xref: /openbmc/linux/fs/iomap/buffered-io.c (revision 91b0383f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Red Hat, Inc.
4  * Copyright (C) 2016-2019 Christoph Hellwig.
5  */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/iomap.h>
10 #include <linux/pagemap.h>
11 #include <linux/uio.h>
12 #include <linux/buffer_head.h>
13 #include <linux/dax.h>
14 #include <linux/writeback.h>
15 #include <linux/list_sort.h>
16 #include <linux/swap.h>
17 #include <linux/bio.h>
18 #include <linux/sched/signal.h>
19 #include <linux/migrate.h>
20 #include "trace.h"
21 
22 #include "../internal.h"
23 
24 #define IOEND_BATCH_SIZE	4096
25 
26 /*
27  * Structure allocated for each folio when block size < folio size
28  * to track sub-folio uptodate status and I/O completions.
29  */
30 struct iomap_page {
31 	atomic_t		read_bytes_pending;
32 	atomic_t		write_bytes_pending;
33 	spinlock_t		uptodate_lock;
34 	unsigned long		uptodate[];
35 };
36 
37 static inline struct iomap_page *to_iomap_page(struct folio *folio)
38 {
39 	if (folio_test_private(folio))
40 		return folio_get_private(folio);
41 	return NULL;
42 }
43 
44 static struct bio_set iomap_ioend_bioset;
45 
46 static struct iomap_page *
47 iomap_page_create(struct inode *inode, struct folio *folio)
48 {
49 	struct iomap_page *iop = to_iomap_page(folio);
50 	unsigned int nr_blocks = i_blocks_per_folio(inode, folio);
51 
52 	if (iop || nr_blocks <= 1)
53 		return iop;
54 
55 	iop = kzalloc(struct_size(iop, uptodate, BITS_TO_LONGS(nr_blocks)),
56 			GFP_NOFS | __GFP_NOFAIL);
57 	spin_lock_init(&iop->uptodate_lock);
58 	if (folio_test_uptodate(folio))
59 		bitmap_fill(iop->uptodate, nr_blocks);
60 	folio_attach_private(folio, iop);
61 	return iop;
62 }
63 
64 static void iomap_page_release(struct folio *folio)
65 {
66 	struct iomap_page *iop = folio_detach_private(folio);
67 	struct inode *inode = folio->mapping->host;
68 	unsigned int nr_blocks = i_blocks_per_folio(inode, folio);
69 
70 	if (!iop)
71 		return;
72 	WARN_ON_ONCE(atomic_read(&iop->read_bytes_pending));
73 	WARN_ON_ONCE(atomic_read(&iop->write_bytes_pending));
74 	WARN_ON_ONCE(bitmap_full(iop->uptodate, nr_blocks) !=
75 			folio_test_uptodate(folio));
76 	kfree(iop);
77 }
78 
79 /*
80  * Calculate the range inside the folio that we actually need to read.
81  */
82 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio,
83 		loff_t *pos, loff_t length, size_t *offp, size_t *lenp)
84 {
85 	struct iomap_page *iop = to_iomap_page(folio);
86 	loff_t orig_pos = *pos;
87 	loff_t isize = i_size_read(inode);
88 	unsigned block_bits = inode->i_blkbits;
89 	unsigned block_size = (1 << block_bits);
90 	size_t poff = offset_in_folio(folio, *pos);
91 	size_t plen = min_t(loff_t, folio_size(folio) - poff, length);
92 	unsigned first = poff >> block_bits;
93 	unsigned last = (poff + plen - 1) >> block_bits;
94 
95 	/*
96 	 * If the block size is smaller than the page size, we need to check the
97 	 * per-block uptodate status and adjust the offset and length if needed
98 	 * to avoid reading in already uptodate ranges.
99 	 */
100 	if (iop) {
101 		unsigned int i;
102 
103 		/* move forward for each leading block marked uptodate */
104 		for (i = first; i <= last; i++) {
105 			if (!test_bit(i, iop->uptodate))
106 				break;
107 			*pos += block_size;
108 			poff += block_size;
109 			plen -= block_size;
110 			first++;
111 		}
112 
113 		/* truncate len if we find any trailing uptodate block(s) */
114 		for ( ; i <= last; i++) {
115 			if (test_bit(i, iop->uptodate)) {
116 				plen -= (last - i + 1) * block_size;
117 				last = i - 1;
118 				break;
119 			}
120 		}
121 	}
122 
123 	/*
124 	 * If the extent spans the block that contains the i_size, we need to
125 	 * handle both halves separately so that we properly zero data in the
126 	 * page cache for blocks that are entirely outside of i_size.
127 	 */
128 	if (orig_pos <= isize && orig_pos + length > isize) {
129 		unsigned end = offset_in_folio(folio, isize - 1) >> block_bits;
130 
131 		if (first <= end && last > end)
132 			plen -= (last - end) * block_size;
133 	}
134 
135 	*offp = poff;
136 	*lenp = plen;
137 }
138 
139 static void iomap_iop_set_range_uptodate(struct folio *folio,
140 		struct iomap_page *iop, size_t off, size_t len)
141 {
142 	struct inode *inode = folio->mapping->host;
143 	unsigned first = off >> inode->i_blkbits;
144 	unsigned last = (off + len - 1) >> inode->i_blkbits;
145 	unsigned long flags;
146 
147 	spin_lock_irqsave(&iop->uptodate_lock, flags);
148 	bitmap_set(iop->uptodate, first, last - first + 1);
149 	if (bitmap_full(iop->uptodate, i_blocks_per_folio(inode, folio)))
150 		folio_mark_uptodate(folio);
151 	spin_unlock_irqrestore(&iop->uptodate_lock, flags);
152 }
153 
154 static void iomap_set_range_uptodate(struct folio *folio,
155 		struct iomap_page *iop, size_t off, size_t len)
156 {
157 	if (folio_test_error(folio))
158 		return;
159 
160 	if (iop)
161 		iomap_iop_set_range_uptodate(folio, iop, off, len);
162 	else
163 		folio_mark_uptodate(folio);
164 }
165 
166 static void iomap_finish_folio_read(struct folio *folio, size_t offset,
167 		size_t len, int error)
168 {
169 	struct iomap_page *iop = to_iomap_page(folio);
170 
171 	if (unlikely(error)) {
172 		folio_clear_uptodate(folio);
173 		folio_set_error(folio);
174 	} else {
175 		iomap_set_range_uptodate(folio, iop, offset, len);
176 	}
177 
178 	if (!iop || atomic_sub_and_test(len, &iop->read_bytes_pending))
179 		folio_unlock(folio);
180 }
181 
182 static void iomap_read_end_io(struct bio *bio)
183 {
184 	int error = blk_status_to_errno(bio->bi_status);
185 	struct folio_iter fi;
186 
187 	bio_for_each_folio_all(fi, bio)
188 		iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error);
189 	bio_put(bio);
190 }
191 
192 struct iomap_readpage_ctx {
193 	struct folio		*cur_folio;
194 	bool			cur_folio_in_bio;
195 	struct bio		*bio;
196 	struct readahead_control *rac;
197 };
198 
199 /**
200  * iomap_read_inline_data - copy inline data into the page cache
201  * @iter: iteration structure
202  * @folio: folio to copy to
203  *
204  * Copy the inline data in @iter into @folio and zero out the rest of the folio.
