xref: /openbmc/linux/fs/iomap/buffered-io.c (revision bfad37c5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Red Hat, Inc.
4  * Copyright (C) 2016-2019 Christoph Hellwig.
5  */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/iomap.h>
10 #include <linux/pagemap.h>
11 #include <linux/uio.h>
12 #include <linux/buffer_head.h>
13 #include <linux/dax.h>
14 #include <linux/writeback.h>
15 #include <linux/list_sort.h>
16 #include <linux/swap.h>
17 #include <linux/bio.h>
18 #include <linux/sched/signal.h>
19 #include <linux/migrate.h>
20 #include "trace.h"
21 
22 #include "../internal.h"
23 
24 /*
25  * Structure allocated for each page or THP when block size < page size
26  * to track sub-page uptodate status and I/O completions.
27  */
28 struct iomap_page {
29 	atomic_t		read_bytes_pending;
30 	atomic_t		write_bytes_pending;
31 	spinlock_t		uptodate_lock;
32 	unsigned long		uptodate[];
33 };
34 
35 static inline struct iomap_page *to_iomap_page(struct page *page)
36 {
37 	/*
38 	 * per-block data is stored in the head page.  Callers should
39 	 * not be dealing with tail pages, and if they are, they can
40 	 * call thp_head() first.
41 	 */
42 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
43 
44 	if (page_has_private(page))
45 		return (struct iomap_page *)page_private(page);
46 	return NULL;
47 }
48 
49 static struct bio_set iomap_ioend_bioset;
50 
51 static struct iomap_page *
52 iomap_page_create(struct inode *inode, struct page *page)
53 {
54 	struct iomap_page *iop = to_iomap_page(page);
55 	unsigned int nr_blocks = i_blocks_per_page(inode, page);
56 
57 	if (iop || nr_blocks <= 1)
58 		return iop;
59 
60 	iop = kzalloc(struct_size(iop, uptodate, BITS_TO_LONGS(nr_blocks)),
61 			GFP_NOFS | __GFP_NOFAIL);
62 	spin_lock_init(&iop->uptodate_lock);
63 	if (PageUptodate(page))
64 		bitmap_fill(iop->uptodate, nr_blocks);
65 	attach_page_private(page, iop);
66 	return iop;
67 }
68 
69 static void
70 iomap_page_release(struct page *page)
71 {
72 	struct iomap_page *iop = detach_page_private(page);
73 	unsigned int nr_blocks = i_blocks_per_page(page->mapping->host, page);
74 
75 	if (!iop)
76 		return;
77 	WARN_ON_ONCE(atomic_read(&iop->read_bytes_pending));
78 	WARN_ON_ONCE(atomic_read(&iop->write_bytes_pending));
79 	WARN_ON_ONCE(bitmap_full(iop->uptodate, nr_blocks) !=
80 			PageUptodate(page));
81 	kfree(iop);
82 }
83 
84 /*
85  * Calculate the range inside the page that we actually need to read.
86  */
87 static void
88 iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop,
89 		loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp)
90 {
91 	loff_t orig_pos = *pos;
92 	loff_t isize = i_size_read(inode);
93 	unsigned block_bits = inode->i_blkbits;
94 	unsigned block_size = (1 << block_bits);
95 	unsigned poff = offset_in_page(*pos);
96 	unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length);
97 	unsigned first = poff >> block_bits;
98 	unsigned last = (poff + plen - 1) >> block_bits;
99 
100 	/*
101 	 * If the block size is smaller than the page size, we need to check the
102 	 * per-block uptodate status and adjust the offset and length if needed
103 	 * to avoid reading in already uptodate ranges.
104 	 */
105 	if (iop) {
106 		unsigned int i;
107 
108 		/* move forward for each leading block marked uptodate */
109 		for (i = first; i <= last; i++) {
110 			if (!test_bit(i, iop->uptodate))
111 				break;
112 			*pos += block_size;
113 			poff += block_size;
114 			plen -= block_size;
115 			first++;
116 		}
117 
118 		/* truncate len if we find any trailing uptodate block(s) */
119 		for ( ; i <= last; i++) {
120 			if (test_bit(i, iop->uptodate)) {
121 				plen -= (last - i + 1) * block_size;
122 				last = i - 1;
123 				break;
124 			}
125 		}
126 	}
127 
128 	/*
129 	 * If the extent spans the block that contains the i_size, we need to
130 	 * handle both halves separately so that we properly zero data in the
131 	 * page cache for blocks that are entirely outside of i_size.
132 	 */
133 	if (orig_pos <= isize && orig_pos + length > isize) {
134 		unsigned end = offset_in_page(isize - 1) >> block_bits;
135 
136 		if (first <= end && last > end)
137 			plen -= (last - end) * block_size;
138 	}
139 
140 	*offp = poff;
141 	*lenp = plen;
142 }
143 
144 static void
145 iomap_iop_set_range_uptodate(struct page *page, unsigned off, unsigned len)
146 {
147 	struct iomap_page *iop = to_iomap_page(page);
148 	struct inode *inode = page->mapping->host;
149 	unsigned first = off >> inode->i_blkbits;
150 	unsigned last = (off + len - 1) >> inode->i_blkbits;
151 	unsigned long flags;
152 
153 	spin_lock_irqsave(&iop->uptodate_lock, flags);
154 	bitmap_set(iop->uptodate, first, last - first + 1);
155 	if (bitmap_full(iop->uptodate, i_blocks_per_page(inode, page)))
156 		SetPageUptodate(page);
157 	spin_unlock_irqrestore(&iop->uptodate_lock, flags);
158 }
159 
160 static void
161 iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len)
162 {
163 	if (PageError(page))
164 		return;
165 
166 	if (page_has_private(page))
167 		iomap_iop_set_range_uptodate(page, off, len);
168 	else
169 		SetPageUptodate(page);
170 }
171 
172 static void
173 iomap_read_page_end_io(struct bio_vec *bvec, int error)
174 {
175 	struct page *page = bvec->bv_page;
176 	struct iomap_page *iop = to_iomap_page(page);
177 
178 	if (unlikely(error)) {
179 		ClearPageUptodate(page);
180 		SetPageError(page);
181 	} else {
182 		iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len);
183 	}
184 
185 	if (!iop || atomic_sub_and_test(bvec->bv_len, &iop->read_bytes_pending))
186 		unlock_page(page);
187 }
188 
189 static void
190 iomap_read_end_io(struct bio *bio)
191 {
192 	int error = blk_status_to_errno(bio->bi_status);
