (unlikely(copied < len && !PageUptodate(page)))
669 		return 0;
670 	iomap_set_range_uptodate(page, offset_in_page(pos), len);
671 	__set_page_dirty_nobuffers(page);
672 	return copied;
673 }
674 
675 static size_t iomap_write_end_inline(const struct iomap_iter *iter,
676 		struct page *page, loff_t pos, size_t copied)
677 {
678 	const struct iomap *iomap = &iter->iomap;
679 	void *addr;
680 
681 	WARN_ON_ONCE(!PageUptodate(page));
682 	BUG_ON(!iomap_inline_data_valid(iomap));
683 
684 	flush_dcache_page(page);
685 	addr = kmap_local_page(page) + pos;
686 	memcpy(iomap_inline_data(iomap, pos), addr, copied);
687 	kunmap_local(addr);
688 
689 	mark_inode_dirty(iter->inode);
690 	return copied;
691 }
692 
693 /* Returns the number of bytes copied.  May be 0.  Cannot be an errno. */
694 static size_t iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len,
695 		size_t copied, struct page *page)
696 {
697 	const struct iomap_page_ops *page_ops = iter->iomap.page_ops;
698 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
699 	loff_t old_size = iter->inode->i_size;
700 	size_t ret;
701 
702 	if (srcmap->type == IOMAP_INLINE) {
703 		ret = iomap_write_end_inline(iter, page, pos, copied);
704 	} else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
705 		ret = block_write_end(NULL, iter->inode->i_mapping, pos, len,
706 				copied, page, NULL);
707 	} else {
708 		ret = __iomap_write_end(iter->inode, pos, len, copied, page);
709 	}
710 
711 	/*
712 	 * Update the in-memory inode size after copying the data into the page
713 	 * cache.  It's up to the file system to write the updated size to disk,
714 	 * preferably after I/O completion so that no stale data is exposed.
715 	 */
716 	if (pos + ret > old_size) {
717 		i_size_write(iter->inode, pos + ret);
718 		iter->iomap.flags |= IOMAP_F_SIZE_CHANGED;
719 	}
720 	unlock_page(page);
721 
722 	if (old_size < pos)
723 		pagecache_isize_extended(iter->inode, old_size, pos);
724 	if (page_ops && page_ops->page_done)
725 		page_ops->page_done(iter->inode, pos, ret, page);
726 	put_page(page);
727 
728 	if (ret < len)
729 		iomap_write_failed(iter->inode, pos, len);
730 	return ret;
731 }
732 
733 static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i)
734 {
735 	loff_t length = iomap_length(iter);
736 	loff_t pos = iter->pos;
737 	ssize_t written = 0;
738 	long status = 0;
739 
740 	do {
741 		struct page *page;
742 		unsigned long offset;	/* Offset into pagecache page */
743 		unsigned long bytes;	/* Bytes to write to page */
744 		size_t copied;		/* Bytes copied from user */
745 
746 		offset = offset_in_page(pos);
747 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
748 						iov_iter_count(i));
749 again:
750 		if (bytes > length)
751 			bytes = length;
752 
753 		/*
754 		 * Bring in the user page that we'll copy from _first_.
755 		 * Otherwise there's a nasty deadlock on copying from the
756 		 * same page as we're writing to, without it being marked
757 		 * up-to-date.
758 		 */
759 		if (unlikely(fault_in_iov_iter_readable(i, bytes))) {
760 			status = -EFAULT;
761 			break;
762 		}
763 
764 		status = iomap_write_begin(iter, pos, bytes, &page);
765 		if (unlikely(status))
766 			break;
767 
768 		if (mapping_writably_mapped(iter->inode->i_mapping))
769 			flush_dcache_page(page);
770 
771 		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
772 
773 		status = iomap_write_end(iter, pos, bytes, copied, page);
774 
775 		if (unlikely(copied != status))
776 			iov_iter_revert(i, copied - status);
777 
778 		cond_resched();
779 		if (unlikely(status == 0)) {
780 			/*
781 			 * A short copy made iomap_write_end() reject the
782 			 * thing entirely.  Might be memory poisoning
783 			 * halfway through, might be a race with munmap,
784 			 * might be severe memory pressure.
