1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Red Hat, Inc. 4 * Copyright (C) 2016-2019 Christoph Hellwig. 5 */ 6 #include <linux/module.h> 7 #include <linux/compiler.h> 8 #include <linux/fs.h> 9 #include <linux/iomap.h> 10 #include <linux/pagemap.h> 11 #include <linux/uio.h> 12 #include <linux/buffer_head.h> 13 #include <linux/dax.h> 14 #include <linux/writeback.h> 15 #include <linux/list_sort.h> 16 #include <linux/swap.h> 17 #include <linux/bio.h> 18 #include <linux/sched/signal.h> 19 #include <linux/migrate.h> 20 #include "trace.h" 21 22 #include "../internal.h" 23 24 #define IOEND_BATCH_SIZE 4096 25 26 typedef int (*iomap_punch_t)(struct inode *inode, loff_t offset, loff_t length); 27 /* 28 * Structure allocated for each folio to track per-block uptodate, dirty state 29 * and I/O completions. 30 */ 31 struct iomap_folio_state { 32 atomic_t read_bytes_pending; 33 atomic_t write_bytes_pending; 34 spinlock_t state_lock; 35 36 /* 37 * Each block has two bits in this bitmap: 38 * Bits [0..blocks_per_folio) has the uptodate status. 39 * Bits [b_p_f...(2*b_p_f)) has the dirty status. 40 */ 41 unsigned long state[]; 42 }; 43 44 static struct bio_set iomap_ioend_bioset; 45 46 static inline bool ifs_is_fully_uptodate(struct folio *folio, 47 struct iomap_folio_state *ifs) 48 { 49 struct inode *inode = folio->mapping->host; 50 51 return bitmap_full(ifs->state, i_blocks_per_folio(inode, folio)); 52 } 53 54 static inline bool ifs_block_is_uptodate(struct iomap_folio_state *ifs, 55 unsigned int block) 56 { 57 return test_bit(block, ifs->state); 58 } 59 60 static void ifs_set_range_uptodate(struct folio *folio, 61 struct iomap_folio_state *ifs, size_t off, size_t len) 62 { 63 struct inode *inode = folio->mapping->host; 64 unsigned int first_blk = off >> inode->i_blkbits; 65 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits; 66 unsigned int nr_blks = last_blk - first_blk + 1; 67 unsigned long flags; 68 69 spin_lock_irqsave(&ifs->state_lock, flags); 70 bitmap_set(ifs->state, first_blk, nr_blks); 71 if (ifs_is_fully_uptodate(folio, ifs)) 72 folio_mark_uptodate(folio); 73 spin_unlock_irqrestore(&ifs->state_lock, flags); 74 } 75 76 static void iomap_set_range_uptodate(struct folio *folio, size_t off, 77 size_t len) 78 { 79 struct iomap_folio_state *ifs = folio->private; 80 81 if (ifs) 82 ifs_set_range_uptodate(folio, ifs, off, len); 83 else 84 folio_mark_uptodate(folio); 85 } 86 87 static inline bool ifs_block_is_dirty(struct folio *folio, 88 struct iomap_folio_state *ifs, int block) 89 { 90 struct inode *inode = folio->mapping->host; 91 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio); 92 93 return test_bit(block + blks_per_folio, ifs->state); 94 } 95 96 static void ifs_clear_range_dirty(struct folio *folio, 97 struct iomap_folio_state *ifs, size_t off, size_t len) 98 { 99 struct inode *inode = folio->mapping->host; 100 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio); 101 unsigned int first_blk = (off >> inode->i_blkbits); 102 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits; 103 unsigned int nr_blks = last_blk - first_blk + 1; 104 unsigned long flags; 105 106 spin_lock_irqsave(&ifs->state_lock, flags); 107 bitmap_clear(ifs->state, first_blk + blks_per_folio, nr_blks); 108 spin_unlock_irqrestore(&ifs->state_lock, flags); 109 } 110 111 static void iomap_clear_range_dirty(struct folio *folio, size_t off, size_t len) 112 { 113 struct iomap_folio_state *ifs = folio->private; 114 115 if (ifs) 116 ifs_clear_range_dirty(folio, ifs, off, len); 117 } 118 119 static void ifs_set_range_dirty(struct folio *folio, 120 struct iomap_folio_state *ifs, size_t off, size_t len) 121 { 122 struct inode *inode = folio->mapping->host; 123 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio); 124 unsigned int first_blk = (off >> inode->i_blkbits); 125 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits; 126 unsigned int nr_blks = last_blk - first_blk + 1; 127 unsigned long flags; 128 129 spin_lock_irqsave(&ifs->state_lock, flags); 130 bitmap_set(ifs->state, first_blk + blks_per_folio, nr_blks); 131 spin_unlock_irqrestore(&ifs->state_lock, flags); 132 } 133 134 static void iomap_set_range_dirty(struct folio *folio, size_t off, size_t len) 135 { 136 struct iomap_folio_state *ifs = folio->private; 137 138 if (ifs) 139 ifs_set_range_dirty(folio, ifs, off, len); 140 } 141 142 static struct iomap_folio_state *ifs_alloc(struct inode *inode, 143 struct folio *folio, unsigned int flags) 144 { 145 struct iomap_folio_state *ifs = folio->private; 146 unsigned int nr_blocks = i_blocks_per_folio(inode, folio); 147 gfp_t gfp; 148 149 if (ifs || nr_blocks <= 1) 150 return ifs; 151 152 if (flags & IOMAP_NOWAIT) 153 gfp = GFP_NOWAIT; 154 else 155 gfp = GFP_NOFS | __GFP_NOFAIL; 156 157 /* 158 * ifs->state tracks two sets of state flags when the 159 * filesystem block size is smaller than the folio size. 160 * The first state tracks per-block uptodate and the 161 * second tracks per-block dirty state. 162 */ 163 ifs = kzalloc(struct_size(ifs, state, 164 BITS_TO_LONGS(2 * nr_blocks)), gfp); 165 if (!ifs) 166 return ifs; 167 168 spin_lock_init(&ifs->state_lock); 169 if (folio_test_uptodate(folio)) 170 bitmap_set(ifs->state, 0, nr_blocks); 171 if (folio_test_dirty(folio)) 172 bitmap_set(ifs->state, nr_blocks, nr_blocks); 173 folio_attach_private(folio, ifs); 174 175 return ifs; 176 } 177 178 static void ifs_free(struct folio *folio) 179 { 180 struct iomap_folio_state *ifs = folio_detach_private(folio); 181 182 if (!ifs) 183 return; 184 WARN_ON_ONCE(atomic_read(&ifs->read_bytes_pending)); 185 WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending)); 186 WARN_ON_ONCE(ifs_is_fully_uptodate(folio, ifs) != 187 folio_test_uptodate(folio)); 188 kfree(ifs); 189 } 190 191 /* 192 * Calculate the range inside the folio that we actually need to read. 193 */ 194 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio, 195 loff_t *pos, loff_t length, size_t *offp, size_t *lenp) 196 { 197 struct iomap_folio_state *ifs = folio->private; 198 loff_t orig_pos = *pos; 199 loff_t isize = i_size_read(inode); 200 unsigned block_bits = inode->i_blkbits; 201 unsigned block_size = (1 << block_bits); 202 size_t poff = offset_in_folio(folio, *pos); 203 size_t plen = min_t(loff_t, folio_size(folio) - poff, length); 204 unsigned first = poff >> block_bits; 205 unsigned last = (poff + plen - 1) >> block_bits; 206 207 /* 208 * If the block size is smaller than the page size, we need to check the 209 * per-block uptodate status and adjust the offset and length if needed 210 * to avoid reading in already uptodate ranges. 211 */ 212 if (ifs) { 213 unsigned int i; 214 215 /* move forward for each leading block marked uptodate */ 216 for (i = first; i <= last; i++) { 217 if (!ifs_block_is_uptodate(ifs, i)) 218 break; 219 *pos += block_size; 220 poff += block_size; 221 plen -= block_size; 222 first++; 223 } 224 225 /* truncate len if we find any trailing uptodate block(s) */ 226 for ( ; i <= last; i++) { 227 if (ifs_block_is_uptodate(ifs, i)) { 228 plen -= (last - i + 1) * block_size; 229 last = i - 1; 230 break; 231 } 232 } 233 } 234 235 /* 236 * If the extent spans the block that contains the i_size, we need to 237 * handle both halves separately so that we properly zero data in the 238 * page cache for blocks that are entirely outside of i_size. 239 */ 240 if (orig_pos <= isize && orig_pos + length > isize) { 241 unsigned end = offset_in_folio(folio, isize - 1) >> block_bits; 242 243 if (first <= end && last > end) 244 plen -= (last - end) * block_size; 245 } 246 247 *offp = poff; 248 *lenp = plen; 249 } 250 251 static void iomap_finish_folio_read(struct folio *folio, size_t offset, 252 size_t len, int error) 253 { 254 struct iomap_folio_state *ifs = folio->private; 255 256 if (unlikely(error)) { 257 folio_clear_uptodate(folio); 258 folio_set_error(folio); 259 } else { 260 iomap_set_range_uptodate(folio, offset, len); 261 } 262 263 if (!ifs || atomic_sub_and_test(len, &ifs->read_bytes_pending)) 264 folio_unlock(folio); 265 } 266 267 static void iomap_read_end_io(struct bio *bio) 268 { 269 int error = blk_status_to_errno(bio->bi_status); 270 struct folio_iter fi; 271 272 bio_for_each_folio_all(fi, bio) 273 iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error); 274 bio_put(bio); 275 } 276 277 struct iomap_readpage_ctx { 278 struct folio *cur_folio; 279 bool cur_folio_in_bio; 280 struct bio *bio; 281 struct readahead_control *rac; 282 }; 283 284 /** 285 * iomap_read_inline_data - copy inline data into the page cache 286 * @iter: iteration structure 287 * @folio: folio to copy to 288 * 289 * Copy the inline data in @iter into @folio and zero out the rest of the folio. 