xref: /openbmc/linux/fs/iomap/buffered-io.c (revision a01822e94ee53e8ebc9632fe2764048b81921254)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Red Hat, Inc.
4  * Copyright (C) 2016-2019 Christoph Hellwig.
5  */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/iomap.h>
10 #include <linux/pagemap.h>
11 #include <linux/uio.h>
12 #include <linux/buffer_head.h>
13 #include <linux/dax.h>
14 #include <linux/writeback.h>
15 #include <linux/list_sort.h>
16 #include <linux/swap.h>
17 #include <linux/bio.h>
18 #include <linux/sched/signal.h>
19 #include <linux/migrate.h>
20 #include "trace.h"
21 
22 #include "../internal.h"
23 
24 /*
25  * Structure allocated for each page when block size < PAGE_SIZE to track
26  * sub-page uptodate status and I/O completions.
27  */
28 struct iomap_page {
29 	atomic_t		read_count;
30 	atomic_t		write_count;
31 	spinlock_t		uptodate_lock;
32 	DECLARE_BITMAP(uptodate, PAGE_SIZE / 512);
33 };
34 
35 static inline struct iomap_page *to_iomap_page(struct page *page)
36 {
37 	if (page_has_private(page))
38 		return (struct iomap_page *)page_private(page);
39 	return NULL;
40 }
41 
42 static struct bio_set iomap_ioend_bioset;
43 
44 static struct iomap_page *
45 iomap_page_create(struct inode *inode, struct page *page)
46 {
47 	struct iomap_page *iop = to_iomap_page(page);
48 
49 	if (iop || i_blocksize(inode) == PAGE_SIZE)
50 		return iop;
51 
52 	iop = kmalloc(sizeof(*iop), GFP_NOFS | __GFP_NOFAIL);
53 	atomic_set(&iop->read_count, 0);
54 	atomic_set(&iop->write_count, 0);
55 	spin_lock_init(&iop->uptodate_lock);
56 	bitmap_zero(iop->uptodate, PAGE_SIZE / SECTOR_SIZE);
57 
58 	/*
59 	 * migrate_page_move_mapping() assumes that pages with private data have
60 	 * their count elevated by 1.
61 	 */
62 	get_page(page);
63 	set_page_private(page, (unsigned long)iop);
64 	SetPagePrivate(page);
65 	return iop;
66 }
67 
68 static void
69 iomap_page_release(struct page *page)
70 {
71 	struct iomap_page *iop = to_iomap_page(page);
72 
73 	if (!iop)
74 		return;
75 	WARN_ON_ONCE(atomic_read(&iop->read_count));
76 	WARN_ON_ONCE(atomic_read(&iop->write_count));
77 	ClearPagePrivate(page);
78 	set_page_private(page, 0);
79 	put_page(page);
80 	kfree(iop);
81 }
82 
83 /*
84  * Calculate the range inside the page that we actually need to read.
85  */
86 static void
87 iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop,
88 		loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp)
89 {
90 	loff_t orig_pos = *pos;
91 	loff_t isize = i_size_read(inode);
92 	unsigned block_bits = inode->i_blkbits;
93 	unsigned block_size = (1 << block_bits);
94 	unsigned poff = offset_in_page(*pos);
95 	unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length);
96 	unsigned first = poff >> block_bits;
97 	unsigned last = (poff + plen - 1) >> block_bits;
98 
99 	/*
100 	 * If the block size is smaller than the page size we need to check the
101 	 * per-block uptodate status and adjust the offset and length if needed
102 	 * to avoid reading in already uptodate ranges.
103 	 */
104 	if (iop) {
105 		unsigned int i;
106 
107 		/* move forward for each leading block marked uptodate */
108 		for (i = first; i <= last; i++) {
109 			if (!test_bit(i, iop->uptodate))
110 				break;
111 			*pos += block_size;
112 			poff += block_size;
113 			plen -= block_size;
114 			first++;
115 		}
116 
117 		/* truncate len if we find any trailing uptodate block(s) */
118 		for ( ; i <= last; i++) {
119 			if (test_bit(i, iop->uptodate)) {
120 				plen -= (last - i + 1) * block_size;
121 				last = i - 1;
122 				break;
123 			}
124 		}
125 	}
126 
127 	/*
128 	 * If the extent spans the block that contains the i_size we need to
129 	 * handle both halves separately so that we properly zero data in the
130 	 * page cache for blocks that are entirely outside of i_size.
131 	 */
132 	if (orig_pos <= isize && orig_pos + length > isize) {
133 		unsigned end = offset_in_page(isize - 1) >> block_bits;
134 
135 		if (first <= end && last > end)
136 			plen -= (last - end) * block_size;
137 	}
138 
139 	*offp = poff;
140 	*lenp = plen;
141 }
142 
143 static void
144 iomap_iop_set_range_uptodate(struct page *page, unsigned off, unsigned len)
145 {
146 	struct iomap_page *iop = to_iomap_page(page);
147 	struct inode *inode = page->mapping->host;
148 	unsigned first = off >> inode->i_blkbits;
149 	unsigned last = (off + len - 1) >> inode->i_blkbits;
150 	bool uptodate = true;
151 	unsigned long flags;
152 	unsigned int i;
153 
154 	spin_lock_irqsave(&iop->uptodate_lock, flags);
155 	for (i = 0; i < PAGE_SIZE / i_blocksize(inode); i++) {
156 		if (i >= first && i <= last)
157 			set_bit(i, iop->uptodate);
158 		else if (!test_bit(i, iop->uptodate))
159 			uptodate = false;
160 	}
161 
162 	if (uptodate)
163 		SetPageUptodate(page);
164 	spin_unlock_irqrestore(&iop->uptodate_lock, flags);
165 }
166 
167 static void
168 iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len)
169 {
170 	if (PageError(page))
171 		return;
172 
173 	if (page_has_private(page))
174 		iomap_iop_set_range_uptodate(page, off, len);
175 	else
176 		SetPageUptodate(page);
177 }
178 
179 static void
180 iomap_read_finish(struct iomap_page *iop, struct page *page)
181 {
182 	if (!iop || atomic_dec_and_test(&iop->read_count))
183 		unlock_page(page);
184 }
185 
186 static void
187 iomap_read_page_end_io(struct bio_vec *bvec, int error)
188 {
189 	struct page *page = bvec->bv_page;
190 	struct iomap_page *iop = to_iomap_page(page);
191 
192 	if (unlikely(error)) {
193 		ClearPageUptodate(page);
194 		SetPageError(page);
195 	} else {
196 		iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len);
197 	}
198 
199 	iomap_read_finish(iop, page);
200 }
201 
202 static void
203 iomap_read_end_io(struct bio *bio)
204 {
205 	int error = blk_status_to_errno(bio->bi_status);
