xref: /openbmc/linux/fs/iomap/buffered-io.c (revision 78bb17f7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Red Hat, Inc.
4  * Copyright (C) 2016-2019 Christoph Hellwig.
5  */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/iomap.h>
10 #include <linux/pagemap.h>
11 #include <linux/uio.h>
12 #include <linux/buffer_head.h>
13 #include <linux/dax.h>
14 #include <linux/writeback.h>
15 #include <linux/list_sort.h>
16 #include <linux/swap.h>
17 #include <linux/bio.h>
18 #include <linux/sched/signal.h>
19 #include <linux/migrate.h>
20 #include "trace.h"
21 
22 #include "../internal.h"
23 
24 /*
25  * Structure allocated for each page when block size < PAGE_SIZE to track
26  * sub-page uptodate status and I/O completions.
27  */
28 struct iomap_page {
29 	atomic_t		read_count;
30 	atomic_t		write_count;
31 	spinlock_t		uptodate_lock;
32 	DECLARE_BITMAP(uptodate, PAGE_SIZE / 512);
33 };
34 
35 static inline struct iomap_page *to_iomap_page(struct page *page)
36 {
37 	if (page_has_private(page))
38 		return (struct iomap_page *)page_private(page);
39 	return NULL;
40 }
41 
42 static struct bio_set iomap_ioend_bioset;
43 
44 static struct iomap_page *
45 iomap_page_create(struct inode *inode, struct page *page)
46 {
47 	struct iomap_page *iop = to_iomap_page(page);
48 
49 	if (iop || i_blocksize(inode) == PAGE_SIZE)
50 		return iop;
51 
52 	iop = kmalloc(sizeof(*iop), GFP_NOFS | __GFP_NOFAIL);
53 	atomic_set(&iop->read_count, 0);
54 	atomic_set(&iop->write_count, 0);
55 	spin_lock_init(&iop->uptodate_lock);
56 	bitmap_zero(iop->uptodate, PAGE_SIZE / SECTOR_SIZE);
57 
58 	/*
59 	 * migrate_page_move_mapping() assumes that pages with private data have
60 	 * their count elevated by 1.
61 	 */
62 	attach_page_private(page, iop);
63 	return iop;
64 }
65 
66 static void
67 iomap_page_release(struct page *page)
68 {
69 	struct iomap_page *iop = detach_page_private(page);
70 
71 	if (!iop)
72 		return;
73 	WARN_ON_ONCE(atomic_read(&iop->read_count));
74 	WARN_ON_ONCE(atomic_read(&iop->write_count));
75 	kfree(iop);
76 }
77 
78 /*
79  * Calculate the range inside the page that we actually need to read.
80  */
81 static void
82 iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop,
83 		loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp)
84 {
85 	loff_t orig_pos = *pos;
86 	loff_t isize = i_size_read(inode);
87 	unsigned block_bits = inode->i_blkbits;
88 	unsigned block_size = (1 << block_bits);
89 	unsigned poff = offset_in_page(*pos);
90 	unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length);
91 	unsigned first = poff >> block_bits;
92 	unsigned last = (poff + plen - 1) >> block_bits;
93 
94 	/*
95 	 * If the block size is smaller than the page size we need to check the
96 	 * per-block uptodate status and adjust the offset and length if needed
97 	 * to avoid reading in already uptodate ranges.
98 	 */
99 	if (iop) {
100 		unsigned int i;
101 
102 		/* move forward for each leading block marked uptodate */
103 		for (i = first; i <= last; i++) {
104 			if (!test_bit(i, iop->uptodate))
105 				break;
106 			*pos += block_size;
107 			poff += block_size;
108 			plen -= block_size;
109 			first++;
110 		}
111 
112 		/* truncate len if we find any trailing uptodate block(s) */
113 		for ( ; i <= last; i++) {
114 			if (test_bit(i, iop->uptodate)) {
115 				plen -= (last - i + 1) * block_size;
116 				last = i - 1;
117 				break;
118 			}
119 		}
120 	}
121 
122 	/*
123 	 * If the extent spans the block that contains the i_size we need to
124 	 * handle both halves separately so that we properly zero data in the
125 	 * page cache for blocks that are entirely outside of i_size.
126 	 */
127 	if (orig_pos <= isize && orig_pos + length > isize) {
128 		unsigned end = offset_in_page(isize - 1) >> block_bits;
129 
130 		if (first <= end && last > end)
131 			plen -= (last - end) * block_size;
132 	}
133 
134 	*offp = poff;
135 	*lenp = plen;
136 }
137 
138 static void
139 iomap_iop_set_range_uptodate(struct page *page, unsigned off, unsigned len)
140 {
141 	struct iomap_page *iop = to_iomap_page(page);
142 	struct inode *inode = page->mapping->host;
143 	unsigned first = off >> inode->i_blkbits;
144 	unsigned last = (off + len - 1) >> inode->i_blkbits;
145 	bool uptodate = true;
146 	unsigned long flags;
147 	unsigned int i;
148 
149 	spin_lock_irqsave(&iop->uptodate_lock, flags);
150 	for (i = 0; i < PAGE_SIZE / i_blocksize(inode); i++) {
151 		if (i >= first && i <= last)
152 			set_bit(i, iop->uptodate);
153 		else if (!test_bit(i, iop->uptodate))
154 			uptodate = false;
155 	}
156 
157 	if (uptodate)
158 		SetPageUptodate(page);
159 	spin_unlock_irqrestore(&iop->uptodate_lock, flags);
160 }
161 
162 static void
163 iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len)
164 {
165 	if (PageError(page))