290 * Only a single IOMAP_INLINE extent is allowed at the end of each file. 291 * Returns zero for success to complete the read, or the usual negative errno. 292 */ 293 static int iomap_read_inline_data(const struct iomap_iter *iter, 294 struct folio *folio) 295 { 296 const struct iomap *iomap = iomap_iter_srcmap(iter); 297 size_t size = i_size_read(iter->inode) - iomap->offset; 298 size_t poff = offset_in_page(iomap->offset); 299 size_t offset = offset_in_folio(folio, iomap->offset); 300 void *addr; 301 302 if (folio_test_uptodate(folio)) 303 return 0; 304 305 if (WARN_ON_ONCE(size > PAGE_SIZE - poff)) 306 return -EIO; 307 if (WARN_ON_ONCE(size > PAGE_SIZE - 308 offset_in_page(iomap->inline_data))) 309 return -EIO; 310 if (WARN_ON_ONCE(size > iomap->length)) 311 return -EIO; 312 if (offset > 0) 313 ifs_alloc(iter->inode, folio, iter->flags); 314 315 addr = kmap_local_folio(folio, offset); 316 memcpy(addr, iomap->inline_data, size); 317 memset(addr + size, 0, PAGE_SIZE - poff - size); 318 kunmap_local(addr); 319 iomap_set_range_uptodate(folio, offset, PAGE_SIZE - poff); 320 return 0; 321 } 322 323 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter, 324 loff_t pos) 325 { 326 const struct iomap *srcmap = iomap_iter_srcmap(iter); 327 328 return srcmap->type != IOMAP_MAPPED || 329 (srcmap->flags & IOMAP_F_NEW) || 330 pos >= i_size_read(iter->inode); 331 } 332 333 static loff_t iomap_readpage_iter(const struct iomap_iter *iter, 334 struct iomap_readpage_ctx *ctx, loff_t offset) 335 { 336 const struct iomap *iomap = &iter->iomap; 337 loff_t pos = iter->pos + offset; 338 loff_t length = iomap_length(iter) - offset; 339 struct folio *folio = ctx->cur_folio; 340 struct iomap_folio_state *ifs; 341 loff_t orig_pos = pos; 342 size_t poff, plen; 343 sector_t sector; 344 345 if (iomap->type == IOMAP_INLINE) 346 return iomap_read_inline_data(iter, folio); 347 348 /* zero post-eof blocks as the page may be mapped */ 349 ifs = ifs_alloc(iter->inode, folio, iter->flags); 350 iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen); 351 if (plen == 0) 352 goto done; 353 354 if (iomap_block_needs_zeroing(iter, pos)) { 355 folio_zero_range(folio, poff, plen); 356 iomap_set_range_uptodate(folio, poff, plen); 357 goto done; 358 } 359 360 ctx->cur_folio_in_bio = true; 361 if (ifs) 362 atomic_add(plen, &ifs->read_bytes_pending); 363 364 sector = iomap_sector(iomap, pos); 365 if (!ctx->bio || 366 bio_end_sector(ctx->bio) != sector || 367 !bio_add_folio(ctx->bio, folio, plen, poff)) { 368 gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL); 369 gfp_t orig_gfp = gfp; 370 unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE); 371 372 if (ctx->bio) 373 submit_bio(ctx->bio); 374 375 if (ctx->rac) /* same as readahead_gfp_mask */ 376 gfp |= __GFP_NORETRY | __GFP_NOWARN; 377 ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs), 378 REQ_OP_READ, gfp); 379 /* 380 * If the bio_alloc fails, try it again for a single page to 381 * avoid having to deal with partial page reads. This emulates 382 * what do_mpage_read_folio does. 383 */ 384 if (!ctx->bio) { 385 ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ, 386 orig_gfp); 387 } 388 if (ctx->rac) 389 ctx->bio->bi_opf |= REQ_RAHEAD; 390 ctx->bio->bi_iter.bi_sector = sector; 391 ctx->bio->bi_end_io = iomap_read_end_io; 392 bio_add_folio_nofail(ctx->bio, folio, plen, poff); 393 } 394 395 done: 396 /* 397 * Move the caller beyond our range so that it keeps making progress. 398 * For that, we have to include any leading non-uptodate ranges, but 399 * we can skip trailing ones as they will be handled in the next 400 * iteration. 401 */ 402 return pos - orig_pos + plen; 403 } 404 405 int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops) 406 { 407 struct iomap_iter iter = { 408 .inode = folio->mapping->host, 409 .pos = folio_pos(folio), 410 .len = folio_size(folio), 411 }; 412 struct iomap_readpage_ctx ctx = { 413 .cur_folio = folio, 414 }; 415 int ret; 416 417 trace_iomap_readpage(iter.inode, 1); 418 419 while ((ret = iomap_iter(&iter, ops)) > 0) 420 iter.processed = iomap_readpage_iter(&iter, &ctx, 0); 421 422 if (ret < 0) 423 folio_set_error(folio); 424 425 if (ctx.bio) { 426 submit_bio(ctx.bio); 427 WARN_ON_ONCE(!ctx.cur_folio_in_bio); 428 } else { 429 WARN_ON_ONCE(ctx.cur_folio_in_bio); 430 folio_unlock(folio); 431 } 432 433 /* 434 * Just like mpage_readahead and block_read_full_folio, we always 435 * return 0 and just set the folio error flag on errors. This 436 * should be cleaned up throughout the stack eventually. 437 */ 438 return 0; 439 } 440 EXPORT_SYMBOL_GPL(iomap_read_folio); 441 442 static loff_t iomap_readahead_iter(const struct iomap_iter *iter, 443 struct iomap_readpage_ctx *ctx) 444 { 445 loff_t length = iomap_length(iter); 446 loff_t done, ret; 447 448 for (done = 0; done < length; done += ret) { 449 if (ctx->cur_folio && 450 offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) { 451 if (!ctx->cur_folio_in_bio) 452 folio_unlock(ctx->cur_folio); 453 ctx->cur_folio = NULL; 454 } 455 if (!ctx->cur_folio) { 456 ctx->cur_folio = readahead_folio(ctx->rac); 457 ctx->cur_folio_in_bio = false; 458 } 459 ret = iomap_readpage_iter(iter, ctx, done); 460 if (ret <= 0) 461 return ret; 462 } 463 464 return done; 465 } 466 467 /** 468 * iomap_readahead - Attempt to read pages from a file. 469 * @rac: Describes the pages to be read. 470 * @ops: The operations vector for the filesystem. 471 * 472 * This function is for filesystems to call to implement their readahead 473 * address_space operation. 474 * 475 * Context: The @ops callbacks may submit I/O (eg to read the addresses of 476 * blocks from disc), and may wait for it. The caller may be trying to 477 * access a different page, and so sleeping excessively should be avoided. 478 * It may allocate memory, but should avoid costly allocations. This 479 * function is called with memalloc_nofs set, so allocations will not cause 480 * the filesystem to be reentered. 481 */ 482 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops) 483 { 484 struct iomap_iter iter = { 485 .inode = rac->mapping->host, 486 .pos = readahead_pos(rac), 487 .len = readahead_length(rac), 488 }; 489 struct iomap_readpage_ctx ctx = { 490 .rac = rac, 491 }; 492 493 trace_iomap_readahead(rac->mapping->host, readahead_count(rac)); 494 495 while (iomap_iter(&iter, ops) > 0) 496 iter.processed = iomap_readahead_iter(&iter, &ctx); 497 498 if (ctx.bio) 499 submit_bio(ctx.bio); 500 if (ctx.cur_folio) { 501 if (!ctx.cur_folio_in_bio) 502 folio_unlock(ctx.cur_folio); 503 } 504 } 505 EXPORT_SYMBOL_GPL(iomap_readahead); 506 507 /* 508 * iomap_is_partially_uptodate checks whether blocks within a folio are 509 * uptodate or not. 510 * 511 * Returns true if all blocks which correspond to the specified part 512 * of the folio are uptodate. 513 */ 514 bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count) 515 { 516 struct iomap_folio_state *ifs = folio->private; 517 struct inode *inode = folio->mapping->host; 518 unsigned first, last, i; 519 520 if (!ifs) 521 return false; 522 523 /* Caller's range may extend past the end of this folio */ 524 count = min(folio_size(folio) - from, count); 525 526 /* First and last blocks in range within folio */ 527 first = from >> inode->i_blkbits; 528 last = (from + count - 1) >> inode->i_blkbits; 529 530 for (i = first; i <= last; i++) 531 if (!ifs_block_is_uptodate(ifs, i)) 532 return false; 533 return true; 534 } 535 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate); 536 537 /** 538 * iomap_get_folio - get a folio reference for writing 539 * @iter: iteration structure 540 * @pos: start offset of write 541 * @len: Suggested size of folio to create. 