205  * Only a single IOMAP_INLINE extent is allowed at the end of each file.
206  * Returns zero for success to complete the read, or the usual negative errno.
207  */
208 static int iomap_read_inline_data(const struct iomap_iter *iter,
209 		struct folio *folio)
210 {
211 	struct iomap_page *iop;
212 	const struct iomap *iomap = iomap_iter_srcmap(iter);
213 	size_t size = i_size_read(iter->inode) - iomap->offset;
214 	size_t poff = offset_in_page(iomap->offset);
215 	size_t offset = offset_in_folio(folio, iomap->offset);
216 	void *addr;
217 
218 	if (folio_test_uptodate(folio))
219 		return 0;
220 
221 	if (WARN_ON_ONCE(size > PAGE_SIZE - poff))
222 		return -EIO;
223 	if (WARN_ON_ONCE(size > PAGE_SIZE -
224 			 offset_in_page(iomap->inline_data)))
225 		return -EIO;
226 	if (WARN_ON_ONCE(size > iomap->length))
227 		return -EIO;
228 	if (offset > 0)
229 		iop = iomap_page_create(iter->inode, folio);
230 	else
231 		iop = to_iomap_page(folio);
232 
233 	addr = kmap_local_folio(folio, offset);
234 	memcpy(addr, iomap->inline_data, size);
235 	memset(addr + size, 0, PAGE_SIZE - poff - size);
236 	kunmap_local(addr);
237 	iomap_set_range_uptodate(folio, iop, offset, PAGE_SIZE - poff);
238 	return 0;
239 }
240 
241 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter,
242 		loff_t pos)
243 {
244 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
245 
246 	return srcmap->type != IOMAP_MAPPED ||
247 		(srcmap->flags & IOMAP_F_NEW) ||
248 		pos >= i_size_read(iter->inode);
249 }
250 
251 static loff_t iomap_readpage_iter(const struct iomap_iter *iter,
252 		struct iomap_readpage_ctx *ctx, loff_t offset)
253 {
254 	const struct iomap *iomap = &iter->iomap;
255 	loff_t pos = iter->pos + offset;
256 	loff_t length = iomap_length(iter) - offset;
257 	struct folio *folio = ctx->cur_folio;
258 	struct iomap_page *iop;
259 	loff_t orig_pos = pos;
260 	size_t poff, plen;
261 	sector_t sector;
262 
263 	if (iomap->type == IOMAP_INLINE)
264 		return iomap_read_inline_data(iter, folio);
265 
266 	/* zero post-eof blocks as the page may be mapped */
267 	iop = iomap_page_create(iter->inode, folio);
268 	iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen);
269 	if (plen == 0)
270 		goto done;
271 
272 	if (iomap_block_needs_zeroing(iter, pos)) {
273 		folio_zero_range(folio, poff, plen);
274 		iomap_set_range_uptodate(folio, iop, poff, plen);
275 		goto done;
276 	}
277 
278 	ctx->cur_folio_in_bio = true;
279 	if (iop)
280 		atomic_add(plen, &iop->read_bytes_pending);
281 
282 	sector = iomap_sector(iomap, pos);
283 	if (!ctx->bio ||
284 	    bio_end_sector(ctx->bio) != sector ||
285 	    !bio_add_folio(ctx->bio, folio, plen, poff)) {
286 		gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL);
287 		gfp_t orig_gfp = gfp;
288 		unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE);
289 
290 		if (ctx->bio)
291 			submit_bio(ctx->bio);
292 
293 		if (ctx->rac) /* same as readahead_gfp_mask */
294 			gfp |= __GFP_NORETRY | __GFP_NOWARN;
295 		ctx->bio = bio_alloc(gfp, bio_max_segs(nr_vecs));
296 		/*
297 		 * If the bio_alloc fails, try it again for a single page to
298 		 * avoid having to deal with partial page reads.  This emulates
299 		 * what do_mpage_readpage does.
300 		 */
301 		if (!ctx->bio)
302 			ctx->bio = bio_alloc(orig_gfp, 1);
303 		ctx->bio->bi_opf = REQ_OP_READ;
304 		if (ctx->rac)
305 			ctx->bio->bi_opf |= REQ_RAHEAD;
306 		ctx->bio->bi_iter.bi_sector = sector;
307 		bio_set_dev(ctx->bio, iomap->bdev);
308 		ctx->bio->bi_end_io = iomap_read_end_io;
309 		bio_add_folio(ctx->bio, folio, plen, poff);
310 	}
311 
312 done:
313 	/*
314 	 * Move the caller beyond our range so that it keeps making progress.
315 	 * For that, we have to include any leading non-uptodate ranges, but
316 	 * we can skip trailing ones as they will be handled in the next
317 	 * iteration.
318 	 */
319 	return pos - orig_pos + plen;
320 }
321 
322 int
323 iomap_readpage(struct page *page, const struct iomap_ops *ops)
324 {
325 	struct folio *folio = page_folio(page);
326 	struct iomap_iter iter = {
327 		.inode		= folio->mapping->host,
328 		.pos		= folio_pos(folio),
329 		.len		= folio_size(folio),
330 	};
331 	struct iomap_readpage_ctx ctx = {
332 		.cur_folio	= folio,
333 	};
334 	int ret;
335 
336 	trace_iomap_readpage(iter.inode, 1);
337 
338 	while ((ret = iomap_iter(&iter, ops)) > 0)
339 		iter.processed = iomap_readpage_iter(&iter, &ctx, 0);
340 
341 	if (ret < 0)
342 		folio_set_error(folio);
343 
344 	if (ctx.bio) {
345 		submit_bio(ctx.bio);
346 		WARN_ON_ONCE(!ctx.cur_folio_in_bio);
347 	} else {
348 		WARN_ON_ONCE(ctx.cur_folio_in_bio);
349 		folio_unlock(folio);
350 	}
351 
352 	/*
353 	 * Just like mpage_readahead and block_read_full_page, we always
354 	 * return 0 and just mark the page as PageError on errors.  This
355 	 * should be cleaned up throughout the stack eventually.
356 	 */
357 	return 0;
358 }
359 EXPORT_SYMBOL_GPL(iomap_readpage);
360 
361 static loff_t iomap_readahead_iter(const struct iomap_iter *iter,
362 		struct iomap_readpage_ctx *ctx)
363 {
364 	loff_t length = iomap_length(iter);
365 	loff_t done, ret;
366 
367 	for (done = 0; done < length; done += ret) {
368 		if (ctx->cur_folio &&
369 		    offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) {
370 			if (!ctx->cur_folio_in_bio)
371 				folio_unlock(ctx->cur_folio);
372 			ctx->cur_folio = NULL;
373 		}
374 		if (!ctx->cur_folio) {
375 			ctx->cur_folio = readahead_folio(ctx->rac);
376 			ctx->cur_folio_in_bio = false;
377 		}
378 		ret = iomap_readpage_iter(iter, ctx, done);
379 		if (ret <= 0)
380 			return ret;
381 	}
382 
383 	return done;
384 }
385 
386 /**
387  * iomap_readahead - Attempt to read pages from a file.
