1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Red Hat, Inc. 4 * Copyright (C) 2016-2019 Christoph Hellwig. 5 */ 6 #include <linux/module.h> 7 #include <linux/compiler.h> 8 #include <linux/fs.h> 9 #include <linux/iomap.h> 10 #include <linux/pagemap.h> 11 #include <linux/uio.h> 12 #include <linux/buffer_head.h> 13 #include <linux/dax.h> 14 #include <linux/writeback.h> 15 #include <linux/list_sort.h> 16 #include <linux/swap.h> 17 #include <linux/bio.h> 18 #include <linux/sched/signal.h> 19 #include <linux/migrate.h> 20 #include "trace.h" 21 22 #include "../internal.h" 23 24 #define IOEND_BATCH_SIZE 4096 25 26 /* 27 * Structure allocated for each folio when block size < folio size 28 * to track sub-folio uptodate status and I/O completions. 29 */ 30 struct iomap_page { 31 atomic_t read_bytes_pending; 32 atomic_t write_bytes_pending; 33 spinlock_t uptodate_lock; 34 unsigned long uptodate[]; 35 }; 36 37 static inline struct iomap_page *to_iomap_page(struct folio *folio) 38 { 39 if (folio_test_private(folio)) 40 return folio_get_private(folio); 41 return NULL; 42 } 43 44 static struct bio_set iomap_ioend_bioset; 45 46 static struct iomap_page * 47 iomap_page_create(struct inode *inode, struct folio *folio, unsigned int flags) 48 { 49 struct iomap_page *iop = to_iomap_page(folio); 50 unsigned int nr_blocks = i_blocks_per_folio(inode, folio); 51 gfp_t gfp; 52 53 if (iop || nr_blocks <= 1) 54 return iop; 55 56 if (flags & IOMAP_NOWAIT) 57 gfp = GFP_NOWAIT; 58 else 59 gfp = GFP_NOFS | __GFP_NOFAIL; 60 61 iop = kzalloc(struct_size(iop, uptodate, BITS_TO_LONGS(nr_blocks)), 62 gfp); 63 if (iop) { 64 spin_lock_init(&iop->uptodate_lock); 65 if (folio_test_uptodate(folio)) 66 bitmap_fill(iop->uptodate, nr_blocks); 67 folio_attach_private(folio, iop); 68 } 69 return iop; 70 } 71 72 static void iomap_page_release(struct folio *folio) 73 { 74 struct iomap_page *iop = folio_detach_private(folio); 75 struct inode *inode = folio->mapping->host; 76 unsigned int nr_blocks = i_blocks_per_folio(inode, folio); 77 78 if (!iop) 79 return; 80 WARN_ON_ONCE(atomic_read(&iop->read_bytes_pending)); 81 WARN_ON_ONCE(atomic_read(&iop->write_bytes_pending)); 82 WARN_ON_ONCE(bitmap_full(iop->uptodate, nr_blocks) != 83 folio_test_uptodate(folio)); 84 kfree(iop); 85 } 86 87 /* 88 * Calculate the range inside the folio that we actually need to read. 89 */ 90 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio, 91 loff_t *pos, loff_t length, size_t *offp, size_t *lenp) 92 { 93 struct iomap_page *iop = to_iomap_page(folio); 94 loff_t orig_pos = *pos; 95 loff_t isize = i_size_read(inode); 96 unsigned block_bits = inode->i_blkbits; 97 unsigned block_size = (1 << block_bits); 98 size_t poff = offset_in_folio(folio, *pos); 99 size_t plen = min_t(loff_t, folio_size(folio) - poff, length); 100 unsigned first = poff >> block_bits; 101 unsigned last = (poff + plen - 1) >> block_bits; 102 103 /* 104 * If the block size is smaller than the page size, we need to check the 105 * per-block uptodate status and adjust the offset and length if needed 106 * to avoid reading in already uptodate ranges. 107 */ 108 if (iop) { 109 unsigned int i; 110 111 /* move forward for each leading block marked uptodate */ 112 for (i = first; i <= last; i++) { 113 if (!test_bit(i, iop->uptodate)) 114 break; 115 *pos += block_size; 116 poff += block_size; 117 plen -= block_size; 118 first++; 119 } 120 121 /* truncate len if we find any trailing uptodate block(s) */ 122 for ( ; i <= last; i++) { 123 if (test_bit(i, iop->uptodate)) { 124 plen -= (last - i + 1) * block_size; 125 last = i - 1; 126 break; 127 } 128 } 129 } 130 131 /* 132 * If the extent spans the block that contains the i_size, we need to 133 * handle both halves separately so that we properly zero data in the 134 * page cache for blocks that are entirely outside of i_size. 135 */ 136 if (orig_pos <= isize && orig_pos + length > isize) { 137 unsigned end = offset_in_folio(folio, isize - 1) >> block_bits; 138 139 if (first <= end && last > end) 140 plen -= (last - end) * block_size; 141 } 142 143 *offp = poff; 144 *lenp = plen; 145 } 146 147 static void iomap_iop_set_range_uptodate(struct folio *folio, 148 struct iomap_page *iop, size_t off, size_t len) 149 { 150 struct inode *inode = folio->mapping->host; 151 unsigned first = off >> inode->i_blkbits; 152 unsigned last = (off + len - 1) >> inode->i_blkbits; 153 unsigned long flags; 154 155 spin_lock_irqsave(&iop->uptodate_lock, flags); 156 bitmap_set(iop->uptodate, first, last - first + 1); 157 if (bitmap_full(iop->uptodate, i_blocks_per_folio(inode, folio))) 158 folio_mark_uptodate(folio); 159 spin_unlock_irqrestore(&iop->uptodate_lock, flags); 160 } 161 162 static void iomap_set_range_uptodate(struct folio *folio, 163 struct iomap_page *iop, size_t off, size_t len) 164 { 165 if (iop) 166 iomap_iop_set_range_uptodate(folio, iop, off, len); 167 else 168 folio_mark_uptodate(folio); 169 } 170 171 static void iomap_finish_folio_read(struct folio *folio, size_t offset, 172 size_t len, int error) 173 { 174 struct iomap_page *iop = to_iomap_page(folio); 175 176 if (unlikely(error)) { 177 folio_clear_uptodate(folio); 178 folio_set_error(folio); 179 } else { 180 iomap_set_range_uptodate(folio, iop, offset, len); 181 } 182 183 if (!iop || atomic_sub_and_test(len, &iop->read_bytes_pending)) 184 folio_unlock(folio); 185 } 186 187 static void iomap_read_end_io(struct bio *bio) 188 { 189 int error = blk_status_to_errno(bio->bi_status); 190 struct folio_iter fi; 191 192 bio_for_each_folio_all(fi, bio) 193 iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error); 194 bio_put(bio); 195 } 196 197 struct iomap_readpage_ctx { 198 struct folio *cur_folio; 199 bool cur_folio_in_bio; 200 struct bio *bio; 201 struct readahead_control *rac; 202 }; 203 204 /** 205 * iomap_read_inline_data - copy inline data into the page cache 206 * @iter: iteration structure 207 * @folio: folio to copy to 208 * 209 * Copy the inline data in @iter into @folio and zero out the rest of the folio. 