542 * 543 * Returns a locked reference to the folio at @pos, or an error pointer if the 544 * folio could not be obtained. 545 */ 546 struct folio *iomap_get_folio(struct iomap_iter *iter, loff_t pos, size_t len) 547 { 548 fgf_t fgp = FGP_WRITEBEGIN | FGP_NOFS; 549 550 if (iter->flags & IOMAP_NOWAIT) 551 fgp |= FGP_NOWAIT; 552 fgp |= fgf_set_order(len); 553 554 return __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT, 555 fgp, mapping_gfp_mask(iter->inode->i_mapping)); 556 } 557 EXPORT_SYMBOL_GPL(iomap_get_folio); 558 559 bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags) 560 { 561 trace_iomap_release_folio(folio->mapping->host, folio_pos(folio), 562 folio_size(folio)); 563 564 /* 565 * If the folio is dirty, we refuse to release our metadata because 566 * it may be partially dirty. Once we track per-block dirty state, 567 * we can release the metadata if every block is dirty. 568 */ 569 if (folio_test_dirty(folio)) 570 return false; 571 ifs_free(folio); 572 return true; 573 } 574 EXPORT_SYMBOL_GPL(iomap_release_folio); 575 576 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len) 577 { 578 trace_iomap_invalidate_folio(folio->mapping->host, 579 folio_pos(folio) + offset, len); 580 581 /* 582 * If we're invalidating the entire folio, clear the dirty state 583 * from it and release it to avoid unnecessary buildup of the LRU. 584 */ 585 if (offset == 0 && len == folio_size(folio)) { 586 WARN_ON_ONCE(folio_test_writeback(folio)); 587 folio_cancel_dirty(folio); 588 ifs_free(folio); 589 } 590 } 591 EXPORT_SYMBOL_GPL(iomap_invalidate_folio); 592 593 bool iomap_dirty_folio(struct address_space *mapping, struct folio *folio) 594 { 595 struct inode *inode = mapping->host; 596 size_t len = folio_size(folio); 597 598 ifs_alloc(inode, folio, 0); 599 iomap_set_range_dirty(folio, 0, len); 600 return filemap_dirty_folio(mapping, folio); 601 } 602 EXPORT_SYMBOL_GPL(iomap_dirty_folio); 603 604 static void 605 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len) 606 { 607 loff_t i_size = i_size_read(inode); 608 609 /* 610 * Only truncate newly allocated pages beyoned EOF, even if the 611 * write started inside the existing inode size. 612 */ 613 if (pos + len > i_size) 614 truncate_pagecache_range(inode, max(pos, i_size), 615 pos + len - 1); 616 } 617 618 static int iomap_read_folio_sync(loff_t block_start, struct folio *folio, 619 size_t poff, size_t plen, const struct iomap *iomap) 620 { 621 struct bio_vec bvec; 622 struct bio bio; 623 624 bio_init(&bio, iomap->bdev, &bvec, 1, REQ_OP_READ); 625 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start); 626 bio_add_folio_nofail(&bio, folio, plen, poff); 627 return submit_bio_wait(&bio); 628 } 629 630 static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos, 631 size_t len, struct folio *folio) 632 { 633 const struct iomap *srcmap = iomap_iter_srcmap(iter); 634 struct iomap_folio_state *ifs; 635 loff_t block_size = i_blocksize(iter->inode); 636 loff_t block_start = round_down(pos, block_size); 637 loff_t block_end = round_up(pos + len, block_size); 638 unsigned int nr_blocks = i_blocks_per_folio(iter->inode, folio); 639 size_t from = offset_in_folio(folio, pos), to = from + len; 640 size_t poff, plen; 641 642 /* 643 * If the write or zeroing completely overlaps the current folio, then 644 * entire folio will be dirtied so there is no need for 645 * per-block state tracking structures to be attached to this folio. 646 * For the unshare case, we must read in the ondisk contents because we 647 * are not changing pagecache contents. 648 */ 649 if (!(iter->flags & IOMAP_UNSHARE) && pos <= folio_pos(folio) && 650 pos + len >= folio_pos(folio) + folio_size(folio)) 651 return 0; 652 653 ifs = ifs_alloc(iter->inode, folio, iter->flags); 654 if ((iter->flags & IOMAP_NOWAIT) && !ifs && nr_blocks > 1) 655 return -EAGAIN; 656 657 if (folio_test_uptodate(folio)) 658 return 0; 659 folio_clear_error(folio); 660 661 do { 662 iomap_adjust_read_range(iter->inode, folio, &block_start, 663 block_end - block_start, &poff, &plen); 664 if (plen == 0) 665 break; 666 667 if (!(iter->flags & IOMAP_UNSHARE) && 668 (from <= poff || from >= poff + plen) && 669 (to <= poff || to >= poff + plen)) 670 continue; 671 672 if (iomap_block_needs_zeroing(iter, block_start)) { 673 if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE)) 674 return -EIO; 675 folio_zero_segments(folio, poff, from, to, poff + plen); 676 } else { 677 int status; 678 679 if (iter->flags & IOMAP_NOWAIT) 680 return -EAGAIN; 681 682 status = iomap_read_folio_sync(block_start, folio, 683 poff, plen, srcmap); 684 if (status) 685 return status; 686 } 687 iomap_set_range_uptodate(folio, poff, plen); 688 } while ((block_start += plen) < block_end); 689 690 return 0; 691 } 692 693 static struct folio *__iomap_get_folio(struct iomap_iter *iter, loff_t pos, 694 size_t len) 695 { 696 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops; 697 698 if (folio_ops && folio_ops->get_folio) 699 return folio_ops->get_folio(iter, pos, len); 700 else 701 return iomap_get_folio(iter, pos, len); 702 } 703 704 static void __iomap_put_folio(struct iomap_iter *iter, loff_t pos, size_t ret, 705 struct folio *folio) 706 { 707 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops; 708 709 if (folio_ops && folio_ops->put_folio) { 710 folio_ops->put_folio(iter->inode, pos, ret, folio); 711 } else { 712 folio_unlock(folio); 713 folio_put(folio); 714 } 715 } 716 717 static int iomap_write_begin_inline(const struct iomap_iter *iter, 718 struct folio *folio) 719 { 720 /* needs more work for the tailpacking case; disable for now */ 721 if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0)) 722 return -EIO; 723 return iomap_read_inline_data(iter, folio); 724 } 725 726 static int iomap_write_begin(struct iomap_iter *iter, loff_t pos, 727 size_t len, struct folio **foliop) 728 { 729 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops; 730 const struct iomap *srcmap = iomap_iter_srcmap(iter); 731 struct folio *folio; 732 int status = 0; 733 734 BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length); 735 if (srcmap != &iter->iomap) 736 BUG_ON(pos + len > srcmap->offset + srcmap->length); 737 738 if (fatal_signal_pending(current)) 739 return -EINTR; 740 741 if (!mapping_large_folio_support(iter->inode->i_mapping)) 742 len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos)); 743 744 folio = __iomap_get_folio(iter, pos, len); 745 if (IS_ERR(folio)) 746 return PTR_ERR(folio); 747 748 /* 749 * Now we have a locked folio, before we do anything with it we need to 750 * check that the iomap we have cached is not stale. The inode extent 751 * mapping can change due to concurrent IO in flight (e.g. 752 * IOMAP_UNWRITTEN state can change and memory reclaim could have 753 * reclaimed a previously partially written page at this index after IO 754 * completion before this write reaches this file offset) and hence we 755 * could do the wrong thing here (zero a page range incorrectly or fail 756 * to zero) and corrupt data. 757 */ 758 if (folio_ops && folio_ops->iomap_valid) { 759 bool iomap_valid = folio_ops->iomap_valid(iter->inode, 760 &iter->iomap); 761 if (!iomap_valid) { 762 iter->iomap.flags |= IOMAP_F_STALE; 763 status = 0; 764 goto out_unlock; 765 } 766 } 767 768 if (pos + len > folio_pos(folio) + folio_size(folio)) 769 len = folio_pos(folio) + folio_size(folio) - pos; 770 771 if (srcmap->type == IOMAP_INLINE) 772 status = iomap_write_begin_inline(iter, folio); 773 else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) 774 status = __block_write_begin_int(folio, pos, len, NULL, srcmap); 775 else 776 status = __iomap_write_begin(iter, pos, len, folio); 777 778 if (unlikely(status)) 779 goto out_unlock; 780 781 *foliop = folio; 782 return 0; 783 784 out_unlock: 785 __iomap_put_folio(iter, pos, 0, folio); 786 iomap_write_failed(iter->inode, pos, len); 787 788 return status; 789 } 790 791 static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len, 792 size_t copied, struct folio *folio) 793 { 794 flush_dcache_folio(folio); 795 796 /* 797 * The blocks that were entirely written will now be uptodate, so we 798 * don't have to worry about a read_folio reading them and overwriting a 799 * partial write. However, if we've encountered a short write and only 800 * partially written into a block, it will not be marked uptodate, so a 801 * read_folio might come in and destroy our partial write. 