388  * @rac: Describes the pages to be read.
389  * @ops: The operations vector for the filesystem.
390  *
391  * This function is for filesystems to call to implement their readahead
392  * address_space operation.
393  *
394  * Context: The @ops callbacks may submit I/O (eg to read the addresses of
395  * blocks from disc), and may wait for it.  The caller may be trying to
396  * access a different page, and so sleeping excessively should be avoided.
397  * It may allocate memory, but should avoid costly allocations.  This
398  * function is called with memalloc_nofs set, so allocations will not cause
399  * the filesystem to be reentered.
400  */
401 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops)
402 {
403 	struct iomap_iter iter = {
404 		.inode	= rac->mapping->host,
405 		.pos	= readahead_pos(rac),
406 		.len	= readahead_length(rac),
407 	};
408 	struct iomap_readpage_ctx ctx = {
409 		.rac	= rac,
410 	};
411 
412 	trace_iomap_readahead(rac->mapping->host, readahead_count(rac));
413 
414 	while (iomap_iter(&iter, ops) > 0)
415 		iter.processed = iomap_readahead_iter(&iter, &ctx);
416 
417 	if (ctx.bio)
418 		submit_bio(ctx.bio);
419 	if (ctx.cur_folio) {
420 		if (!ctx.cur_folio_in_bio)
421 			folio_unlock(ctx.cur_folio);
422 	}
423 }
424 EXPORT_SYMBOL_GPL(iomap_readahead);
425 
426 /*
427  * iomap_is_partially_uptodate checks whether blocks within a page are
428  * uptodate or not.
429  *
430  * Returns true if all blocks which correspond to a file portion
431  * we want to read within the page are uptodate.
432  */
433 int
434 iomap_is_partially_uptodate(struct page *page, unsigned long from,
435 		unsigned long count)
436 {
437 	struct folio *folio = page_folio(page);
438 	struct iomap_page *iop = to_iomap_page(folio);
439 	struct inode *inode = page->mapping->host;
440 	unsigned len, first, last;
441 	unsigned i;
442 
443 	/* Limit range to one page */
444 	len = min_t(unsigned, PAGE_SIZE - from, count);
445 
446 	/* First and last blocks in range within page */
447 	first = from >> inode->i_blkbits;
448 	last = (from + len - 1) >> inode->i_blkbits;
449 
450 	if (iop) {
451 		for (i = first; i <= last; i++)
452 			if (!test_bit(i, iop->uptodate))
453 				return 0;
454 		return 1;
455 	}
456 
457 	return 0;
458 }
459 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
460 
461 int
462 iomap_releasepage(struct page *page, gfp_t gfp_mask)
463 {
464 	struct folio *folio = page_folio(page);
465 
466 	trace_iomap_releasepage(folio->mapping->host, folio_pos(folio),
467 			folio_size(folio));
468 
469 	/*
470 	 * mm accommodates an old ext3 case where clean pages might not have had
471 	 * the dirty bit cleared. Thus, it can send actual dirty pages to
472 	 * ->releasepage() via shrink_active_list(); skip those here.
473 	 */
474 	if (folio_test_dirty(folio) || folio_test_writeback(folio))
475 		return 0;
476 	iomap_page_release(folio);
477 	return 1;
478 }
479 EXPORT_SYMBOL_GPL(iomap_releasepage);
480 
481 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len)
482 {
483 	trace_iomap_invalidatepage(folio->mapping->host, offset, len);
484 
485 	/*
486 	 * If we're invalidating the entire folio, clear the dirty state
487 	 * from it and release it to avoid unnecessary buildup of the LRU.
488 	 */
489 	if (offset == 0 && len == folio_size(folio)) {
490 		WARN_ON_ONCE(folio_test_writeback(folio));
491 		folio_cancel_dirty(folio);
492 		iomap_page_release(folio);
493 	} else if (folio_test_large(folio)) {
494 		/* Must release the iop so the page can be split */
495 		WARN_ON_ONCE(!folio_test_uptodate(folio) &&
496 			     folio_test_dirty(folio));
497 		iomap_page_release(folio);
498 	}
499 }
500 EXPORT_SYMBOL_GPL(iomap_invalidate_folio);
501 
502 void iomap_invalidatepage(struct page *page, unsigned int offset,
503 		unsigned int len)
504 {
505 	iomap_invalidate_folio(page_folio(page), offset, len);
506 }
507 EXPORT_SYMBOL_GPL(iomap_invalidatepage);
508 
509 #ifdef CONFIG_MIGRATION
510 int
511 iomap_migrate_page(struct address_space *mapping, struct page *newpage,
512 		struct page *page, enum migrate_mode mode)
513 {
514 	struct folio *folio = page_folio(page);
515 	struct folio *newfolio = page_folio(newpage);
516 	int ret;
517 
518 	ret = folio_migrate_mapping(mapping, newfolio, folio, 0);
519 	if (ret != MIGRATEPAGE_SUCCESS)
520 		return ret;
521 
522 	if (folio_test_private(folio))
523 		folio_attach_private(newfolio, folio_detach_private(folio));
524 
525 	if (mode != MIGRATE_SYNC_NO_COPY)
526 		folio_migrate_copy(newfolio, folio);
527 	else
528 		folio_migrate_flags(newfolio, folio);
529 	return MIGRATEPAGE_SUCCESS;
530 }
531 EXPORT_SYMBOL_GPL(iomap_migrate_page);
532 #endif /* CONFIG_MIGRATION */
533 
534 static void
535 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
536 {
537 	loff_t i_size = i_size_read(inode);
538 
539 	/*
540 	 * Only truncate newly allocated pages beyoned EOF, even if the
541 	 * write started inside the existing inode size.