210 * Only a single IOMAP_INLINE extent is allowed at the end of each file. 211 * Returns zero for success to complete the read, or the usual negative errno. 212 */ 213 static int iomap_read_inline_data(const struct iomap_iter *iter, 214 struct folio *folio) 215 { 216 struct iomap_page *iop; 217 const struct iomap *iomap = iomap_iter_srcmap(iter); 218 size_t size = i_size_read(iter->inode) - iomap->offset; 219 size_t poff = offset_in_page(iomap->offset); 220 size_t offset = offset_in_folio(folio, iomap->offset); 221 void *addr; 222 223 if (folio_test_uptodate(folio)) 224 return 0; 225 226 if (WARN_ON_ONCE(size > PAGE_SIZE - poff)) 227 return -EIO; 228 if (WARN_ON_ONCE(size > PAGE_SIZE - 229 offset_in_page(iomap->inline_data))) 230 return -EIO; 231 if (WARN_ON_ONCE(size > iomap->length)) 232 return -EIO; 233 if (offset > 0) 234 iop = iomap_page_create(iter->inode, folio, iter->flags); 235 else 236 iop = to_iomap_page(folio); 237 238 addr = kmap_local_folio(folio, offset); 239 memcpy(addr, iomap->inline_data, size); 240 memset(addr + size, 0, PAGE_SIZE - poff - size); 241 kunmap_local(addr); 242 iomap_set_range_uptodate(folio, iop, offset, PAGE_SIZE - poff); 243 return 0; 244 } 245 246 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter, 247 loff_t pos) 248 { 249 const struct iomap *srcmap = iomap_iter_srcmap(iter); 250 251 return srcmap->type != IOMAP_MAPPED || 252 (srcmap->flags & IOMAP_F_NEW) || 253 pos >= i_size_read(iter->inode); 254 } 255 256 static loff_t iomap_readpage_iter(const struct iomap_iter *iter, 257 struct iomap_readpage_ctx *ctx, loff_t offset) 258 { 259 const struct iomap *iomap = &iter->iomap; 260 loff_t pos = iter->pos + offset; 261 loff_t length = iomap_length(iter) - offset; 262 struct folio *folio = ctx->cur_folio; 263 struct iomap_page *iop; 264 loff_t orig_pos = pos; 265 size_t poff, plen; 266 sector_t sector; 267 268 if (iomap->type == IOMAP_INLINE) 269 return iomap_read_inline_data(iter, folio); 270 271 /* zero post-eof blocks as the page may be mapped */ 272 iop = iomap_page_create(iter->inode, folio, iter->flags); 273 iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen); 274 if (plen == 0) 275 goto done; 276 277 if (iomap_block_needs_zeroing(iter, pos)) { 278 folio_zero_range(folio, poff, plen); 279 iomap_set_range_uptodate(folio, iop, poff, plen); 280 goto done; 281 } 282 283 ctx->cur_folio_in_bio = true; 284 if (iop) 285 atomic_add(plen, &iop->read_bytes_pending); 286 287 sector = iomap_sector(iomap, pos); 288 if (!ctx->bio || 289 bio_end_sector(ctx->bio) != sector || 290 !bio_add_folio(ctx->bio, folio, plen, poff)) { 291 gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL); 292 gfp_t orig_gfp = gfp; 293 unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE); 294 295 if (ctx->bio) 296 submit_bio(ctx->bio); 297 298 if (ctx->rac) /* same as readahead_gfp_mask */ 299 gfp |= __GFP_NORETRY | __GFP_NOWARN; 300 ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs), 301 REQ_OP_READ, gfp); 302 /* 303 * If the bio_alloc fails, try it again for a single page to 304 * avoid having to deal with partial page reads. This emulates 305 * what do_mpage_read_folio does. 306 */ 307 if (!ctx->bio) { 308 ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ, 309 orig_gfp); 310 } 311 if (ctx->rac) 312 ctx->bio->bi_opf |= REQ_RAHEAD; 313 ctx->bio->bi_iter.bi_sector = sector; 314 ctx->bio->bi_end_io = iomap_read_end_io; 315 bio_add_folio(ctx->bio, folio, plen, poff); 316 } 317 318 done: 319 /* 320 * Move the caller beyond our range so that it keeps making progress. 321 * For that, we have to include any leading non-uptodate ranges, but 322 * we can skip trailing ones as they will be handled in the next 323 * iteration. 324 */ 325 return pos - orig_pos + plen; 326 } 327 328 int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops) 329 { 330 struct iomap_iter iter = { 331 .inode = folio->mapping->host, 332 .pos = folio_pos(folio), 333 .len = folio_size(folio), 334 }; 335 struct iomap_readpage_ctx ctx = { 336 .cur_folio = folio, 337 }; 338 int ret; 339 340 trace_iomap_readpage(iter.inode, 1); 341 342 while ((ret = iomap_iter(&iter, ops)) > 0) 343 iter.processed = iomap_readpage_iter(&iter, &ctx, 0); 344 345 if (ret < 0) 346 folio_set_error(folio); 347 348 if (ctx.bio) { 349 submit_bio(ctx.bio); 350 WARN_ON_ONCE(!ctx.cur_folio_in_bio); 351 } else { 352 WARN_ON_ONCE(ctx.cur_folio_in_bio); 353 folio_unlock(folio); 354 } 355 356 /* 357 * Just like mpage_readahead and block_read_full_folio, we always 358 * return 0 and just set the folio error flag on errors. This 359 * should be cleaned up throughout the stack eventually. 360 */ 361 return 0; 362 } 363 EXPORT_SYMBOL_GPL(iomap_read_folio); 364 365 static loff_t iomap_readahead_iter(const struct iomap_iter *iter, 366 struct iomap_readpage_ctx *ctx) 367 { 368 loff_t length = iomap_length(iter); 369 loff_t done, ret; 370 371 for (done = 0; done < length; done += ret) { 372 if (ctx->cur_folio && 373 offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) { 374 if (!ctx->cur_folio_in_bio) 375 folio_unlock(ctx->cur_folio); 376 ctx->cur_folio = NULL; 377 } 378 if (!ctx->cur_folio) { 379 ctx->cur_folio = readahead_folio(ctx->rac); 380 ctx->cur_folio_in_bio = false; 381 } 382 ret = iomap_readpage_iter(iter, ctx, done); 383 if (ret <= 0) 384 return ret; 385 } 386 387 return done; 388 } 389 390 /** 391 * iomap_readahead - Attempt to read pages from a file. 392 * @rac: Describes the pages to be read. 393 * @ops: The operations vector for the filesystem. 394 * 395 * This function is for filesystems to call to implement their readahead 396 * address_space operation. 397 * 398 * Context: The @ops callbacks may submit I/O (eg to read the addresses of 399 * blocks from disc), and may wait for it. The caller may be trying to 400 * access a different page, and so sleeping excessively should be avoided. 401 * It may allocate memory, but should avoid costly allocations. This 402 * function is called with memalloc_nofs set, so allocations will not cause 403 * the filesystem to be reentered. 