785 			 */
786 			if (copied)
787 				bytes = copied;
788 			goto again;
789 		}
790 		pos += status;
791 		written += status;
792 		length -= status;
793 
794 		balance_dirty_pages_ratelimited(iter->inode->i_mapping);
795 	} while (iov_iter_count(i) && length);
796 
797 	return written ? written : status;
798 }
799 
800 ssize_t
801 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i,
802 		const struct iomap_ops *ops)
803 {
804 	struct iomap_iter iter = {
805 		.inode		= iocb->ki_filp->f_mapping->host,
806 		.pos		= iocb->ki_pos,
807 		.len		= iov_iter_count(i),
808 		.flags		= IOMAP_WRITE,
809 	};
810 	int ret;
811 
812 	while ((ret = iomap_iter(&iter, ops)) > 0)
813 		iter.processed = iomap_write_iter(&iter, i);
814 	if (iter.pos == iocb->ki_pos)
815 		return ret;
816 	return iter.pos - iocb->ki_pos;
817 }
818 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
819 
820 static loff_t iomap_unshare_iter(struct iomap_iter *iter)
821 {
822 	struct iomap *iomap = &iter->iomap;
823 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
824 	loff_t pos = iter->pos;
825 	loff_t length = iomap_length(iter);
826 	long status = 0;
827 	loff_t written = 0;
828 
829 	/* don't bother with blocks that are not shared to start with */
830 	if (!(iomap->flags & IOMAP_F_SHARED))
831 		return length;
832 	/* don't bother with holes or unwritten extents */
833 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
834 		return length;
835 
836 	do {
837 		unsigned long offset = offset_in_page(pos);
838 		unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length);
839 		struct page *page;
840 
841 		status = iomap_write_begin(iter, pos, bytes, &page);
842 		if (unlikely(status))
843 			return status;
844 
845 		status = iomap_write_end(iter, pos, bytes, bytes, page);
846 		if (WARN_ON_ONCE(status == 0))
847 			return -EIO;
848 
849 		cond_resched();
850 
851 		pos += status;
852 		written += status;
853 		length -= status;
854 
855 		balance_dirty_pages_ratelimited(iter->inode->i_mapping);
856 	} while (length);
857 
858 	return written;
859 }
860 
861 int
862 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
863 		const struct iomap_ops *ops)
864 {
865 	struct iomap_iter iter = {
866 		.inode		= inode,
867 		.pos		= pos,
868 		.len		= len,
869 		.flags		= IOMAP_WRITE | IOMAP_UNSHARE,
870 	};
871 	int ret;
872 
873 	while ((ret = iomap_iter(&iter, ops)) > 0)
874 		iter.processed = iomap_unshare_iter(&iter);
875 	return ret;
876 }
877 EXPORT_SYMBOL_GPL(iomap_file_unshare);
878 
879 static s64 __iomap_zero_iter(struct iomap_iter *iter, loff_t pos, u64 length)
880 {
881 	struct page *page;
882 	int status;
883 	unsigned offset = offset_in_page(pos);
884 	unsigned bytes = min_t(u64, PAGE_SIZE - offset, length);
885 
886 	status = iomap_write_begin(iter, pos, bytes, &page);
887 	if (status)
888 		return status;
889 
890 	zero_user(page, offset, bytes);
891 	mark_page_accessed(page);
892 
893 	return iomap_write_end(iter, pos, bytes, bytes, page);
894 }
895 
896 static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero)
897 {
898 	struct iomap *iomap = &iter->iomap;
899 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
900 	loff_t pos = iter->pos;
901 	loff_t length = iomap_length(iter);
902 	loff_t written = 0;
903 
904 	/* already zeroed?  we're done. */
905 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