193 	struct bio_vec *bvec;
194 	struct bvec_iter_all iter_all;
195 
196 	bio_for_each_segment_all(bvec, bio, iter_all)
197 		iomap_read_page_end_io(bvec, error);
198 	bio_put(bio);
199 }
200 
201 struct iomap_readpage_ctx {
202 	struct page		*cur_page;
203 	bool			cur_page_in_bio;
204 	struct bio		*bio;
205 	struct readahead_control *rac;
206 };
207 
208 static loff_t iomap_read_inline_data(const struct iomap_iter *iter,
209 		struct page *page)
210 {
211 	const struct iomap *iomap = iomap_iter_srcmap(iter);
212 	size_t size = i_size_read(iter->inode) - iomap->offset;
213 	size_t poff = offset_in_page(iomap->offset);
214 	void *addr;
215 
216 	if (PageUptodate(page))
217 		return PAGE_SIZE - poff;
218 
219 	if (WARN_ON_ONCE(size > PAGE_SIZE - poff))
220 		return -EIO;
221 	if (WARN_ON_ONCE(size > PAGE_SIZE -
222 			 offset_in_page(iomap->inline_data)))
223 		return -EIO;
224 	if (WARN_ON_ONCE(size > iomap->length))
225 		return -EIO;
226 	if (poff > 0)
227 		iomap_page_create(iter->inode, page);
228 
229 	addr = kmap_local_page(page) + poff;
230 	memcpy(addr, iomap->inline_data, size);
231 	memset(addr + size, 0, PAGE_SIZE - poff - size);
232 	kunmap_local(addr);
233 	iomap_set_range_uptodate(page, poff, PAGE_SIZE - poff);
234 	return PAGE_SIZE - poff;
235 }
236 
237 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter,
238 		loff_t pos)
239 {
240 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
241 
242 	return srcmap->type != IOMAP_MAPPED ||
243 		(srcmap->flags & IOMAP_F_NEW) ||
244 		pos >= i_size_read(iter->inode);
245 }
246 
247 static loff_t iomap_readpage_iter(const struct iomap_iter *iter,
248 		struct iomap_readpage_ctx *ctx, loff_t offset)
249 {
250 	const struct iomap *iomap = &iter->iomap;
251 	loff_t pos = iter->pos + offset;
252 	loff_t length = iomap_length(iter) - offset;
253 	struct page *page = ctx->cur_page;
254 	struct iomap_page *iop;
255 	loff_t orig_pos = pos;
256 	unsigned poff, plen;
257 	sector_t sector;
258 
259 	if (iomap->type == IOMAP_INLINE)
260 		return min(iomap_read_inline_data(iter, page), length);
261 
262 	/* zero post-eof blocks as the page may be mapped */
263 	iop = iomap_page_create(iter->inode, page);
264 	iomap_adjust_read_range(iter->inode, iop, &pos, length, &poff, &plen);
265 	if (plen == 0)
266 		goto done;
267 
268 	if (iomap_block_needs_zeroing(iter, pos)) {
269 		zero_user(page, poff, plen);
270 		iomap_set_range_uptodate(page, poff, plen);
271 		goto done;
272 	}
273 
274 	ctx->cur_page_in_bio = true;
275 	if (iop)
276 		atomic_add(plen, &iop->read_bytes_pending);
277 
278 	sector = iomap_sector(iomap, pos);
279 	if (!ctx->bio ||
280 	    bio_end_sector(ctx->bio) != sector ||
281 	    bio_add_page(ctx->bio, page, plen, poff) != plen) {
282 		gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
283 		gfp_t orig_gfp = gfp;
284 		unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE);
285 
286 		if (ctx->bio)
287 			submit_bio(ctx->bio);
288 
289 		if (ctx->rac) /* same as readahead_gfp_mask */
290 			gfp |= __GFP_NORETRY | __GFP_NOWARN;
291 		ctx->bio = bio_alloc(gfp, bio_max_segs(nr_vecs));
292 		/*
293 		 * If the bio_alloc fails, try it again for a single page to
294 		 * avoid having to deal with partial page reads.  This emulates
295 		 * what do_mpage_readpage does.
296 		 */
297 		if (!ctx->bio)
298 			ctx->bio = bio_alloc(orig_gfp, 1);
299 		ctx->bio->bi_opf = REQ_OP_READ;
300 		if (ctx->rac)
301 			ctx->bio->bi_opf |= REQ_RAHEAD;
302 		ctx->bio->bi_iter.bi_sector = sector;
303 		bio_set_dev(ctx->bio, iomap->bdev);
304 		ctx->bio->bi_end_io = iomap_read_end_io;
305 		__bio_add_page(ctx->bio, page, plen, poff);
306 	}
307 done:
308 	/*
309 	 * Move the caller beyond our range so that it keeps making progress.
310 	 * For that, we have to include any leading non-uptodate ranges, but
311 	 * we can skip trailing ones as they will be handled in the next
312 	 * iteration.
313 	 */
314 	return pos - orig_pos + plen;
315 }
316 
317 int
318 iomap_readpage(struct page *page, const struct iomap_ops *ops)
319 {
320 	struct iomap_iter iter = {
321 		.inode		= page->mapping->host,
322 		.pos		= page_offset(page),
323 		.len		= PAGE_SIZE,
324 	};
325 	struct iomap_readpage_ctx ctx = {
326 		.cur_page	= page,
327 	};
328 	int ret;
329 
330 	trace_iomap_readpage(page->mapping->host, 1);
331 
332 	while ((ret = iomap_iter(&iter, ops)) > 0)
333 		iter.processed = iomap_readpage_iter(&iter, &ctx, 0);
334 
335 	if (ret < 0)
336 		SetPageError(page);
337 
338 	if (ctx.bio) {
339 		submit_bio(ctx.bio);
340 		WARN_ON_ONCE(!ctx.cur_page_in_bio);
341 	} else {
342 		WARN_ON_ONCE(ctx.cur_page_in_bio);
343 		unlock_page(page);
344 	}
345 
346 	/*
347 	 * Just like mpage_readahead and block_read_full_page, we always
348 	 * return 0 and just mark the page as PageError on errors.  This
349 	 * should be cleaned up throughout the stack eventually.
350 	 */
351 	return 0;
352 }
353 EXPORT_SYMBOL_GPL(iomap_readpage);
354 
355 static loff_t iomap_readahead_iter(const struct iomap_iter *iter,
356 		struct iomap_readpage_ctx *ctx)
357 {
358 	loff_t length = iomap_length(iter);
359 	loff_t done, ret;
360 
361 	for (done = 0; done < length; done += ret) {
362 		if (ctx->cur_page && offset_in_page(iter->pos + done) == 0) {
363 			if (!ctx->cur_page_in_bio)
364 				unlock_page(ctx->cur_page);
365 			put_page(ctx->cur_page);
366 			ctx->cur_page = NULL;
367 		}
368 		if (!ctx->cur_page) {
369 			ctx->cur_page = readahead_page(ctx->rac);
370 			ctx->cur_page_in_bio = false;
371 		}
372 		ret = iomap_readpage_iter(iter, ctx, done);
373 	}
374 
375 	return done;
376 }
377 
378 /**
379  * iomap_readahead - Attempt to read pages from a file.