404 */ 405 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops) 406 { 407 struct iomap_iter iter = { 408 .inode = rac->mapping->host, 409 .pos = readahead_pos(rac), 410 .len = readahead_length(rac), 411 }; 412 struct iomap_readpage_ctx ctx = { 413 .rac = rac, 414 }; 415 416 trace_iomap_readahead(rac->mapping->host, readahead_count(rac)); 417 418 while (iomap_iter(&iter, ops) > 0) 419 iter.processed = iomap_readahead_iter(&iter, &ctx); 420 421 if (ctx.bio) 422 submit_bio(ctx.bio); 423 if (ctx.cur_folio) { 424 if (!ctx.cur_folio_in_bio) 425 folio_unlock(ctx.cur_folio); 426 } 427 } 428 EXPORT_SYMBOL_GPL(iomap_readahead); 429 430 /* 431 * iomap_is_partially_uptodate checks whether blocks within a folio are 432 * uptodate or not. 433 * 434 * Returns true if all blocks which correspond to the specified part 435 * of the folio are uptodate. 436 */ 437 bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count) 438 { 439 struct iomap_page *iop = to_iomap_page(folio); 440 struct inode *inode = folio->mapping->host; 441 unsigned first, last, i; 442 443 if (!iop) 444 return false; 445 446 /* Caller's range may extend past the end of this folio */ 447 count = min(folio_size(folio) - from, count); 448 449 /* First and last blocks in range within folio */ 450 first = from >> inode->i_blkbits; 451 last = (from + count - 1) >> inode->i_blkbits; 452 453 for (i = first; i <= last; i++) 454 if (!test_bit(i, iop->uptodate)) 455 return false; 456 return true; 457 } 458 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate); 459 460 bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags) 461 { 462 trace_iomap_release_folio(folio->mapping->host, folio_pos(folio), 463 folio_size(folio)); 464 465 /* 466 * mm accommodates an old ext3 case where clean folios might 467 * not have had the dirty bit cleared. Thus, it can send actual 468 * dirty folios to ->release_folio() via shrink_active_list(); 469 * skip those here. 470 */ 471 if (folio_test_dirty(folio) || folio_test_writeback(folio)) 472 return false; 473 iomap_page_release(folio); 474 return true; 475 } 476 EXPORT_SYMBOL_GPL(iomap_release_folio); 477 478 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len) 479 { 480 trace_iomap_invalidate_folio(folio->mapping->host, 481 folio_pos(folio) + offset, len); 482 483 /* 484 * If we're invalidating the entire folio, clear the dirty state 485 * from it and release it to avoid unnecessary buildup of the LRU. 486 */ 487 if (offset == 0 && len == folio_size(folio)) { 488 WARN_ON_ONCE(folio_test_writeback(folio)); 489 folio_cancel_dirty(folio); 490 iomap_page_release(folio); 491 } else if (folio_test_large(folio)) { 492 /* Must release the iop so the page can be split */ 493 WARN_ON_ONCE(!folio_test_uptodate(folio) && 494 folio_test_dirty(folio)); 495 iomap_page_release(folio); 496 } 497 } 498 EXPORT_SYMBOL_GPL(iomap_invalidate_folio); 499 500 static void 501 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len) 502 { 503 loff_t i_size = i_size_read(inode); 504 505 /* 506 * Only truncate newly allocated pages beyoned EOF, even if the 507 * write started inside the existing inode size. 508 */ 509 if (pos + len > i_size) 510 truncate_pagecache_range(inode, max(pos, i_size), 511 pos + len - 1); 512 } 513 514 static int iomap_read_folio_sync(loff_t block_start, struct folio *folio, 515 size_t poff, size_t plen, const struct iomap *iomap) 516 { 517 struct bio_vec bvec; 518 struct bio bio; 519 520 bio_init(&bio, iomap->bdev, &bvec, 1, REQ_OP_READ); 521 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start); 522 bio_add_folio(&bio, folio, plen, poff); 523 return submit_bio_wait(&bio); 524 } 525 526 static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos, 527 size_t len, struct folio *folio) 528 { 529 const struct iomap *srcmap = iomap_iter_srcmap(iter); 530 struct iomap_page *iop; 531 loff_t block_size = i_blocksize(iter->inode); 532 loff_t block_start = round_down(pos, block_size); 533 loff_t block_end = round_up(pos + len, block_size); 534 unsigned int nr_blocks = i_blocks_per_folio(iter->inode, folio); 535 size_t from = offset_in_folio(folio, pos), to = from + len; 536 size_t poff, plen; 537 538 if (folio_test_uptodate(folio)) 539 return 0; 540 folio_clear_error(folio); 541 542 iop = iomap_page_create(iter->inode, folio, iter->flags); 543 if ((iter->flags & IOMAP_NOWAIT) && !iop && nr_blocks > 1) 544 return -EAGAIN; 545 546 do { 547 iomap_adjust_read_range(iter->inode, folio, &block_start, 548 block_end - block_start, &poff, &plen); 549 if (plen == 0) 550 break; 551 552 if (!(iter->flags & IOMAP_UNSHARE) && 553 (from <= poff || from >= poff + plen) && 554 (to <= poff || to >= poff + plen)) 555 continue; 556 557 if (iomap_block_needs_zeroing(iter, block_start)) { 558 if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE)) 559 return -EIO; 560 folio_zero_segments(folio, poff, from, to, poff + plen); 561 } else { 562 int status; 563 564 if (iter->flags & IOMAP_NOWAIT) 565 return -EAGAIN; 566 567 status = iomap_read_folio_sync(block_start, folio, 568 poff, plen, srcmap); 569 if (status) 570 return status; 571 } 572 iomap_set_range_uptodate(folio, iop, poff, plen); 573 } while ((block_start += plen) < block_end); 574 575 return 0; 576 } 577 578 static int iomap_write_begin_inline(const struct iomap_iter *iter, 579 struct folio *folio) 580 { 581 /* needs more work for the tailpacking case; disable for now */ 582 if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0)) 583 return -EIO; 584 return iomap_read_inline_data(iter, folio); 585 } 586 587 static int iomap_write_begin(const struct iomap_iter *iter, loff_t pos, 588 size_t len, struct folio **foliop) 589 { 590 const struct iomap_page_ops *page_ops = iter->iomap.page_ops; 591 const struct iomap *srcmap = iomap_iter_srcmap(iter); 592 struct folio *folio; 593 unsigned fgp = FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE | FGP_NOFS; 594 int status = 0; 595 596 if (iter->flags & IOMAP_NOWAIT) 597 fgp |= FGP_NOWAIT; 598 599 BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length); 600 if (srcmap != &iter->iomap) 601 