906 		return length;
907 
908 	do {
909 		s64 bytes;
910 
911 		if (IS_DAX(iter->inode))
912 			bytes = dax_iomap_zero(pos, length, iomap);
913 		else
914 			bytes = __iomap_zero_iter(iter, pos, length);
915 		if (bytes < 0)
916 			return bytes;
917 
918 		pos += bytes;
919 		length -= bytes;
920 		written += bytes;
921 		if (did_zero)
922 			*did_zero = true;
923 	} while (length > 0);
924 
925 	return written;
926 }
927 
928 int
929 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
930 		const struct iomap_ops *ops)
931 {
932 	struct iomap_iter iter = {
933 		.inode		= inode,
934 		.pos		= pos,
935 		.len		= len,
936 		.flags		= IOMAP_ZERO,
937 	};
938 	int ret;
939 
940 	while ((ret = iomap_iter(&iter, ops)) > 0)
941 		iter.processed = iomap_zero_iter(&iter, did_zero);
942 	return ret;
943 }
944 EXPORT_SYMBOL_GPL(iomap_zero_range);
945 
946 int
947 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
948 		const struct iomap_ops *ops)
949 {
950 	unsigned int blocksize = i_blocksize(inode);
951 	unsigned int off = pos & (blocksize - 1);
952 
953 	/* Block boundary? Nothing to do */
954 	if (!off)
955 		return 0;
956 	return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
957 }
958 EXPORT_SYMBOL_GPL(iomap_truncate_page);
959 
960 static loff_t iomap_page_mkwrite_iter(struct iomap_iter *iter,
961 		struct page *page)
962 {
963 	loff_t length = iomap_length(iter);
964 	int ret;
965 
966 	if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) {
967 		ret = __block_write_begin_int(page, iter->pos, length, NULL,
968 					      &iter->iomap);
969 		if (ret)
970 			return ret;
971 		block_commit_write(page, 0, length);
972 	} else {
973 		WARN_ON_ONCE(!PageUptodate(page));
974 		set_page_dirty(page);
975 	}
976 
977 	return length;
978 }
979 
980 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
981 {
982 	struct iomap_iter iter = {
983 		.inode		= file_inode(vmf->vma->vm_file),
984 		.flags		= IOMAP_WRITE | IOMAP_FAULT,
985 	};
986 	struct page *page = vmf->page;
987 	ssize_t ret;
988 
989 	lock_page(page);
990 	ret = page_mkwrite_check_truncate(page, iter.inode);
991 	if (ret < 0)
992 		goto out_unlock;
993 	iter.pos = page_offset(page);
994 	iter.len = ret;
995 	while ((ret = iomap_iter(&iter, ops)) > 0)
996 		iter.processed = iomap_page_mkwrite_iter(&iter, page);
997 
998 	if (ret < 0)
999 		goto out_unlock;
1000 	wait_for_stable_page(page);
1001 	return VM_FAULT_LOCKED;
1002 out_unlock:
1003 	unlock_page(page);
1004 	return block_page_mkwrite_return(ret);
1005 }
1006 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1007 
1008 static void
1009 iomap_finish_page_writeback(struct inode *inode, struct page *page,
1010 		int error, unsigned int len)
1011 {
1012 	struct iomap_page *iop = to_iomap_page(page);
1013 
1014 	if (error) {
1015 		SetPageError(page);
1016 		mapping_set_error(inode->i_mapping, error);
1017 	}
1018 
1019 	WARN_ON_ONCE(i_blocks_per_page(inode, page) > 1 && !iop);
1020 	WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) <= 0);
1021 
1022 	if (!iop || atomic_sub_and_test(len, &iop->write_bytes_pending))
1023 		end_page_writeback(page);
1024 }
1025 
1026 /*
1027  * We're now finished for good with this ioend structure.  Update the page
1028  * state, release holds on bios, and finally free up memory.  Do not use the
1029  * ioend after this.