166 		return;
167 
168 	if (page_has_private(page))
169 		iomap_iop_set_range_uptodate(page, off, len);
170 	else
171 		SetPageUptodate(page);
172 }
173 
174 static void
175 iomap_read_finish(struct iomap_page *iop, struct page *page)
176 {
177 	if (!iop || atomic_dec_and_test(&iop->read_count))
178 		unlock_page(page);
179 }
180 
181 static void
182 iomap_read_page_end_io(struct bio_vec *bvec, int error)
183 {
184 	struct page *page = bvec->bv_page;
185 	struct iomap_page *iop = to_iomap_page(page);
186 
187 	if (unlikely(error)) {
188 		ClearPageUptodate(page);
189 		SetPageError(page);
190 	} else {
191 		iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len);
192 	}
193 
194 	iomap_read_finish(iop, page);
195 }
196 
197 static void
198 iomap_read_end_io(struct bio *bio)
199 {
200 	int error = blk_status_to_errno(bio->bi_status);
201 	struct bio_vec *bvec;
202 	struct bvec_iter_all iter_all;
203 
204 	bio_for_each_segment_all(bvec, bio, iter_all)
205 		iomap_read_page_end_io(bvec, error);
206 	bio_put(bio);
207 }
208 
209 struct iomap_readpage_ctx {
210 	struct page		*cur_page;
211 	bool			cur_page_in_bio;
212 	struct bio		*bio;
213 	struct readahead_control *rac;
214 };
215 
216 static void
217 iomap_read_inline_data(struct inode *inode, struct page *page,
218 		struct iomap *iomap)
219 {
220 	size_t size = i_size_read(inode);
221 	void *addr;
222 
223 	if (PageUptodate(page))
224 		return;
225 
226 	BUG_ON(page->index);
227 	BUG_ON(size > PAGE_SIZE - offset_in_page(iomap->inline_data));
228 
229 	addr = kmap_atomic(page);
230 	memcpy(addr, iomap->inline_data, size);
231 	memset(addr + size, 0, PAGE_SIZE - size);
232 	kunmap_atomic(addr);
233 	SetPageUptodate(page);
234 }
235 
236 static inline bool iomap_block_needs_zeroing(struct inode *inode,
237 		struct iomap *iomap, loff_t pos)
238 {
239 	return iomap->type != IOMAP_MAPPED ||
240 		(iomap->flags & IOMAP_F_NEW) ||
241 		pos >= i_size_read(inode);
242 }
243 
244 static loff_t
245 iomap_readpage_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
246 		struct iomap *iomap, struct iomap *srcmap)
247 {
248 	struct iomap_readpage_ctx *ctx = data;
249 	struct page *page = ctx->cur_page;
250 	struct iomap_page *iop = iomap_page_create(inode, page);
251 	bool same_page = false, is_contig = false;
252 	loff_t orig_pos = pos;
253 	unsigned poff, plen;
254 	sector_t sector;
255 
256 	if (iomap->type == IOMAP_INLINE) {
257 		WARN_ON_ONCE(pos);
258 		iomap_read_inline_data(inode, page, iomap);
259 		return PAGE_SIZE;
260 	}
261 
262 	/* zero post-eof blocks as the page may be mapped */
263 	iomap_adjust_read_range(inode, iop, &pos, length, &poff, &plen);
264 	if (plen == 0)
265 		goto done;
266 
267 	if (iomap_block_needs_zeroing(inode, iomap, pos)) {
268 		zero_user(page, poff, plen);
269 		iomap_set_range_uptodate(page, poff, plen);
270 		goto done;
271 	}
272 
273 	ctx->cur_page_in_bio = true;
274 
275 	/*
276 	 * Try to merge into a previous segment if we can.
277 	 */
278 	sector = iomap_sector(iomap, pos);
279 	if (ctx->bio && bio_end_sector(ctx->bio) == sector)
280 		is_contig = true;
281 
282 	if (is_contig &&
283 	    __bio_try_merge_page(ctx->bio, page, plen, poff, &same_page)) {
284 		if (!same_page && iop)
285 			atomic_inc(&iop->read_count);
286 		goto done;
287 	}
288 
289 	/*
290 	 * If we start a new segment we need to increase the read count, and we
291 	 * need to do so before submitting any previous full bio to make sure
292 	 * that we don't prematurely unlock the page.
293 	 */
294 	if (iop)
295 		atomic_inc(&iop->read_count);
296 
297 	if (!ctx->bio || !is_contig || bio_full(ctx->bio, plen)) {
298 		gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
299 		gfp_t orig_gfp = gfp;
300 		int nr_vecs = (length + PAGE_SIZE - 1) >> PAGE_SHIFT;
301 
302 		if (ctx->bio)
303 			submit_bio(ctx->bio);
304 
305 		if (ctx->rac) /* same as readahead_gfp_mask */
306 			gfp |= __GFP_NORETRY | __GFP_NOWARN;
307 		ctx->bio = bio_alloc(gfp, min(BIO_MAX_PAGES, nr_vecs));
308 		/*
309 		 * If the bio_alloc fails, try it again for a single page to
310 		 * avoid having to deal with partial page reads.  This emulates
311 		 * what do_mpage_readpage does.
312 		 */
313 		if (!ctx->bio)
314 			ctx->bio = bio_alloc(orig_gfp, 1);
315 		ctx->bio->bi_opf = REQ_OP_READ;
316 		if (ctx->rac)
317 			ctx->bio->bi_opf |= REQ_RAHEAD;
318 		ctx->bio->bi_iter.bi_sector = sector;
319 		bio_set_dev(ctx->bio, iomap->bdev);
320 		ctx->bio->bi_end_io = iomap_read_end_io;
321 	}
322 
323 	bio_add_page(ctx->bio, page, plen, poff);
324 done:
325 	/*
326 	 * Move the caller beyond our range so that it keeps making progress.
327 	 * For that we have to include any leading non-uptodate ranges, but
328 	 * we can skip trailing ones as they will be handled in the next
329 	 * iteration.