BUG_ON(pos + len > srcmap->offset + srcmap->length); 602 603 if (fatal_signal_pending(current)) 604 return -EINTR; 605 606 if (!mapping_large_folio_support(iter->inode->i_mapping)) 607 len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos)); 608 609 if (page_ops && page_ops->page_prepare) { 610 status = page_ops->page_prepare(iter->inode, pos, len); 611 if (status) 612 return status; 613 } 614 615 folio = __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT, 616 fgp, mapping_gfp_mask(iter->inode->i_mapping)); 617 if (!folio) { 618 status = (iter->flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOMEM; 619 goto out_no_page; 620 } 621 if (pos + len > folio_pos(folio) + folio_size(folio)) 622 len = folio_pos(folio) + folio_size(folio) - pos; 623 624 if (srcmap->type == IOMAP_INLINE) 625 status = iomap_write_begin_inline(iter, folio); 626 else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) 627 status = __block_write_begin_int(folio, pos, len, NULL, srcmap); 628 else 629 status = __iomap_write_begin(iter, pos, len, folio); 630 631 if (unlikely(status)) 632 goto out_unlock; 633 634 *foliop = folio; 635 return 0; 636 637 out_unlock: 638 folio_unlock(folio); 639 folio_put(folio); 640 iomap_write_failed(iter->inode, pos, len); 641 642 out_no_page: 643 if (page_ops && page_ops->page_done) 644 page_ops->page_done(iter->inode, pos, 0, NULL); 645 return status; 646 } 647 648 static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len, 649 size_t copied, struct folio *folio) 650 { 651 struct iomap_page *iop = to_iomap_page(folio); 652 flush_dcache_folio(folio); 653 654 /* 655 * The blocks that were entirely written will now be uptodate, so we 656 * don't have to worry about a read_folio reading them and overwriting a 657 * partial write. However, if we've encountered a short write and only 658 * partially written into a block, it will not be marked uptodate, so a 659 * read_folio might come in and destroy our partial write. 660 * 661 * Do the simplest thing and just treat any short write to a 662 * non-uptodate page as a zero-length write, and force the caller to 663 * redo the whole thing. 664 */ 665 if (unlikely(copied < len && !folio_test_uptodate(folio))) 666 return 0; 667 iomap_set_range_uptodate(folio, iop, offset_in_folio(folio, pos), len); 668 filemap_dirty_folio(inode->i_mapping, folio); 669 return copied; 670 } 671 672 static size_t iomap_write_end_inline(const struct iomap_iter *iter, 673 struct folio *folio, loff_t pos, size_t copied) 674 { 675 const struct iomap *iomap = &iter->iomap; 676 void *addr; 677 678 WARN_ON_ONCE(!folio_test_uptodate(folio)); 679 BUG_ON(!iomap_inline_data_valid(iomap)); 680 681 flush_dcache_folio(folio); 682 addr = kmap_local_folio(folio, pos); 683 memcpy(iomap_inline_data(iomap, pos), addr, copied); 684 kunmap_local(addr); 685 686 mark_inode_dirty(iter->inode); 687 return copied; 688 } 689 690 /* Returns the number of bytes copied. May be 0. Cannot be an errno. */ 691 static size_t iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len, 692 size_t copied, struct folio *folio) 693 { 694 const struct iomap_page_ops *page_ops = iter->iomap.page_ops; 695 const struct iomap *srcmap = iomap_iter_srcmap(iter); 696 loff_t old_size = iter->inode->i_size; 697 size_t ret; 698 699 if (srcmap->type == IOMAP_INLINE) { 700 ret = iomap_write_end_inline(iter, folio, pos, copied); 701 } else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) { 702 ret = block_write_end(NULL, iter->inode->i_mapping, pos, len, 703 copied, &folio->page, NULL); 704 } else { 705 ret = __iomap_write_end(iter->inode, pos, len, copied, folio); 706 } 707 708 /* 709 * Update the in-memory inode size after copying the data into the page 710 * cache. It's up to the file system to write the updated size to disk, 711 * preferably after I/O completion so that no stale data is exposed. 712 */ 713 if (pos + ret > old_size) { 714 i_size_write(iter->inode, pos + ret); 715 iter->iomap.flags |= IOMAP_F_SIZE_CHANGED; 716 } 717 folio_unlock(folio); 718 719 if (old_size < pos) 720 pagecache_isize_extended(iter->inode, old_size, pos); 721 if (page_ops && page_ops->page_done) 722 page_ops->page_done(iter->inode, pos, ret, &folio->page); 723 folio_put(folio); 724 725 if (ret < len) 726 iomap_write_failed(iter->inode, pos + ret, len - ret); 727 return ret; 728 } 729 730 static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i) 731 { 732 loff_t length = iomap_length(iter); 733 loff_t pos = iter->pos; 734 ssize_t written = 0; 735 long status = 0; 736 struct address_space *mapping = iter->inode->i_mapping; 737 unsigned int bdp_flags = (iter->flags & IOMAP_NOWAIT) ? BDP_ASYNC : 0; 738 739 do { 740 struct folio *folio; 741 struct page *page; 742 unsigned long offset; /* Offset into pagecache page */ 743 unsigned long bytes; /* Bytes to write to page */ 744 size_t copied; /* Bytes copied from user */ 745 746 offset = offset_in_page(pos); 747 bytes = min_t(unsigned long, PAGE_SIZE - offset, 748 iov_iter_count(i)); 749 again: 750 status = balance_dirty_pages_ratelimited_flags(mapping, 751 bdp_flags); 752 if (unlikely(status)) 753 break; 754 755 if (bytes > length) 756 bytes = length; 757 758 /* 759 * Bring in the user page that we'll copy from _first_. 760 * Otherwise there's a nasty deadlock on copying from the 761 * same page as we're writing to, without it being marked 762 * up-to-date. 763 * 764 * For async buffered writes the assumption is that the user 765 * page has already been faulted in. This can be optimized by 766 * faulting the user page. 767 */ 768 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 769 status = -EFAULT; 770 break; 771 } 772 773 status = iomap_write_begin(iter, pos, bytes, &folio); 774 if (unlikely(status)) 775 break; 776 777 page = folio_file_page(folio, pos >> PAGE_SHIFT); 778 if (mapping_writably_mapped(mapping)) 779 flush_dcache_page(page); 780 781 copied = copy_page_from_iter_atomic(page, offset, bytes, i); 782 783 status = iomap_write_end(iter, pos, bytes, copied, folio); 784 785 if (unlikely(copied != status)) 786 iov_iter_revert(i, copied - status); 787 788 cond_resched(); 789 if (unlikely(status == 0)) { 790 /* 791 * A short copy made iomap_write_end() reject the 792 * thing entirely. Might be memory poisoning 793 * halfway through, might be a race with munmap, 794 * might be severe memory pressure. 