542 	 */
543 	if (pos + len > i_size)
544 		truncate_pagecache_range(inode, max(pos, i_size), pos + len);
545 }
546 
547 static int iomap_read_folio_sync(loff_t block_start, struct folio *folio,
548 		size_t poff, size_t plen, const struct iomap *iomap)
549 {
550 	struct bio_vec bvec;
551 	struct bio bio;
552 
553 	bio_init(&bio, &bvec, 1);
554 	bio.bi_opf = REQ_OP_READ;
555 	bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
556 	bio_set_dev(&bio, iomap->bdev);
557 	bio_add_folio(&bio, folio, plen, poff);
558 	return submit_bio_wait(&bio);
559 }
560 
561 static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos,
562 		size_t len, struct folio *folio)
563 {
564 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
565 	struct iomap_page *iop = iomap_page_create(iter->inode, folio);
566 	loff_t block_size = i_blocksize(iter->inode);
567 	loff_t block_start = round_down(pos, block_size);
568 	loff_t block_end = round_up(pos + len, block_size);
569 	size_t from = offset_in_folio(folio, pos), to = from + len;
570 	size_t poff, plen;
571 
572 	if (folio_test_uptodate(folio))
573 		return 0;
574 	folio_clear_error(folio);
575 
576 	do {
577 		iomap_adjust_read_range(iter->inode, folio, &block_start,
578 				block_end - block_start, &poff, &plen);
579 		if (plen == 0)
580 			break;
581 
582 		if (!(iter->flags & IOMAP_UNSHARE) &&
583 		    (from <= poff || from >= poff + plen) &&
584 		    (to <= poff || to >= poff + plen))
585 			continue;
586 
587 		if (iomap_block_needs_zeroing(iter, block_start)) {
588 			if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE))
589 				return -EIO;
590 			folio_zero_segments(folio, poff, from, to, poff + plen);
591 		} else {
592 			int status = iomap_read_folio_sync(block_start, folio,
593 					poff, plen, srcmap);
594 			if (status)
595 				return status;
596 		}
597 		iomap_set_range_uptodate(folio, iop, poff, plen);
598 	} while ((block_start += plen) < block_end);
599 
600 	return 0;
601 }
602 
603 static int iomap_write_begin_inline(const struct iomap_iter *iter,
604 		struct folio *folio)
605 {
606 	/* needs more work for the tailpacking case; disable for now */
607 	if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0))
608 		return -EIO;
609 	return iomap_read_inline_data(iter, folio);
610 }
611 
612 static int iomap_write_begin(const struct iomap_iter *iter, loff_t pos,
613 		size_t len, struct folio **foliop)
614 {
615 	const struct iomap_page_ops *page_ops = iter->iomap.page_ops;
616 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
617 	struct folio *folio;
618 	unsigned fgp = FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE | FGP_NOFS;
619 	int status = 0;
620 
621 	BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length);
622 	if (srcmap != &iter->iomap)
623 		BUG_ON(pos + len > srcmap->offset + srcmap->length);
624 
625 	if (fatal_signal_pending(current))
626 		return -EINTR;
627 
628 	if (!mapping_large_folio_support(iter->inode->i_mapping))
629 		len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos));
630 
631 	if (page_ops && page_ops->page_prepare) {
632 		status = page_ops->page_prepare(iter->inode, pos, len);
633 		if (status)
634 			return status;
635 	}
636 
637 	folio = __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT,
638 			fgp, mapping_gfp_mask(iter->inode->i_mapping));
639 	if (!folio) {
640 		status = -ENOMEM;
641 		goto out_no_page;
642 	}
643 	if (pos + len > folio_pos(folio) + folio_size(folio))
644 		len = folio_pos(folio) + folio_size(folio) - pos;
645 
646 	if (srcmap->type == IOMAP_INLINE)
647 		status = iomap_write_begin_inline(iter, folio);
648 	else if (srcmap->flags & IOMAP_F_BUFFER_HEAD)
649 		status = __block_write_begin_int(folio, pos, len, NULL, srcmap);
650 	else
651 		status = __iomap_write_begin(iter, pos, len, folio);
652 
653 	if (unlikely(status))
654 		goto out_unlock;
655 
656 	*foliop = folio;
657 	return 0;
658 
659 out_unlock:
660 	folio_unlock(folio);
661 	folio_put(folio);
662 	iomap_write_failed(iter->inode, pos, len);
663 
664 out_no_page:
665 	if (page_ops && page_ops->page_done)
666 		page_ops->page_done(iter->inode, pos, 0, NULL);
667 	return status;
668 }
669 
670 static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len,
671 		size_t copied, struct folio *folio)
672 {
673 	struct iomap_page *iop = to_iomap_page(folio);
674 	flush_dcache_folio(folio);
675 
676 	/*
677 	 * The blocks that were entirely written will now be uptodate, so we
678 	 * don't have to worry about a readpage reading them and overwriting a
679 	 * partial write.  However, if we've encountered a short write and only
680 	 * partially written into a block, it will not be marked uptodate, so a
681 	 * readpage might come in and destroy our partial write.
682 	 *
683 	 * Do the simplest thing and just treat any short write to a
684 	 * non-uptodate page as a zero-length write, and force the caller to
685 	 * redo the whole thing.
686 	 */
687 	if (unlikely(copied < len && !folio_test_uptodate(folio)))
688 		return 0;
689 	iomap_set_range_uptodate(folio, iop, offset_in_folio(folio, pos), len);
690 	filemap_dirty_folio(inode->i_mapping, folio);
691 	return copied;
692 }
693 
694 static size_t iomap_write_end_inline(const struct iomap_iter *iter,
695 		struct folio *folio, loff_t pos, size_t copied)
696 {
697 	const struct iomap *iomap = &iter->iomap;
698 	void *addr;
699 
700 	WARN_ON_ONCE(!folio_test_uptodate(folio));
701 	BUG_ON(!iomap_inline_data_valid(iomap));
702 
703 	flush_dcache_folio(folio);
704 	addr = kmap_local_folio(folio, pos);
705 	memcpy(iomap_inline_data(iomap, pos), addr, copied);
706 	kunmap_local(addr);
707 
708 	mark_inode_dirty(iter->inode);
709 	return copied;
710 }
711 
712 /* Returns the number of bytes copied.  May be 0.  Cannot be an errno. */
713 static size_t iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len,
714 		size_t copied, struct folio *folio)
715 {
716 	const struct iomap_page_ops *page_ops = iter->iomap.page_ops;
717 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
718 	loff_t old_size = iter->inode->i_size;
719 	size_t ret;
720 
721 	if (srcmap->type == IOMAP_INLINE) {
722 		ret = iomap_write_end_inline(iter, folio, pos, copied);
723 	} else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
724 		ret = block_write_end(NULL, iter->inode->i_mapping, pos, len,
725 				copied, &folio->page, NULL);
726 	} else {
727 		ret = __iomap_write_end(iter->inode, pos, len, copied, folio);
728 	}
729 
730 	/*
731 	 * Update the in-memory inode size after copying the data into the page
732 	 * cache.  It's up to the file system to write the updated size to disk,
733 	 * preferably after I/O completion so that no stale data is exposed.
734 	 */
735 	if (pos + ret > old_size) {
736 		i_size_write(iter->inode, pos + ret);
737 		iter->iomap.flags |= IOMAP_F_SIZE_CHANGED;
738 	}
739 	folio_unlock(folio);
740 
741 	if (old_size < pos)
742 		pagecache_isize_extended(iter->inode, old_size, pos);
743 	if (page_ops && page_ops->page_done)
744 		page_ops->page_done(iter->inode, pos, ret, &folio->page);
745 	folio_put(folio);
746 
747 	if (ret < len)
748 		iomap_write_failed(iter->inode, pos, len);
749 	return ret;
750 }
751 
752 static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i)
753 {
754 	loff_t length = iomap_length(iter);
755 	loff_t pos = iter->pos;
756 	ssize_t written = 0;
757 	long status = 0;
758 
759 	do {
760 		struct folio *folio;
761 		struct page *page;
762 		unsigned long offset;	/* Offset into pagecache page */
763 		unsigned long bytes;	/* Bytes to write to page */
764 		size_t copied;		/* Bytes copied from user */
765 
766 		offset = offset_in_page(pos);
767 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
768 						iov_iter_count(i));
769 again:
770 		if (bytes > length)
771 			bytes = length;
772 
773 		/*
774 		 * Bring in the user page that we'll copy from _first_.
775 		 * Otherwise there's a nasty deadlock on copying from the
776 		 * same page as we're writing to, without it being marked
777 		 * up-to-date.