330 	 */
331 	return pos - orig_pos + plen;
332 }
333 
334 int
335 iomap_readpage(struct page *page, const struct iomap_ops *ops)
336 {
337 	struct iomap_readpage_ctx ctx = { .cur_page = page };
338 	struct inode *inode = page->mapping->host;
339 	unsigned poff;
340 	loff_t ret;
341 
342 	trace_iomap_readpage(page->mapping->host, 1);
343 
344 	for (poff = 0; poff < PAGE_SIZE; poff += ret) {
345 		ret = iomap_apply(inode, page_offset(page) + poff,
346 				PAGE_SIZE - poff, 0, ops, &ctx,
347 				iomap_readpage_actor);
348 		if (ret <= 0) {
349 			WARN_ON_ONCE(ret == 0);
350 			SetPageError(page);
351 			break;
352 		}
353 	}
354 
355 	if (ctx.bio) {
356 		submit_bio(ctx.bio);
357 		WARN_ON_ONCE(!ctx.cur_page_in_bio);
358 	} else {
359 		WARN_ON_ONCE(ctx.cur_page_in_bio);
360 		unlock_page(page);
361 	}
362 
363 	/*
364 	 * Just like mpage_readahead and block_read_full_page we always
365 	 * return 0 and just mark the page as PageError on errors.  This
366 	 * should be cleaned up all through the stack eventually.
367 	 */
368 	return 0;
369 }
370 EXPORT_SYMBOL_GPL(iomap_readpage);
371 
372 static loff_t
373 iomap_readahead_actor(struct inode *inode, loff_t pos, loff_t length,
374 		void *data, struct iomap *iomap, struct iomap *srcmap)
375 {
376 	struct iomap_readpage_ctx *ctx = data;
377 	loff_t done, ret;
378 
379 	for (done = 0; done < length; done += ret) {
380 		if (ctx->cur_page && offset_in_page(pos + done) == 0) {
381 			if (!ctx->cur_page_in_bio)
382 				unlock_page(ctx->cur_page);
383 			put_page(ctx->cur_page);
384 			ctx->cur_page = NULL;
385 		}
386 		if (!ctx->cur_page) {
387 			ctx->cur_page = readahead_page(ctx->rac);
388 			ctx->cur_page_in_bio = false;
389 		}
390 		ret = iomap_readpage_actor(inode, pos + done, length - done,
391 				ctx, iomap, srcmap);
392 	}
393 
394 	return done;
395 }
396 
397 /**
398  * iomap_readahead - Attempt to read pages from a file.
399  * @rac: Describes the pages to be read.
400  * @ops: The operations vector for the filesystem.
401  *
402  * This function is for filesystems to call to implement their readahead
403  * address_space operation.
404  *
405  * Context: The @ops callbacks may submit I/O (eg to read the addresses of
406  * blocks from disc), and may wait for it.  The caller may be trying to
407  * access a different page, and so sleeping excessively should be avoided.
408  * It may allocate memory, but should avoid costly allocations.  This
409  * function is called with memalloc_nofs set, so allocations will not cause
410  * the filesystem to be reentered.
411  */
412 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops)
413 {
414 	struct inode *inode = rac->mapping->host;
415 	loff_t pos = readahead_pos(rac);
416 	loff_t length = readahead_length(rac);
417 	struct iomap_readpage_ctx ctx = {
418 		.rac	= rac,
419 	};
420 
421 	trace_iomap_readahead(inode, readahead_count(rac));
422 
423 	while (length > 0) {
424 		loff_t ret = iomap_apply(inode, pos, length, 0, ops,
425 				&ctx, iomap_readahead_actor);
426 		if (ret <= 0) {
427 			WARN_ON_ONCE(ret == 0);
428 			break;
429 		}
430 		pos += ret;
431 		length -= ret;
432 	}
433 
434 	if (ctx.bio)
435 		submit_bio(ctx.bio);
436 	if (ctx.cur_page) {
437 		if (!ctx.cur_page_in_bio)
438 			unlock_page(ctx.cur_page);
439 		put_page(ctx.cur_page);
440 	}
441 }
442 EXPORT_SYMBOL_GPL(iomap_readahead);
443 
444 /*
445  * iomap_is_partially_uptodate checks whether blocks within a page are
446  * uptodate or not.
447  *
448  * Returns true if all blocks which correspond to a file portion
449  * we want to read within the page are uptodate.
450  */
451 int
452 iomap_is_partially_uptodate(struct page *page, unsigned long from,
453 		unsigned long count)
454 {
455 	struct iomap_page *iop = to_iomap_page(page);
456 	struct inode *inode = page->mapping->host;
457 	unsigned len, first, last;
458 	unsigned i;
459 
460 	/* Limit range to one page */
461 	len = min_t(unsigned, PAGE_SIZE - from, count);
462 
463 	/* First and last blocks in range within page */
464 	first = from >> inode->i_blkbits;
465 	last = (from + len - 1) >> inode->i_blkbits;
466 
467 	if (iop) {
468 		for (i = first; i <= last; i++)
469 			if (!test_bit(i, iop->uptodate))
470 				return 0;
471 		return 1;
472 	}
473 
474 	return 0;
475 }
476 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
477 
478 int
479 iomap_releasepage(struct page *page, gfp_t gfp_mask)
480 {
481 	trace_iomap_releasepage(page->mapping->host, page_offset(page),
482 			PAGE_SIZE);
483 
484 	/*
485 	 * mm accommodates an old ext3 case where clean pages might not have had
486 	 * the dirty bit cleared. Thus, it can send actual dirty pages to
487 	 * ->releasepage() via shrink_active_list(), skip those here.
488 	 */
489 	if (PageDirty(page) || PageWriteback(page))
490 		return 0;
491 	iomap_page_release(page);
492 	return 1;
493 }
494 EXPORT_SYMBOL_GPL(iomap_releasepage);
495 
496 void
497 iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len)
498 {
499 	trace_iomap_invalidatepage(page->mapping->host, offset, len);
500 
501 	/*
502 	 * If we are invalidating the entire page, clear the dirty state from it
503 	 * and release it to avoid unnecessary buildup of the LRU.