802 * 803 * Do the simplest thing and just treat any short write to a 804 * non-uptodate page as a zero-length write, and force the caller to 805 * redo the whole thing. 806 */ 807 if (unlikely(copied < len && !folio_test_uptodate(folio))) 808 return 0; 809 iomap_set_range_uptodate(folio, offset_in_folio(folio, pos), len); 810 iomap_set_range_dirty(folio, offset_in_folio(folio, pos), copied); 811 filemap_dirty_folio(inode->i_mapping, folio); 812 return copied; 813 } 814 815 static size_t iomap_write_end_inline(const struct iomap_iter *iter, 816 struct folio *folio, loff_t pos, size_t copied) 817 { 818 const struct iomap *iomap = &iter->iomap; 819 void *addr; 820 821 WARN_ON_ONCE(!folio_test_uptodate(folio)); 822 BUG_ON(!iomap_inline_data_valid(iomap)); 823 824 flush_dcache_folio(folio); 825 addr = kmap_local_folio(folio, pos); 826 memcpy(iomap_inline_data(iomap, pos), addr, copied); 827 kunmap_local(addr); 828 829 mark_inode_dirty(iter->inode); 830 return copied; 831 } 832 833 /* Returns the number of bytes copied. May be 0. Cannot be an errno. */ 834 static size_t iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len, 835 size_t copied, struct folio *folio) 836 { 837 const struct iomap *srcmap = iomap_iter_srcmap(iter); 838 loff_t old_size = iter->inode->i_size; 839 size_t ret; 840 841 if (srcmap->type == IOMAP_INLINE) { 842 ret = iomap_write_end_inline(iter, folio, pos, copied); 843 } else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) { 844 ret = block_write_end(NULL, iter->inode->i_mapping, pos, len, 845 copied, &folio->page, NULL); 846 } else { 847 ret = __iomap_write_end(iter->inode, pos, len, copied, folio); 848 } 849 850 /* 851 * Update the in-memory inode size after copying the data into the page 852 * cache. It's up to the file system to write the updated size to disk, 853 * preferably after I/O completion so that no stale data is exposed. 854 */ 855 if (pos + ret > old_size) { 856 i_size_write(iter->inode, pos + ret); 857 iter->iomap.flags |= IOMAP_F_SIZE_CHANGED; 858 } 859 __iomap_put_folio(iter, pos, ret, folio); 860 861 if (old_size < pos) 862 pagecache_isize_extended(iter->inode, old_size, pos); 863 if (ret < len) 864 iomap_write_failed(iter->inode, pos + ret, len - ret); 865 return ret; 866 } 867 868 static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i) 869 { 870 loff_t length = iomap_length(iter); 871 size_t chunk = PAGE_SIZE << MAX_PAGECACHE_ORDER; 872 loff_t pos = iter->pos; 873 ssize_t written = 0; 874 long status = 0; 875 struct address_space *mapping = iter->inode->i_mapping; 876 unsigned int bdp_flags = (iter->flags & IOMAP_NOWAIT) ? BDP_ASYNC : 0; 877 878 do { 879 struct folio *folio; 880 size_t offset; /* Offset into folio */ 881 size_t bytes; /* Bytes to write to folio */ 882 size_t copied; /* Bytes copied from user */ 883 884 bytes = iov_iter_count(i); 885 retry: 886 offset = pos & (chunk - 1); 887 bytes = min(chunk - offset, bytes); 888 status = balance_dirty_pages_ratelimited_flags(mapping, 889 bdp_flags); 890 if (unlikely(status)) 891 break; 892 893 if (bytes > length) 894 bytes = length; 895 896 /* 897 * Bring in the user page that we'll copy from _first_. 898 * Otherwise there's a nasty deadlock on copying from the 899 * same page as we're writing to, without it being marked 900 * up-to-date. 901 * 902 * For async buffered writes the assumption is that the user 903 * page has already been faulted in. This can be optimized by 904 * faulting the user page. 905 */ 906 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 907 status = -EFAULT; 908 break; 909 } 910 911 status = iomap_write_begin(iter, pos, bytes, &folio); 912 if (unlikely(status)) 913 break; 914 if (iter->iomap.flags & IOMAP_F_STALE) 915 break; 916 917 offset = offset_in_folio(folio, pos); 918 if (bytes > folio_size(folio) - offset) 919 bytes = folio_size(folio) - offset; 920 921 if (mapping_writably_mapped(mapping)) 922 flush_dcache_folio(folio); 923 924 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i); 925 status = iomap_write_end(iter, pos, bytes, copied, folio); 926 927 if (unlikely(copied != status)) 928 iov_iter_revert(i, copied - status); 929 930 cond_resched(); 931 if (unlikely(status == 0)) { 932 /* 933 * A short copy made iomap_write_end() reject the 934 * thing entirely. Might be memory poisoning 935 * halfway through, might be a race with munmap, 936 * might be severe memory pressure. 937 */ 938 if (chunk > PAGE_SIZE) 939 chunk /= 2; 940 if (copied) { 941 bytes = copied; 942 goto retry; 943 } 944 } else { 945 pos += status; 946 written += status; 947 length -= status; 948 } 949 } while (iov_iter_count(i) && length); 950 951 if (status == -EAGAIN) { 952 iov_iter_revert(i, written); 953 return -EAGAIN; 954 } 955 return written ? written : status; 956 } 957 958 ssize_t 959 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i, 960 const struct iomap_ops *ops) 961 { 962 struct iomap_iter iter = { 963 .inode = iocb->ki_filp->f_mapping->host, 964 .pos = iocb->ki_pos, 965 .len = iov_iter_count(i), 966 .flags = IOMAP_WRITE, 967 }; 968 ssize_t ret; 969 970 if (iocb->ki_flags & IOCB_NOWAIT) 971 iter.flags |= IOMAP_NOWAIT; 972 973 while ((ret = iomap_iter(&iter, ops)) > 0) 974 iter.processed = iomap_write_iter(&iter, i); 975 976 if (unlikely(iter.pos == iocb->ki_pos)) 977 return ret; 978 ret = iter.pos - iocb->ki_pos; 979 iocb->ki_pos = iter.pos; 980 return ret; 981 } 982 EXPORT_SYMBOL_GPL(iomap_file_buffered_write); 983 984 static int iomap_write_delalloc_ifs_punch(struct inode *inode, 985 struct folio *folio, loff_t start_byte, loff_t end_byte, 986 iomap_punch_t punch) 987 { 988 unsigned int first_blk, last_blk, i; 989 loff_t last_byte; 990 u8 blkbits = inode->i_blkbits; 991 struct iomap_folio_state *ifs; 992 int ret = 0; 993 994 /* 995 * When we have per-block dirty tracking, there can be 996 * blocks within a folio which are marked uptodate 997 * but not dirty. In that case it is necessary to punch 998 * out such blocks to avoid leaking any delalloc blocks. 999 */ 1000 ifs = folio->private; 1001 if (!ifs) 1002 return ret; 1003 1004 last_byte = min_t(loff_t, end_byte - 1, 1005 folio_pos(folio) + folio_size(folio) - 1); 1006 first_blk = offset_in_folio(folio, start_byte) >> blkbits; 1007 last_blk = offset_in_folio(folio, last_byte) >> blkbits; 1008 for (i = first_blk; i <= last_blk; i++) { 1009 if (!ifs_block_is_dirty(folio, ifs, i)) { 1010 ret = punch(inode, folio_pos(folio) + (i << blkbits), 1011 1 << blkbits); 1012 if (ret) 1013 return ret; 1014 } 1015 } 1016 1017 return ret; 1018 } 1019 1020 1021 static int iomap_write_delalloc_punch(struct inode *inode, struct folio *folio, 1022 loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte, 1023 iomap_punch_t punch) 1024 { 1025 int ret = 0; 1026 1027 if (!folio_test_dirty(folio)) 1028 return ret; 1029 1030 /* if dirty, punch up to offset */ 1031 if (start_byte > *punch_start_byte) { 1032 ret = punch(inode, *punch_start_byte, 1033 start_byte - *punch_start_byte); 1034 if (ret) 1035 return ret; 1036 } 1037 1038 /* Punch non-dirty blocks within folio */ 1039 ret = iomap_write_delalloc_ifs_punch(inode, folio, start_byte, 1040 end_byte, punch); 1041 if (ret) 1042 return ret; 1043 1044 /* 1045 * Make sure the next punch start is correctly bound to 1046 * the end of this data range, not the end of the folio. 