1030  */
1031 static void
1032 iomap_finish_ioend(struct iomap_ioend *ioend, int error)
1033 {
1034 	struct inode *inode = ioend->io_inode;
1035 	struct bio *bio = &ioend->io_inline_bio;
1036 	struct bio *last = ioend->io_bio, *next;
1037 	u64 start = bio->bi_iter.bi_sector;
1038 	loff_t offset = ioend->io_offset;
1039 	bool quiet = bio_flagged(bio, BIO_QUIET);
1040 
1041 	for (bio = &ioend->io_inline_bio; bio; bio = next) {
1042 		struct bio_vec *bv;
1043 		struct bvec_iter_all iter_all;
1044 
1045 		/*
1046 		 * For the last bio, bi_private points to the ioend, so we
1047 		 * need to explicitly end the iteration here.
1048 		 */
1049 		if (bio == last)
1050 			next = NULL;
1051 		else
1052 			next = bio->bi_private;
1053 
1054 		/* walk each page on bio, ending page IO on them */
1055 		bio_for_each_segment_all(bv, bio, iter_all)
1056 			iomap_finish_page_writeback(inode, bv->bv_page, error,
1057 					bv->bv_len);
1058 		bio_put(bio);
1059 	}
1060 	/* The ioend has been freed by bio_put() */
1061 
1062 	if (unlikely(error && !quiet)) {
1063 		printk_ratelimited(KERN_ERR
1064 "%s: writeback error on inode %lu, offset %lld, sector %llu",
1065 			inode->i_sb->s_id, inode->i_ino, offset, start);
1066 	}
1067 }
1068 
1069 void
1070 iomap_finish_ioends(struct iomap_ioend *ioend, int error)
1071 {
1072 	struct list_head tmp;
1073 
1074 	list_replace_init(&ioend->io_list, &tmp);
1075 	iomap_finish_ioend(ioend, error);
1076 
1077 	while (!list_empty(&tmp)) {
1078 		ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
1079 		list_del_init(&ioend->io_list);
1080 		iomap_finish_ioend(ioend, error);
1081 	}
1082 }
1083 EXPORT_SYMBOL_GPL(iomap_finish_ioends);
1084 
1085 /*
1086  * We can merge two adjacent ioends if they have the same set of work to do.
1087  */
1088 static bool
1089 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
1090 {
1091 	if (ioend->io_bio->bi_status != next->io_bio->bi_status)
1092 		return false;
1093 	if ((ioend->io_flags & IOMAP_F_SHARED) ^
1094 	    (next->io_flags & IOMAP_F_SHARED))
1095 		return false;
1096 	if ((ioend->io_type == IOMAP_UNWRITTEN) ^
1097 	    (next->io_type == IOMAP_UNWRITTEN))
1098 		return false;
1099 	if (ioend->io_offset + ioend->io_size != next->io_offset)
1100 		return false;
1101 	return true;
1102 }
1103 
1104 void
1105 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends)
1106 {
1107 	struct iomap_ioend *next;
1108 
1109 	INIT_LIST_HEAD(&ioend->io_list);
1110 
1111 	while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
1112 			io_list))) {
1113 		if (!iomap_ioend_can_merge(ioend, next))
1114 			break;
1115 		list_move_tail(&next->io_list, &ioend->io_list);
1116 		ioend->io_size += next->io_size;
1117 	}
1118 }
1119 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
1120 
1121 static int
1122 iomap_ioend_compare(void *priv, const struct list_head *a,
1123 		const struct list_head *b)
1124 {
1125 	struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
1126 	struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
1127 
1128 	if (ia->io_offset < ib->io_offset)
1129 		return -1;
1130 	if (ia->io_offset > ib->io_offset)
1131 		return 1;
1132 	return 0;
1133 }
1134 
1135 void
1136 iomap_sort_ioends(struct list_head *ioend_list)
1137 {
1138 	list_sort(NULL, ioend_list, iomap_ioend_compare);
1139 }
1140 EXPORT_SYMBOL_GPL(iomap_sort_ioends);
1141 
1142 static void iomap_writepage_end_bio(struct bio *bio)
1143 {
1144 	struct iomap_ioend *ioend = bio->bi_private;
1145 
1146 	iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status));
1147 }
1148 
1149 /*
1150  * Submit the final bio for an ioend.