380  * @rac: Describes the pages to be read.
381  * @ops: The operations vector for the filesystem.
382  *
383  * This function is for filesystems to call to implement their readahead
384  * address_space operation.
385  *
386  * Context: The @ops callbacks may submit I/O (eg to read the addresses of
387  * blocks from disc), and may wait for it.  The caller may be trying to
388  * access a different page, and so sleeping excessively should be avoided.
389  * It may allocate memory, but should avoid costly allocations.  This
390  * function is called with memalloc_nofs set, so allocations will not cause
391  * the filesystem to be reentered.
392  */
393 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops)
394 {
395 	struct iomap_iter iter = {
396 		.inode	= rac->mapping->host,
397 		.pos	= readahead_pos(rac),
398 		.len	= readahead_length(rac),
399 	};
400 	struct iomap_readpage_ctx ctx = {
401 		.rac	= rac,
402 	};
403 
404 	trace_iomap_readahead(rac->mapping->host, readahead_count(rac));
405 
406 	while (iomap_iter(&iter, ops) > 0)
407 		iter.processed = iomap_readahead_iter(&iter, &ctx);
408 
409 	if (ctx.bio)
410 		submit_bio(ctx.bio);
411 	if (ctx.cur_page) {
412 		if (!ctx.cur_page_in_bio)
413 			unlock_page(ctx.cur_page);
414 		put_page(ctx.cur_page);
415 	}
416 }
417 EXPORT_SYMBOL_GPL(iomap_readahead);
418 
419 /*
420  * iomap_is_partially_uptodate checks whether blocks within a page are
421  * uptodate or not.
422  *
423  * Returns true if all blocks which correspond to a file portion
424  * we want to read within the page are uptodate.
425  */
426 int
427 iomap_is_partially_uptodate(struct page *page, unsigned long from,
428 		unsigned long count)
429 {
430 	struct iomap_page *iop = to_iomap_page(page);
431 	struct inode *inode = page->mapping->host;
432 	unsigned len, first, last;
433 	unsigned i;
434 
435 	/* Limit range to one page */
436 	len = min_t(unsigned, PAGE_SIZE - from, count);
437 
438 	/* First and last blocks in range within page */
439 	first = from >> inode->i_blkbits;
440 	last = (from + len - 1) >> inode->i_blkbits;
441 
442 	if (iop) {
443 		for (i = first; i <= last; i++)
444 			if (!test_bit(i, iop->uptodate))
445 				return 0;
446 		return 1;
447 	}
448 
449 	return 0;
450 }
451 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
452 
453 int
454 iomap_releasepage(struct page *page, gfp_t gfp_mask)
455 {
456 	trace_iomap_releasepage(page->mapping->host, page_offset(page),
457 			PAGE_SIZE);
458 
459 	/*
460 	 * mm accommodates an old ext3 case where clean pages might not have had
461 	 * the dirty bit cleared. Thus, it can send actual dirty pages to
462 	 * ->releasepage() via shrink_active_list(); skip those here.
463 	 */
464 	if (PageDirty(page) || PageWriteback(page))
465 		return 0;
466 	iomap_page_release(page);
467 	return 1;
468 }
469 EXPORT_SYMBOL_GPL(iomap_releasepage);
470 
471 void
472 iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len)
473 {
474 	trace_iomap_invalidatepage(page->mapping->host, offset, len);
475 
476 	/*
477 	 * If we're invalidating the entire page, clear the dirty state from it
478 	 * and release it to avoid unnecessary buildup of the LRU.
479 	 */
480 	if (offset == 0 && len == PAGE_SIZE) {
481 		WARN_ON_ONCE(PageWriteback(page));
482 		cancel_dirty_page(page);
483 		iomap_page_release(page);
484 	}
485 }
486 EXPORT_SYMBOL_GPL(iomap_invalidatepage);
487 
488 #ifdef CONFIG_MIGRATION
489 int
490 iomap_migrate_page(struct address_space *mapping, struct page *newpage,
491 		struct page *page, enum migrate_mode mode)
492 {
493 	int ret;
494 
495 	ret = migrate_page_move_mapping(mapping, newpage, page, 0);
496 	if (ret != MIGRATEPAGE_SUCCESS)
497 		return ret;
498 
499 	if (page_has_private(page))
500 		attach_page_private(newpage, detach_page_private(page));
501 
502 	if (mode != MIGRATE_SYNC_NO_COPY)
503 		migrate_page_copy(newpage, page);
504 	else
505 		migrate_page_states(newpage, page);
506 	return MIGRATEPAGE_SUCCESS;
507 }
508 EXPORT_SYMBOL_GPL(iomap_migrate_page);
509 #endif /* CONFIG_MIGRATION */
510 
511 static void
512 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
513 {
514 	loff_t i_size = i_size_read(inode);
515 
516 	/*
517 	 * Only truncate newly allocated pages beyoned EOF, even if the
518 	 * write started inside the existing inode size.