1047 */ 1048 *punch_start_byte = min_t(loff_t, end_byte, 1049 folio_pos(folio) + folio_size(folio)); 1050 1051 return ret; 1052 } 1053 1054 /* 1055 * Scan the data range passed to us for dirty page cache folios. If we find a 1056 * dirty folio, punch out the preceding range and update the offset from which 1057 * the next punch will start from. 1058 * 1059 * We can punch out storage reservations under clean pages because they either 1060 * contain data that has been written back - in which case the delalloc punch 1061 * over that range is a no-op - or they have been read faults in which case they 1062 * contain zeroes and we can remove the delalloc backing range and any new 1063 * writes to those pages will do the normal hole filling operation... 1064 * 1065 * This makes the logic simple: we only need to keep the delalloc extents only 1066 * over the dirty ranges of the page cache. 1067 * 1068 * This function uses [start_byte, end_byte) intervals (i.e. open ended) to 1069 * simplify range iterations. 1070 */ 1071 static int iomap_write_delalloc_scan(struct inode *inode, 1072 loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte, 1073 iomap_punch_t punch) 1074 { 1075 while (start_byte < end_byte) { 1076 struct folio *folio; 1077 int ret; 1078 1079 /* grab locked page */ 1080 folio = filemap_lock_folio(inode->i_mapping, 1081 start_byte >> PAGE_SHIFT); 1082 if (IS_ERR(folio)) { 1083 start_byte = ALIGN_DOWN(start_byte, PAGE_SIZE) + 1084 PAGE_SIZE; 1085 continue; 1086 } 1087 1088 ret = iomap_write_delalloc_punch(inode, folio, punch_start_byte, 1089 start_byte, end_byte, punch); 1090 if (ret) { 1091 folio_unlock(folio); 1092 folio_put(folio); 1093 return ret; 1094 } 1095 1096 /* move offset to start of next folio in range */ 1097 start_byte = folio_next_index(folio) << PAGE_SHIFT; 1098 folio_unlock(folio); 1099 folio_put(folio); 1100 } 1101 return 0; 1102 } 1103 1104 /* 1105 * Punch out all the delalloc blocks in the range given except for those that 1106 * have dirty data still pending in the page cache - those are going to be 1107 * written and so must still retain the delalloc backing for writeback. 1108 * 1109 * As we are scanning the page cache for data, we don't need to reimplement the 1110 * wheel - mapping_seek_hole_data() does exactly what we need to identify the 1111 * start and end of data ranges correctly even for sub-folio block sizes. This 1112 * byte range based iteration is especially convenient because it means we 1113 * don't have to care about variable size folios, nor where the start or end of 1114 * the data range lies within a folio, if they lie within the same folio or even 1115 * if there are multiple discontiguous data ranges within the folio. 1116 * 1117 * It should be noted that mapping_seek_hole_data() is not aware of EOF, and so 1118 * can return data ranges that exist in the cache beyond EOF. e.g. a page fault 1119 * spanning EOF will initialise the post-EOF data to zeroes and mark it up to 1120 * date. A write page fault can then mark it dirty. If we then fail a write() 1121 * beyond EOF into that up to date cached range, we allocate a delalloc block 1122 * beyond EOF and then have to punch it out. Because the range is up to date, 1123 * mapping_seek_hole_data() will return it, and we will skip the punch because 1124 * the folio is dirty. THis is incorrect - we always need to punch out delalloc 1125 * beyond EOF in this case as writeback will never write back and covert that 1126 * delalloc block beyond EOF. Hence we limit the cached data scan range to EOF, 1127 * resulting in always punching out the range from the EOF to the end of the 1128 * range the iomap spans. 1129 * 1130 * Intervals are of the form [start_byte, end_byte) (i.e. open ended) because it 1131 * matches the intervals returned by mapping_seek_hole_data(). i.e. SEEK_DATA 1132 * returns the start of a data range (start_byte), and SEEK_HOLE(start_byte) 1133 * returns the end of the data range (data_end). Using closed intervals would 1134 * require sprinkling this code with magic "+ 1" and "- 1" arithmetic and expose 1135 * the code to subtle off-by-one bugs.... 1136 */ 1137 static int iomap_write_delalloc_release(struct inode *inode, 1138 loff_t start_byte, loff_t end_byte, iomap_punch_t punch) 1139 { 1140 loff_t punch_start_byte = start_byte; 1141 loff_t scan_end_byte = min(i_size_read(inode), end_byte); 1142 int error = 0; 1143 1144 /* 1145 * Lock the mapping to avoid races with page faults re-instantiating 1146 * folios and dirtying them via ->page_mkwrite whilst we walk the 1147 * cache and perform delalloc extent removal. Failing to do this can 1148 * leave dirty pages with no space reservation in the cache. 1149 */ 1150 filemap_invalidate_lock(inode->i_mapping); 1151 while (start_byte < scan_end_byte) { 1152 loff_t data_end; 1153 1154 start_byte = mapping_seek_hole_data(inode->i_mapping, 1155 start_byte, scan_end_byte, SEEK_DATA); 1156 /* 1157 * If there is no more data to scan, all that is left is to 1158 * punch out the remaining range. 1159 */ 1160 if (start_byte == -ENXIO || start_byte == scan_end_byte) 1161 break; 1162 if (start_byte < 0) { 1163 error = start_byte; 1164 goto out_unlock; 1165 } 1166 WARN_ON_ONCE(start_byte < punch_start_byte); 1167 WARN_ON_ONCE(start_byte > scan_end_byte); 1168 1169 /* 1170 * We find the end of this contiguous cached data range by 1171 * seeking from start_byte to the beginning of the next hole. 1172 */ 1173 data_end = mapping_seek_hole_data(inode->i_mapping, start_byte, 1174 scan_end_byte, SEEK_HOLE); 1175 if (data_end < 0) { 1176 error = data_end; 1177 goto out_unlock; 1178 } 1179 WARN_ON_ONCE(data_end <= start_byte); 1180 WARN_ON_ONCE(data_end > scan_end_byte); 1181 1182 error = iomap_write_delalloc_scan(inode, &punch_start_byte, 1183 start_byte, data_end, punch); 1184 if (error) 1185 goto out_unlock; 1186 1187 /* The next data search starts at the end of this one. */ 1188 start_byte = data_end; 1189 } 1190 1191 if (punch_start_byte < end_byte) 1192 error = punch(inode, punch_start_byte, 1193 end_byte - punch_start_byte); 1194 out_unlock: 1195 filemap_invalidate_unlock(inode->i_mapping); 1196 return error; 1197 } 1198 1199 /* 1200 * When a short write occurs, the filesystem may need to remove reserved space 1201 * that was allocated in ->iomap_begin from it's ->iomap_end method. For 1202 * filesystems that use delayed allocation, we need to punch out delalloc 1203 * extents from the range that are not dirty in the page cache. As the write can 1204 * race with page faults, there can be dirty pages over the delalloc extent 1205 * outside the range of a short write but still within the delalloc extent 1206 * allocated for this iomap. 1207 * 1208 * This function uses [start_byte, end_byte) intervals (i.e. open ended) to 1209 * simplify range iterations. 1210 * 1211 * The punch() callback *must* only punch delalloc extents in the range passed 1212 * to it. It must skip over all other types of extents in the range and leave 1213 * them completely unchanged. It must do this punch atomically with respect to 1214 * other extent modifications. 1215 * 1216 * The punch() callback may be called with a folio locked to prevent writeback 1217 * extent allocation racing at the edge of the range we are currently punching. 1218 * The locked folio may or may not cover the range being punched, so it is not 1219 * safe for the punch() callback to lock folios itself. 1220 * 1221 * Lock order is: 1222 * 1223 * inode->i_rwsem (shared or exclusive) 1224 * inode->i_mapping->invalidate_lock (exclusive) 1225 * folio_lock() 1226 * ->punch 1227 * internal filesystem allocation lock 1228 */ 1229 int iomap_file_buffered_write_punch_delalloc(struct inode *inode, 1230 struct iomap *iomap, loff_t pos, loff_t length, 1231 ssize_t written, iomap_punch_t punch) 1232 { 1233 loff_t start_byte; 1234 loff_t end_byte; 1235 unsigned int blocksize = i_blocksize(inode); 1236 1237 if (iomap->type != IOMAP_DELALLOC) 1238 return 0; 1239 1240 /* If we didn't reserve the blocks, we're not allowed to punch them. */ 1241 if (!(iomap->flags & IOMAP_F_NEW)) 1242 return 0; 1243 1244 /* 1245 * start_byte refers to the first unused block after a short write. If 1246 * nothing was written, round offset down to point at the first block in 1247 * the range. 