1151  *
1152  * If @error is non-zero, it means that we have a situation where some part of
1153  * the submission process has failed after we've marked pages for writeback
1154  * and unlocked them.  In this situation, we need to fail the bio instead of
1155  * submitting it.  This typically only happens on a filesystem shutdown.
1156  */
1157 static int
1158 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend,
1159 		int error)
1160 {
1161 	ioend->io_bio->bi_private = ioend;
1162 	ioend->io_bio->bi_end_io = iomap_writepage_end_bio;
1163 
1164 	if (wpc->ops->prepare_ioend)
1165 		error = wpc->ops->prepare_ioend(ioend, error);
1166 	if (error) {
1167 		/*
1168 		 * If we're failing the IO now, just mark the ioend with an
1169 		 * error and finish it.  This will run IO completion immediately
1170 		 * as there is only one reference to the ioend at this point in
1171 		 * time.
1172 		 */
1173 		ioend->io_bio->bi_status = errno_to_blk_status(error);
1174 		bio_endio(ioend->io_bio);
1175 		return error;
1176 	}
1177 
1178 	submit_bio(ioend->io_bio);
1179 	return 0;
1180 }
1181 
1182 static struct iomap_ioend *
1183 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc,
1184 		loff_t offset, sector_t sector, struct writeback_control *wbc)
1185 {
1186 	struct iomap_ioend *ioend;
1187 	struct bio *bio;
1188 
1189 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_VECS, &iomap_ioend_bioset);
1190 	bio_set_dev(bio, wpc->iomap.bdev);
1191 	bio->bi_iter.bi_sector = sector;
1192 	bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
1193 	bio->bi_write_hint = inode->i_write_hint;
1194 	wbc_init_bio(wbc, bio);
1195 
1196 	ioend = container_of(bio, struct iomap_ioend, io_inline_bio);
1197 	INIT_LIST_HEAD(&ioend->io_list);
1198 	ioend->io_type = wpc->iomap.type;
1199 	ioend->io_flags = wpc->iomap.flags;
1200 	ioend->io_inode = inode;
1201 	ioend->io_size = 0;
1202 	ioend->io_offset = offset;
1203 	ioend->io_bio = bio;
1204 	return ioend;
1205 }
1206 
1207 /*
1208  * Allocate a new bio, and chain the old bio to the new one.
1209  *
1210  * Note that we have to perform the chaining in this unintuitive order
1211  * so that the bi_private linkage is set up in the right direction for the
1212  * traversal in iomap_finish_ioend().
1213  */
1214 static struct bio *
1215 iomap_chain_bio(struct bio *prev)
1216 {
1217 	struct bio *new;
1218 
1219 	new = bio_alloc(GFP_NOFS, BIO_MAX_VECS);
1220 	bio_copy_dev(new, prev);/* also copies over blkcg information */
1221 	new->bi_iter.bi_sector = bio_end_sector(prev);
1222 	new->bi_opf = prev->bi_opf;
1223 	new->bi_write_hint = prev->bi_write_hint;
1224 
1225 	bio_chain(prev, new);
1226 	bio_get(prev);		/* for iomap_finish_ioend */
1227 	submit_bio(prev);
1228 	return new;
1229 }
1230 
1231 static bool
1232 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset,
1233 		sector_t sector)
1234 {
1235 	if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
1236 	    (wpc->ioend->io_flags & IOMAP_F_SHARED))
1237 		return false;
1238 	if (wpc->iomap.type != wpc->ioend->io_type)
1239 		return false;
1240 	if (offset != wpc->ioend->io_offset + wpc->ioend->io_size)
1241 		return false;
1242 	if (sector != bio_end_sector(wpc->ioend->io_bio))
1243 		return false;
1244 	return true;
1245 }
1246 
1247 /*
1248  * Test to see if we have an existing ioend structure that we could append to
1249  * first; otherwise finish off the current ioend and start another.