778 		 */
779 		if (unlikely(fault_in_iov_iter_readable(i, bytes))) {
780 			status = -EFAULT;
781 			break;
782 		}
783 
784 		status = iomap_write_begin(iter, pos, bytes, &folio);
785 		if (unlikely(status))
786 			break;
787 
788 		page = folio_file_page(folio, pos >> PAGE_SHIFT);
789 		if (mapping_writably_mapped(iter->inode->i_mapping))
790 			flush_dcache_page(page);
791 
792 		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
793 
794 		status = iomap_write_end(iter, pos, bytes, copied, folio);
795 
796 		if (unlikely(copied != status))
797 			iov_iter_revert(i, copied - status);
798 
799 		cond_resched();
800 		if (unlikely(status == 0)) {
801 			/*
802 			 * A short copy made iomap_write_end() reject the
803 			 * thing entirely.  Might be memory poisoning
804 			 * halfway through, might be a race with munmap,
805 			 * might be severe memory pressure.
806 			 */
807 			if (copied)
808 				bytes = copied;
809 			goto again;
810 		}
811 		pos += status;
812 		written += status;
813 		length -= status;
814 
815 		balance_dirty_pages_ratelimited(iter->inode->i_mapping);
816 	} while (iov_iter_count(i) && length);
817 
818 	return written ? written : status;
819 }
820 
821 ssize_t
822 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i,
823 		const struct iomap_ops *ops)
824 {
825 	struct iomap_iter iter = {
826 		.inode		= iocb->ki_filp->f_mapping->host,
827 		.pos		= iocb->ki_pos,
828 		.len		= iov_iter_count(i),
829 		.flags		= IOMAP_WRITE,
830 	};
831 	int ret;
832 
833 	while ((ret = iomap_iter(&iter, ops)) > 0)
834 		iter.processed = iomap_write_iter(&iter, i);
835 	if (iter.pos == iocb->ki_pos)
836 		return ret;
837 	return iter.pos - iocb->ki_pos;
838 }
839 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
840 
841 static loff_t iomap_unshare_iter(struct iomap_iter *iter)
842 {
843 	struct iomap *iomap = &iter->iomap;
844 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
845 	loff_t pos = iter->pos;
846 	loff_t length = iomap_length(iter);
847 	long status = 0;
848 	loff_t written = 0;
849 
850 	/* don't bother with blocks that are not shared to start with */
851 	if (!(iomap->flags & IOMAP_F_SHARED))
852 		return length;
853 	/* don't bother with holes or unwritten extents */
854 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
855 		return length;
856 
857 	do {
858 		unsigned long offset = offset_in_page(pos);
859 		unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length);
860 		struct folio *folio;
861 
862 		status = iomap_write_begin(iter, pos, bytes, &folio);
863 		if (unlikely(status))
864 			return status;
865 
866 		status = iomap_write_end(iter, pos, bytes, bytes, folio);
867 		if (WARN_ON_ONCE(status == 0))
868 			return -EIO;
869 
870 		cond_resched();
871 
872 		pos += status;
873 		written += status;
874 		length -= status;
875 
876 		balance_dirty_pages_ratelimited(iter->inode->i_mapping);
877 	} while (length);
878 
879 	return written;
880 }
881 
882 int
883 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
884 		const struct iomap_ops *ops)
885 {
886 	struct iomap_iter iter = {
887 		.inode		= inode,
888 		.pos		= pos,
889 		.len		= len,
890 		.flags		= IOMAP_WRITE | IOMAP_UNSHARE,
891 	};
892 	int ret;
893 
894 	while ((ret = iomap_iter(&iter, ops)) > 0)
895 		iter.processed = iomap_unshare_iter(&iter);
896 	return ret;
897 }
898 EXPORT_SYMBOL_GPL(iomap_file_unshare);
899 
900 static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero)
901 {
902 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
903 	loff_t pos = iter->pos;
904 	loff_t length = iomap_length(iter);
905 	loff_t written = 0;
906 
907 	/* already zeroed?  we're done. */
908 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
909 		return length;
910 
911 	do {
912 		struct folio *folio;
913 		int status;
914 		size_t offset;
915 		size_t bytes = min_t(u64, SIZE_MAX, length);
916 
917 		status = iomap_write_begin(iter, pos, bytes, &folio);
918 		if (status)
919 			return status;
920 
921 		offset = offset_in_folio(folio, pos);
922 		if (bytes > folio_size(folio) - offset)
923 			bytes = folio_size(folio) - offset;
924 
925 		folio_zero_range(folio, offset, bytes);
926 		folio_mark_accessed(folio);
927 
928 		bytes = iomap_write_end(iter, pos, bytes, bytes, folio);
929 		if (WARN_ON_ONCE(bytes == 0))
930 			return -EIO;
931 
932 		pos += bytes;
933 		length -= bytes;
934 		written += bytes;
935 		if (did_zero)
936 			*did_zero = true;
937 	} while (length > 0);
938 
939 	return written;
940 }
941 
942 int
943 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
944 		const struct iomap_ops *ops)
945 {
946 	struct iomap_iter iter = {
947 		.inode		= inode,
948 		.pos		= pos,
949 		.len		= len,
950 		.flags		= IOMAP_ZERO,
951 	};
952 	int ret;
953 
954 	while ((ret = iomap_iter(&iter, ops)) > 0)
955 		iter.processed = iomap_zero_iter(&iter, did_zero);
956 	return ret;
957 }
958 EXPORT_SYMBOL_GPL(iomap_zero_range);
959 
960 int
961 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
962 		const struct iomap_ops *ops)
963 {
964 	unsigned int blocksize = i_blocksize(inode);
965 	unsigned int off = pos & (blocksize - 1);
966 
967 	/* Block boundary? Nothing to do */
968 	if (!off)
969 		return 0;
970 	return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
971 }
972 EXPORT_SYMBOL_GPL(iomap_truncate_page);
973 
974 static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter,
975 		struct folio *folio)
976 {
977 	loff_t length = iomap_length(iter);
978 	int ret;
979 
980 	if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) {
981 		ret = __block_write_begin_int(folio, iter->pos, length, NULL,
982 					      &iter->iomap);
983 		if (ret)
984 			return ret;
985 		block_commit_write(&folio->page, 0, length);
986 	} else {
987 		WARN_ON_ONCE(!folio_test_uptodate(folio));
988 		folio_mark_dirty(folio);
989 	}
990 
991 	return length;
992 }
993 
994 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
995 {
996 	struct iomap_iter iter = {
997 		.inode		= file_inode(vmf->vma->vm_file),
998 		.flags		= IOMAP_WRITE | IOMAP_FAULT,
999 	};
1000 	struct folio *folio = page_folio(vmf->page);
1001 	ssize_t ret;
1002 
1003 	folio_lock(folio);
1004 	ret = folio_mkwrite_check_truncate(folio, iter.inode);
1005 	if (ret < 0)
1006 		goto out_unlock;
1007 	iter.pos = folio_pos(folio);
1008 	iter.len = ret;
1009 	while ((ret = iomap_iter(&iter, ops)) > 0)
1010 		iter.processed = iomap_folio_mkwrite_iter(&iter, folio);
1011 
1012 	if (ret < 0)
1013 		goto out_unlock;
1014 	folio_wait_stable(folio);
1015 	return VM_FAULT_LOCKED;
1016 out_unlock:
1017 	folio_unlock(folio);
1018 	return block_page_mkwrite_return(ret);
1019 }
1020 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1021 
1022 static void iomap_finish_folio_write(struct inode *inode, struct folio *folio,
1023 		size_t len, int error)
1024 {
1025 	struct iomap_page *iop = to_iomap_page(folio);
1026 
1027 	if (error) {
1028 		folio_set_error(folio);
1029 		mapping_set_error(inode->i_mapping, error);
1030 	}
1031 
1032 	WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !iop);
1033 	WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) <= 0);
1034 
1035 	if (!iop || atomic_sub_and_test(len, &iop->write_bytes_pending))
1036 		folio_end_writeback(folio);
1037 }
1038 
1039 /*
1040  * We're now finished for good with this ioend structure.  Update the page
1041  * state, release holds on bios, and finally free up memory.  Do not use the
1042  * ioend after this.