1248 */ 1249 if (unlikely(!written)) 1250 start_byte = round_down(pos, blocksize); 1251 else 1252 start_byte = round_up(pos + written, blocksize); 1253 end_byte = round_up(pos + length, blocksize); 1254 1255 /* Nothing to do if we've written the entire delalloc extent */ 1256 if (start_byte >= end_byte) 1257 return 0; 1258 1259 return iomap_write_delalloc_release(inode, start_byte, end_byte, 1260 punch); 1261 } 1262 EXPORT_SYMBOL_GPL(iomap_file_buffered_write_punch_delalloc); 1263 1264 static loff_t iomap_unshare_iter(struct iomap_iter *iter) 1265 { 1266 struct iomap *iomap = &iter->iomap; 1267 const struct iomap *srcmap = iomap_iter_srcmap(iter); 1268 loff_t pos = iter->pos; 1269 loff_t length = iomap_length(iter); 1270 loff_t written = 0; 1271 1272 /* don't bother with blocks that are not shared to start with */ 1273 if (!(iomap->flags & IOMAP_F_SHARED)) 1274 return length; 1275 /* don't bother with holes or unwritten extents */ 1276 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 1277 return length; 1278 1279 do { 1280 struct folio *folio; 1281 int status; 1282 size_t offset; 1283 size_t bytes = min_t(u64, SIZE_MAX, length); 1284 1285 status = iomap_write_begin(iter, pos, bytes, &folio); 1286 if (unlikely(status)) 1287 return status; 1288 if (iomap->flags & IOMAP_F_STALE) 1289 break; 1290 1291 offset = offset_in_folio(folio, pos); 1292 if (bytes > folio_size(folio) - offset) 1293 bytes = folio_size(folio) - offset; 1294 1295 bytes = iomap_write_end(iter, pos, bytes, bytes, folio); 1296 if (WARN_ON_ONCE(bytes == 0)) 1297 return -EIO; 1298 1299 cond_resched(); 1300 1301 pos += bytes; 1302 written += bytes; 1303 length -= bytes; 1304 1305 balance_dirty_pages_ratelimited(iter->inode->i_mapping); 1306 } while (length > 0); 1307 1308 return written; 1309 } 1310 1311 int 1312 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len, 1313 const struct iomap_ops *ops) 1314 { 1315 struct iomap_iter iter = { 1316 .inode = inode, 1317 .pos = pos, 1318 .len = len, 1319 .flags = IOMAP_WRITE | IOMAP_UNSHARE, 1320 }; 1321 int ret; 1322 1323 while ((ret = iomap_iter(&iter, ops)) > 0) 1324 iter.processed = iomap_unshare_iter(&iter); 1325 return ret; 1326 } 1327 EXPORT_SYMBOL_GPL(iomap_file_unshare); 1328 1329 static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero) 1330 { 1331 const struct iomap *srcmap = iomap_iter_srcmap(iter); 1332 loff_t pos = iter->pos; 1333 loff_t length = iomap_length(iter); 1334 loff_t written = 0; 1335 1336 /* already zeroed? we're done. */ 1337 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 1338 return length; 1339 1340 do { 1341 struct folio *folio; 1342 int status; 1343 size_t offset; 1344 size_t bytes = min_t(u64, SIZE_MAX, length); 1345 1346 status = iomap_write_begin(iter, pos, bytes, &folio); 1347 if (status) 1348 return status; 1349 if (iter->iomap.flags & IOMAP_F_STALE) 1350 break; 1351 1352 offset = offset_in_folio(folio, pos); 1353 if (bytes > folio_size(folio) - offset) 1354 bytes = folio_size(folio) - offset; 1355 1356 folio_zero_range(folio, offset, bytes); 1357 folio_mark_accessed(folio); 1358 1359 bytes = iomap_write_end(iter, pos, bytes, bytes, folio); 1360 if (WARN_ON_ONCE(bytes == 0)) 1361 return -EIO; 1362 1363 pos += bytes; 1364 length -= bytes; 1365 written += bytes; 1366 } while (length > 0); 1367 1368 if (did_zero) 1369 *did_zero = true; 1370 return written; 1371 } 1372 1373 int 1374 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero, 1375 const struct iomap_ops *ops) 1376 { 1377 struct iomap_iter iter = { 1378 .inode = inode, 1379 .pos = pos, 1380 .len = len, 1381 .flags = IOMAP_ZERO, 1382 }; 1383 int ret; 1384 1385 while ((ret = iomap_iter(&iter, ops)) > 0) 1386 iter.processed = iomap_zero_iter(&iter, did_zero); 1387 return ret; 1388 } 1389 EXPORT_SYMBOL_GPL(iomap_zero_range); 1390 1391 int 1392 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero, 1393 const struct iomap_ops *ops) 1394 { 1395 unsigned int blocksize = i_blocksize(inode); 1396 unsigned int off = pos & (blocksize - 1); 1397 1398 /* Block boundary? Nothing to do */ 1399 if (!off) 1400 return 0; 1401 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops); 1402 } 1403 EXPORT_SYMBOL_GPL(iomap_truncate_page); 1404 1405 static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter, 1406 struct folio *folio) 1407 { 1408 loff_t length = iomap_length(iter); 1409 int ret; 1410 1411 if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) { 1412 ret = __block_write_begin_int(folio, iter->pos, length, NULL, 1413 &iter->iomap); 1414 if (ret) 1415 return ret; 1416 block_commit_write(&folio->page, 0, length); 1417 } else { 1418 WARN_ON_ONCE(!folio_test_uptodate(folio)); 1419 folio_mark_dirty(folio); 1420 } 1421 1422 return length; 1423 } 1424 1425 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops) 1426 { 1427 struct iomap_iter iter = { 1428 .inode = file_inode(vmf->vma->vm_file), 1429 .flags = IOMAP_WRITE | IOMAP_FAULT, 1430 }; 1431 struct folio *folio = page_folio(vmf->page); 1432 ssize_t ret; 1433 1434 folio_lock(folio); 1435 ret = folio_mkwrite_check_truncate(folio, iter.inode); 1436 if (ret < 0) 1437 goto out_unlock; 1438 iter.pos = folio_pos(folio); 1439 iter.len = ret; 1440 while ((ret = iomap_iter(&iter, ops)) > 0) 1441 iter.processed = iomap_folio_mkwrite_iter(&iter, folio); 1442 1443 if (ret < 0) 1444 goto out_unlock; 1445 folio_wait_stable(folio); 1446 return VM_FAULT_LOCKED; 1447 out_unlock: 1448 folio_unlock(folio); 1449 return vmf_fs_error(ret); 1450 } 1451 EXPORT_SYMBOL_GPL(iomap_page_mkwrite); 1452 1453 static void iomap_finish_folio_write(struct inode *inode, struct folio *folio, 1454 size_t len, int error) 1455 { 1456 struct iomap_folio_state *ifs = folio->private; 1457 1458 if (error) { 1459 folio_set_error(folio); 1460 mapping_set_error(inode->i_mapping, error); 1461 } 1462 1463 WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !ifs); 1464 WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) <= 0); 1465 1466 if (!ifs || atomic_sub_and_test(len, &ifs->write_bytes_pending)) 1467 folio_end_writeback(folio); 1468 } 1469 1470 /* 1471 * We're now finished for good with this ioend structure. Update the page 1472 * state, release holds on bios, and finally free up memory. Do not use the 1473 * ioend after this. 1474 */ 1475 static u32 1476 iomap_finish_ioend(struct iomap_ioend *ioend, int error) 1477 { 1478 struct inode *inode = ioend->io_inode; 1479 struct bio *bio = &ioend->io_inline_bio; 1480 struct bio *last = ioend->io_bio, *next; 1481 u64 start = bio->bi_iter.bi_sector; 1482 loff_t offset = ioend->io_offset; 1483 bool quiet = bio_flagged(bio, BIO_QUIET); 1484 u32 folio_count = 0; 1485 1486 for (bio = &ioend->io_inline_bio; bio; bio = next) { 1487 struct folio_iter fi; 1488 1489 /* 1490 * For the last bio, bi_private points to the ioend, so we 1491 * need to explicitly end the iteration here. 1492 */ 1493 if (bio == last) 1494 next = NULL; 1495 else 1496 next = bio->bi_private; 1497 1498 /* walk all folios in bio, ending page IO on them */ 1499 bio_for_each_folio_all(fi, bio) { 1500 iomap_finish_folio_write(inode, fi.folio, fi.length, 1501 error); 1502 folio_count++; 1503 } 1504 bio_put(bio); 1505 } 1506 /* The ioend has been freed by bio_put() */ 1507 1508 if (unlikely(error && !quiet)) { 1509 printk_ratelimited(KERN_ERR 1510 "%s: writeback error on inode %lu, offset %lld, sector %llu", 1511 inode->i_sb->s_id, inode->i_ino, offset, start); 1512 } 1513 return folio_count; 1514 } 1515 1516 /* 1517 * Ioend completion routine for merged bios. This can only be called from task 1518 * contexts as merged ioends can be of unbound length. Hence we have to break up 1519 * the writeback completions into manageable chunks to avoid long scheduler 1520 * holdoffs. We aim to keep scheduler holdoffs down below 10ms so that we get 1521 * good batch processing throughput without creating adverse scheduler latency 1522 * conditions. 