1250  */
1251 static void
1252 iomap_add_to_ioend(struct inode *inode, loff_t offset, struct page *page,
1253 		struct iomap_page *iop, struct iomap_writepage_ctx *wpc,
1254 		struct writeback_control *wbc, struct list_head *iolist)
1255 {
1256 	sector_t sector = iomap_sector(&wpc->iomap, offset);
1257 	unsigned len = i_blocksize(inode);
1258 	unsigned poff = offset & (PAGE_SIZE - 1);
1259 
1260 	if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, offset, sector)) {
1261 		if (wpc->ioend)
1262 			list_add(&wpc->ioend->io_list, iolist);
1263 		wpc->ioend = iomap_alloc_ioend(inode, wpc, offset, sector, wbc);
1264 	}
1265 
1266 	if (bio_add_page(wpc->ioend->io_bio, page, len, poff) != len) {
1267 		wpc->ioend->io_bio = iomap_chain_bio(wpc->ioend->io_bio);
1268 		__bio_add_page(wpc->ioend->io_bio, page, len, poff);
1269 	}
1270 
1271 	if (iop)
1272 		atomic_add(len, &iop->write_bytes_pending);
1273 	wpc->ioend->io_size += len;
1274 	wbc_account_cgroup_owner(wbc, page, len);
1275 }
1276 
1277 /*
1278  * We implement an immediate ioend submission policy here to avoid needing to
1279  * chain multiple ioends and hence nest mempool allocations which can violate
1280  * the forward progress guarantees we need to provide. The current ioend we're
1281  * adding blocks to is cached in the writepage context, and if the new block
1282  * doesn't append to the cached ioend, it will create a new ioend and cache that
1283  * instead.
1284  *
1285  * If a new ioend is created and cached, the old ioend is returned and queued
1286  * locally for submission once the entire page is processed or an error has been
1287  * detected.  While ioends are submitted immediately after they are completed,
1288  * batching optimisations are provided by higher level block plugging.
1289  *
1290  * At the end of a writeback pass, there will be a cached ioend remaining on the
1291  * writepage context that the caller will need to submit.
1292  */
1293 static int
1294 iomap_writepage_map(struct iomap_writepage_ctx *wpc,
1295 		struct writeback_control *wbc, struct inode *inode,
1296 		struct page *page, u64 end_offset)
1297 {
1298 	struct iomap_page *iop = iomap_page_create(inode, page);
1299 	struct iomap_ioend *ioend, *next;
1300 	unsigned len = i_blocksize(inode);
1301 	u64 file_offset; /* file offset of page */
1302 	int error = 0, count = 0, i;
1303 	LIST_HEAD(submit_list);
1304 
1305 	WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) != 0);
1306 
1307 	/*
1308 	 * Walk through the page to find areas to write back. If we run off the
1309 	 * end of the current map or find the current map invalid, grab a new
1310 	 * one.