1043  */
1044 static u32
1045 iomap_finish_ioend(struct iomap_ioend *ioend, int error)
1046 {
1047 	struct inode *inode = ioend->io_inode;
1048 	struct bio *bio = &ioend->io_inline_bio;
1049 	struct bio *last = ioend->io_bio, *next;
1050 	u64 start = bio->bi_iter.bi_sector;
1051 	loff_t offset = ioend->io_offset;
1052 	bool quiet = bio_flagged(bio, BIO_QUIET);
1053 	u32 folio_count = 0;
1054 
1055 	for (bio = &ioend->io_inline_bio; bio; bio = next) {
1056 		struct folio_iter fi;
1057 
1058 		/*
1059 		 * For the last bio, bi_private points to the ioend, so we
1060 		 * need to explicitly end the iteration here.
1061 		 */
1062 		if (bio == last)
1063 			next = NULL;
1064 		else
1065 			next = bio->bi_private;
1066 
1067 		/* walk all folios in bio, ending page IO on them */
1068 		bio_for_each_folio_all(fi, bio) {
1069 			iomap_finish_folio_write(inode, fi.folio, fi.length,
1070 					error);
1071 			folio_count++;
1072 		}
1073 		bio_put(bio);
1074 	}
1075 	/* The ioend has been freed by bio_put() */
1076 
1077 	if (unlikely(error && !quiet)) {
1078 		printk_ratelimited(KERN_ERR
1079 "%s: writeback error on inode %lu, offset %lld, sector %llu",
1080 			inode->i_sb->s_id, inode->i_ino, offset, start);
1081 	}
1082 	return folio_count;
1083 }
1084 
1085 /*
1086  * Ioend completion routine for merged bios. This can only be called from task
1087  * contexts as merged ioends can be of unbound length. Hence we have to break up
1088  * the writeback completions into manageable chunks to avoid long scheduler
1089  * holdoffs. We aim to keep scheduler holdoffs down below 10ms so that we get
1090  * good batch processing throughput without creating adverse scheduler latency
1091  * conditions.
1092  */
1093 void
1094 iomap_finish_ioends(struct iomap_ioend *ioend, int error)
1095 {
1096 	struct list_head tmp;
1097 	u32 completions;
1098 
1099 	might_sleep();
1100 
1101 	list_replace_init(&ioend->io_list, &tmp);
1102 	completions = iomap_finish_ioend(ioend, error);
1103 
1104 	while (!list_empty(&tmp)) {
1105 		if (completions > IOEND_BATCH_SIZE * 8) {
1106 			cond_resched();
1107 			completions = 0;
1108 		}
1109 		ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
1110 		list_del_init(&ioend->io_list);
1111 		completions += iomap_finish_ioend(ioend, error);
1112 	}
1113 }
1114 EXPORT_SYMBOL_GPL(iomap_finish_ioends);
1115 
1116 /*
1117  * We can merge two adjacent ioends if they have the same set of work to do.
1118  */
1119 static bool
1120 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
1121 {
1122 	if (ioend->io_bio->bi_status != next->io_bio->bi_status)
1123 		return false;
1124 	if ((ioend->io_flags & IOMAP_F_SHARED) ^
1125 	    (next->io_flags & IOMAP_F_SHARED))
1126 		return false;
1127 	if ((ioend->io_type == IOMAP_UNWRITTEN) ^
1128 	    (next->io_type == IOMAP_UNWRITTEN))
1129 		return false;
1130 	if (ioend->io_offset + ioend->io_size != next->io_offset)
1131 		return false;
1132 	/*
1133 	 * Do not merge physically discontiguous ioends. The filesystem
1134 	 * completion functions will have to iterate the physical
1135 	 * discontiguities even if we merge the ioends at a logical level, so
1136 	 * we don't gain anything by merging physical discontiguities here.
1137 	 *
1138 	 * We cannot use bio->bi_iter.bi_sector here as it is modified during
1139 	 * submission so does not point to the start sector of the bio at
1140 	 * completion.
1141 	 */
1142 	if (ioend->io_sector + (ioend->io_size >> 9) != next->io_sector)
1143 		return false;
1144 	return true;
1145 }
1146 
1147 void
1148 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends)
1149 {
1150 	struct iomap_ioend *next;
1151 
1152 	INIT_LIST_HEAD(&ioend->io_list);
1153 
1154 	while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
1155 			io_list))) {
1156 		if (!iomap_ioend_can_merge(ioend, next))
1157 			break;
1158 		list_move_tail(&next->io_list, &ioend->io_list);
1159 		ioend->io_size += next->io_size;
1160 	}
1161 }
1162 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
1163 
1164 static int
1165 iomap_ioend_compare(void *priv, const struct list_head *a,
1166 		const struct list_head *b)
1167 {
1168 	struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
1169 	struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
1170 
1171 	if (ia->io_offset < ib->io_offset)
1172 		return -1;
1173 	if (ia->io_offset > ib->io_offset)
1174 		return 1;
1175 	return 0;
1176 }
1177 
1178 void
1179 iomap_sort_ioends(struct list_head *ioend_list)
1180 {
1181 	list_sort(NULL, ioend_list, iomap_ioend_compare);
1182 }
1183 EXPORT_SYMBOL_GPL(iomap_sort_ioends);
1184 
1185 static void iomap_writepage_end_bio(struct bio *bio)
1186 {
1187 	struct iomap_ioend *ioend = bio->bi_private;
1188 
1189 	iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status));
1190 }
1191 
1192 /*
1193  * Submit the final bio for an ioend.
1194  *
1195  * If @error is non-zero, it means that we have a situation where some part of
1196  * the submission process has failed after we've marked pages for writeback
1197  * and unlocked them.  In this situation, we need to fail the bio instead of
1198  * submitting it.  This typically only happens on a filesystem shutdown.
1199  */
1200 static int
1201 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend,
1202 		int error)
1203 {
1204 	ioend->io_bio->bi_private = ioend;
1205 	ioend->io_bio->bi_end_io = iomap_writepage_end_bio;
1206 
1207 	if (wpc->ops->prepare_ioend)
1208 		error = wpc->ops->prepare_ioend(ioend, error);
1209 	if (error) {
1210 		/*
1211 		 * If we're failing the IO now, just mark the ioend with an
1212 		 * error and finish it.  This will run IO completion immediately
1213 		 * as there is only one reference to the ioend at this point in
1214 		 * time.