206 	struct bio_vec *bvec;
207 	struct bvec_iter_all iter_all;
208 
209 	bio_for_each_segment_all(bvec, bio, iter_all)
210 		iomap_read_page_end_io(bvec, error);
211 	bio_put(bio);
212 }
213 
214 struct iomap_readpage_ctx {
215 	struct page		*cur_page;
216 	bool			cur_page_in_bio;
217 	bool			is_readahead;
218 	struct bio		*bio;
219 	struct list_head	*pages;
220 };
221 
222 static void
223 iomap_read_inline_data(struct inode *inode, struct page *page,
224 		struct iomap *iomap)
225 {
226 	size_t size = i_size_read(inode);
227 	void *addr;
228 
229 	if (PageUptodate(page))
230 		return;
231 
232 	BUG_ON(page->index);
233 	BUG_ON(size > PAGE_SIZE - offset_in_page(iomap->inline_data));
234 
235 	addr = kmap_atomic(page);
236 	memcpy(addr, iomap->inline_data, size);
237 	memset(addr + size, 0, PAGE_SIZE - size);
238 	kunmap_atomic(addr);
239 	SetPageUptodate(page);
240 }
241 
242 static inline bool iomap_block_needs_zeroing(struct inode *inode,
243 		struct iomap *iomap, loff_t pos)
244 {
245 	return iomap->type != IOMAP_MAPPED ||
246 		(iomap->flags & IOMAP_F_NEW) ||
247 		pos >= i_size_read(inode);
248 }
249 
250 static loff_t
251 iomap_readpage_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
252 		struct iomap *iomap, struct iomap *srcmap)
253 {
254 	struct iomap_readpage_ctx *ctx = data;
255 	struct page *page = ctx->cur_page;
256 	struct iomap_page *iop = iomap_page_create(inode, page);
257 	bool same_page = false, is_contig = false;
258 	loff_t orig_pos = pos;
259 	unsigned poff, plen;
260 	sector_t sector;
261 
262 	if (iomap->type == IOMAP_INLINE) {
263 		WARN_ON_ONCE(pos);
264 		iomap_read_inline_data(inode, page, iomap);
265 		return PAGE_SIZE;
266 	}
267 
268 	/* zero post-eof blocks as the page may be mapped */
269 	iomap_adjust_read_range(inode, iop, &pos, length, &poff, &plen);
270 	if (plen == 0)
271 		goto done;
272 
273 	if (iomap_block_needs_zeroing(inode, iomap, pos)) {
274 		zero_user(page, poff, plen);
275 		iomap_set_range_uptodate(page, poff, plen);
276 		goto done;
277 	}
278 
279 	ctx->cur_page_in_bio = true;
280 
281 	/*
282 	 * Try to merge into a previous segment if we can.
283 	 */
284 	sector = iomap_sector(iomap, pos);
285 	if (ctx->bio && bio_end_sector(ctx->bio) == sector)
286 		is_contig = true;
287 
288 	if (is_contig &&
289 	    __bio_try_merge_page(ctx->bio, page, plen, poff, &same_page)) {
290 		if (!same_page && iop)
291 			atomic_inc(&iop->read_count);
292 		goto done;
293 	}
294 
295 	/*
296 	 * If we start a new segment we need to increase the read count, and we
297 	 * need to do so before submitting any previous full bio to make sure
298 	 * that we don't prematurely unlock the page.
299 	 */
300 	if (iop)
301 		atomic_inc(&iop->read_count);
302 
303 	if (!ctx->bio || !is_contig || bio_full(ctx->bio, plen)) {
304 		gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
305 		gfp_t orig_gfp = gfp;
306 		int nr_vecs = (length + PAGE_SIZE - 1) >> PAGE_SHIFT;
307 
308 		if (ctx->bio)
309 			submit_bio(ctx->bio);
310 
311 		if (ctx->is_readahead) /* same as readahead_gfp_mask */
312 			gfp |= __GFP_NORETRY | __GFP_NOWARN;
313 		ctx->bio = bio_alloc(gfp, min(BIO_MAX_PAGES, nr_vecs));
314 		/*
315 		 * If the bio_alloc fails, try it again for a single page to
316 		 * avoid having to deal with partial page reads.  This emulates
317 		 * what do_mpage_readpage does.
318 		 */
319 		if (!ctx->bio)
320 			ctx->bio = bio_alloc(orig_gfp, 1);
321 		ctx->bio->bi_opf = REQ_OP_READ;
322 		if (ctx->is_readahead)
323 			ctx->bio->bi_opf |= REQ_RAHEAD;
324 		ctx->bio->bi_iter.bi_sector = sector;
325 		bio_set_dev(ctx->bio, iomap->bdev);
326 		ctx->bio->bi_end_io = iomap_read_end_io;
327 	}
328 
329 	bio_add_page(ctx->bio, page, plen, poff);
330 done:
331 	/*
332 	 * Move the caller beyond our range so that it keeps making progress.
333 	 * For that we have to include any leading non-uptodate ranges, but
334 	 * we can skip trailing ones as they will be handled in the next
335 	 * iteration.
336 	 */
337 	return pos - orig_pos + plen;
338 }
339 
340 int
341 iomap_readpage(struct page *page, const struct iomap_ops *ops)
342 {
343 	struct iomap_readpage_ctx ctx = { .cur_page = page };
344 	struct inode *inode = page->mapping->host;
345 	unsigned poff;
346 	loff_t ret;
347 
348 	trace_iomap_readpage(page->mapping->host, 1);
349 
350 	for (poff = 0; poff < PAGE_SIZE; poff += ret) {
351 		ret = iomap_apply(inode, page_offset(page) + poff,
352 				PAGE_SIZE - poff, 0, ops, &ctx,
353 				iomap_readpage_actor);
354 		if (ret <= 0) {
355 			WARN_ON_ONCE(ret == 0);
356 			SetPageError(page);
357 			break;
358 		}
359 	}
360 
361 	if (ctx.bio) {
362 		submit_bio(ctx.bio);
363 		WARN_ON_ONCE(!ctx.cur_page_in_bio);
364 	} else {
365 		WARN_ON_ONCE(ctx.cur_page_in_bio);
366 		unlock_page(page);
367 	}
368 
369 	/*
370 	 * Just like mpage_readpages and block_read_full_page we always
371 	 * return 0 and just mark the page as PageError on errors.  This
372 	 * should be cleaned up all through the stack eventually.
373 	 */
374 	return 0;
375 }
376 EXPORT_SYMBOL_GPL(iomap_readpage);
377 
378 static struct page *
379 iomap_next_page(struct inode *inode, struct list_head *pages, loff_t pos,
380 		loff_t length, loff_t *done)
381 {
382 	while (!list_empty(pages)) {
383 		struct page *page = lru_to_page(pages);
384 
385 		if (page_offset(page) >= (u64)pos + length)
386 			break;
387 
388 		list_del(&page->lru);
389 		if (!add_to_page_cache_lru(page, inode->i_mapping, page->index,
390 				GFP_NOFS))
391 			return page;
392 
393 		/*
394 		 * If we already have a page in the page cache at index we are
395 		 * done.  Upper layers don't care if it is uptodate after the
396 		 * readpages call itself as every page gets checked again once
397 		 * actually needed.