504 	 */
505 	if (offset == 0 && len == PAGE_SIZE) {
506 		WARN_ON_ONCE(PageWriteback(page));
507 		cancel_dirty_page(page);
508 		iomap_page_release(page);
509 	}
510 }
511 EXPORT_SYMBOL_GPL(iomap_invalidatepage);
512 
513 #ifdef CONFIG_MIGRATION
514 int
515 iomap_migrate_page(struct address_space *mapping, struct page *newpage,
516 		struct page *page, enum migrate_mode mode)
517 {
518 	int ret;
519 
520 	ret = migrate_page_move_mapping(mapping, newpage, page, 0);
521 	if (ret != MIGRATEPAGE_SUCCESS)
522 		return ret;
523 
524 	if (page_has_private(page))
525 		attach_page_private(newpage, detach_page_private(page));
526 
527 	if (mode != MIGRATE_SYNC_NO_COPY)
528 		migrate_page_copy(newpage, page);
529 	else
530 		migrate_page_states(newpage, page);
531 	return MIGRATEPAGE_SUCCESS;
532 }
533 EXPORT_SYMBOL_GPL(iomap_migrate_page);
534 #endif /* CONFIG_MIGRATION */
535 
536 enum {
537 	IOMAP_WRITE_F_UNSHARE		= (1 << 0),
538 };
539 
540 static void
541 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
542 {
543 	loff_t i_size = i_size_read(inode);
544 
545 	/*
546 	 * Only truncate newly allocated pages beyoned EOF, even if the
547 	 * write started inside the existing inode size.
548 	 */
549 	if (pos + len > i_size)
550 		truncate_pagecache_range(inode, max(pos, i_size), pos + len);
551 }
552 
553 static int
554 iomap_read_page_sync(loff_t block_start, struct page *page, unsigned poff,
555 		unsigned plen, struct iomap *iomap)
556 {
557 	struct bio_vec bvec;
558 	struct bio bio;
559 
560 	bio_init(&bio, &bvec, 1);
561 	bio.bi_opf = REQ_OP_READ;
562 	bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
563 	bio_set_dev(&bio, iomap->bdev);
564 	__bio_add_page(&bio, page, plen, poff);
565 	return submit_bio_wait(&bio);
566 }
567 
568 static int
569 __iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, int flags,
570 		struct page *page, struct iomap *srcmap)
571 {
572 	struct iomap_page *iop = iomap_page_create(inode, page);
573 	loff_t block_size = i_blocksize(inode);
574 	loff_t block_start = pos & ~(block_size - 1);
575 	loff_t block_end = (pos + len + block_size - 1) & ~(block_size - 1);
576 	unsigned from = offset_in_page(pos), to = from + len, poff, plen;
577 	int status;
578 
579 	if (PageUptodate(page))
580 		return 0;
581 
582 	do {
583 		iomap_adjust_read_range(inode, iop, &block_start,
584 				block_end - block_start, &poff, &plen);
585 		if (plen == 0)
586 			break;
587 
588 		if (!(flags & IOMAP_WRITE_F_UNSHARE) &&
589 		    (from <= poff || from >= poff + plen) &&
590 		    (to <= poff || to >= poff + plen))
591 			continue;
592 
593 		if (iomap_block_needs_zeroing(inode, srcmap, block_start)) {
594 			if (WARN_ON_ONCE(flags & IOMAP_WRITE_F_UNSHARE))
595 				return -EIO;
596 			zero_user_segments(page, poff, from, to, poff + plen);
597 			iomap_set_range_uptodate(page, poff, plen);
598 			continue;
599 		}
600 
601 		status = iomap_read_page_sync(block_start, page, poff, plen,
602 				srcmap);
603 		if (status)
604 			return status;
605 	} while ((block_start += plen) < block_end);
606 
607 	return 0;
608 }
609 
610 static int
611 iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags,
612 		struct page **pagep, struct iomap *iomap, struct iomap *srcmap)
613 {
614 	const struct iomap_page_ops *page_ops = iomap->page_ops;
615 	struct page *page;
616 	int status = 0;
617 
618 	BUG_ON(pos + len > iomap->offset + iomap->length);
619 	if (srcmap != iomap)
620 		BUG_ON(pos + len > srcmap->offset + srcmap->length);
621 
622 	if (fatal_signal_pending(current))
623 		return -EINTR;
624 
625 	if (page_ops && page_ops->page_prepare) {
626 		status = page_ops->page_prepare(inode, pos, len, iomap);
627 		if (status)
628 			return status;
629 	}
630 
631 	page = grab_cache_page_write_begin(inode->i_mapping, pos >> PAGE_SHIFT,
632 			AOP_FLAG_NOFS);
633 	if (!page) {
634 		status = -ENOMEM;
635 		goto out_no_page;
636 	}
637 
638 	if (srcmap->type == IOMAP_INLINE)
639 		iomap_read_inline_data(inode, page, srcmap);
640 	else if (iomap->flags & IOMAP_F_BUFFER_HEAD)
641 		status = __block_write_begin_int(page, pos, len, NULL, srcmap);
642 	else
643 		status = __iomap_write_begin(inode, pos, len, flags, page,
644 				srcmap);
645 
646 	if (unlikely(status))
647 		goto out_unlock;
648 
649 	*pagep = page;
650 	return 0;
651 
652 out_unlock:
653 	unlock_page(page);
654 	put_page(page);
655 	iomap_write_failed(inode, pos, len);
656 
657 out_no_page:
658 	if (page_ops && page_ops->page_done)
659 		page_ops->page_done(inode, pos, 0, NULL, iomap);
660 	return status;
661 }
662 
663 int
664 iomap_set_page_dirty(struct page *page)
665 {
666 	struct address_space *mapping = page_mapping(page);
667 	int newly_dirty;
668 
669 	if (unlikely(!mapping))
670 		return !TestSetPageDirty(page);
671 
672 	/*
673 	 * Lock out page->mem_cgroup migration to keep PageDirty
674 	 * synchronized with per-memcg dirty page counters.