1215 		 */
1216 		ioend->io_bio->bi_status = errno_to_blk_status(error);
1217 		bio_endio(ioend->io_bio);
1218 		return error;
1219 	}
1220 
1221 	submit_bio(ioend->io_bio);
1222 	return 0;
1223 }
1224 
1225 static struct iomap_ioend *
1226 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc,
1227 		loff_t offset, sector_t sector, struct writeback_control *wbc)
1228 {
1229 	struct iomap_ioend *ioend;
1230 	struct bio *bio;
1231 
1232 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_VECS, &iomap_ioend_bioset);
1233 	bio_set_dev(bio, wpc->iomap.bdev);
1234 	bio->bi_iter.bi_sector = sector;
1235 	bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
1236 	bio->bi_write_hint = inode->i_write_hint;
1237 	wbc_init_bio(wbc, bio);
1238 
1239 	ioend = container_of(bio, struct iomap_ioend, io_inline_bio);
1240 	INIT_LIST_HEAD(&ioend->io_list);
1241 	ioend->io_type = wpc->iomap.type;
1242 	ioend->io_flags = wpc->iomap.flags;
1243 	ioend->io_inode = inode;
1244 	ioend->io_size = 0;
1245 	ioend->io_folios = 0;
1246 	ioend->io_offset = offset;
1247 	ioend->io_bio = bio;
1248 	ioend->io_sector = sector;
1249 	return ioend;
1250 }
1251 
1252 /*
1253  * Allocate a new bio, and chain the old bio to the new one.
1254  *
1255  * Note that we have to perform the chaining in this unintuitive order
1256  * so that the bi_private linkage is set up in the right direction for the
1257  * traversal in iomap_finish_ioend().
1258  */
1259 static struct bio *
1260 iomap_chain_bio(struct bio *prev)
1261 {
1262 	struct bio *new;
1263 
1264 	new = bio_alloc(GFP_NOFS, BIO_MAX_VECS);
1265 	bio_copy_dev(new, prev);/* also copies over blkcg information */
1266 	new->bi_iter.bi_sector = bio_end_sector(prev);
1267 	new->bi_opf = prev->bi_opf;
1268 	new->bi_write_hint = prev->bi_write_hint;
1269 
1270 	bio_chain(prev, new);
1271 	bio_get(prev);		/* for iomap_finish_ioend */
1272 	submit_bio(prev);
1273 	return new;
1274 }
1275 
1276 static bool
1277 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset,
1278 		sector_t sector)
1279 {
1280 	if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
1281 	    (wpc->ioend->io_flags & IOMAP_F_SHARED))
1282 		return false;
1283 	if (wpc->iomap.type != wpc->ioend->io_type)
1284 		return false;
1285 	if (offset != wpc->ioend->io_offset + wpc->ioend->io_size)
1286 		return false;
1287 	if (sector != bio_end_sector(wpc->ioend->io_bio))
1288 		return false;
1289 	/*
1290 	 * Limit ioend bio chain lengths to minimise IO completion latency. This
1291 	 * also prevents long tight loops ending page writeback on all the
1292 	 * folios in the ioend.
1293 	 */
1294 	if (wpc->ioend->io_folios >= IOEND_BATCH_SIZE)
1295 		return false;
1296 	return true;
1297 }
1298 
1299 /*
1300  * Test to see if we have an existing ioend structure that we could append to
1301  * first; otherwise finish off the current ioend and start another.
1302  */
1303 static void
1304 iomap_add_to_ioend(struct inode *inode, loff_t pos, struct folio *folio,
1305 		struct iomap_page *iop, struct iomap_writepage_ctx *wpc,
1306 		struct writeback_control *wbc, struct list_head *iolist)
1307 {
1308 	sector_t sector = iomap_sector(&wpc->iomap, pos);
1309 	unsigned len = i_blocksize(inode);
1310 	size_t poff = offset_in_folio(folio, pos);
1311 
1312 	if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos, sector)) {
1313 		if (wpc->ioend)
1314 			list_add(&wpc->ioend->io_list, iolist);
1315 		wpc->ioend = iomap_alloc_ioend(inode, wpc, pos, sector, wbc);
1316 	}
1317 
1318 	if (!bio_add_folio(wpc->ioend->io_bio, folio, len, poff)) {
1319 		wpc->ioend->io_bio = iomap_chain_bio(wpc->ioend->io_bio);
1320 		bio_add_folio(wpc->ioend->io_bio, folio, len, poff);
1321 	}
1322 
1323 	if (iop)
1324 		atomic_add(len, &iop->write_bytes_pending);
1325 	wpc->ioend->io_size += len;
1326 	wbc_account_cgroup_owner(wbc, &folio->page, len);
1327 }
1328 
1329 /*
1330  * We implement an immediate ioend submission policy here to avoid needing to
1331  * chain multiple ioends and hence nest mempool allocations which can violate
1332  * the forward progress guarantees we need to provide. The current ioend we're
1333  * adding blocks to is cached in the writepage context, and if the new block
1334  * doesn't append to the cached ioend, it will create a new ioend and cache that
1335  * instead.
1336  *
1337  * If a new ioend is created and cached, the old ioend is returned and queued
1338  * locally for submission once the entire page is processed or an error has been
1339  * detected.  While ioends are submitted immediately after they are completed,
1340  * batching optimisations are provided by higher level block plugging.
1341  *
1342  * At the end of a writeback pass, there will be a cached ioend remaining on the
1343  * writepage context that the caller will need to submit.
1344  */
1345 static int
1346 iomap_writepage_map(struct iomap_writepage_ctx *wpc,
1347 		struct writeback_control *wbc, struct inode *inode,
1348 		struct folio *folio, u64 end_pos)
1349 {
1350 	struct iomap_page *iop = iomap_page_create(inode, folio);
1351 	struct iomap_ioend *ioend, *next;
1352 	unsigned len = i_blocksize(inode);
1353 	unsigned nblocks = i_blocks_per_folio(inode, folio);
1354 	u64 pos = folio_pos(folio);
1355 	int error = 0, count = 0, i;
1356 	LIST_HEAD(submit_list);
1357 
1358 	WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) != 0);
1359 
1360 	/*
1361 	 * Walk through the folio to find areas to write back. If we
1362 	 * run off the end of the current map or find the current map
1363 	 * invalid, grab a new one.
1364 	 */
1365 	for (i = 0; i < nblocks && pos < end_pos; i++, pos += len) {
1366 		if (iop && !test_bit(i, iop->uptodate))
1367 			continue;
1368 
1369 		error = wpc->ops->map_blocks(wpc, inode, pos);
1370 		if (error)
1371 			break;
1372 		if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE))
1373 			continue;
1374 		if (wpc->iomap.type == IOMAP_HOLE)
1375 			continue;
1376 		iomap_add_to_ioend(inode, pos, folio, iop, wpc, wbc,
1377 				 &submit_list);
1378 		count++;
1379 	}
1380 	if (count)
1381 		wpc->ioend->io_folios++;
1382 
1383 	WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list));
1384 	WARN_ON_ONCE(!folio_test_locked(folio));
1385 	WARN_ON_ONCE(folio_test_writeback(folio));
1386 	WARN_ON_ONCE(folio_test_dirty(folio));
1387 
1388 	/*
1389 	 * We cannot cancel the ioend directly here on error.  We may have
1390 	 * already set other pages under writeback and hence we have to run I/O
1391 	 * completion to mark the error state of the pages under writeback
1392 	 * appropriately.