398 		 */
399 		*done += PAGE_SIZE;
400 		put_page(page);
401 	}
402 
403 	return NULL;
404 }
405 
406 static loff_t
407 iomap_readpages_actor(struct inode *inode, loff_t pos, loff_t length,
408 		void *data, struct iomap *iomap, struct iomap *srcmap)
409 {
410 	struct iomap_readpage_ctx *ctx = data;
411 	loff_t done, ret;
412 
413 	for (done = 0; done < length; done += ret) {
414 		if (ctx->cur_page && offset_in_page(pos + done) == 0) {
415 			if (!ctx->cur_page_in_bio)
416 				unlock_page(ctx->cur_page);
417 			put_page(ctx->cur_page);
418 			ctx->cur_page = NULL;
419 		}
420 		if (!ctx->cur_page) {
421 			ctx->cur_page = iomap_next_page(inode, ctx->pages,
422 					pos, length, &done);
423 			if (!ctx->cur_page)
424 				break;
425 			ctx->cur_page_in_bio = false;
426 		}
427 		ret = iomap_readpage_actor(inode, pos + done, length - done,
428 				ctx, iomap, srcmap);
429 	}
430 
431 	return done;
432 }
433 
434 int
435 iomap_readpages(struct address_space *mapping, struct list_head *pages,
436 		unsigned nr_pages, const struct iomap_ops *ops)
437 {
438 	struct iomap_readpage_ctx ctx = {
439 		.pages		= pages,
440 		.is_readahead	= true,
441 	};
442 	loff_t pos = page_offset(list_entry(pages->prev, struct page, lru));
443 	loff_t last = page_offset(list_entry(pages->next, struct page, lru));
444 	loff_t length = last - pos + PAGE_SIZE, ret = 0;
445 
446 	trace_iomap_readpages(mapping->host, nr_pages);
447 
448 	while (length > 0) {
449 		ret = iomap_apply(mapping->host, pos, length, 0, ops,
450 				&ctx, iomap_readpages_actor);
451 		if (ret <= 0) {
452 			WARN_ON_ONCE(ret == 0);
453 			goto done;
454 		}
455 		pos += ret;
456 		length -= ret;
457 	}
458 	ret = 0;
459 done:
460 	if (ctx.bio)
461 		submit_bio(ctx.bio);
462 	if (ctx.cur_page) {
463 		if (!ctx.cur_page_in_bio)
464 			unlock_page(ctx.cur_page);
465 		put_page(ctx.cur_page);
466 	}
467 
468 	/*
469 	 * Check that we didn't lose a page due to the arcance calling
470 	 * conventions..
471 	 */
472 	WARN_ON_ONCE(!ret && !list_empty(ctx.pages));
473 	return ret;
474 }
475 EXPORT_SYMBOL_GPL(iomap_readpages);
476 
477 /*
478  * iomap_is_partially_uptodate checks whether blocks within a page are
479  * uptodate or not.
480  *
481  * Returns true if all blocks which correspond to a file portion
482  * we want to read within the page are uptodate.
483  */
484 int
485 iomap_is_partially_uptodate(struct page *page, unsigned long from,
486 		unsigned long count)
487 {
488 	struct iomap_page *iop = to_iomap_page(page);
489 	struct inode *inode = page->mapping->host;
490 	unsigned len, first, last;
491 	unsigned i;
492 
493 	/* Limit range to one page */
494 	len = min_t(unsigned, PAGE_SIZE - from, count);
495 
496 	/* First and last blocks in range within page */
497 	first = from >> inode->i_blkbits;
498 	last = (from + len - 1) >> inode->i_blkbits;
499 
500 	if (iop) {
501 		for (i = first; i <= last; i++)
502 			if (!test_bit(i, iop->uptodate))
503 				return 0;
504 		return 1;
505 	}
506 
507 	return 0;
508 }
509 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
510 
511 int
512 iomap_releasepage(struct page *page, gfp_t gfp_mask)
513 {
514 	trace_iomap_releasepage(page->mapping->host, page_offset(page),
515 			PAGE_SIZE);
516 
517 	/*
518 	 * mm accommodates an old ext3 case where clean pages might not have had
519 	 * the dirty bit cleared. Thus, it can send actual dirty pages to
520 	 * ->releasepage() via shrink_active_list(), skip those here.
521 	 */
522 	if (PageDirty(page) || PageWriteback(page))
523 		return 0;
524 	iomap_page_release(page);
525 	return 1;
526 }
527 EXPORT_SYMBOL_GPL(iomap_releasepage);
528 
529 void
530 iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len)
531 {
532 	trace_iomap_invalidatepage(page->mapping->host, offset, len);
533 
534 	/*
535 	 * If we are invalidating the entire page, clear the dirty state from it
536 	 * and release it to avoid unnecessary buildup of the LRU.
537 	 */
538 	if (offset == 0 && len == PAGE_SIZE) {
539 		WARN_ON_ONCE(PageWriteback(page));
540 		cancel_dirty_page(page);
541 		iomap_page_release(page);
542 	}
543 }
544 EXPORT_SYMBOL_GPL(iomap_invalidatepage);
545 
546 #ifdef CONFIG_MIGRATION
547 int
548 iomap_migrate_page(struct address_space *mapping, struct page *newpage,
549 		struct page *page, enum migrate_mode mode)
550 {
551 	int ret;
552 
553 	ret = migrate_page_move_mapping(mapping, newpage, page, 0);
554 	if (ret != MIGRATEPAGE_SUCCESS)
555 		return ret;
556 
557 	if (page_has_private(page)) {
558 		ClearPagePrivate(page);
559 		get_page(newpage);
560 		set_page_private(newpage, page_private(page));
561 		set_page_private(page, 0);
562 		put_page(page);
563 		SetPagePrivate(newpage);
564 	}
565 
566 	if (mode != MIGRATE_SYNC_NO_COPY)
567 		migrate_page_copy(newpage, page);
568 	else
569 		migrate_page_states(newpage, page);
570 	return MIGRATEPAGE_SUCCESS;
571 }
572 EXPORT_SYMBOL_GPL(iomap_migrate_page);
573 #endif /* CONFIG_MIGRATION */
574 
575 enum {
576 	IOMAP_WRITE_F_UNSHARE		= (1 << 0),
577 };
578 
579 static void
580 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
581 {
582 	loff_t i_size = i_size_read(inode);
583 
584 	/*
585 	 * Only truncate newly allocated pages beyoned EOF, even if the
586 	 * write started inside the existing inode size.