519 	 */
520 	if (pos + len > i_size)
521 		truncate_pagecache_range(inode, max(pos, i_size), pos + len);
522 }
523 
524 static int
525 iomap_read_page_sync(loff_t block_start, struct page *page, unsigned poff,
526 		unsigned plen, const struct iomap *iomap)
527 {
528 	struct bio_vec bvec;
529 	struct bio bio;
530 
531 	bio_init(&bio, &bvec, 1);
532 	bio.bi_opf = REQ_OP_READ;
533 	bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
534 	bio_set_dev(&bio, iomap->bdev);
535 	__bio_add_page(&bio, page, plen, poff);
536 	return submit_bio_wait(&bio);
537 }
538 
539 static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos,
540 		unsigned len, struct page *page)
541 {
542 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
543 	struct iomap_page *iop = iomap_page_create(iter->inode, page);
544 	loff_t block_size = i_blocksize(iter->inode);
545 	loff_t block_start = round_down(pos, block_size);
546 	loff_t block_end = round_up(pos + len, block_size);
547 	unsigned from = offset_in_page(pos), to = from + len, poff, plen;
548 
549 	if (PageUptodate(page))
550 		return 0;
551 	ClearPageError(page);
552 
553 	do {
554 		iomap_adjust_read_range(iter->inode, iop, &block_start,
555 				block_end - block_start, &poff, &plen);
556 		if (plen == 0)
557 			break;
558 
559 		if (!(iter->flags & IOMAP_UNSHARE) &&
560 		    (from <= poff || from >= poff + plen) &&
561 		    (to <= poff || to >= poff + plen))
562 			continue;
563 
564 		if (iomap_block_needs_zeroing(iter, block_start)) {
565 			if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE))
566 				return -EIO;
567 			zero_user_segments(page, poff, from, to, poff + plen);
568 		} else {
569 			int status = iomap_read_page_sync(block_start, page,
570 					poff, plen, srcmap);
571 			if (status)
572 				return status;
573 		}
574 		iomap_set_range_uptodate(page, poff, plen);
575 	} while ((block_start += plen) < block_end);
576 
577 	return 0;
578 }
579 
580 static int iomap_write_begin_inline(const struct iomap_iter *iter,
581 		struct page *page)
582 {
583 	int ret;
584 
585 	/* needs more work for the tailpacking case; disable for now */
586 	if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0))
587 		return -EIO;
588 	ret = iomap_read_inline_data(iter, page);
589 	if (ret < 0)
590 		return ret;
591 	return 0;
592 }
593 
594 static int iomap_write_begin(const struct iomap_iter *iter, loff_t pos,
595 		unsigned len, struct page **pagep)
596 {
597 	const struct iomap_page_ops *page_ops = iter->iomap.page_ops;
598 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
599 	struct page *page;
600 	int status = 0;
601 
602 	BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length);
603 	if (srcmap != &iter->iomap)
604 		BUG_ON(pos + len > srcmap->offset + srcmap->length);
605 
606 	if (fatal_signal_pending(current))
607 		return -EINTR;
608 
609 	if (page_ops && page_ops->page_prepare) {
610 		status = page_ops->page_prepare(iter->inode, pos, len);
611 		if (status)
612 			return status;
613 	}
614 
615 	page = grab_cache_page_write_begin(iter->inode->i_mapping,
616 				pos >> PAGE_SHIFT, AOP_FLAG_NOFS);
617 	if (!page) {
618 		status = -ENOMEM;
619 		goto out_no_page;
620 	}
621 
622 	if (srcmap->type == IOMAP_INLINE)
623 		status = iomap_write_begin_inline(iter, page);
624 	else if (srcmap->flags & IOMAP_F_BUFFER_HEAD)
625 		status = __block_write_begin_int(page, pos, len, NULL, srcmap);
626 	else
627 		status = __iomap_write_begin(iter, pos, len, page);
628 
629 	if (unlikely(status))
630 		goto out_unlock;
631 
632 	*pagep = page;
633 	return 0;
634 
635 out_unlock:
636 	unlock_page(page);
637 	put_page(page);
638 	iomap_write_failed(iter->inode, pos, len);
639 
640 out_no_page:
641 	if (page_ops && page_ops->page_done)
642 		page_ops->page_done(iter->inode, pos, 0, NULL);
643 	return status;
644 }
645 
646 static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len,
647 		size_t copied, struct page *page)
648 {
649 	flush_dcache_page(page);
650 
651 	/*
652 	 * The blocks that were entirely written will now be uptodate, so we
653 	 * don't have to worry about a readpage reading them and overwriting a
654 	 * partial write.  However, if we've encountered a short write and only
655 	 * partially written into a block, it will not be marked uptodate, so a
656 	 * readpage might come in and destroy our partial write.
657 	 *
658 	 * Do the simplest thing and just treat any short write to a
659 	 * non-uptodate page as a zero-length write, and force the caller to
660 	 * redo the whole thing.
661 	 */
662 	if (unlikely(copied < len && !PageUptodate(page)))
663 		return 0;
664 	iomap_set_range_uptodate(page, offset_in_page(pos), len);
665 	__set_page_dirty_nobuffers(page);
666 	return copied;
667 }
668 
669 static size_t iomap_write_end_inline(const struct iomap_iter *iter,
670 		struct page *page, loff_t pos, size_t copied)
671 {
672 	const struct iomap *iomap = &iter->iomap;
673 	void *addr;
674 
675 	WARN_ON_ONCE(!PageUptodate(page));
676 	BUG_ON(!iomap_inline_data_valid(iomap));
677 
678 	flush_dcache_page(page);
679 	addr = kmap_local_page(page) + pos;
680 	memcpy(iomap_inline_data(iomap, pos), addr, copied);
681 	kunmap_local(addr);
682 
683 	mark_inode_dirty(iter->inode);
684 	return copied;
685 }
686 
687 /* Returns the number of bytes copied.  May be 0.  Cannot be an errno. */
688 static size_t iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len,
689 		size_t copied, struct page *page)
690 {
691 	const struct iomap_page_ops *page_ops = iter->iomap.page_ops;
692 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
693 	loff_t old_size = iter->inode->i_size;
694 	size_t ret;
695 
696 	if (srcmap->type == IOMAP_INLINE) {
697 		ret = iomap_write_end_inline(iter, page, pos, copied);
698 	} else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
699 		ret = block_write_end(NULL, iter->inode->i_mapping, pos, len,
700 				copied, page, NULL);
701 	} else {
702 		ret = __iomap_write_end(iter->inode, pos, len, copied, page);
703 	}
704 
705 	/*
706 	 * Update the in-memory inode size after copying the data into the page
707 	 * cache.  It's up to the file system to write the updated size to disk,
708 	 * preferably after I/O completion so that no stale data is exposed.
709 	 */
710 	if (pos + ret > old_size) {
711 		i_size_write(iter->inode, pos + ret);
712 		iter->iomap.flags |= IOMAP_F_SIZE_CHANGED;
713 	}
714 	unlock_page(page);
715 
716 	if (old_size < pos)
717 		pagecache_isize_extended(iter->inode, old_size, pos);
718 	if (page_ops && page_ops->page_done)
719 		page_ops->page_done(iter->inode, pos, ret, page);
720 	put_page(page);
721 
722 	if (ret < len)
723 		iomap_write_failed(iter->inode, pos, len);
724 	return ret;
725 }
726 
727 static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i)
728 {
729 	loff_t length = iomap_length(iter);
730 	loff_t pos = iter->pos;
731 	ssize_t written = 0;
732 	long status = 0;
733 
734 	do {
735 		struct page *page;
736 		unsigned long offset;	/* Offset into pagecache page */
737 		unsigned long bytes;	/* Bytes to write to page */
738 		size_t copied;		/* Bytes copied from user */
739 
740 		offset = offset_in_page(pos);
741 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
742 						iov_iter_count(i));
743 again:
744 		if (bytes > length)
745 			bytes = length;
746 
747 		/*
748 		 * Bring in the user page that we'll copy from _first_.
749 		 * Otherwise there's a nasty deadlock on copying from the
750 		 * same page as we're writing to, without it being marked
751 		 * up-to-date.