795 */ 796 if (copied) 797 bytes = copied; 798 goto again; 799 } 800 pos += status; 801 written += status; 802 length -= status; 803 } while (iov_iter_count(i) && length); 804 805 if (status == -EAGAIN) { 806 iov_iter_revert(i, written); 807 return -EAGAIN; 808 } 809 return written ? written : status; 810 } 811 812 ssize_t 813 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i, 814 const struct iomap_ops *ops) 815 { 816 struct iomap_iter iter = { 817 .inode = iocb->ki_filp->f_mapping->host, 818 .pos = iocb->ki_pos, 819 .len = iov_iter_count(i), 820 .flags = IOMAP_WRITE, 821 }; 822 int ret; 823 824 if (iocb->ki_flags & IOCB_NOWAIT) 825 iter.flags |= IOMAP_NOWAIT; 826 827 while ((ret = iomap_iter(&iter, ops)) > 0) 828 iter.processed = iomap_write_iter(&iter, i); 829 if (iter.pos == iocb->ki_pos) 830 return ret; 831 return iter.pos - iocb->ki_pos; 832 } 833 EXPORT_SYMBOL_GPL(iomap_file_buffered_write); 834 835 static loff_t iomap_unshare_iter(struct iomap_iter *iter) 836 { 837 struct iomap *iomap = &iter->iomap; 838 const struct iomap *srcmap = iomap_iter_srcmap(iter); 839 loff_t pos = iter->pos; 840 loff_t length = iomap_length(iter); 841 long status = 0; 842 loff_t written = 0; 843 844 /* don't bother with blocks that are not shared to start with */ 845 if (!(iomap->flags & IOMAP_F_SHARED)) 846 return length; 847 /* don't bother with holes or unwritten extents */ 848 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 849 return length; 850 851 do { 852 unsigned long offset = offset_in_page(pos); 853 unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length); 854 struct folio *folio; 855 856 status = iomap_write_begin(iter, pos, bytes, &folio); 857 if (unlikely(status)) 858 return status; 859 860 status = iomap_write_end(iter, pos, bytes, bytes, folio); 861 if (WARN_ON_ONCE(status == 0)) 862 return -EIO; 863 864 cond_resched(); 865 866 pos += status; 867 written += status; 868 length -= status; 869 870 balance_dirty_pages_ratelimited(iter->inode->i_mapping); 871 } while (length); 872 873 return written; 874 } 875 876 int 877 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len, 878 const struct iomap_ops *ops) 879 { 880 struct iomap_iter iter = { 881 .inode = inode, 882 .pos = pos, 883 .len = len, 884 .flags = IOMAP_WRITE | IOMAP_UNSHARE, 885 }; 886 int ret; 887 888 while ((ret = iomap_iter(&iter, ops)) > 0) 889 iter.processed = iomap_unshare_iter(&iter); 890 return ret; 891 } 892 EXPORT_SYMBOL_GPL(iomap_file_unshare); 893 894 static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero) 895 { 896 const struct iomap *srcmap = iomap_iter_srcmap(iter); 897 loff_t pos = iter->pos; 898 loff_t length = iomap_length(iter); 899 loff_t written = 0; 900 901 /* already zeroed? we're done. */ 902 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 903 return length; 904 905 do { 906 struct folio *folio; 907 int status; 908 size_t offset; 909 size_t bytes = min_t(u64, SIZE_MAX, length); 910 911 status = iomap_write_begin(iter, pos, bytes, &folio); 912 if (status) 913 return status; 914 915 offset = offset_in_folio(folio, pos); 916 if (bytes > folio_size(folio) - offset) 917 bytes = folio_size(folio) - offset; 918 919 folio_zero_range(folio, offset, bytes); 920 folio_mark_accessed(folio); 921 922 bytes = iomap_write_end(iter, pos, bytes, bytes, folio); 923 if (WARN_ON_ONCE(bytes == 0)) 924 return -EIO; 925 926 pos += bytes; 927 length -= bytes; 928 written += bytes; 929 } while (length > 0); 930 931 if (did_zero) 932 *did_zero = true; 933 return written; 934 } 935 936 int 937 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero, 938 const struct iomap_ops *ops) 939 { 940 struct iomap_iter iter = { 941 .inode = inode, 942 .pos = pos, 943 .len = len, 944 .flags = IOMAP_ZERO, 945 }; 946 int ret; 947 948 while ((ret = iomap_iter(&iter, ops)) > 0) 949 iter.processed = iomap_zero_iter(&iter, did_zero); 950 return ret; 951 } 952 EXPORT_SYMBOL_GPL(iomap_zero_range); 953 954 int 955 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero, 956 const struct iomap_ops *ops) 957 { 958 unsigned int blocksize = i_blocksize(inode); 959 unsigned int off = pos & (blocksize - 1); 960 961 /* Block boundary? Nothing to do */ 962 if (!off) 963 return 0; 964 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops); 965 } 966 EXPORT_SYMBOL_GPL(iomap_truncate_page); 967 968 static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter, 969 struct folio *folio) 970 { 971 loff_t length = iomap_length(iter); 972 int ret; 973 974 if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) { 975 ret = __block_write_begin_int(folio, iter->pos, length, NULL, 976 &iter->iomap); 977 if (ret) 978 return ret; 979 block_commit_write(&folio->page, 0, length); 980 } else { 981 WARN_ON_ONCE(!folio_test_uptodate(folio)); 982 folio_mark_dirty(folio); 983 } 984 985 return length; 986 } 987 988 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops) 989 { 990 struct iomap_iter iter = { 991 .inode = file_inode(vmf->vma->vm_file), 992 .flags = IOMAP_WRITE | IOMAP_FAULT, 993 }; 994 struct folio *folio = page_folio(vmf->page); 995 ssize_t ret; 996 997 folio_lock(folio); 998 ret = folio_mkwrite_check_truncate(folio, iter.inode); 999 if (ret < 0) 1000 goto out_unlock; 1001 iter.pos = folio_pos(folio); 1002 iter.len = ret; 1003 while ((ret = iomap_iter(&iter, ops)) > 0) 1004 iter.processed = iomap_folio_mkwrite_iter(&iter, folio); 1005 1006 if (ret < 0) 1007 goto out_unlock; 1008 folio_wait_stable(folio); 1009 return VM_FAULT_LOCKED; 1010 out_unlock: 1011 folio_unlock(folio); 1012 return block_page_mkwrite_return(ret); 1013 } 1014 EXPORT_SYMBOL_GPL(iomap_page_mkwrite); 1015 1016 static void iomap_finish_folio_write(struct inode *inode, struct folio *folio, 1017 size_t len, int error) 1018 { 1019 