587 	 */
588 	if (pos + len > i_size)
589 		truncate_pagecache_range(inode, max(pos, i_size), pos + len);
590 }
591 
592 static int
593 iomap_read_page_sync(loff_t block_start, struct page *page, unsigned poff,
594 		unsigned plen, struct iomap *iomap)
595 {
596 	struct bio_vec bvec;
597 	struct bio bio;
598 
599 	bio_init(&bio, &bvec, 1);
600 	bio.bi_opf = REQ_OP_READ;
601 	bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
602 	bio_set_dev(&bio, iomap->bdev);
603 	__bio_add_page(&bio, page, plen, poff);
604 	return submit_bio_wait(&bio);
605 }
606 
607 static int
608 __iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, int flags,
609 		struct page *page, struct iomap *srcmap)
610 {
611 	struct iomap_page *iop = iomap_page_create(inode, page);
612 	loff_t block_size = i_blocksize(inode);
613 	loff_t block_start = pos & ~(block_size - 1);
614 	loff_t block_end = (pos + len + block_size - 1) & ~(block_size - 1);
615 	unsigned from = offset_in_page(pos), to = from + len, poff, plen;
616 	int status;
617 
618 	if (PageUptodate(page))
619 		return 0;
620 
621 	do {
622 		iomap_adjust_read_range(inode, iop, &block_start,
623 				block_end - block_start, &poff, &plen);
624 		if (plen == 0)
625 			break;
626 
627 		if (!(flags & IOMAP_WRITE_F_UNSHARE) &&
628 		    (from <= poff || from >= poff + plen) &&
629 		    (to <= poff || to >= poff + plen))
630 			continue;
631 
632 		if (iomap_block_needs_zeroing(inode, srcmap, block_start)) {
633 			if (WARN_ON_ONCE(flags & IOMAP_WRITE_F_UNSHARE))
634 				return -EIO;
635 			zero_user_segments(page, poff, from, to, poff + plen);
636 			iomap_set_range_uptodate(page, poff, plen);
637 			continue;
638 		}
639 
640 		status = iomap_read_page_sync(block_start, page, poff, plen,
641 				srcmap);
642 		if (status)
643 			return status;
644 	} while ((block_start += plen) < block_end);
645 
646 	return 0;
647 }
648 
649 static int
650 iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags,
651 		struct page **pagep, struct iomap *iomap, struct iomap *srcmap)
652 {
653 	const struct iomap_page_ops *page_ops = iomap->page_ops;
654 	struct page *page;
655 	int status = 0;
656 
657 	BUG_ON(pos + len > iomap->offset + iomap->length);
658 	if (srcmap != iomap)
659 		BUG_ON(pos + len > srcmap->offset + srcmap->length);
660 
661 	if (fatal_signal_pending(current))
662 		return -EINTR;
663 
664 	if (page_ops && page_ops->page_prepare) {
665 		status = page_ops->page_prepare(inode, pos, len, iomap);
666 		if (status)
667 			return status;
668 	}
669 
670 	page = grab_cache_page_write_begin(inode->i_mapping, pos >> PAGE_SHIFT,
671 			AOP_FLAG_NOFS);
672 	if (!page) {
673 		status = -ENOMEM;
674 		goto out_no_page;
675 	}
676 
677 	if (srcmap->type == IOMAP_INLINE)
678 		iomap_read_inline_data(inode, page, srcmap);
679 	else if (iomap->flags & IOMAP_F_BUFFER_HEAD)
680 		status = __block_write_begin_int(page, pos, len, NULL, srcmap);
681 	else
682 		status = __iomap_write_begin(inode, pos, len, flags, page,
683 				srcmap);
684 
685 	if (unlikely(status))
686 		goto out_unlock;
687 
688 	*pagep = page;
689 	return 0;
690 
691 out_unlock:
692 	unlock_page(page);
693 	put_page(page);
694 	iomap_write_failed(inode, pos, len);
695 
696 out_no_page:
697 	if (page_ops && page_ops->page_done)
698 		page_ops->page_done(inode, pos, 0, NULL, iomap);
699 	return status;
700 }
701 
702 int
703 iomap_set_page_dirty(struct page *page)
704 {
705 	struct address_space *mapping = page_mapping(page);
706 	int newly_dirty;
707 
708 	if (unlikely(!mapping))
709 		return !TestSetPageDirty(page);
710 
711 	/*
712 	 * Lock out page->mem_cgroup migration to keep PageDirty
713 	 * synchronized with per-memcg dirty page counters.
714 	 */
715 	lock_page_memcg(page);
716 	newly_dirty = !TestSetPageDirty(page);
717 	if (newly_dirty)
718 		__set_page_dirty(page, mapping, 0);
719 	unlock_page_memcg(page);
720 
721 	if (newly_dirty)
722 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
723 	return newly_dirty;
724 }
725 EXPORT_SYMBOL_GPL(iomap_set_page_dirty);
726 
727 static int
728 __iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
729 		unsigned copied, struct page *page)
730 {
731 	flush_dcache_page(page);
732 
733 	/*
734 	 * The blocks that were entirely written will now be uptodate, so we
735 	 * don't have to worry about a readpage reading them and overwriting a
736 	 * partial write.  However if we have encountered a short write and only
737 	 * partially written into a block, it will not be marked uptodate, so a
738 	 * readpage might come in and destroy our partial write.
739 	 *
740 	 * Do the simplest thing, and just treat any short write to a non
741 	 * uptodate page as a zero-length write, and force the caller to redo
742 	 * the whole thing.
743 	 */
744 	if (unlikely(copied < len && !PageUptodate(page)))
745 		return 0;
746 	iomap_set_range_uptodate(page, offset_in_page(pos), len);
747 	iomap_set_page_dirty(page);
748 	return copied;
749 }
750 
751 static int
752 iomap_write_end_inline(struct inode *inode, struct page *page,
753 		struct iomap *iomap, loff_t pos, unsigned copied)
754 {
755 	void *addr;
756 
757 	WARN_ON_ONCE(!PageUptodate(page));
758 	BUG_ON(pos + copied > PAGE_SIZE - offset_in_page(iomap->inline_data));
759 
760 	addr = kmap_atomic(page);
761 	memcpy(iomap->inline_data + pos, addr + pos, copied);
762 	kunmap_atomic(addr);
763 
764 	mark_inode_dirty(inode);
765 	return copied;
766 }
767 
768 static int
769 iomap_write_end(struct inode *inode, loff_t pos, unsigned len, unsigned copied,
770 		struct page *page, struct iomap *iomap, struct iomap *srcmap)
771 {
772 	const struct iomap_page_ops *page_ops = iomap->page_ops;
773 	loff_t old_size = inode->i_size;
774 	int ret;
775 
776 	if (srcmap->type == IOMAP_INLINE) {
777 		ret = iomap_write_end_inline(inode, page, iomap, pos, copied);
778 	} else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
779 		ret = block_write_end(NULL, inode->i_mapping, pos, len, copied,
780 				page, NULL);
781 	} else {
782 		ret = __iomap_write_end(inode, pos, len, copied, page);
783 	}
784 
785 	/*
786 	 * Update the in-memory inode size after copying the data into the page
787 	 * cache.  It's up to the file system to write the updated size to disk,
788 	 * preferably after I/O completion so that no stale data is exposed.
789 	 */
790 	if (pos + ret > old_size) {
791 		i_size_write(inode, pos + ret);
792 		iomap->flags |= IOMAP_F_SIZE_CHANGED;
793 	}
794 	unlock_page(page);
795 
796 	if (old_size < pos)
797 		pagecache_isize_extended(inode, old_size, pos);
798 	if (page_ops && page_ops->page_done)
799 		page_ops->page_done(inode, pos, ret, page, iomap);
800 	put_page(page);
801 
802 	if (ret < len)
803 		iomap_write_failed(inode, pos, len);
804 	return ret;
805 }
806 
807 static loff_t
808 iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
809 		struct iomap *iomap, struct iomap *srcmap)
810 {
811 	struct iov_iter *i = data;
812 	long status = 0;
813 	ssize_t written = 0;
814 
815 	do {
816 		struct page *page;
817 		unsigned long offset;	/* Offset into pagecache page */
818 		unsigned long bytes;	/* Bytes to write to page */
819 		size_t copied;		/* Bytes copied from user */
820 
821 		offset = offset_in_page(pos);
822 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
823 						iov_iter_count(i));
824 again:
825 		if (bytes > length)
826 			bytes = length;
827 
828 		/*
829 		 * Bring in the user page that we will copy from _first_.