675 	 */
676 	lock_page_memcg(page);
677 	newly_dirty = !TestSetPageDirty(page);
678 	if (newly_dirty)
679 		__set_page_dirty(page, mapping, 0);
680 	unlock_page_memcg(page);
681 
682 	if (newly_dirty)
683 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
684 	return newly_dirty;
685 }
686 EXPORT_SYMBOL_GPL(iomap_set_page_dirty);
687 
688 static int
689 __iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
690 		unsigned copied, struct page *page)
691 {
692 	flush_dcache_page(page);
693 
694 	/*
695 	 * The blocks that were entirely written will now be uptodate, so we
696 	 * don't have to worry about a readpage reading them and overwriting a
697 	 * partial write.  However if we have encountered a short write and only
698 	 * partially written into a block, it will not be marked uptodate, so a
699 	 * readpage might come in and destroy our partial write.
700 	 *
701 	 * Do the simplest thing, and just treat any short write to a non
702 	 * uptodate page as a zero-length write, and force the caller to redo
703 	 * the whole thing.
704 	 */
705 	if (unlikely(copied < len && !PageUptodate(page)))
706 		return 0;
707 	iomap_set_range_uptodate(page, offset_in_page(pos), len);
708 	iomap_set_page_dirty(page);
709 	return copied;
710 }
711 
712 static int
713 iomap_write_end_inline(struct inode *inode, struct page *page,
714 		struct iomap *iomap, loff_t pos, unsigned copied)
715 {
716 	void *addr;
717 
718 	WARN_ON_ONCE(!PageUptodate(page));
719 	BUG_ON(pos + copied > PAGE_SIZE - offset_in_page(iomap->inline_data));
720 
721 	addr = kmap_atomic(page);
722 	memcpy(iomap->inline_data + pos, addr + pos, copied);
723 	kunmap_atomic(addr);
724 
725 	mark_inode_dirty(inode);
726 	return copied;
727 }
728 
729 static int
730 iomap_write_end(struct inode *inode, loff_t pos, unsigned len, unsigned copied,
731 		struct page *page, struct iomap *iomap, struct iomap *srcmap)
732 {
733 	const struct iomap_page_ops *page_ops = iomap->page_ops;
734 	loff_t old_size = inode->i_size;
735 	int ret;
736 
737 	if (srcmap->type == IOMAP_INLINE) {
738 		ret = iomap_write_end_inline(inode, page, iomap, pos, copied);
739 	} else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
740 		ret = block_write_end(NULL, inode->i_mapping, pos, len, copied,
741 				page, NULL);
742 	} else {
743 		ret = __iomap_write_end(inode, pos, len, copied, page);
744 	}
745 
746 	/*
747 	 * Update the in-memory inode size after copying the data into the page
748 	 * cache.  It's up to the file system to write the updated size to disk,
749 	 * preferably after I/O completion so that no stale data is exposed.
750 	 */
751 	if (pos + ret > old_size) {
752 		i_size_write(inode, pos + ret);
753 		iomap->flags |= IOMAP_F_SIZE_CHANGED;
754 	}
755 	unlock_page(page);
756 
757 	if (old_size < pos)
758 		pagecache_isize_extended(inode, old_size, pos);
759 	if (page_ops && page_ops->page_done)
760 		page_ops->page_done(inode, pos, ret, page, iomap);
761 	put_page(page);
762 
763 	if (ret < len)
764 		iomap_write_failed(inode, pos, len);
765 	return ret;
766 }
767 
768 static loff_t
769 iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
770 		struct iomap *iomap, struct iomap *srcmap)
771 {
772 	struct iov_iter *i = data;
773 	long status = 0;
774 	ssize_t written = 0;
775 
776 	do {
777 		struct page *page;
778 		unsigned long offset;	/* Offset into pagecache page */
779 		unsigned long bytes;	/* Bytes to write to page */
780 		size_t copied;		/* Bytes copied from user */
781 
782 		offset = offset_in_page(pos);
783 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
784 						iov_iter_count(i));
785 again:
786 		if (bytes > length)
787 			bytes = length;
788 
789 		/*
790 		 * Bring in the user page that we will copy from _first_.
791 		 * Otherwise there's a nasty deadlock on copying from the
792 		 * same page as we're writing to, without it being marked
793 		 * up-to-date.
794 		 *
795 		 * Not only is this an optimisation, but it is also required
796 		 * to check that the address is actually valid, when atomic
797 		 * usercopies are used, below.
798 		 */
799 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
800 			status = -EFAULT;
801 			break;
802 		}
803 
804 		status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap,
805 				srcmap);
806 		if (unlikely(status))
807 			break;
808 
809 		if (mapping_writably_mapped(inode->i_mapping))
810 			flush_dcache_page(page);
811 
812 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
813 
814 		flush_dcache_page(page);
815 
816 		status = iomap_write_end(inode, pos, bytes, copied, page, iomap,
817 				srcmap);
818 		if (unlikely(status < 0))
819 			break;
820 		copied = status;
821 
822 		cond_resched();
823 
824 		iov_iter_advance(i, copied);
825 		if (unlikely(copied == 0)) {
826 			/*
827 			 * If we were unable to copy any data at all, we must
828 			 * fall back to a single segment length write.
829 			 *
830 			 * If we didn't fallback here, we could livelock
831 			 * because not all segments in the iov can be copied at
832 			 * once without a pagefault.