1311 	 */
1312 	for (i = 0, file_offset = page_offset(page);
1313 	     i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset;
1314 	     i++, file_offset += len) {
1315 		if (iop && !test_bit(i, iop->uptodate))
1316 			continue;
1317 
1318 		error = wpc->ops->map_blocks(wpc, inode, file_offset);
1319 		if (error)
1320 			break;
1321 		if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE))
1322 			continue;
1323 		if (wpc->iomap.type == IOMAP_HOLE)
1324 			continue;
1325 		iomap_add_to_ioend(inode, file_offset, page, iop, wpc, wbc,
1326 				 &submit_list);
1327 		count++;
1328 	}
1329 
1330 	WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list));
1331 	WARN_ON_ONCE(!PageLocked(page));
1332 	WARN_ON_ONCE(PageWriteback(page));
1333 	WARN_ON_ONCE(PageDirty(page));
1334 
1335 	/*
1336 	 * We cannot cancel the ioend directly here on error.  We may have
1337 	 * already set other pages under writeback and hence we have to run I/O
1338 	 * completion to mark the error state of the pages under writeback
1339 	 * appropriately.
1340 	 */
1341 	if (unlikely(error)) {
1342 		/*
1343 		 * Let the filesystem know what portion of the current page
1344 		 * failed to map. If the page hasn't been added to ioend, it
1345 		 * won't be affected by I/O completion and we must unlock it
1346 		 * now.
1347 		 */
1348 		if (wpc->ops->discard_page)
1349 			wpc->ops->discard_page(page, file_offset);
1350 		if (!count) {
1351 			ClearPageUptodate(page);
1352 			unlock_page(page);
1353 			goto done;
1354 		}
1355 	}
1356 
1357 	set_page_writeback(page);
1358 	unlock_page(page);
1359 
1360 	/*
1361 	 * Preserve the original error if there was one; catch
1362 	 * submission errors here and propagate into subsequent ioend
1363 	 * submissions.
1364 	 */
1365 	list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1366 		int error2;
1367 
1368 		list_del_init(&ioend->io_list);
1369 		error2 = iomap_submit_ioend(wpc, ioend, error);
1370 		if (error2 && !error)
1371 			error = error2;
1372 	}
1373 
1374 	/*
1375 	 * We can end up here with no error and nothing to write only if we race
1376 	 * with a partial page truncate on a sub-page block sized filesystem.
1377 	 */
1378 	if (!count)
1379 		end_page_writeback(page);
1380 done:
1381 	mapping_set_error(page->mapping, error);
1382 	return error;
1383 }
1384 
1385 /*
1386  * Write out a dirty page.
1387  *
1388  * For delalloc space on the page, we need to allocate space and flush it.
1389  * For unwritten space on the page, we need to start the conversion to
1390  * regular allocated space.
1391  */
1392 static int
1393 iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data)
1394 {
1395 	struct iomap_writepage_ctx *wpc = data;
1396 	struct inode *inode = page->mapping->host;
1397 	pgoff_t end_index;
1398 	u64 end_offset;
1399 	loff_t offset;
1400 
1401 	trace_iomap_writepage(inode, page_offset(page), PAGE_SIZE);
1402 
1403 	/*
1404 	 * Refuse to write the page out if we're called from reclaim context.
1405 	 *
1406 	 * This avoids stack overflows when called from deeply used stacks in
1407 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
1408 	 * allow reclaim from kswapd as the stack usage there is relatively low.
1409 	 *
1410 	 * This should never happen except in the case of a VM regression so
1411 	 * warn about it.
1412 	 */
1413 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1414 			PF_MEMALLOC))
1415 		goto redirty;
1416 
1417 	/*
1418 	 * Is this page beyond the end of the file?
1419 	 *
1420 	 * The page index is less than the end_index, adjust the end_offset
1421 	 * to the highest offset that this page should represent.
1422 	 * -----------------------------------------------------
1423 	 * |			file mapping	       | <EOF> |
1424 	 * -----------------------------------------------------
1425 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
1426 	 * ^--------------------------------^----------|--------
1427 	 * |     desired writeback range    |      see else    |
1428 	 * ---------------------------------^------------------|
1429 	 */
1430 	offset = i_size_read(inode);
1431 	end_index = offset >> PAGE_SHIFT;
1432 	if (page->index < end_index)
1433 		end_offset = (loff_t)(page->index + 1) << PAGE_SHIFT;
1434 	else {
1435 		/*
1436 		 * Check whether the page to write out is beyond or straddles
1437 		 * i_size or not.