830 		 * Otherwise there's a nasty deadlock on copying from the
831 		 * same page as we're writing to, without it being marked
832 		 * up-to-date.
833 		 *
834 		 * Not only is this an optimisation, but it is also required
835 		 * to check that the address is actually valid, when atomic
836 		 * usercopies are used, below.
837 		 */
838 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
839 			status = -EFAULT;
840 			break;
841 		}
842 
843 		status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap,
844 				srcmap);
845 		if (unlikely(status))
846 			break;
847 
848 		if (mapping_writably_mapped(inode->i_mapping))
849 			flush_dcache_page(page);
850 
851 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
852 
853 		flush_dcache_page(page);
854 
855 		status = iomap_write_end(inode, pos, bytes, copied, page, iomap,
856 				srcmap);
857 		if (unlikely(status < 0))
858 			break;
859 		copied = status;
860 
861 		cond_resched();
862 
863 		iov_iter_advance(i, copied);
864 		if (unlikely(copied == 0)) {
865 			/*
866 			 * If we were unable to copy any data at all, we must
867 			 * fall back to a single segment length write.
868 			 *
869 			 * If we didn't fallback here, we could livelock
870 			 * because not all segments in the iov can be copied at
871 			 * once without a pagefault.
872 			 */
873 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
874 						iov_iter_single_seg_count(i));
875 			goto again;
876 		}
877 		pos += copied;
878 		written += copied;
879 		length -= copied;
880 
881 		balance_dirty_pages_ratelimited(inode->i_mapping);
882 	} while (iov_iter_count(i) && length);
883 
884 	return written ? written : status;
885 }
886 
887 ssize_t
888 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter,
889 		const struct iomap_ops *ops)
890 {
891 	struct inode *inode = iocb->ki_filp->f_mapping->host;
892 	loff_t pos = iocb->ki_pos, ret = 0, written = 0;
893 
894 	while (iov_iter_count(iter)) {
895 		ret = iomap_apply(inode, pos, iov_iter_count(iter),
896 				IOMAP_WRITE, ops, iter, iomap_write_actor);
897 		if (ret <= 0)
898 			break;
899 		pos += ret;
900 		written += ret;
901 	}
902 
903 	return written ? written : ret;
904 }
905 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
906 
907 static loff_t
908 iomap_unshare_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
909 		struct iomap *iomap, struct iomap *srcmap)
910 {
911 	long status = 0;
912 	ssize_t written = 0;
913 
914 	/* don't bother with blocks that are not shared to start with */
915 	if (!(iomap->flags & IOMAP_F_SHARED))
916 		return length;
917 	/* don't bother with holes or unwritten extents */
918 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
919 		return length;
920 
921 	do {
922 		unsigned long offset = offset_in_page(pos);
923 		unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length);
924 		struct page *page;
925 
926 		status = iomap_write_begin(inode, pos, bytes,
927 				IOMAP_WRITE_F_UNSHARE, &page, iomap, srcmap);
928 		if (unlikely(status))
929 			return status;
930 
931 		status = iomap_write_end(inode, pos, bytes, bytes, page, iomap,
932 				srcmap);
933 		if (unlikely(status <= 0)) {
934 			if (WARN_ON_ONCE(status == 0))
935 				return -EIO;
936 			return status;
937 		}
938 
939 		cond_resched();
940 
941 		pos += status;
942 		written += status;
943 		length -= status;
944 
945 		balance_dirty_pages_ratelimited(inode->i_mapping);
946 	} while (length);
947 
948 	return written;
949 }
950 
951 int
952 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
953 		const struct iomap_ops *ops)
954 {
955 	loff_t ret;
956 
957 	while (len) {
958 		ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL,
959 				iomap_unshare_actor);
960 		if (ret <= 0)
961 			return ret;
962 		pos += ret;
963 		len -= ret;
964 	}
965 
966 	return 0;
967 }
968 EXPORT_SYMBOL_GPL(iomap_file_unshare);
969 
970 static int iomap_zero(struct inode *inode, loff_t pos, unsigned offset,
971 		unsigned bytes, struct iomap *iomap, struct iomap *srcmap)
972 {
973 	struct page *page;
974 	int status;
975 
976 	status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap, srcmap);
977 	if (status)
978 		return status;
979 
980 	zero_user(page, offset, bytes);
981 	mark_page_accessed(page);
982 
983 	return iomap_write_end(inode, pos, bytes, bytes, page, iomap, srcmap);
984 }
985 
986 static loff_t
987 iomap_zero_range_actor(struct inode *inode, loff_t pos, loff_t count,
988 		void *data, struct iomap *iomap, struct iomap *srcmap)
989 {
990 	bool *did_zero = data;
991 	loff_t written = 0;
992 	int status;
993 
994 	/* already zeroed?  we're done. */
995 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
996 		return count;
997 
998 	do {
999 		unsigned offset, bytes;
1000 
1001 		offset = offset_in_page(pos);
1002 		bytes = min_t(loff_t, PAGE_SIZE - offset, count);
1003 
1004 		if (IS_DAX(inode))
1005 			status = dax_iomap_zero(pos, offset, bytes, iomap);
1006 		else
1007 			status = iomap_zero(inode, pos, offset, bytes, iomap,
1008 					srcmap);
1009 		if (status < 0)
1010 			return status;
1011 
1012 		pos += bytes;
1013 		count -= bytes;
1014 		written += bytes;
1015 		if (did_zero)
1016 			*did_zero = true;
1017 	} while (count > 0);
1018 
1019 	return written;
1020 }
1021 
1022 int
1023 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1024 		const struct iomap_ops *ops)
1025 {
1026 	loff_t ret;
1027 
1028 	while (len > 0) {
1029 		ret = iomap_apply(inode, pos, len, IOMAP_ZERO,
1030 				ops, did_zero, iomap_zero_range_actor);
1031 		if (ret <= 0)
1032 			return ret;
1033 
1034 		pos += ret;
1035 		len -= ret;
1036 	}
1037 
1038 	return 0;
1039 }
1040 EXPORT_SYMBOL_GPL(iomap_zero_range);
1041 
1042 int
1043 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1044 		const struct iomap_ops *ops)
1045 {
1046 	unsigned int blocksize = i_blocksize(inode);
1047 	unsigned int off = pos & (blocksize - 1);
1048 
1049 	/* Block boundary? Nothing to do */
1050 	if (!off)
1051 		return 0;
1052 	return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
1053 }
1054 EXPORT_SYMBOL_GPL(iomap_truncate_page);
1055 
1056 static loff_t
1057 iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length,
1058 		void *data, struct iomap *iomap, struct iomap *srcmap)
1059 {
1060 	struct page *page = data;
1061 	int ret;
1062 
1063 	if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
1064 		ret = __block_write_begin_int(page, pos, length, NULL, iomap);
1065 		if (ret)
1066 			return ret;
1067 		block_commit_write(page, 0, length);
1068 	} else {
1069 		WARN_ON_ONCE(!PageUptodate(page));
1070 		iomap_page_create(inode, page);
1071 		set_page_dirty(page);
1072 	}
1073 
1074 	return length;
1075 }
1076 
1077 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1078 {
1079 	struct page *page = vmf->page;
1080 	struct inode *inode = file_inode(vmf->vma->vm_file);
1081 	unsigned long length;
1082 	loff_t offset;
1083 	ssize_t ret;
1084 
1085 	lock_page(page);
1086 	ret = page_mkwrite_check_truncate(page, inode);
1087 	if (ret < 0)
1088 		goto out_unlock;
1089 	length = ret;
1090 
1091 	offset = page_offset(page);
1092 	while (length > 0) {
1093 		ret = iomap_apply(inode, offset, length,
1094 				IOMAP_WRITE | IOMAP_FAULT, ops, page,
1095 				iomap_page_mkwrite_actor);
1096 		if (unlikely(ret <= 0))
1097 			goto out_unlock;
1098 		offset += ret;
1099 		length -= ret;
1100 	}
1101 
1102 	wait_for_stable_page(page);
1103 	return VM_FAULT_LOCKED;
1104 out_unlock:
1105 	unlock_page(page);
1106 	return block_page_mkwrite_return(ret);
1107 }
1108 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1109 
1110 static void
1111 iomap_finish_page_writeback(struct inode *inode, struct page *page,
1112 		int error)
1113 {
1114 	struct iomap_page *iop = to_iomap_page(page);
1115 
1116 	if (error) {
1117 		SetPageError(page);
1118 		mapping_set_error(inode->i_mapping, -EIO);
1119 	}
1120 
1121 	WARN_ON_ONCE(i_blocksize(inode) < PAGE_SIZE && !iop);
1122 	WARN_ON_ONCE(iop && atomic_read(&iop->write_count) <= 0);
1123 
1124 	if (!iop || atomic_dec_and_test(&iop->write_count))
1125 		end_page_writeback(page);
1126 }
1127 
1128 /*
1129  * We're now finished for good with this ioend structure.  Update the page
1130  * state, release holds on bios, and finally free up memory.  Do not use the
1131  * ioend after this.