833 			 */
834 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
835 						iov_iter_single_seg_count(i));
836 			goto again;
837 		}
838 		pos += copied;
839 		written += copied;
840 		length -= copied;
841 
842 		balance_dirty_pages_ratelimited(inode->i_mapping);
843 	} while (iov_iter_count(i) && length);
844 
845 	return written ? written : status;
846 }
847 
848 ssize_t
849 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter,
850 		const struct iomap_ops *ops)
851 {
852 	struct inode *inode = iocb->ki_filp->f_mapping->host;
853 	loff_t pos = iocb->ki_pos, ret = 0, written = 0;
854 
855 	while (iov_iter_count(iter)) {
856 		ret = iomap_apply(inode, pos, iov_iter_count(iter),
857 				IOMAP_WRITE, ops, iter, iomap_write_actor);
858 		if (ret <= 0)
859 			break;
860 		pos += ret;
861 		written += ret;
862 	}
863 
864 	return written ? written : ret;
865 }
866 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
867 
868 static loff_t
869 iomap_unshare_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
870 		struct iomap *iomap, struct iomap *srcmap)
871 {
872 	long status = 0;
873 	ssize_t written = 0;
874 
875 	/* don't bother with blocks that are not shared to start with */
876 	if (!(iomap->flags & IOMAP_F_SHARED))
877 		return length;
878 	/* don't bother with holes or unwritten extents */
879 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
880 		return length;
881 
882 	do {
883 		unsigned long offset = offset_in_page(pos);
884 		unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length);
885 		struct page *page;
886 
887 		status = iomap_write_begin(inode, pos, bytes,
888 				IOMAP_WRITE_F_UNSHARE, &page, iomap, srcmap);
889 		if (unlikely(status))
890 			return status;
891 
892 		status = iomap_write_end(inode, pos, bytes, bytes, page, iomap,
893 				srcmap);
894 		if (unlikely(status <= 0)) {
895 			if (WARN_ON_ONCE(status == 0))
896 				return -EIO;
897 			return status;
898 		}
899 
900 		cond_resched();
901 
902 		pos += status;
903 		written += status;
904 		length -= status;
905 
906 		balance_dirty_pages_ratelimited(inode->i_mapping);
907 	} while (length);
908 
909 	return written;
910 }
911 
912 int
913 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
914 		const struct iomap_ops *ops)
915 {
916 	loff_t ret;
917 
918 	while (len) {
919 		ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL,
920 				iomap_unshare_actor);
921 		if (ret <= 0)
922 			return ret;
923 		pos += ret;
924 		len -= ret;
925 	}
926 
927 	return 0;
928 }
929 EXPORT_SYMBOL_GPL(iomap_file_unshare);
930 
931 static int iomap_zero(struct inode *inode, loff_t pos, unsigned offset,
932 		unsigned bytes, struct iomap *iomap, struct iomap *srcmap)
933 {
934 	struct page *page;
935 	int status;
936 
937 	status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap, srcmap);
938 	if (status)
939 		return status;
940 
941 	zero_user(page, offset, bytes);
942 	mark_page_accessed(page);
943 
944 	return iomap_write_end(inode, pos, bytes, bytes, page, iomap, srcmap);
945 }
946 
947 static loff_t
948 iomap_zero_range_actor(struct inode *inode, loff_t pos, loff_t count,
949 		void *data, struct iomap *iomap, struct iomap *srcmap)
950 {
951 	bool *did_zero = data;
952 	loff_t written = 0;
953 	int status;
954 
955 	/* already zeroed?  we're done. */
956 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
957 		return count;
958 
959 	do {
960 		unsigned offset, bytes;
961 
962 		offset = offset_in_page(pos);
963 		bytes = min_t(loff_t, PAGE_SIZE - offset, count);
964 
965 		if (IS_DAX(inode))
966 			status = dax_iomap_zero(pos, offset, bytes, iomap);
967 		else
968 			status = iomap_zero(inode, pos, offset, bytes, iomap,
969 					srcmap);
970 		if (status < 0)
971 			return status;
972 
973 		pos += bytes;
974 		count -= bytes;
975 		written += bytes;
976 		if (did_zero)
977 			*did_zero = true;
978 	} while (count > 0);
979 
980 	return written;
981 }
982 
983 int
984 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
985 		const struct iomap_ops *ops)
986 {
987 	loff_t ret;
988 
989 	while (len > 0) {
990 		ret = iomap_apply(inode, pos, len, IOMAP_ZERO,
991 				ops, did_zero, iomap_zero_range_actor);
992 		if (ret <= 0)
993 			return ret;
994 
995 		pos += ret;
996 		len -= ret;
997 	}
998 
999 	return 0;
1000 }
1001 EXPORT_SYMBOL_GPL(iomap_zero_range);
1002 
1003 int
1004 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1005 		const struct iomap_ops *ops)
1006 {
1007 	unsigned int blocksize = i_blocksize(inode);
1008 	unsigned int off = pos & (blocksize - 1);
1009 
1010 	/* Block boundary? Nothing to do */
1011 	if (!off)
1012 		return 0;
1013 	return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
1014 }
1015 EXPORT_SYMBOL_GPL(iomap_truncate_page);
1016 
1017 static loff_t
1018 iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length,
1019 		void *data, struct iomap *iomap, struct iomap *srcmap)
1020 {
1021 	struct page *page = data;
1022 	int ret;
1023 
1024 	if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
1025 		ret = __block_write_begin_int(page, pos, length, NULL, iomap);
1026 		if (ret)
1027 			return ret;
1028 		block_commit_write(page, 0, length);
1029 	} else {
1030 		WARN_ON_ONCE(!PageUptodate(page));
1031 		iomap_page_create(inode, page);
1032 		set_page_dirty(page);
1033 	}
1034 
1035 	return length;
1036 }
1037 
1038 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1039 {
1040 	struct page *page = vmf->page;
1041 	struct inode *inode = file_inode(vmf->vma->vm_file);
1042 	unsigned long length;
1043 	loff_t offset;
1044 	ssize_t ret;
1045 
1046 	lock_page(page);
1047 	ret = page_mkwrite_check_truncate(page, inode);
1048 	if (ret < 0)
1049 		goto out_unlock;
1050 	length = ret;
1051 
1052 	offset = page_offset(page);
1053 	while (length > 0) {
1054 		ret = iomap_apply(inode, offset, length,
1055 				IOMAP_WRITE | IOMAP_FAULT, ops, page,
1056 				iomap_page_mkwrite_actor);
1057 		if (unlikely(ret <= 0))
1058 			goto out_unlock;
1059 		offset += ret;
1060 		length -= ret;
1061 	}
1062 
1063 	wait_for_stable_page(page);
1064 	return VM_FAULT_LOCKED;
1065 out_unlock:
1066 	unlock_page(page);
1067 	return block_page_mkwrite_return(ret);
1068 }
1069 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1070 
1071 static void
1072 iomap_finish_page_writeback(struct inode *inode, struct page *page,
1073 		int error)
1074 {
1075 	struct iomap_page *iop = to_iomap_page(page);
1076 
1077 	if (error) {
1078 		SetPageError(page);
1079 		mapping_set_error(inode->i_mapping, -EIO);
1080 	}
1081 
1082 	WARN_ON_ONCE(i_blocksize(inode) < PAGE_SIZE && !iop);
1083 	WARN_ON_ONCE(iop && atomic_read(&iop->write_count) <= 0);
1084 
1085 	if (!iop || atomic_dec_and_test(&iop->write_count))
1086 		end_page_writeback(page);
1087 }
1088 
1089 /*
1090  * We're now finished for good with this ioend structure.  Update the page
1091  * state, release holds on bios, and finally free up memory.  Do not use the
1092  * ioend after this.