1393 	 */
1394 	if (unlikely(error)) {
1395 		/*
1396 		 * Let the filesystem know what portion of the current page
1397 		 * failed to map. If the page hasn't been added to ioend, it
1398 		 * won't be affected by I/O completion and we must unlock it
1399 		 * now.
1400 		 */
1401 		if (wpc->ops->discard_folio)
1402 			wpc->ops->discard_folio(folio, pos);
1403 		if (!count) {
1404 			folio_clear_uptodate(folio);
1405 			folio_unlock(folio);
1406 			goto done;
1407 		}
1408 	}
1409 
1410 	folio_start_writeback(folio);
1411 	folio_unlock(folio);
1412 
1413 	/*
1414 	 * Preserve the original error if there was one; catch
1415 	 * submission errors here and propagate into subsequent ioend
1416 	 * submissions.
1417 	 */
1418 	list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1419 		int error2;
1420 
1421 		list_del_init(&ioend->io_list);
1422 		error2 = iomap_submit_ioend(wpc, ioend, error);
1423 		if (error2 && !error)
1424 			error = error2;
1425 	}
1426 
1427 	/*
1428 	 * We can end up here with no error and nothing to write only if we race
1429 	 * with a partial page truncate on a sub-page block sized filesystem.
1430 	 */
1431 	if (!count)
1432 		folio_end_writeback(folio);
1433 done:
1434 	mapping_set_error(folio->mapping, error);
1435 	return error;
1436 }
1437 
1438 /*
1439  * Write out a dirty page.
1440  *
1441  * For delalloc space on the page, we need to allocate space and flush it.
1442  * For unwritten space on the page, we need to start the conversion to
1443  * regular allocated space.
1444  */
1445 static int
1446 iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data)
1447 {
1448 	struct folio *folio = page_folio(page);
1449 	struct iomap_writepage_ctx *wpc = data;
1450 	struct inode *inode = folio->mapping->host;
1451 	u64 end_pos, isize;
1452 
1453 	trace_iomap_writepage(inode, folio_pos(folio), folio_size(folio));
1454 
1455 	/*
1456 	 * Refuse to write the folio out if we're called from reclaim context.
1457 	 *
1458 	 * This avoids stack overflows when called from deeply used stacks in
1459 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
1460 	 * allow reclaim from kswapd as the stack usage there is relatively low.
1461 	 *
1462 	 * This should never happen except in the case of a VM regression so
1463 	 * warn about it.
1464 	 */
1465 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1466 			PF_MEMALLOC))
1467 		goto redirty;
1468 
1469 	/*
1470 	 * Is this folio beyond the end of the file?
1471 	 *
1472 	 * The folio index is less than the end_index, adjust the end_pos
1473 	 * to the highest offset that this folio should represent.
1474 	 * -----------------------------------------------------
1475 	 * |			file mapping	       | <EOF> |
1476 	 * -----------------------------------------------------
1477 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
1478 	 * ^--------------------------------^----------|--------
1479 	 * |     desired writeback range    |      see else    |
1480 	 * ---------------------------------^------------------|
1481 	 */
1482 	isize = i_size_read(inode);
1483 	end_pos = folio_pos(folio) + folio_size(folio);
1484 	if (end_pos > isize) {
1485 		/*
1486 		 * Check whether the page to write out is beyond or straddles
1487 		 * i_size or not.
1488 		 * -------------------------------------------------------
1489 		 * |		file mapping		        | <EOF>  |
1490 		 * -------------------------------------------------------
1491 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1492 		 * ^--------------------------------^-----------|---------
1493 		 * |				    |      Straddles     |
1494 		 * ---------------------------------^-----------|--------|
1495 		 */
1496 		size_t poff = offset_in_folio(folio, isize);
1497 		pgoff_t end_index = isize >> PAGE_SHIFT;
1498 
1499 		/*
1500 		 * Skip the page if it's fully outside i_size, e.g. due to a
1501 		 * truncate operation that's in progress. We must redirty the
1502 		 * page so that reclaim stops reclaiming it. Otherwise
1503 		 * iomap_vm_releasepage() is called on it and gets confused.
1504 		 *
1505 		 * Note that the end_index is unsigned long.  If the given
1506 		 * offset is greater than 16TB on a 32-bit system then if we
1507 		 * checked if the page is fully outside i_size with
1508 		 * "if (page->index >= end_index + 1)", "end_index + 1" would
1509 		 * overflow and evaluate to 0.  Hence this page would be
1510 		 * redirtied and written out repeatedly, which would result in
1511 		 * an infinite loop; the user program performing this operation
1512 		 * would hang.  Instead, we can detect this situation by
1513 		 * checking if the page is totally beyond i_size or if its
1514 		 * offset is just equal to the EOF.
1515 		 */
1516 		if (folio->index > end_index ||
1517 		    (folio->index == end_index && poff == 0))
1518 			goto redirty;
1519 
1520 		/*
1521 		 * The page straddles i_size.  It must be zeroed out on each
1522 		 * and every writepage invocation because it may be mmapped.
1523 		 * "A file is mapped in multiples of the page size.  For a file
1524 		 * that is not a multiple of the page size, the remaining
1525 		 * memory is zeroed when mapped, and writes to that region are
1526 		 * not written out to the file."
1527 		 */
1528 		folio_zero_segment(folio, poff, folio_size(folio));
1529 		end_pos = isize;
1530 	}
1531 
1532 	return iomap_writepage_map(wpc, wbc, inode, folio, end_pos);
1533 
1534 redirty:
1535 	folio_redirty_for_writepage(wbc, folio);
1536 	folio_unlock(folio);
1537 	return 0;
1538 }
1539 
1540 int
1541 iomap_writepage(struct page *page, struct writeback_control *wbc,
1542 		struct iomap_writepage_ctx *wpc,
1543 		const struct iomap_writeback_ops *ops)
1544 {
1545 	int ret;
1546 
1547 	wpc->ops = ops;
1548 	ret = iomap_do_writepage(page, wbc, wpc);
1549 	if (!wpc->ioend)
1550 		return ret;
1551 	return iomap_submit_ioend(wpc, wpc->ioend, ret);
1552 }
1553 EXPORT_SYMBOL_GPL(iomap_writepage);
1554 
1555 int
1556 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
1557 		struct iomap_writepage_ctx *wpc,
1558 		const struct iomap_writeback_ops *ops)
1559 {
1560 	int			ret;
1561 
1562 	wpc->ops = ops;
1563 	ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc);
1564 	if (!wpc->ioend)
1565 		return ret;
1566 	return iomap_submit_ioend(wpc, wpc->ioend, ret);
1567 }
1568 EXPORT_SYMBOL_GPL(iomap_writepages);
1569 
1570 static int __init iomap_init(void)
1571 {
1572 	return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
1573 			   offsetof(struct iomap_ioend, io_inline_bio),
1574 			   BIOSET_NEED_BVECS);
1575 }
1576 fs_initcall(iomap_init);
1577