1132  */
1133 static void
1134 iomap_finish_ioend(struct iomap_ioend *ioend, int error)
1135 {
1136 	struct inode *inode = ioend->io_inode;
1137 	struct bio *bio = &ioend->io_inline_bio;
1138 	struct bio *last = ioend->io_bio, *next;
1139 	u64 start = bio->bi_iter.bi_sector;
1140 	loff_t offset = ioend->io_offset;
1141 	bool quiet = bio_flagged(bio, BIO_QUIET);
1142 
1143 	for (bio = &ioend->io_inline_bio; bio; bio = next) {
1144 		struct bio_vec *bv;
1145 		struct bvec_iter_all iter_all;
1146 
1147 		/*
1148 		 * For the last bio, bi_private points to the ioend, so we
1149 		 * need to explicitly end the iteration here.
1150 		 */
1151 		if (bio == last)
1152 			next = NULL;
1153 		else
1154 			next = bio->bi_private;
1155 
1156 		/* walk each page on bio, ending page IO on them */
1157 		bio_for_each_segment_all(bv, bio, iter_all)
1158 			iomap_finish_page_writeback(inode, bv->bv_page, error);
1159 		bio_put(bio);
1160 	}
1161 	/* The ioend has been freed by bio_put() */
1162 
1163 	if (unlikely(error && !quiet)) {
1164 		printk_ratelimited(KERN_ERR
1165 "%s: writeback error on inode %lu, offset %lld, sector %llu",
1166 			inode->i_sb->s_id, inode->i_ino, offset, start);
1167 	}
1168 }
1169 
1170 void
1171 iomap_finish_ioends(struct iomap_ioend *ioend, int error)
1172 {
1173 	struct list_head tmp;
1174 
1175 	list_replace_init(&ioend->io_list, &tmp);
1176 	iomap_finish_ioend(ioend, error);
1177 
1178 	while (!list_empty(&tmp)) {
1179 		ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
1180 		list_del_init(&ioend->io_list);
1181 		iomap_finish_ioend(ioend, error);
1182 	}
1183 }
1184 EXPORT_SYMBOL_GPL(iomap_finish_ioends);
1185 
1186 /*
1187  * We can merge two adjacent ioends if they have the same set of work to do.
1188  */
1189 static bool
1190 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
1191 {
1192 	if (ioend->io_bio->bi_status != next->io_bio->bi_status)
1193 		return false;
1194 	if ((ioend->io_flags & IOMAP_F_SHARED) ^
1195 	    (next->io_flags & IOMAP_F_SHARED))
1196 		return false;
1197 	if ((ioend->io_type == IOMAP_UNWRITTEN) ^
1198 	    (next->io_type == IOMAP_UNWRITTEN))
1199 		return false;
1200 	if (ioend->io_offset + ioend->io_size != next->io_offset)
1201 		return false;
1202 	return true;
1203 }
1204 
1205 void
1206 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends,
1207 		void (*merge_private)(struct iomap_ioend *ioend,
1208 				struct iomap_ioend *next))
1209 {
1210 	struct iomap_ioend *next;
1211 
1212 	INIT_LIST_HEAD(&ioend->io_list);
1213 
1214 	while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
1215 			io_list))) {
1216 		if (!iomap_ioend_can_merge(ioend, next))
1217 			break;
1218 		list_move_tail(&next->io_list, &ioend->io_list);
1219 		ioend->io_size += next->io_size;
1220 		if (next->io_private && merge_private)
1221 			merge_private(ioend, next);
1222 	}
1223 }
1224 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
1225 
1226 static int
1227 iomap_ioend_compare(void *priv, struct list_head *a, struct list_head *b)
1228 {
1229 	struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
1230 	struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
1231 
1232 	if (ia->io_offset < ib->io_offset)
1233 		return -1;
1234 	if (ia->io_offset > ib->io_offset)
1235 		return 1;
1236 	return 0;
1237 }
1238 
1239 void
1240 iomap_sort_ioends(struct list_head *ioend_list)
1241 {
1242 	list_sort(NULL, ioend_list, iomap_ioend_compare);
1243 }
1244 EXPORT_SYMBOL_GPL(iomap_sort_ioends);
1245 
1246 static void iomap_writepage_end_bio(struct bio *bio)
1247 {
1248 	struct iomap_ioend *ioend = bio->bi_private;
1249 
1250 	iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status));
1251 }
1252 
1253 /*
1254  * Submit the final bio for an ioend.
1255  *
1256  * If @error is non-zero, it means that we have a situation where some part of
1257  * the submission process has failed after we have marked paged for writeback
1258  * and unlocked them.  In this situation, we need to fail the bio instead of
1259  * submitting it.  This typically only happens on a filesystem shutdown.
1260  */
1261 static int
1262 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend,
1263 		int error)
1264 {
1265 	ioend->io_bio->bi_private = ioend;
1266 	ioend->io_bio->bi_end_io = iomap_writepage_end_bio;
1267 
1268 	if (wpc->ops->prepare_ioend)
1269 		error = wpc->ops->prepare_ioend(ioend, error);
1270 	if (error) {
1271 		/*
1272 		 * If we are failing the IO now, just mark the ioend with an
1273 		 * error and finish it.  This will run IO completion immediately
1274 		 * as there is only one reference to the ioend at this point in
1275 		 * time.