1438 		 * -------------------------------------------------------
1439 		 * |		file mapping		        | <EOF>  |
1440 		 * -------------------------------------------------------
1441 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1442 		 * ^--------------------------------^-----------|---------
1443 		 * |				    |      Straddles     |
1444 		 * ---------------------------------^-----------|--------|
1445 		 */
1446 		unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1447 
1448 		/*
1449 		 * Skip the page if it's fully outside i_size, e.g. due to a
1450 		 * truncate operation that's in progress. We must redirty the
1451 		 * page so that reclaim stops reclaiming it. Otherwise
1452 		 * iomap_vm_releasepage() is called on it and gets confused.
1453 		 *
1454 		 * Note that the end_index is unsigned long.  If the given
1455 		 * offset is greater than 16TB on a 32-bit system then if we
1456 		 * checked if the page is fully outside i_size with
1457 		 * "if (page->index >= end_index + 1)", "end_index + 1" would
1458 		 * overflow and evaluate to 0.  Hence this page would be
1459 		 * redirtied and written out repeatedly, which would result in
1460 		 * an infinite loop; the user program performing this operation
1461 		 * would hang.  Instead, we can detect this situation by
1462 		 * checking if the page is totally beyond i_size or if its
1463 		 * offset is just equal to the EOF.
1464 		 */
1465 		if (page->index > end_index ||
1466 		    (page->index == end_index && offset_into_page == 0))
1467 			goto redirty;
1468 
1469 		/*
1470 		 * The page straddles i_size.  It must be zeroed out on each
1471 		 * and every writepage invocation because it may be mmapped.
1472 		 * "A file is mapped in multiples of the page size.  For a file
1473 		 * that is not a multiple of the page size, the remaining
1474 		 * memory is zeroed when mapped, and writes to that region are
1475 		 * not written out to the file."
1476 		 */
1477 		zero_user_segment(page, offset_into_page, PAGE_SIZE);
1478 
1479 		/* Adjust the end_offset to the end of file */
1480 		end_offset = offset;
1481 	}
1482 
1483 	return iomap_writepage_map(wpc, wbc, inode, page, end_offset);
1484 
1485 redirty:
1486 	redirty_page_for_writepage(wbc, page);
1487 	unlock_page(page);
1488 	return 0;
1489 }
1490 
1491 int
1492 iomap_writepage(struct page *page, struct writeback_control *wbc,
1493 		struct iomap_writepage_ctx *wpc,
1494 		const struct iomap_writeback_ops *ops)
1495 {
1496 	int ret;
1497 
1498 	wpc->ops = ops;
1499 	ret = iomap_do_writepage(page, wbc, wpc);
1500 	if (!wpc->ioend)
1501 		return ret;
1502 	return iomap_submit_ioend(wpc, wpc->ioend, ret);
1503 }
1504 EXPORT_SYMBOL_GPL(iomap_writepage);
1505 
1506 int
1507 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
1508 		struct iomap_writepage_ctx *wpc,
1509 		const struct iomap_writeback_ops *ops)
1510 {
1511 	int			ret;
1512 
1513 	wpc->ops = ops;
1514 	ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc);
1515 	if (!wpc->ioend)
1516 		return ret;
1517 	return iomap_submit_ioend(wpc, wpc->ioend, ret);
1518 }
1519 EXPORT_SYMBOL_GPL(iomap_writepages);
1520 
1521 static int __init iomap_init(void)
1522 {
1523 	return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
1524 			   offsetof(struct iomap_ioend, io_inline_bio),
1525 			   BIOSET_NEED_BVECS);
1526 }
1527 fs_initcall(iomap_init);
1528