struct iomap_page *iop = to_iomap_page(folio); 1020 1021 if (error) { 1022 folio_set_error(folio); 1023 mapping_set_error(inode->i_mapping, error); 1024 } 1025 1026 WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !iop); 1027 WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) <= 0); 1028 1029 if (!iop || atomic_sub_and_test(len, &iop->write_bytes_pending)) 1030 folio_end_writeback(folio); 1031 } 1032 1033 /* 1034 * We're now finished for good with this ioend structure. Update the page 1035 * state, release holds on bios, and finally free up memory. Do not use the 1036 * ioend after this. 1037 */ 1038 static u32 1039 iomap_finish_ioend(struct iomap_ioend *ioend, int error) 1040 { 1041 struct inode *inode = ioend->io_inode; 1042 struct bio *bio = &ioend->io_inline_bio; 1043 struct bio *last = ioend->io_bio, *next; 1044 u64 start = bio->bi_iter.bi_sector; 1045 loff_t offset = ioend->io_offset; 1046 bool quiet = bio_flagged(bio, BIO_QUIET); 1047 u32 folio_count = 0; 1048 1049 for (bio = &ioend->io_inline_bio; bio; bio = next) { 1050 struct folio_iter fi; 1051 1052 /* 1053 * For the last bio, bi_private points to the ioend, so we 1054 * need to explicitly end the iteration here. 1055 */ 1056 if (bio == last) 1057 next = NULL; 1058 else 1059 next = bio->bi_private; 1060 1061 /* walk all folios in bio, ending page IO on them */ 1062 bio_for_each_folio_all(fi, bio) { 1063 iomap_finish_folio_write(inode, fi.folio, fi.length, 1064 error); 1065 folio_count++; 1066 } 1067 bio_put(bio); 1068 } 1069 /* The ioend has been freed by bio_put() */ 1070 1071 if (unlikely(error && !quiet)) { 1072 printk_ratelimited(KERN_ERR 1073 "%s: writeback error on inode %lu, offset %lld, sector %llu", 1074 inode->i_sb->s_id, inode->i_ino, offset, start); 1075 } 1076 return folio_count; 1077 } 1078 1079 /* 1080 * Ioend completion routine for merged bios. This can only be called from task 1081 * contexts as merged ioends can be of unbound length. Hence we have to break up 1082 * the writeback completions into manageable chunks to avoid long scheduler 1083 * holdoffs. We aim to keep scheduler holdoffs down below 10ms so that we get 1084 * good batch processing throughput without creating adverse scheduler latency 1085 * conditions. 1086 */ 1087 void 1088 iomap_finish_ioends(struct iomap_ioend *ioend, int error) 1089 { 1090 struct list_head tmp; 1091 u32 completions; 1092 1093 might_sleep(); 1094 1095 list_replace_init(&ioend->io_list, &tmp); 1096 completions = iomap_finish_ioend(ioend, error); 1097 1098 while (!list_empty(&tmp)) { 1099 if (completions > IOEND_BATCH_SIZE * 8) { 1100 cond_resched(); 1101 completions = 0; 1102 } 1103 ioend = list_first_entry(&tmp, struct iomap_ioend, io_list); 1104 list_del_init(&ioend->io_list); 1105 completions += iomap_finish_ioend(ioend, error); 1106 } 1107 } 1108 EXPORT_SYMBOL_GPL(iomap_finish_ioends); 1109 1110 /* 1111 * We can merge two adjacent ioends if they have the same set of work to do. 1112 */ 1113 static bool 1114 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next) 1115 { 1116 if (ioend->io_bio->bi_status != next->io_bio->bi_status) 1117 return false; 1118 if ((ioend->io_flags & IOMAP_F_SHARED) ^ 1119 (next->io_flags & IOMAP_F_SHARED)) 1120 return false; 1121 if ((ioend->io_type == IOMAP_UNWRITTEN) ^ 1122 (next->io_type == IOMAP_UNWRITTEN)) 1123 return false; 1124 if (ioend->io_offset + ioend->io_size != next->io_offset) 1125 return false; 1126 /* 1127 * Do not merge physically discontiguous ioends. The filesystem 1128 * completion functions will have to iterate the physical 1129 * discontiguities even if we merge the ioends at a logical level, so 1130 * we don't gain anything by merging physical discontiguities here. 1131 * 1132 * We cannot use bio->bi_iter.bi_sector here as it is modified during 1133 * submission so does not point to the start sector of the bio at 1134 * completion. 1135 */ 1136 if (ioend->io_sector + (ioend->io_size >> 9) != next->io_sector) 1137 return false; 1138 return true; 1139 } 1140 1141 void 1142 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends) 1143 { 1144 struct iomap_ioend *next; 1145 1146 INIT_LIST_HEAD(&ioend->io_list); 1147 1148 while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend, 1149 io_list))) { 1150 if (!iomap_ioend_can_merge(ioend, next)) 1151 break; 1152 list_move_tail(&next->io_list, &ioend->io_list); 1153 ioend->io_size += next->io_size; 1154 } 1155 } 1156 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge); 1157 1158 static int 1159 iomap_ioend_compare(void *priv, const struct list_head *a, 1160 const struct list_head *b) 1161 { 1162 struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list); 1163 struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list); 1164 1165 if (ia->io_offset < ib->io_offset) 1166 return -1; 1167 if (ia->io_offset > ib->io_offset) 1168 return 1; 1169 return 0; 1170 } 1171 1172 void 1173 iomap_sort_ioends(struct list_head *ioend_list) 1174 { 1175 list_sort(NULL, ioend_list, iomap_ioend_compare); 1176 } 1177 EXPORT_SYMBOL_GPL(iomap_sort_ioends); 1178 1179 static void iomap_writepage_end_bio(struct bio *bio) 1180 { 1181 struct iomap_ioend *ioend = bio->bi_private; 1182 1183 iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status)); 1184 } 1185 1186 /* 1187 * Submit the final bio for an ioend. 1188 * 1189 * If @error is non-zero, it means that we have a situation where some part of 1190 * the submission process has failed after we've marked pages for writeback 1191 * and unlocked them. In this situation, we need to fail the bio instead of 1192 * submitting it. This typically only happens on a filesystem shutdown. 