1093  */
1094 static void
1095 iomap_finish_ioend(struct iomap_ioend *ioend, int error)
1096 {
1097 	struct inode *inode = ioend->io_inode;
1098 	struct bio *bio = &ioend->io_inline_bio;
1099 	struct bio *last = ioend->io_bio, *next;
1100 	u64 start = bio->bi_iter.bi_sector;
1101 	loff_t offset = ioend->io_offset;
1102 	bool quiet = bio_flagged(bio, BIO_QUIET);
1103 
1104 	for (bio = &ioend->io_inline_bio; bio; bio = next) {
1105 		struct bio_vec *bv;
1106 		struct bvec_iter_all iter_all;
1107 
1108 		/*
1109 		 * For the last bio, bi_private points to the ioend, so we
1110 		 * need to explicitly end the iteration here.
1111 		 */
1112 		if (bio == last)
1113 			next = NULL;
1114 		else
1115 			next = bio->bi_private;
1116 
1117 		/* walk each page on bio, ending page IO on them */
1118 		bio_for_each_segment_all(bv, bio, iter_all)
1119 			iomap_finish_page_writeback(inode, bv->bv_page, error);
1120 		bio_put(bio);
1121 	}
1122 	/* The ioend has been freed by bio_put() */
1123 
1124 	if (unlikely(error && !quiet)) {
1125 		printk_ratelimited(KERN_ERR
1126 "%s: writeback error on inode %lu, offset %lld, sector %llu",
1127 			inode->i_sb->s_id, inode->i_ino, offset, start);
1128 	}
1129 }
1130 
1131 void
1132 iomap_finish_ioends(struct iomap_ioend *ioend, int error)
1133 {
1134 	struct list_head tmp;
1135 
1136 	list_replace_init(&ioend->io_list, &tmp);
1137 	iomap_finish_ioend(ioend, error);
1138 
1139 	while (!list_empty(&tmp)) {
1140 		ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
1141 		list_del_init(&ioend->io_list);
1142 		iomap_finish_ioend(ioend, error);
1143 	}
1144 }
1145 EXPORT_SYMBOL_GPL(iomap_finish_ioends);
1146 
1147 /*
1148  * We can merge two adjacent ioends if they have the same set of work to do.
1149  */
1150 static bool
1151 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
1152 {
1153 	if (ioend->io_bio->bi_status != next->io_bio->bi_status)
1154 		return false;
1155 	if ((ioend->io_flags & IOMAP_F_SHARED) ^
1156 	    (next->io_flags & IOMAP_F_SHARED))
1157 		return false;
1158 	if ((ioend->io_type == IOMAP_UNWRITTEN) ^
1159 	    (next->io_type == IOMAP_UNWRITTEN))
1160 		return false;
1161 	if (ioend->io_offset + ioend->io_size != next->io_offset)
1162 		return false;
1163 	return true;
1164 }
1165 
1166 void
1167 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends,
1168 		void (*merge_private)(struct iomap_ioend *ioend,
1169 				struct iomap_ioend *next))
1170 {
1171 	struct iomap_ioend *next;
1172 
1173 	INIT_LIST_HEAD(&ioend->io_list);
1174 
1175 	while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
1176 			io_list))) {
1177 		if (!iomap_ioend_can_merge(ioend, next))
1178 			break;
1179 		list_move_tail(&next->io_list, &ioend->io_list);
1180 		ioend->io_size += next->io_size;
1181 		if (next->io_private && merge_private)
1182 			merge_private(ioend, next);
1183 	}
1184 }
1185 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
1186 
1187 static int
1188 iomap_ioend_compare(void *priv, struct list_head *a, struct list_head *b)
1189 {
1190 	struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
1191 	struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
1192 
1193 	if (ia->io_offset < ib->io_offset)
1194 		return -1;
1195 	if (ia->io_offset > ib->io_offset)
1196 		return 1;
1197 	return 0;
1198 }
1199 
1200 void
1201 iomap_sort_ioends(struct list_head *ioend_list)
1202 {
1203 	list_sort(NULL, ioend_list, iomap_ioend_compare);
1204 }
1205 EXPORT_SYMBOL_GPL(iomap_sort_ioends);
1206 
1207 static void iomap_writepage_end_bio(struct bio *bio)
1208 {
1209 	struct iomap_ioend *ioend = bio->bi_private;
1210 
1211 	iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status));
1212 }
1213 
1214 /*
1215  * Submit the final bio for an ioend.
1216  *
1217  * If @error is non-zero, it means that we have a situation where some part of
1218  * the submission process has failed after we have marked paged for writeback
1219  * and unlocked them.  In this situation, we need to fail the bio instead of
1220  * submitting it.  This typically only happens on a filesystem shutdown.
1221  */
1222 static int
1223 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend,
1224 		int error)
1225 {
1226 	ioend->io_bio->bi_private = ioend;
1227 	ioend->io_bio->bi_end_io = iomap_writepage_end_bio;
1228 
1229 	if (wpc->ops->prepare_ioend)
1230 		error = wpc->ops->prepare_ioend(ioend, error);
1231 	if (error) {
1232 		/*
1233 		 * If we are failing the IO now, just mark the ioend with an
1234 		 * error and finish it.  This will run IO completion immediately
1235 		 * as there is only one reference to the ioend at this point in
1236 		 * time.