1523 */ 1524 void 1525 iomap_finish_ioends(struct iomap_ioend *ioend, int error) 1526 { 1527 struct list_head tmp; 1528 u32 completions; 1529 1530 might_sleep(); 1531 1532 list_replace_init(&ioend->io_list, &tmp); 1533 completions = iomap_finish_ioend(ioend, error); 1534 1535 while (!list_empty(&tmp)) { 1536 if (completions > IOEND_BATCH_SIZE * 8) { 1537 cond_resched(); 1538 completions = 0; 1539 } 1540 ioend = list_first_entry(&tmp, struct iomap_ioend, io_list); 1541 list_del_init(&ioend->io_list); 1542 completions += iomap_finish_ioend(ioend, error); 1543 } 1544 } 1545 EXPORT_SYMBOL_GPL(iomap_finish_ioends); 1546 1547 /* 1548 * We can merge two adjacent ioends if they have the same set of work to do. 1549 */ 1550 static bool 1551 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next) 1552 { 1553 if (ioend->io_bio->bi_status != next->io_bio->bi_status) 1554 return false; 1555 if ((ioend->io_flags & IOMAP_F_SHARED) ^ 1556 (next->io_flags & IOMAP_F_SHARED)) 1557 return false; 1558 if ((ioend->io_type == IOMAP_UNWRITTEN) ^ 1559 (next->io_type == IOMAP_UNWRITTEN)) 1560 return false; 1561 if (ioend->io_offset + ioend->io_size != next->io_offset) 1562 return false; 1563 /* 1564 * Do not merge physically discontiguous ioends. The filesystem 1565 * completion functions will have to iterate the physical 1566 * discontiguities even if we merge the ioends at a logical level, so 1567 * we don't gain anything by merging physical discontiguities here. 1568 * 1569 * We cannot use bio->bi_iter.bi_sector here as it is modified during 1570 * submission so does not point to the start sector of the bio at 1571 * completion. 1572 */ 1573 if (ioend->io_sector + (ioend->io_size >> 9) != next->io_sector) 1574 return false; 1575 return true; 1576 } 1577 1578 void 1579 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends) 1580 { 1581 struct iomap_ioend *next; 1582 1583 INIT_LIST_HEAD(&ioend->io_list); 1584 1585 while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend, 1586 io_list))) { 1587 if (!iomap_ioend_can_merge(ioend, next)) 1588 break; 1589 list_move_tail(&next->io_list, &ioend->io_list); 1590 ioend->io_size += next->io_size; 1591 } 1592 } 1593 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge); 1594 1595 static int 1596 iomap_ioend_compare(void *priv, const struct list_head *a, 1597 const struct list_head *b) 1598 { 1599 struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list); 1600 struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list); 1601 1602 if (ia->io_offset < ib->io_offset) 1603 return -1; 1604 if (ia->io_offset > ib->io_offset) 1605 return 1; 1606 return 0; 1607 } 1608 1609 void 1610 iomap_sort_ioends(struct list_head *ioend_list) 1611 { 1612 list_sort(NULL, ioend_list, iomap_ioend_compare); 1613 } 1614 EXPORT_SYMBOL_GPL(iomap_sort_ioends); 1615 1616 static void iomap_writepage_end_bio(struct bio *bio) 1617 { 1618 struct iomap_ioend *ioend = bio->bi_private; 1619 1620 iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status)); 1621 } 1622 1623 /* 1624 * Submit the final bio for an ioend. 1625 * 1626 * If @error is non-zero, it means that we have a situation where some part of 1627 * the submission process has failed after we've marked pages for writeback 1628 * and unlocked them. In this situation, we need to fail the bio instead of 1629 * submitting it. This typically only happens on a filesystem shutdown. 1630 */ 1631 static int 1632 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend, 1633 int error) 1634 { 1635 ioend->io_bio->bi_private = ioend; 1636 ioend->io_bio->bi_end_io = iomap_writepage_end_bio; 1637 1638 if (wpc->ops->prepare_ioend) 1639 error = wpc->ops->prepare_ioend(ioend, error); 1640 if (error) { 1641 /* 1642 * If we're failing the IO now, just mark the ioend with an 1643 * error and finish it. This will run IO completion immediately 1644 * as there is only one reference to the ioend at this point in 1645 * time. 1646 */ 1647 ioend->io_bio->bi_status = errno_to_blk_status(error); 1648 bio_endio(ioend->io_bio); 1649 return error; 1650 } 1651 1652 submit_bio(ioend->io_bio); 1653 return 0; 1654 } 1655 1656 static struct iomap_ioend * 1657 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc, 1658 loff_t offset, sector_t sector, struct writeback_control *wbc) 1659 { 1660 struct iomap_ioend *ioend; 1661 struct bio *bio; 1662 1663 bio = bio_alloc_bioset(wpc->iomap.bdev, BIO_MAX_VECS, 1664 REQ_OP_WRITE | wbc_to_write_flags(wbc), 1665 GFP_NOFS, &iomap_ioend_bioset); 1666 bio->bi_iter.bi_sector = sector; 1667 wbc_init_bio(wbc, bio); 1668 1669 ioend = container_of(bio, struct iomap_ioend, io_inline_bio); 1670 INIT_LIST_HEAD(&ioend->io_list); 1671 ioend->io_type = wpc->iomap.type; 1672 ioend->io_flags = wpc->iomap.flags; 1673 ioend->io_inode = inode; 1674 ioend->io_size = 0; 1675 ioend->io_folios = 0; 1676 ioend->io_offset = offset; 1677 ioend->io_bio = bio; 1678 ioend->io_sector = sector; 1679 return ioend; 1680 } 1681 1682 /* 1683 * Allocate a new bio, and chain the old bio to the new one. 1684 * 1685 * Note that we have to perform the chaining in this unintuitive order 1686 * so that the bi_private linkage is set up in the right direction for the 1687 * traversal in iomap_finish_ioend(). 1688 */ 1689 static struct bio * 1690 iomap_chain_bio(struct bio *prev) 1691 { 1692 struct bio *new; 1693 1694 new = bio_alloc(prev->bi_bdev, BIO_MAX_VECS, prev->bi_opf, GFP_NOFS); 1695 bio_clone_blkg_association(new, prev); 1696 new->bi_iter.bi_sector = bio_end_sector(prev); 1697 1698 bio_chain(prev, new); 1699 bio_get(prev); /* for iomap_finish_ioend */ 1700 submit_bio(prev); 1701 return new; 1702 } 1703 1704 static bool 1705 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset, 1706 sector_t sector) 1707 { 1708 if ((wpc->iomap.flags & IOMAP_F_SHARED) != 1709 (wpc->ioend->io_flags & IOMAP_F_SHARED)) 1710 return false; 1711 if (wpc->iomap.type != wpc->ioend->io_type) 1712 return false; 1713 if (offset != wpc->ioend->io_offset + wpc->ioend->io_size) 1714 return false; 1715 if (sector != bio_end_sector(wpc->ioend->io_bio)) 1716 return false; 1717 /* 1718 * Limit ioend bio chain lengths to minimise IO completion latency. This 1719 * also prevents long tight loops ending page writeback on all the 1720 * folios in the ioend. 1721 */ 1722 if (wpc->ioend->io_folios >= IOEND_BATCH_SIZE) 1723 return false; 1724 return true; 1725 } 1726 1727 /* 1728 * Test to see if we have an existing ioend structure that we could append to 1729 * first; otherwise finish off the current ioend and start another. 1730 */ 1731 static void 1732 iomap_add_to_ioend(struct inode *inode, loff_t pos, struct folio *folio, 1733 struct iomap_folio_state *ifs, struct iomap_writepage_ctx *wpc, 1734 struct writeback_control *wbc, struct list_head *iolist) 1735 { 1736 sector_t sector = iomap_sector(&wpc->iomap, pos); 1737 unsigned len = i_blocksize(inode); 1738 size_t poff = offset_in_folio(folio, pos); 1739 1740 if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos, sector)) { 1741 if (wpc->ioend) 1742 list_add(&wpc->ioend->io_list, iolist); 1743 wpc->ioend = iomap_alloc_ioend(inode, wpc, pos, sector, wbc); 1744 } 1745 1746 if (!bio_add_folio(wpc->ioend->io_bio, folio, len, poff)) { 1747 wpc->ioend->io_bio = iomap_chain_bio(wpc->ioend->io_bio); 1748 bio_add_folio_nofail(wpc->ioend->io_bio, folio, len, poff); 1749 } 1750 1751 if (ifs) 1752 atomic_add(len, &ifs->write_bytes_pending); 1753 wpc->ioend->io_size += len; 1754 wbc_account_cgroup_owner(wbc, &folio->page, len); 1755 } 1756 1757 /* 1758 * We implement an immediate ioend submission policy here to avoid needing to 1759 * chain multiple ioends and hence nest mempool allocations which can violate 1760 * the forward progress guarantees we need to provide. The current ioend we're 1761 * adding blocks to is cached in the writepage context, and if the new block 1762 * doesn't append to the cached ioend, it will create a new ioend and cache that 1763 * instead. 1764 * 1765 * If a new ioend is created and cached, the old ioend is returned and queued 1766 * locally for submission once the entire page is processed or an error has been 1767 * detected. While ioends are submitted immediately after they are completed, 1768 * batching optimisations are provided by higher level block plugging. 