752 		 */
753 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
754 			status = -EFAULT;
755 			break;
756 		}
757 
758 		status = iomap_write_begin(iter, pos, bytes, &page);
759 		if (unlikely(status))
760 			break;
761 
762 		if (mapping_writably_mapped(iter->inode->i_mapping))
763 			flush_dcache_page(page);
764 
765 		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
766 
767 		status = iomap_write_end(iter, pos, bytes, copied, page);
768 
769 		if (unlikely(copied != status))
770 			iov_iter_revert(i, copied - status);
771 
772 		cond_resched();
773 		if (unlikely(status == 0)) {
774 			/*
775 			 * A short copy made iomap_write_end() reject the
776 			 * thing entirely.  Might be memory poisoning
777 			 * halfway through, might be a race with munmap,
778 			 * might be severe memory pressure.
779 			 */
780 			if (copied)
781 				bytes = copied;
782 			goto again;
783 		}
784 		pos += status;
785 		written += status;
786 		length -= status;
787 
788 		balance_dirty_pages_ratelimited(iter->inode->i_mapping);
789 	} while (iov_iter_count(i) && length);
790 
791 	return written ? written : status;
792 }
793 
794 ssize_t
795 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i,
796 		const struct iomap_ops *ops)
797 {
798 	struct iomap_iter iter = {
799 		.inode		= iocb->ki_filp->f_mapping->host,
800 		.pos		= iocb->ki_pos,
801 		.len		= iov_iter_count(i),
802 		.flags		= IOMAP_WRITE,
803 	};
804 	int ret;
805 
806 	while ((ret = iomap_iter(&iter, ops)) > 0)
807 		iter.processed = iomap_write_iter(&iter, i);
808 	if (iter.pos == iocb->ki_pos)
809 		return ret;
810 	return iter.pos - iocb->ki_pos;
811 }
812 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
813 
814 static loff_t iomap_unshare_iter(struct iomap_iter *iter)
815 {
816 	struct iomap *iomap = &iter->iomap;
817 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
818 	loff_t pos = iter->pos;
819 	loff_t length = iomap_length(iter);
820 	long status = 0;
821 	loff_t written = 0;
822 
823 	/* don't bother with blocks that are not shared to start with */
824 	if (!(iomap->flags & IOMAP_F_SHARED))
825 		return length;
826 	/* don't bother with holes or unwritten extents */
827 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
828 		return length;
829 
830 	do {
831 		unsigned long offset = offset_in_page(pos);
832 		unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length);
833 		struct page *page;
834 
835 		status = iomap_write_begin(iter, pos, bytes, &page);
836 		if (unlikely(status))
837 			return status;
838 
839 		status = iomap_write_end(iter, pos, bytes, bytes, page);
840 		if (WARN_ON_ONCE(status == 0))
841 			return -EIO;
842 
843 		cond_resched();
844 
845 		pos += status;
846 		written += status;
847 		length -= status;
848 
849 		balance_dirty_pages_ratelimited(iter->inode->i_mapping);
850 	} while (length);
851 
852 	return written;
853 }
854 
855 int
856 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
857 		const struct iomap_ops *ops)
858 {
859 	struct iomap_iter iter = {
860 		.inode		= inode,
861 		.pos		= pos,
862 		.len		= len,
863 		.flags		= IOMAP_WRITE | IOMAP_UNSHARE,
864 	};
865 	int ret;
866 
867 	while ((ret = iomap_iter(&iter, ops)) > 0)
868 		iter.processed = iomap_unshare_iter(&iter);
869 	return ret;
870 }
871 EXPORT_SYMBOL_GPL(iomap_file_unshare);
872 
873 static s64 __iomap_zero_iter(struct iomap_iter *iter, loff_t pos, u64 length)
874 {
875 	struct page *page;
876 	int status;
877 	unsigned offset = offset_in_page(pos);
878 	unsigned bytes = min_t(u64, PAGE_SIZE - offset, length);
879 
880 	status = iomap_write_begin(iter, pos, bytes, &page);
881 	if (status)
882 		return status;
883 
884 	zero_user(page, offset, bytes);
885 	mark_page_accessed(page);
886 
887 	return iomap_write_end(iter, pos, bytes, bytes, page);
888 }
889 
890 static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero)
891 {
892 	struct iomap *iomap = &iter->iomap;
893 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
894 	loff_t pos = iter->pos;
895 	loff_t length = iomap_length(iter);
896 	loff_t written = 0;
897 
898 	/* already zeroed?  we're done. */
899 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
900 		return length;
901 
902 	do {
903 		s64 bytes;
904 
905 		if (IS_DAX(iter->inode))
906 			bytes = dax_iomap_zero(pos, length, iomap);
907 		else
908 			bytes = __iomap_zero_iter(iter, pos, length);
909 		if (bytes < 0)
910 			return bytes;
911 
912 		pos += bytes;
913 		length -= bytes;
914 		written += bytes;
915 		if (did_zero)
916 			*did_zero = true;
917 	} while (length > 0);
918 
919 	return written;
920 }
921 
922 int
923 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
924 		const struct iomap_ops *ops)
925 {
926 	struct iomap_iter iter = {
927 		.inode		= inode,
928 		.pos		= pos,
929 		.len		= len,
930 		.flags		= IOMAP_ZERO,
931 	};
932 	int ret;
933 
934 	while ((ret = iomap_iter(&iter, ops)) > 0)
935 		iter.processed = iomap_zero_iter(&iter, did_zero);
936 	return ret;
937 }
938 EXPORT_SYMBOL_GPL(iomap_zero_range);
939 
940 int
941 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
942 		const struct iomap_ops *ops)
943 {
944 	unsigned int blocksize = i_blocksize(inode);
945 	unsigned int off = pos & (blocksize - 1);
946 
947 	/* Block boundary? Nothing to do */
948 	if (!off)
949 		return 0;
950 	return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
951 }
952 EXPORT_SYMBOL_GPL(iomap_truncate_page);
953 
954 static loff_t iomap_page_mkwrite_iter(struct iomap_iter *iter,
955 		struct page *page)
956 {
957 	loff_t length = iomap_length(iter);
958 	int ret;
959 
960 	if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) {
961 		ret = __block_write_begin_int(page, iter->pos, length, NULL,
962 					      &iter->iomap);
963 		if (ret)
964 			return ret;
965 		block_commit_write(page, 0, length);
966 	} else {
967 		WARN_ON_ONCE(!PageUptodate(page));
968 		set_page_dirty(page);
969 	}
970 
971 	return length;
972 }
973 
974 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
975 {
976 	struct iomap_iter iter = {
977 		.inode		= file_inode(vmf->vma->vm_file),
978 		.flags		= IOMAP_WRITE | IOMAP_FAULT,
979 	};
980 	struct page *page = vmf->page;
981 	ssize_t ret;
982 
983 	lock_page(page);
984 	ret = page_mkwrite_check_truncate(page, iter.inode);
985 	if (ret < 0)
986 		goto out_unlock;
987 	iter.pos = page_offset(page);
988 	iter.len = ret;
989 	while ((ret = iomap_iter(&iter, ops)) > 0)
990 		iter.processed = iomap_page_mkwrite_iter(&iter, page);
991 
992 	if (ret < 0)
993 		goto out_unlock;
994 	wait_for_stable_page(page);
995 	return VM_FAULT_LOCKED;
996 out_unlock:
997 	unlock_page(page);
998 	return block_page_mkwrite_return(ret);
999 }
1000 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1001 
1002 static void
1003 iomap_finish_page_writeback(struct inode *inode, struct page *page,
1004 		int error, unsigned int len)
1005 {
1006 	struct iomap_page *iop = to_iomap_page(page);
1007 
1008 	if (error) {
1009 		SetPageError(page);
1010 		mapping_set_error(inode->i_mapping, error);
1011 	}
1012 
1013 	WARN_ON_ONCE(i_blocks_per_page(inode, page) > 1 && !iop);
1014 	WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) <= 0);
1015 
1016 	if (!iop || atomic_sub_and_test(len, &iop->write_bytes_pending))
1017 		end_page_writeback(page);
1018 }
1019 
1020 /*
1021  * We're now finished for good with this ioend structure.  Update the page
1022  * state, release holds on bios, and finally free up memory.  Do not use the
1023  * ioend after this.