1276 		 */
1277 		ioend->io_bio->bi_status = errno_to_blk_status(error);
1278 		bio_endio(ioend->io_bio);
1279 		return error;
1280 	}
1281 
1282 	submit_bio(ioend->io_bio);
1283 	return 0;
1284 }
1285 
1286 static struct iomap_ioend *
1287 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc,
1288 		loff_t offset, sector_t sector, struct writeback_control *wbc)
1289 {
1290 	struct iomap_ioend *ioend;
1291 	struct bio *bio;
1292 
1293 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &iomap_ioend_bioset);
1294 	bio_set_dev(bio, wpc->iomap.bdev);
1295 	bio->bi_iter.bi_sector = sector;
1296 	bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
1297 	bio->bi_write_hint = inode->i_write_hint;
1298 	wbc_init_bio(wbc, bio);
1299 
1300 	ioend = container_of(bio, struct iomap_ioend, io_inline_bio);
1301 	INIT_LIST_HEAD(&ioend->io_list);
1302 	ioend->io_type = wpc->iomap.type;
1303 	ioend->io_flags = wpc->iomap.flags;
1304 	ioend->io_inode = inode;
1305 	ioend->io_size = 0;
1306 	ioend->io_offset = offset;
1307 	ioend->io_private = NULL;
1308 	ioend->io_bio = bio;
1309 	return ioend;
1310 }
1311 
1312 /*
1313  * Allocate a new bio, and chain the old bio to the new one.
1314  *
1315  * Note that we have to do perform the chaining in this unintuitive order
1316  * so that the bi_private linkage is set up in the right direction for the
1317  * traversal in iomap_finish_ioend().
1318  */
1319 static struct bio *
1320 iomap_chain_bio(struct bio *prev)
1321 {
1322 	struct bio *new;
1323 
1324 	new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
1325 	bio_copy_dev(new, prev);/* also copies over blkcg information */
1326 	new->bi_iter.bi_sector = bio_end_sector(prev);
1327 	new->bi_opf = prev->bi_opf;
1328 	new->bi_write_hint = prev->bi_write_hint;
1329 
1330 	bio_chain(prev, new);
1331 	bio_get(prev);		/* for iomap_finish_ioend */
1332 	submit_bio(prev);
1333 	return new;
1334 }
1335 
1336 static bool
1337 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset,
1338 		sector_t sector)
1339 {
1340 	if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
1341 	    (wpc->ioend->io_flags & IOMAP_F_SHARED))
1342 		return false;
1343 	if (wpc->iomap.type != wpc->ioend->io_type)
1344 		return false;
1345 	if (offset != wpc->ioend->io_offset + wpc->ioend->io_size)
1346 		return false;
1347 	if (sector != bio_end_sector(wpc->ioend->io_bio))
1348 		return false;
1349 	return true;
1350 }
1351 
1352 /*
1353  * Test to see if we have an existing ioend structure that we could append to
1354  * first, otherwise finish off the current ioend and start another.
1355  */
1356 static void
1357 iomap_add_to_ioend(struct inode *inode, loff_t offset, struct page *page,
1358 		struct iomap_page *iop, struct iomap_writepage_ctx *wpc,
1359 		struct writeback_control *wbc, struct list_head *iolist)
1360 {
1361 	sector_t sector = iomap_sector(&wpc->iomap, offset);
1362 	unsigned len = i_blocksize(inode);
1363 	unsigned poff = offset & (PAGE_SIZE - 1);
1364 	bool merged, same_page = false;
1365 
1366 	if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, offset, sector)) {
1367 		if (wpc->ioend)
1368 			list_add(&wpc->ioend->io_list, iolist);
1369 		wpc->ioend = iomap_alloc_ioend(inode, wpc, offset, sector, wbc);
1370 	}
1371 
1372 	merged = __bio_try_merge_page(wpc->ioend->io_bio, page, len, poff,
1373 			&same_page);
1374 	if (iop && !same_page)
1375 		atomic_inc(&iop->write_count);
1376 
1377 	if (!merged) {
1378 		if (bio_full(wpc->ioend->io_bio, len)) {
1379 			wpc->ioend->io_bio =
1380 				iomap_chain_bio(wpc->ioend->io_bio);
1381 		}
1382 		bio_add_page(wpc->ioend->io_bio, page, len, poff);
1383 	}
1384 
1385 	wpc->ioend->io_size += len;
1386 	wbc_account_cgroup_owner(wbc, page, len);
1387 }
1388 
1389 /*
1390  * We implement an immediate ioend submission policy here to avoid needing to
1391  * chain multiple ioends and hence nest mempool allocations which can violate
1392  * forward progress guarantees we need to provide. The current ioend we are
1393  * adding blocks to is cached on the writepage context, and if the new block
1394  * does not append to the cached ioend it will create a new ioend and cache that
1395  * instead.
1396  *
1397  * If a new ioend is created and cached, the old ioend is returned and queued
1398  * locally for submission once the entire page is processed or an error has been
1399  * detected.  While ioends are submitted immediately after they are completed,
1400  * batching optimisations are provided by higher level block plugging.
1401  *
1402  * At the end of a writeback pass, there will be a cached ioend remaining on the
1403  * writepage context that the caller will need to submit.
1404  */
1405 static int
1406 iomap_writepage_map(struct iomap_writepage_ctx *wpc,
1407 		struct writeback_control *wbc, struct inode *inode,
1408 		struct page *page, u64 end_offset)
1409 {
1410 	struct iomap_page *iop = to_iomap_page(page);
1411 	struct iomap_ioend *ioend, *next;
1412 	unsigned len = i_blocksize(inode);
1413 	u64 file_offset; /* file offset of page */
1414 	int error = 0, count = 0, i;
1415 	LIST_HEAD(submit_list);
1416 
1417 	WARN_ON_ONCE(i_blocksize(inode) < PAGE_SIZE && !iop);
1418 	WARN_ON_ONCE(iop && atomic_read(&iop->write_count) != 0);
1419 
1420 	/*
1421 	 * Walk through the page to find areas to write back. If we run off the
1422 	 * end of the current map or find the current map invalid, grab a new
1423 	 * one.
1424 	 */
1425 	for (i = 0, file_offset = page_offset(page);
1426 	     i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset;
1427 	     i++, file_offset += len) {
1428 		if (iop && !test_bit(i, iop->uptodate))
1429 			continue;
1430 
1431 		error = wpc->ops->map_blocks(wpc, inode, file_offset);
1432 		if (error)
1433 			break;
1434 		if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE))
1435 			continue;
1436 		if (wpc->iomap.type == IOMAP_HOLE)
1437 			continue;
1438 		iomap_add_to_ioend(inode, file_offset, page, iop, wpc, wbc,
1439 				 &submit_list);
1440 		count++;
1441 	}
1442 
1443 	WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list));
1444 	WARN_ON_ONCE(!PageLocked(page));
1445 	WARN_ON_ONCE(PageWriteback(page));
1446 
1447 	/*
1448 	 * We cannot cancel the ioend directly here on error.  We may have
1449 	 * already set other pages under writeback and hence we have to run I/O
1450 	 * completion to mark the error state of the pages under writeback
1451 	 * appropriately.
1452 	 */
1453 	if (unlikely(error)) {
1454 		if (!count) {
1455 			/*
1456 			 * If the current page hasn't been added to ioend, it
1457 			 * won't be affected by I/O completions and we must
1458 			 * discard and unlock it right here.