1193 */ 1194 static int 1195 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend, 1196 int error) 1197 { 1198 ioend->io_bio->bi_private = ioend; 1199 ioend->io_bio->bi_end_io = iomap_writepage_end_bio; 1200 1201 if (wpc->ops->prepare_ioend) 1202 error = wpc->ops->prepare_ioend(ioend, error); 1203 if (error) { 1204 /* 1205 * If we're failing the IO now, just mark the ioend with an 1206 * error and finish it. This will run IO completion immediately 1207 * as there is only one reference to the ioend at this point in 1208 * time. 1209 */ 1210 ioend->io_bio->bi_status = errno_to_blk_status(error); 1211 bio_endio(ioend->io_bio); 1212 return error; 1213 } 1214 1215 submit_bio(ioend->io_bio); 1216 return 0; 1217 } 1218 1219 static struct iomap_ioend * 1220 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc, 1221 loff_t offset, sector_t sector, struct writeback_control *wbc) 1222 { 1223 struct iomap_ioend *ioend; 1224 struct bio *bio; 1225 1226 bio = bio_alloc_bioset(wpc->iomap.bdev, BIO_MAX_VECS, 1227 REQ_OP_WRITE | wbc_to_write_flags(wbc), 1228 GFP_NOFS, &iomap_ioend_bioset); 1229 bio->bi_iter.bi_sector = sector; 1230 wbc_init_bio(wbc, bio); 1231 1232 ioend = container_of(bio, struct iomap_ioend, io_inline_bio); 1233 INIT_LIST_HEAD(&ioend->io_list); 1234 ioend->io_type = wpc->iomap.type; 1235 ioend->io_flags = wpc->iomap.flags; 1236 ioend->io_inode = inode; 1237 ioend->io_size = 0; 1238 ioend->io_folios = 0; 1239 ioend->io_offset = offset; 1240 ioend->io_bio = bio; 1241 ioend->io_sector = sector; 1242 return ioend; 1243 } 1244 1245 /* 1246 * Allocate a new bio, and chain the old bio to the new one. 1247 * 1248 * Note that we have to perform the chaining in this unintuitive order 1249 * so that the bi_private linkage is set up in the right direction for the 1250 * traversal in iomap_finish_ioend(). 1251 */ 1252 static struct bio * 1253 iomap_chain_bio(struct bio *prev) 1254 { 1255 struct bio *new; 1256 1257 new = bio_alloc(prev->bi_bdev, BIO_MAX_VECS, prev->bi_opf, GFP_NOFS); 1258 bio_clone_blkg_association(new, prev); 1259 new->bi_iter.bi_sector = bio_end_sector(prev); 1260 1261 bio_chain(prev, new); 1262 bio_get(prev); /* for iomap_finish_ioend */ 1263 submit_bio(prev); 1264 return new; 1265 } 1266 1267 static bool 1268 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset, 1269 sector_t sector) 1270 { 1271 if ((wpc->iomap.flags & IOMAP_F_SHARED) != 1272 (wpc->ioend->io_flags & IOMAP_F_SHARED)) 1273 return false; 1274 if (wpc->iomap.type != wpc->ioend->io_type) 1275 return false; 1276 if (offset != wpc->ioend->io_offset + wpc->ioend->io_size) 1277 return false; 1278 if (sector != bio_end_sector(wpc->ioend->io_bio)) 1279 return false; 1280 /* 1281 * Limit ioend bio chain lengths to minimise IO completion latency. This 1282 * also prevents long tight loops ending page writeback on all the 1283 * folios in the ioend. 1284 */ 1285 if (wpc->ioend->io_folios >= IOEND_BATCH_SIZE) 1286 return false; 1287 return true; 1288 } 1289 1290 /* 1291 * Test to see if we have an existing ioend structure that we could append to 1292 * first; otherwise finish off the current ioend and start another. 1293 */ 1294 static void 1295 iomap_add_to_ioend(struct inode *inode, loff_t pos, struct folio *folio, 1296 struct iomap_page *iop, struct iomap_writepage_ctx *wpc, 1297 struct writeback_control *wbc, struct list_head *iolist) 1298 { 1299 sector_t sector = iomap_sector(&wpc->iomap, pos); 1300 unsigned len = i_blocksize(inode); 1301 size_t poff = offset_in_folio(folio, pos); 1302 1303 if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos, sector)) { 1304 if (wpc->ioend) 1305 list_add(&wpc->ioend->io_list, iolist); 1306 wpc->ioend = iomap_alloc_ioend(inode, wpc, pos, sector, wbc); 1307 } 1308 1309 if (!bio_add_folio(wpc->ioend->io_bio, folio, len, poff)) { 1310 wpc->ioend->io_bio = iomap_chain_bio(wpc->ioend->io_bio); 1311 bio_add_folio(wpc->ioend->io_bio, folio, len, poff); 1312 } 1313 1314 if (iop) 1315 atomic_add(len, &iop->write_bytes_pending); 1316 wpc->ioend->io_size += len; 1317 wbc_account_cgroup_owner(wbc, &folio->page, len); 1318 } 1319 1320 /* 1321 * We implement an immediate ioend submission policy here to avoid needing to 1322 * chain multiple ioends and hence nest mempool allocations which can violate 1323 * the forward progress guarantees we need to provide. The current ioend we're 1324 * adding blocks to is cached in the writepage context, and if the new block 1325 * doesn't append to the cached ioend, it will create a new ioend and cache that 1326 * instead. 1327 * 1328 * If a new ioend is created and cached, the old ioend is returned and queued 1329 * locally for submission once the entire page is processed or an error has been 1330 * detected. While ioends are submitted immediately after they are completed, 1331 * batching optimisations are provided by higher level block plugging. 1332 * 1333 * At the end of a writeback pass, there will be a cached ioend remaining on the 1334 * writepage context that the caller will need to submit. 1335 */ 1336 static int 1337 iomap_writepage_map(struct iomap_writepage_ctx *wpc, 1338 struct writeback_control *wbc, struct inode *inode, 1339 struct folio *folio, u64 end_pos) 1340 { 1341 struct iomap_page *iop = iomap_page_create(inode, folio, 0); 1342 struct iomap_ioend *ioend, *next; 1343 unsigned len = i_blocksize(inode); 1344 unsigned nblocks = i_blocks_per_folio(inode, folio); 1345 u64 pos = folio_pos(folio); 1346 int error = 0, count = 0, i; 1347 LIST_HEAD(submit_list); 1348 1349 WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) != 0); 1350 1351 /* 1352 * Walk through the folio to find areas to write back. If we 1353 * run off the end of the current map or find the current map 1354 * invalid, grab a new one. 1355 */ 1356 for (i = 0; i < nblocks && pos < end_pos; i++, pos += len) { 1357 if (iop && !test_bit(i, iop->uptodate)) 1358 continue; 1359 1360 error = wpc->ops->map_blocks(wpc, inode, pos); 1361 if (error) 1362 break; 1363 if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE)) 1364 continue; 1365 if (wpc->iomap.type == IOMAP_HOLE) 1366 continue; 1367 iomap_add_to_ioend(inode, pos, folio, iop, wpc, wbc, 1368 &submit_list); 1369 count++; 1370 } 1371 if (count) 1372 wpc->ioend->io_folios++; 1373 1374 WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list)); 1375 WARN_ON_ONCE(!folio_test_locked(folio)); 1376 WARN_ON_ONCE(folio_test_writeback(folio)); 1377 WARN_ON_ONCE(folio_test_dirty(folio)); 1378 1379 /* 1380 * We cannot cancel the ioend directly here on error. We may have 1381 * already set other pages under writeback and hence we have to run I/O 1382 * completion to mark the error state of the pages under writeback 1383 * appropriately. 