1024  */
1025 static void
1026 iomap_finish_ioend(struct iomap_ioend *ioend, int error)
1027 {
1028 	struct inode *inode = ioend->io_inode;
1029 	struct bio *bio = &ioend->io_inline_bio;
1030 	struct bio *last = ioend->io_bio, *next;
1031 	u64 start = bio->bi_iter.bi_sector;
1032 	loff_t offset = ioend->io_offset;
1033 	bool quiet = bio_flagged(bio, BIO_QUIET);
1034 
1035 	for (bio = &ioend->io_inline_bio; bio; bio = next) {
1036 		struct bio_vec *bv;
1037 		struct bvec_iter_all iter_all;
1038 
1039 		/*
1040 		 * For the last bio, bi_private points to the ioend, so we
1041 		 * need to explicitly end the iteration here.
1042 		 */
1043 		if (bio == last)
1044 			next = NULL;
1045 		else
1046 			next = bio->bi_private;
1047 
1048 		/* walk each page on bio, ending page IO on them */
1049 		bio_for_each_segment_all(bv, bio, iter_all)
1050 			iomap_finish_page_writeback(inode, bv->bv_page, error,
1051 					bv->bv_len);
1052 		bio_put(bio);
1053 	}
1054 	/* The ioend has been freed by bio_put() */
1055 
1056 	if (unlikely(error && !quiet)) {
1057 		printk_ratelimited(KERN_ERR
1058 "%s: writeback error on inode %lu, offset %lld, sector %llu",
1059 			inode->i_sb->s_id, inode->i_ino, offset, start);
1060 	}
1061 }
1062 
1063 void
1064 iomap_finish_ioends(struct iomap_ioend *ioend, int error)
1065 {
1066 	struct list_head tmp;
1067 
1068 	list_replace_init(&ioend->io_list, &tmp);
1069 	iomap_finish_ioend(ioend, error);
1070 
1071 	while (!list_empty(&tmp)) {
1072 		ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
1073 		list_del_init(&ioend->io_list);
1074 		iomap_finish_ioend(ioend, error);
1075 	}
1076 }
1077 EXPORT_SYMBOL_GPL(iomap_finish_ioends);
1078 
1079 /*
1080  * We can merge two adjacent ioends if they have the same set of work to do.
1081  */
1082 static bool
1083 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
1084 {
1085 	if (ioend->io_bio->bi_status != next->io_bio->bi_status)
1086 		return false;
1087 	if ((ioend->io_flags & IOMAP_F_SHARED) ^
1088 	    (next->io_flags & IOMAP_F_SHARED))
1089 		return false;
1090 	if ((ioend->io_type == IOMAP_UNWRITTEN) ^
1091 	    (next->io_type == IOMAP_UNWRITTEN))
1092 		return false;
1093 	if (ioend->io_offset + ioend->io_size != next->io_offset)
1094 		return false;
1095 	return true;
1096 }
1097 
1098 void
1099 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends)
1100 {
1101 	struct iomap_ioend *next;
1102 
1103 	INIT_LIST_HEAD(&ioend->io_list);
1104 
1105 	while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
1106 			io_list))) {
1107 		if (!iomap_ioend_can_merge(ioend, next))
1108 			break;
1109 		list_move_tail(&next->io_list, &ioend->io_list);
1110 		ioend->io_size += next->io_size;
1111 	}
1112 }
1113 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
1114 
1115 static int
1116 iomap_ioend_compare(void *priv, const struct list_head *a,
1117 		const struct list_head *b)
1118 {
1119 	struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
1120 	struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
1121 
1122 	if (ia->io_offset < ib->io_offset)
1123 		return -1;
1124 	if (ia->io_offset > ib->io_offset)
1125 		return 1;
1126 	return 0;
1127 }
1128 
1129 void
1130 iomap_sort_ioends(struct list_head *ioend_list)
1131 {
1132 	list_sort(NULL, ioend_list, iomap_ioend_compare);
1133 }
1134 EXPORT_SYMBOL_GPL(iomap_sort_ioends);
1135 
1136 static void iomap_writepage_end_bio(struct bio *bio)
1137 {
1138 	struct iomap_ioend *ioend = bio->bi_private;
1139 
1140 	iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status));
1141 }
1142 
1143 /*
1144  * Submit the final bio for an ioend.
1145  *
1146  * If @error is non-zero, it means that we have a situation where some part of
1147  * the submission process has failed after we've marked pages for writeback
1148  * and unlocked them.  In this situation, we need to fail the bio instead of
1149  * submitting it.  This typically only happens on a filesystem shutdown.
1150  */
1151 static int
1152 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend,
1153 		int error)
1154 {
1155 	ioend->io_bio->bi_private = ioend;
1156 	ioend->io_bio->bi_end_io = iomap_writepage_end_bio;
1157 
1158 	if (wpc->ops->prepare_ioend)
1159 		error = wpc->ops->prepare_ioend(ioend, error);
1160 	if (error) {
1161 		/*
1162 		 * If we're failing the IO now, just mark the ioend with an
1163 		 * error and finish it.  This will run IO completion immediately
1164 		 * as there is only one reference to the ioend at this point in
1165 		 * time.