1459 			 */
1460 			if (wpc->ops->discard_page)
1461 				wpc->ops->discard_page(page);
1462 			ClearPageUptodate(page);
1463 			unlock_page(page);
1464 			goto done;
1465 		}
1466 
1467 		/*
1468 		 * If the page was not fully cleaned, we need to ensure that the
1469 		 * higher layers come back to it correctly.  That means we need
1470 		 * to keep the page dirty, and for WB_SYNC_ALL writeback we need
1471 		 * to ensure the PAGECACHE_TAG_TOWRITE index mark is not removed
1472 		 * so another attempt to write this page in this writeback sweep
1473 		 * will be made.
1474 		 */
1475 		set_page_writeback_keepwrite(page);
1476 	} else {
1477 		clear_page_dirty_for_io(page);
1478 		set_page_writeback(page);
1479 	}
1480 
1481 	unlock_page(page);
1482 
1483 	/*
1484 	 * Preserve the original error if there was one, otherwise catch
1485 	 * submission errors here and propagate into subsequent ioend
1486 	 * submissions.
1487 	 */
1488 	list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1489 		int error2;
1490 
1491 		list_del_init(&ioend->io_list);
1492 		error2 = iomap_submit_ioend(wpc, ioend, error);
1493 		if (error2 && !error)
1494 			error = error2;
1495 	}
1496 
1497 	/*
1498 	 * We can end up here with no error and nothing to write only if we race
1499 	 * with a partial page truncate on a sub-page block sized filesystem.
1500 	 */
1501 	if (!count)
1502 		end_page_writeback(page);
1503 done:
1504 	mapping_set_error(page->mapping, error);
1505 	return error;
1506 }
1507 
1508 /*
1509  * Write out a dirty page.
1510  *
1511  * For delalloc space on the page we need to allocate space and flush it.
1512  * For unwritten space on the page we need to start the conversion to
1513  * regular allocated space.
1514  */
1515 static int
1516 iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data)
1517 {
1518 	struct iomap_writepage_ctx *wpc = data;
1519 	struct inode *inode = page->mapping->host;
1520 	pgoff_t end_index;
1521 	u64 end_offset;
1522 	loff_t offset;
1523 
1524 	trace_iomap_writepage(inode, page_offset(page), PAGE_SIZE);
1525 
1526 	/*
1527 	 * Refuse to write the page out if we are called from reclaim context.
1528 	 *
1529 	 * This avoids stack overflows when called from deeply used stacks in
1530 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
1531 	 * allow reclaim from kswapd as the stack usage there is relatively low.
1532 	 *
1533 	 * This should never happen except in the case of a VM regression so
1534 	 * warn about it.
1535 	 */
1536 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1537 			PF_MEMALLOC))
1538 		goto redirty;
1539 
1540 	/*
1541 	 * Given that we do not allow direct reclaim to call us, we should
1542 	 * never be called in a recursive filesystem reclaim context.
1543 	 */
1544 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
1545 		goto redirty;
1546 
1547 	/*
1548 	 * Is this page beyond the end of the file?
1549 	 *
1550 	 * The page index is less than the end_index, adjust the end_offset
1551 	 * to the highest offset that this page should represent.
1552 	 * -----------------------------------------------------
1553 	 * |			file mapping	       | <EOF> |
1554 	 * -----------------------------------------------------
1555 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
1556 	 * ^--------------------------------^----------|--------
1557 	 * |     desired writeback range    |      see else    |
1558 	 * ---------------------------------^------------------|
1559 	 */
1560 	offset = i_size_read(inode);
1561 	end_index = offset >> PAGE_SHIFT;
1562 	if (page->index < end_index)
1563 		end_offset = (loff_t)(page->index + 1) << PAGE_SHIFT;
1564 	else {
1565 		/*
1566 		 * Check whether the page to write out is beyond or straddles
1567 		 * i_size or not.
1568 		 * -------------------------------------------------------
1569 		 * |		file mapping		        | <EOF>  |
1570 		 * -------------------------------------------------------
1571 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1572 		 * ^--------------------------------^-----------|---------
1573 		 * |				    |      Straddles     |
1574 		 * ---------------------------------^-----------|--------|
1575 		 */
1576 		unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1577 
1578 		/*
1579 		 * Skip the page if it is fully outside i_size, e.g. due to a
1580 		 * truncate operation that is in progress. We must redirty the
1581 		 * page so that reclaim stops reclaiming it. Otherwise
1582 		 * iomap_vm_releasepage() is called on it and gets confused.
1583 		 *
1584 		 * Note that the end_index is unsigned long, it would overflow
1585 		 * if the given offset is greater than 16TB on 32-bit system
1586 		 * and if we do check the page is fully outside i_size or not
1587 		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1588 		 * will be evaluated to 0.  Hence this page will be redirtied
1589 		 * and be written out repeatedly which would result in an
1590 		 * infinite loop, the user program that perform this operation
1591 		 * will hang.  Instead, we can verify this situation by checking
1592 		 * if the page to write is totally beyond the i_size or if it's
1593 		 * offset is just equal to the EOF.
1594 		 */
1595 		if (page->index > end_index ||
1596 		    (page->index == end_index && offset_into_page == 0))
1597 			goto redirty;
1598 
1599 		/*
1600 		 * The page straddles i_size.  It must be zeroed out on each
1601 		 * and every writepage invocation because it may be mmapped.
1602 		 * "A file is mapped in multiples of the page size.  For a file
1603 		 * that is not a multiple of the page size, the remaining
1604 		 * memory is zeroed when mapped, and writes to that region are
1605 		 * not written out to the file."
1606 		 */
1607 		zero_user_segment(page, offset_into_page, PAGE_SIZE);
1608 
1609 		/* Adjust the end_offset to the end of file */
1610 		end_offset = offset;
1611 	}
1612 
1613 	return iomap_writepage_map(wpc, wbc, inode, page, end_offset);
1614 
1615 redirty:
1616 	redirty_page_for_writepage(wbc, page);
1617 	unlock_page(page);
1618 	return 0;
1619 }
1620 
1621 int
1622 iomap_writepage(struct page *page, struct writeback_control *wbc,
1623 		struct iomap_writepage_ctx *wpc,
1624 		const struct iomap_writeback_ops *ops)
1625 {
1626 	int ret;
1627 
1628 	wpc->ops = ops;
1629 	ret = iomap_do_writepage(page, wbc, wpc);
1630 	if (!wpc->ioend)
1631 		return ret;
1632 	return iomap_submit_ioend(wpc, wpc->ioend, ret);
1633 }
1634 EXPORT_SYMBOL_GPL(iomap_writepage);
1635 
1636 int
1637 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
1638 		struct iomap_writepage_ctx *wpc,
1639 		const struct iomap_writeback_ops *ops)
1640 {
1641 	int			ret;
1642 
1643 	wpc->ops = ops;
1644 	ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc);
1645 	if (!wpc->ioend)
1646 		return ret;
1647 	return iomap_submit_ioend(wpc, wpc->ioend, ret);
1648 }
1649 EXPORT_SYMBOL_GPL(iomap_writepages);
1650 
1651 static int __init iomap_init(void)
1652 {
1653 	return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
1654 			   offsetof(struct iomap_ioend, io_inline_bio),
1655 			   BIOSET_NEED_BVECS);
1656 }
1657 fs_initcall(iomap_init);
1658