1769 * 1770 * At the end of a writeback pass, there will be a cached ioend remaining on the 1771 * writepage context that the caller will need to submit. 1772 */ 1773 static int 1774 iomap_writepage_map(struct iomap_writepage_ctx *wpc, 1775 struct writeback_control *wbc, struct inode *inode, 1776 struct folio *folio, u64 end_pos) 1777 { 1778 struct iomap_folio_state *ifs = folio->private; 1779 struct iomap_ioend *ioend, *next; 1780 unsigned len = i_blocksize(inode); 1781 unsigned nblocks = i_blocks_per_folio(inode, folio); 1782 u64 pos = folio_pos(folio); 1783 int error = 0, count = 0, i; 1784 LIST_HEAD(submit_list); 1785 1786 WARN_ON_ONCE(end_pos <= pos); 1787 1788 if (!ifs && nblocks > 1) { 1789 ifs = ifs_alloc(inode, folio, 0); 1790 iomap_set_range_dirty(folio, 0, end_pos - pos); 1791 } 1792 1793 WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) != 0); 1794 1795 /* 1796 * Walk through the folio to find areas to write back. If we 1797 * run off the end of the current map or find the current map 1798 * invalid, grab a new one. 1799 */ 1800 for (i = 0; i < nblocks && pos < end_pos; i++, pos += len) { 1801 if (ifs && !ifs_block_is_dirty(folio, ifs, i)) 1802 continue; 1803 1804 error = wpc->ops->map_blocks(wpc, inode, pos); 1805 if (error) 1806 break; 1807 trace_iomap_writepage_map(inode, &wpc->iomap); 1808 if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE)) 1809 continue; 1810 if (wpc->iomap.type == IOMAP_HOLE) 1811 continue; 1812 iomap_add_to_ioend(inode, pos, folio, ifs, wpc, wbc, 1813 &submit_list); 1814 count++; 1815 } 1816 if (count) 1817 wpc->ioend->io_folios++; 1818 1819 WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list)); 1820 WARN_ON_ONCE(!folio_test_locked(folio)); 1821 WARN_ON_ONCE(folio_test_writeback(folio)); 1822 WARN_ON_ONCE(folio_test_dirty(folio)); 1823 1824 /* 1825 * We cannot cancel the ioend directly here on error. We may have 1826 * already set other pages under writeback and hence we have to run I/O 1827 * completion to mark the error state of the pages under writeback 1828 * appropriately. 1829 */ 1830 if (unlikely(error)) { 1831 /* 1832 * Let the filesystem know what portion of the current page 1833 * failed to map. 1834 */ 1835 if (wpc->ops->discard_folio) 1836 wpc->ops->discard_folio(folio, pos); 1837 } 1838 1839 /* 1840 * We can have dirty bits set past end of file in page_mkwrite path 1841 * while mapping the last partial folio. Hence it's better to clear 1842 * all the dirty bits in the folio here. 1843 */ 1844 iomap_clear_range_dirty(folio, 0, folio_size(folio)); 1845 1846 /* 1847 * If the page hasn't been added to the ioend, it won't be affected by 1848 * I/O completion and we must unlock it now. 1849 */ 1850 if (error && !count) { 1851 folio_unlock(folio); 1852 goto done; 1853 } 1854 1855 folio_start_writeback(folio); 1856 folio_unlock(folio); 1857 1858 /* 1859 * Preserve the original error if there was one; catch 1860 * submission errors here and propagate into subsequent ioend 1861 * submissions. 1862 */ 1863 list_for_each_entry_safe(ioend, next, &submit_list, io_list) { 1864 int error2; 1865 1866 list_del_init(&ioend->io_list); 1867 error2 = iomap_submit_ioend(wpc, ioend, error); 1868 if (error2 && !error) 1869 error = error2; 1870 } 1871 1872 /* 1873 * We can end up here with no error and nothing to write only if we race 1874 * with a partial page truncate on a sub-page block sized filesystem. 1875 */ 1876 if (!count) 1877 folio_end_writeback(folio); 1878 done: 1879 mapping_set_error(inode->i_mapping, error); 1880 return error; 1881 } 1882 1883 /* 1884 * Write out a dirty page. 1885 * 1886 * For delalloc space on the page, we need to allocate space and flush it. 1887 * For unwritten space on the page, we need to start the conversion to 1888 * regular allocated space. 1889 */ 1890 static int iomap_do_writepage(struct folio *folio, 1891 struct writeback_control *wbc, void *data) 1892 { 1893 struct iomap_writepage_ctx *wpc = data; 1894 struct inode *inode = folio->mapping->host; 1895 u64 end_pos, isize; 1896 1897 trace_iomap_writepage(inode, folio_pos(folio), folio_size(folio)); 1898 1899 /* 1900 * Refuse to write the folio out if we're called from reclaim context. 1901 * 1902 * This avoids stack overflows when called from deeply used stacks in 1903 * random callers for direct reclaim or memcg reclaim. We explicitly 1904 * allow reclaim from kswapd as the stack usage there is relatively low. 1905 * 1906 * This should never happen except in the case of a VM regression so 1907 * warn about it. 1908 */ 1909 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 1910 PF_MEMALLOC)) 1911 goto redirty; 1912 1913 /* 1914 * Is this folio beyond the end of the file? 1915 * 1916 * The folio index is less than the end_index, adjust the end_pos 1917 * to the highest offset that this folio should represent. 1918 * ----------------------------------------------------- 1919 * | file mapping | <EOF> | 1920 * ----------------------------------------------------- 1921 * | Page ... | Page N-2 | Page N-1 | Page N | | 1922 * ^--------------------------------^----------|-------- 1923 * | desired writeback range | see else | 1924 * ---------------------------------^------------------| 1925 */ 1926 isize = i_size_read(inode); 1927 end_pos = folio_pos(folio) + folio_size(folio); 1928 if (end_pos > isize) { 1929 /* 1930 * Check whether the page to write out is beyond or straddles 1931 * i_size or not. 1932 * ------------------------------------------------------- 1933 * | file mapping | <EOF> | 1934 * ------------------------------------------------------- 1935 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond | 1936 * ^--------------------------------^-----------|--------- 1937 * | | Straddles | 1938 * ---------------------------------^-----------|--------| 1939 */ 1940 size_t poff = offset_in_folio(folio, isize); 1941 pgoff_t end_index = isize >> PAGE_SHIFT; 1942 1943 /* 1944 * Skip the page if it's fully outside i_size, e.g. 1945 * due to a truncate operation that's in progress. We've 1946 * cleaned this page and truncate will finish things off for 1947 * us. 1948 * 1949 * Note that the end_index is unsigned long. If the given 1950 * offset is greater than 16TB on a 32-bit system then if we 1951 * checked if the page is fully outside i_size with 1952 * "if (page->index >= end_index + 1)", "end_index + 1" would 1953 * overflow and evaluate to 0. Hence this page would be 1954 * redirtied and written out repeatedly, which would result in 1955 * an infinite loop; the user program performing this operation 1956 * would hang. Instead, we can detect this situation by 1957 * checking if the page is totally beyond i_size or if its 1958 * offset is just equal to the EOF. 1959 */ 1960 if (folio->index > end_index || 1961 (folio->index == end_index && poff == 0)) 1962 goto unlock; 1963 1964 /* 1965 * The page straddles i_size. It must be zeroed out on each 1966 * and every writepage invocation because it may be mmapped. 1967 * "A file is mapped in multiples of the page size. For a file 1968 * that is not a multiple of the page size, the remaining 1969 * memory is zeroed when mapped, and writes to that region are 1970 * not written out to the file." 1971 */ 1972 folio_zero_segment(folio, poff, folio_size(folio)); 1973 end_pos = isize; 1974 } 1975 1976 return iomap_writepage_map(wpc, wbc, inode, folio, end_pos); 1977 1978 redirty: 1979 folio_redirty_for_writepage(wbc, folio); 1980 unlock: 1981 folio_unlock(folio); 1982 return 0; 1983 } 1984 1985 int 1986 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc, 1987 struct iomap_writepage_ctx *wpc, 1988 const struct iomap_writeback_ops *ops) 1989 { 1990 int ret; 1991 1992 wpc->ops = ops; 1993 ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc); 1994 if (!wpc->ioend) 1995 return ret; 1996 return iomap_submit_ioend(wpc, wpc->ioend, ret); 1997 } 1998 EXPORT_SYMBOL_GPL(iomap_writepages); 1999 2000 static int __init iomap_init(void) 2001 { 2002 return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE), 2003 offsetof(struct iomap_ioend, io_inline_bio), 2004 BIOSET_NEED_BVECS); 2005 } 2006 fs_initcall(iomap_init); 2007