1166 		 */
1167 		ioend->io_bio->bi_status = errno_to_blk_status(error);
1168 		bio_endio(ioend->io_bio);
1169 		return error;
1170 	}
1171 
1172 	submit_bio(ioend->io_bio);
1173 	return 0;
1174 }
1175 
1176 static struct iomap_ioend *
1177 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc,
1178 		loff_t offset, sector_t sector, struct writeback_control *wbc)
1179 {
1180 	struct iomap_ioend *ioend;
1181 	struct bio *bio;
1182 
1183 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_VECS, &iomap_ioend_bioset);
1184 	bio_set_dev(bio, wpc->iomap.bdev);
1185 	bio->bi_iter.bi_sector = sector;
1186 	bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
1187 	bio->bi_write_hint = inode->i_write_hint;
1188 	wbc_init_bio(wbc, bio);
1189 
1190 	ioend = container_of(bio, struct iomap_ioend, io_inline_bio);
1191 	INIT_LIST_HEAD(&ioend->io_list);
1192 	ioend->io_type = wpc->iomap.type;
1193 	ioend->io_flags = wpc->iomap.flags;
1194 	ioend->io_inode = inode;
1195 	ioend->io_size = 0;
1196 	ioend->io_offset = offset;
1197 	ioend->io_bio = bio;
1198 	return ioend;
1199 }
1200 
1201 /*
1202  * Allocate a new bio, and chain the old bio to the new one.
1203  *
1204  * Note that we have to perform the chaining in this unintuitive order
1205  * so that the bi_private linkage is set up in the right direction for the
1206  * traversal in iomap_finish_ioend().
1207  */
1208 static struct bio *
1209 iomap_chain_bio(struct bio *prev)
1210 {
1211 	struct bio *new;
1212 
1213 	new = bio_alloc(GFP_NOFS, BIO_MAX_VECS);
1214 	bio_copy_dev(new, prev);/* also copies over blkcg information */
1215 	new->bi_iter.bi_sector = bio_end_sector(prev);
1216 	new->bi_opf = prev->bi_opf;
1217 	new->bi_write_hint = prev->bi_write_hint;
1218 
1219 	bio_chain(prev, new);
1220 	bio_get(prev);		/* for iomap_finish_ioend */
1221 	submit_bio(prev);
1222 	return new;
1223 }
1224 
1225 static bool
1226 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset,
1227 		sector_t sector)
1228 {
1229 	if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
1230 	    (wpc->ioend->io_flags & IOMAP_F_SHARED))
1231 		return false;
1232 	if (wpc->iomap.type != wpc->ioend->io_type)
1233 		return false;
1234 	if (offset != wpc->ioend->io_offset + wpc->ioend->io_size)
1235 		return false;
1236 	if (sector != bio_end_sector(wpc->ioend->io_bio))
1237 		return false;
1238 	return true;
1239 }
1240 
1241 /*
1242  * Test to see if we have an existing ioend structure that we could append to
1243  * first; otherwise finish off the current ioend and start another.
1244  */
1245 static void
1246 iomap_add_to_ioend(struct inode *inode, loff_t offset, struct page *page,
1247 		struct iomap_page *iop, struct iomap_writepage_ctx *wpc,
1248 		struct writeback_control *wbc, struct list_head *iolist)
1249 {
1250 	sector_t sector = iomap_sector(&wpc->iomap, offset);
1251 	unsigned len = i_blocksize(inode);
1252 	unsigned poff = offset & (PAGE_SIZE - 1);
1253 
1254 	if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, offset, sector)) {
1255 		if (wpc->ioend)
1256 			list_add(&wpc->ioend->io_list, iolist);
1257 		wpc->ioend = iomap_alloc_ioend(inode, wpc, offset, sector, wbc);
1258 	}
1259 
1260 	if (bio_add_page(wpc->ioend->io_bio, page, len, poff) != len) {
1261 		wpc->ioend->io_bio = iomap_chain_bio(wpc->ioend->io_bio);
1262 		__bio_add_page(wpc->ioend->io_bio, page, len, poff);
1263 	}
1264 
1265 	if (iop)
1266 		atomic_add(len, &iop->write_bytes_pending);
1267 	wpc->ioend->io_size += len;
1268 	wbc_account_cgroup_owner(wbc, page, len);
1269 }
1270 
1271 /*
1272  * We implement an immediate ioend submission policy here to avoid needing to
1273  * chain multiple ioends and hence nest mempool allocations which can violate
1274  * the forward progress guarantees we need to provide. The current ioend we're
1275  * adding blocks to is cached in the writepage context, and if the new block
1276  * doesn't append to the cached ioend, it will create a new ioend and cache that
1277  * instead.
1278  *
1279  * If a new ioend is created and cached, the old ioend is returned and queued
1280  * locally for submission once the entire page is processed or an error has been
1281  * detected.  While ioends are submitted immediately after they are completed,
1282  * batching optimisations are provided by higher level block plugging.
1283  *
1284  * At the end of a writeback pass, there will be a cached ioend remaining on the
1285  * writepage context that the caller will need to submit.
1286  */
1287 static int
1288 iomap_writepage_map(struct iomap_writepage_ctx *wpc,
1289 		struct writeback_control *wbc, struct inode *inode,
1290 		struct page *page, u64 end_offset)
1291 {
1292 	struct iomap_page *iop = iomap_page_create(inode, page);
1293 	struct iomap_ioend *ioend, *next;
1294 	unsigned len = i_blocksize(inode);
1295 	u64 file_offset; /* file offset of page */
1296 	int error = 0, count = 0, i;
1297 	LIST_HEAD(submit_list);
1298 
1299 	WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) != 0);
1300 
1301 	/*
1302 	 * Walk through the page to find areas to write back. If we run off the
1303 	 * end of the current map or find the current map invalid, grab a new
1304 	 * one.
1305 	 */
1306 	for (i = 0, file_offset = page_offset(page);
1307 	     i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset;
1308 	     i++, file_offset += len) {
1309 		if (iop && !test_bit(i, iop->uptodate))
1310 			continue;
1311 
1312 		error = wpc->ops->map_blocks(wpc, inode, file_offset);
1313 		if (error)
1314 			break;
1315 		if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE))
1316 			continue;
1317 		if (wpc->iomap.type == IOMAP_HOLE)
1318 			continue;
1319 		iomap_add_to_ioend(inode, file_offset, page, iop, wpc, wbc,
1320 				 &submit_list);
1321 		count++;
1322 	}
1323 
1324 	WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list));
1325 	WARN_ON_ONCE(!PageLocked(page));
1326 	WARN_ON_ONCE(PageWriteback(page));
1327 	WARN_ON_ONCE(PageDirty(page));
1328 
1329 	/*
1330 	 * We cannot cancel the ioend directly here on error.  We may have
1331 	 * already set other pages under writeback and hence we have to run I/O
1332 	 * completion to mark the error state of the pages under writeback
1333 	 * appropriately.
1334 	 */
1335 	if (unlikely(error)) {
1336 		/*
1337 		 * Let the filesystem know what portion of the current page
1338 		 * failed to map. If the page hasn't been added to ioend, it
1339 		 * won't be affected by I/O completion and we must unlock it
1340 		 * now.