1384 */ 1385 if (unlikely(error)) { 1386 /* 1387 * Let the filesystem know what portion of the current page 1388 * failed to map. If the page hasn't been added to ioend, it 1389 * won't be affected by I/O completion and we must unlock it 1390 * now. 1391 */ 1392 if (wpc->ops->discard_folio) 1393 wpc->ops->discard_folio(folio, pos); 1394 if (!count) { 1395 folio_unlock(folio); 1396 goto done; 1397 } 1398 } 1399 1400 folio_start_writeback(folio); 1401 folio_unlock(folio); 1402 1403 /* 1404 * Preserve the original error if there was one; catch 1405 * submission errors here and propagate into subsequent ioend 1406 * submissions. 1407 */ 1408 list_for_each_entry_safe(ioend, next, &submit_list, io_list) { 1409 int error2; 1410 1411 list_del_init(&ioend->io_list); 1412 error2 = iomap_submit_ioend(wpc, ioend, error); 1413 if (error2 && !error) 1414 error = error2; 1415 } 1416 1417 /* 1418 * We can end up here with no error and nothing to write only if we race 1419 * with a partial page truncate on a sub-page block sized filesystem. 1420 */ 1421 if (!count) 1422 folio_end_writeback(folio); 1423 done: 1424 mapping_set_error(folio->mapping, error); 1425 return error; 1426 } 1427 1428 /* 1429 * Write out a dirty page. 1430 * 1431 * For delalloc space on the page, we need to allocate space and flush it. 1432 * For unwritten space on the page, we need to start the conversion to 1433 * regular allocated space. 1434 */ 1435 static int 1436 iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data) 1437 { 1438 struct folio *folio = page_folio(page); 1439 struct iomap_writepage_ctx *wpc = data; 1440 struct inode *inode = folio->mapping->host; 1441 u64 end_pos, isize; 1442 1443 trace_iomap_writepage(inode, folio_pos(folio), folio_size(folio)); 1444 1445 /* 1446 * Refuse to write the folio out if we're called from reclaim context. 1447 * 1448 * This avoids stack overflows when called from deeply used stacks in 1449 * random callers for direct reclaim or memcg reclaim. We explicitly 1450 * allow reclaim from kswapd as the stack usage there is relatively low. 1451 * 1452 * This should never happen except in the case of a VM regression so 1453 * warn about it. 1454 */ 1455 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 1456 PF_MEMALLOC)) 1457 goto redirty; 1458 1459 /* 1460 * Is this folio beyond the end of the file? 1461 * 1462 * The folio index is less than the end_index, adjust the end_pos 1463 * to the highest offset that this folio should represent. 1464 * ----------------------------------------------------- 1465 * | file mapping | <EOF> | 1466 * ----------------------------------------------------- 1467 * | Page ... | Page N-2 | Page N-1 | Page N | | 1468 * ^--------------------------------^----------|-------- 1469 * | desired writeback range | see else | 1470 * ---------------------------------^------------------| 1471 */ 1472 isize = i_size_read(inode); 1473 end_pos = folio_pos(folio) + folio_size(folio); 1474 if (end_pos > isize) { 1475 /* 1476 * Check whether the page to write out is beyond or straddles 1477 * i_size or not. 1478 * ------------------------------------------------------- 1479 * | file mapping | <EOF> | 1480 * ------------------------------------------------------- 1481 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond | 1482 * ^--------------------------------^-----------|--------- 1483 * | | Straddles | 1484 * ---------------------------------^-----------|--------| 1485 */ 1486 size_t poff = offset_in_folio(folio, isize); 1487 pgoff_t end_index = isize >> PAGE_SHIFT; 1488 1489 /* 1490 * Skip the page if it's fully outside i_size, e.g. 1491 * due to a truncate operation that's in progress. We've 1492 * cleaned this page and truncate will finish things off for 1493 * us. 1494 * 1495 * Note that the end_index is unsigned long. If the given 1496 * offset is greater than 16TB on a 32-bit system then if we 1497 * checked if the page is fully outside i_size with 1498 * "if (page->index >= end_index + 1)", "end_index + 1" would 1499 * overflow and evaluate to 0. Hence this page would be 1500 * redirtied and written out repeatedly, which would result in 1501 * an infinite loop; the user program performing this operation 1502 * would hang. Instead, we can detect this situation by 1503 * checking if the page is totally beyond i_size or if its 1504 * offset is just equal to the EOF. 1505 */ 1506 if (folio->index > end_index || 1507 (folio->index == end_index && poff == 0)) 1508 goto unlock; 1509 1510 /* 1511 * The page straddles i_size. It must be zeroed out on each 1512 * and every writepage invocation because it may be mmapped. 1513 * "A file is mapped in multiples of the page size. For a file 1514 * that is not a multiple of the page size, the remaining 1515 * memory is zeroed when mapped, and writes to that region are 1516 * not written out to the file." 1517 */ 1518 folio_zero_segment(folio, poff, folio_size(folio)); 1519 end_pos = isize; 1520 } 1521 1522 return iomap_writepage_map(wpc, wbc, inode, folio, end_pos); 1523 1524 redirty: 1525 folio_redirty_for_writepage(wbc, folio); 1526 unlock: 1527 folio_unlock(folio); 1528 return 0; 1529 } 1530 1531 int 1532 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc, 1533 struct iomap_writepage_ctx *wpc, 1534 const struct iomap_writeback_ops *ops) 1535 { 1536 int ret; 1537 1538 wpc->ops = ops; 1539 ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc); 1540 if (!wpc->ioend) 1541 return ret; 1542 return iomap_submit_ioend(wpc, wpc->ioend, ret); 1543 } 1544 EXPORT_SYMBOL_GPL(iomap_writepages); 1545 1546 static int __init iomap_init(void) 1547 { 1548 return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE), 1549 offsetof(struct iomap_ioend, io_inline_bio), 1550 BIOSET_NEED_BVECS); 1551 } 1552 fs_initcall(iomap_init); 1553