1341 		 */
1342 		if (wpc->ops->discard_page)
1343 			wpc->ops->discard_page(page, file_offset);
1344 		if (!count) {
1345 			ClearPageUptodate(page);
1346 			unlock_page(page);
1347 			goto done;
1348 		}
1349 	}
1350 
1351 	set_page_writeback(page);
1352 	unlock_page(page);
1353 
1354 	/*
1355 	 * Preserve the original error if there was one; catch
1356 	 * submission errors here and propagate into subsequent ioend
1357 	 * submissions.
1358 	 */
1359 	list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1360 		int error2;
1361 
1362 		list_del_init(&ioend->io_list);
1363 		error2 = iomap_submit_ioend(wpc, ioend, error);
1364 		if (error2 && !error)
1365 			error = error2;
1366 	}
1367 
1368 	/*
1369 	 * We can end up here with no error and nothing to write only if we race
1370 	 * with a partial page truncate on a sub-page block sized filesystem.
1371 	 */
1372 	if (!count)
1373 		end_page_writeback(page);
1374 done:
1375 	mapping_set_error(page->mapping, error);
1376 	return error;
1377 }
1378 
1379 /*
1380  * Write out a dirty page.
1381  *
1382  * For delalloc space on the page, we need to allocate space and flush it.
1383  * For unwritten space on the page, we need to start the conversion to
1384  * regular allocated space.
1385  */
1386 static int
1387 iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data)
1388 {
1389 	struct iomap_writepage_ctx *wpc = data;
1390 	struct inode *inode = page->mapping->host;
1391 	pgoff_t end_index;
1392 	u64 end_offset;
1393 	loff_t offset;
1394 
1395 	trace_iomap_writepage(inode, page_offset(page), PAGE_SIZE);
1396 
1397 	/*
1398 	 * Refuse to write the page out if we're called from reclaim context.
1399 	 *
1400 	 * This avoids stack overflows when called from deeply used stacks in
1401 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
1402 	 * allow reclaim from kswapd as the stack usage there is relatively low.
1403 	 *
1404 	 * This should never happen except in the case of a VM regression so
1405 	 * warn about it.
1406 	 */
1407 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1408 			PF_MEMALLOC))
1409 		goto redirty;
1410 
1411 	/*
1412 	 * Is this page beyond the end of the file?
1413 	 *
1414 	 * The page index is less than the end_index, adjust the end_offset
1415 	 * to the highest offset that this page should represent.
1416 	 * -----------------------------------------------------
1417 	 * |			file mapping	       | <EOF> |
1418 	 * -----------------------------------------------------
1419 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
1420 	 * ^--------------------------------^----------|--------
1421 	 * |     desired writeback range    |      see else    |
1422 	 * ---------------------------------^------------------|
1423 	 */
1424 	offset = i_size_read(inode);
1425 	end_index = offset >> PAGE_SHIFT;
1426 	if (page->index < end_index)
1427 		end_offset = (loff_t)(page->index + 1) << PAGE_SHIFT;
1428 	else {
1429 		/*
1430 		 * Check whether the page to write out is beyond or straddles
1431 		 * i_size or not.
1432 		 * -------------------------------------------------------
1433 		 * |		file mapping		        | <EOF>  |
1434 		 * -------------------------------------------------------
1435 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1436 		 * ^--------------------------------^-----------|---------
1437 		 * |				    |      Straddles     |
1438 		 * ---------------------------------^-----------|--------|
1439 		 */
1440 		unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1441 
1442 		/*
1443 		 * Skip the page if it's fully outside i_size, e.g. due to a
1444 		 * truncate operation that's in progress. We must redirty the
1445 		 * page so that reclaim stops reclaiming it. Otherwise
1446 		 * iomap_vm_releasepage() is called on it and gets confused.
1447 		 *
1448 		 * Note that the end_index is unsigned long.  If the given
1449 		 * offset is greater than 16TB on a 32-bit system then if we
1450 		 * checked if the page is fully outside i_size with
1451 		 * "if (page->index >= end_index + 1)", "end_index + 1" would
1452 		 * overflow and evaluate to 0.  Hence this page would be
1453 		 * redirtied and written out repeatedly, which would result in
1454 		 * an infinite loop; the user program performing this operation
1455 		 * would hang.  Instead, we can detect this situation by
1456 		 * checking if the page is totally beyond i_size or if its
1457 		 * offset is just equal to the EOF.
1458 		 */
1459 		if (page->index > end_index ||
1460 		    (page->index == end_index && offset_into_page == 0))
1461 			goto redirty;
1462 
1463 		/*
1464 		 * The page straddles i_size.  It must be zeroed out on each
1465 		 * and every writepage invocation because it may be mmapped.
1466 		 * "A file is mapped in multiples of the page size.  For a file
1467 		 * that is not a multiple of the page size, the remaining
1468 		 * memory is zeroed when mapped, and writes to that region are
1469 		 * not written out to the file."
1470 		 */
1471 		zero_user_segment(page, offset_into_page, PAGE_SIZE);
1472 
1473 		/* Adjust the end_offset to the end of file */
1474 		end_offset = offset;
1475 	}
1476 
1477 	return iomap_writepage_map(wpc, wbc, inode, page, end_offset);
1478 
1479 redirty:
1480 	redirty_page_for_writepage(wbc, page);
1481 	unlock_page(page);
1482 	return 0;
1483 }
1484 
1485 int
1486 iomap_writepage(struct page *page, struct writeback_control *wbc,
1487 		struct iomap_writepage_ctx *wpc,
1488 		const struct iomap_writeback_ops *ops)
1489 {
1490 	int ret;
1491 
1492 	wpc->ops = ops;
1493 	ret = iomap_do_writepage(page, wbc, wpc);
1494 	if (!wpc->ioend)
1495 		return ret;
1496 	return iomap_submit_ioend(wpc, wpc->ioend, ret);
1497 }
1498 EXPORT_SYMBOL_GPL(iomap_writepage);
1499 
1500 int
1501 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
1502 		struct iomap_writepage_ctx *wpc,
1503 		const struct iomap_writeback_ops *ops)
1504 {
1505 	int			ret;
1506 
1507 	wpc->ops = ops;
1508 	ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc);
1509 	if (!wpc->ioend)
1510 		return ret;
1511 	return iomap_submit_ioend(wpc, wpc->ioend, ret);
1512 }
1513 EXPORT_SYMBOL_GPL(iomap_writepages);
1514 
1515 static int __init iomap_init(void)
1516 {
1517 	return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
1518 			   offsetof(struct iomap_ioend, io_inline_bio),
1519 			   BIOSET_NEED_BVECS);
1520 }
1521 fs_initcall(iomap_init);
1522