1237 		 */
1238 		ioend->io_bio->bi_status = errno_to_blk_status(error);
1239 		bio_endio(ioend->io_bio);
1240 		return error;
1241 	}
1242 
1243 	submit_bio(ioend->io_bio);
1244 	return 0;
1245 }
1246 
1247 static struct iomap_ioend *
1248 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc,
1249 		loff_t offset, sector_t sector, struct writeback_control *wbc)
1250 {
1251 	struct iomap_ioend *ioend;
1252 	struct bio *bio;
1253 
1254 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &iomap_ioend_bioset);
1255 	bio_set_dev(bio, wpc->iomap.bdev);
1256 	bio->bi_iter.bi_sector = sector;
1257 	bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
1258 	bio->bi_write_hint = inode->i_write_hint;
1259 	wbc_init_bio(wbc, bio);
1260 
1261 	ioend = container_of(bio, struct iomap_ioend, io_inline_bio);
1262 	INIT_LIST_HEAD(&ioend->io_list);
1263 	ioend->io_type = wpc->iomap.type;
1264 	ioend->io_flags = wpc->iomap.flags;
1265 	ioend->io_inode = inode;
1266 	ioend->io_size = 0;
1267 	ioend->io_offset = offset;
1268 	ioend->io_private = NULL;
1269 	ioend->io_bio = bio;
1270 	return ioend;
1271 }
1272 
1273 /*
1274  * Allocate a new bio, and chain the old bio to the new one.
1275  *
1276  * Note that we have to do perform the chaining in this unintuitive order
1277  * so that the bi_private linkage is set up in the right direction for the
1278  * traversal in iomap_finish_ioend().
1279  */
1280 static struct bio *
1281 iomap_chain_bio(struct bio *prev)
1282 {
1283 	struct bio *new;
1284 
1285 	new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
1286 	bio_copy_dev(new, prev);/* also copies over blkcg information */
1287 	new->bi_iter.bi_sector = bio_end_sector(prev);
1288 	new->bi_opf = prev->bi_opf;
1289 	new->bi_write_hint = prev->bi_write_hint;
1290 
1291 	bio_chain(prev, new);
1292 	bio_get(prev);		/* for iomap_finish_ioend */
1293 	submit_bio(prev);
1294 	return new;
1295 }
1296 
1297 static bool
1298 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset,
1299 		sector_t sector)
1300 {
1301 	if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
1302 	    (wpc->ioend->io_flags & IOMAP_F_SHARED))
1303 		return false;
1304 	if (wpc->iomap.type != wpc->ioend->io_type)
1305 		return false;
1306 	if (offset != wpc->ioend->io_offset + wpc->ioend->io_size)
1307 		return false;
1308 	if (sector != bio_end_sector(wpc->ioend->io_bio))
1309 		return false;
1310 	return true;
1311 }
1312 
1313 /*
1314  * Test to see if we have an existing ioend structure that we could append to
1315  * first, otherwise finish off the current ioend and start another.
1316  */
1317 static void
1318 iomap_add_to_ioend(struct inode *inode, loff_t offset, struct page *page,
1319 		struct iomap_page *iop, struct iomap_writepage_ctx *wpc,
1320 		struct writeback_control *wbc, struct list_head *iolist)
1321 {
1322 	sector_t sector = iomap_sector(&wpc->iomap, offset);
1323 	unsigned len = i_blocksize(inode);
1324 	unsigned poff = offset & (PAGE_SIZE - 1);
1325 	bool merged, same_page = false;
1326 
1327 	if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, offset, sector)) {
1328 		if (wpc->ioend)
1329 			list_add(&wpc->ioend->io_list, iolist);
1330 		wpc->ioend = iomap_alloc_ioend(inode, wpc, offset, sector, wbc);
1331 	}
1332 
1333 	merged = __bio_try_merge_page(wpc->ioend->io_bio, page, len, poff,
1334 			&same_page);
1335 	if (iop && !same_page)
1336 		atomic_inc(&iop->write_count);
1337 
1338 	if (!merged) {
1339 		if (bio_full(wpc->ioend->io_bio, len)) {
1340 			wpc->ioend->io_bio =
1341 				iomap_chain_bio(wpc->ioend->io_bio);
1342 		}
1343 		bio_add_page(wpc->ioend->io_bio, page, len, poff);
1344 	}
1345 
1346 	wpc->ioend->io_size += len;
1347 	wbc_account_cgroup_owner(wbc, page, len);
1348 }
1349 
1350 /*
1351  * We implement an immediate ioend submission policy here to avoid needing to
1352  * chain multiple ioends and hence nest mempool allocations which can violate
1353  * forward progress guarantees we need to provide. The current ioend we are
1354  * adding blocks to is cached on the writepage context, and if the new block
1355  * does not append to the cached ioend it will create a new ioend and cache that
1356  * instead.
1357  *
1358  * If a new ioend is created and cached, the old ioend is returned and queued
1359  * locally for submission once the entire page is processed or an error has been
1360  * detected.  While ioends are submitted immediately after they are completed,
1361  * batching optimisations are provided by higher level block plugging.
1362  *
1363  * At the end of a writeback pass, there will be a cached ioend remaining on the
1364  * writepage context that the caller will need to submit.
1365  */
1366 static int
1367 iomap_writepage_map(struct iomap_writepage_ctx *wpc,
1368 		struct writeback_control *wbc, struct inode *inode,
1369 		struct page *page, u64 end_offset)
1370 {
1371 	struct iomap_page *iop = to_iomap_page(page);
1372 	struct iomap_ioend *ioend, *next;
1373 	unsigned len = i_blocksize(inode);
1374 	u64 file_offset; /* file offset of page */
1375 	int error = 0, count = 0, i;
1376 	LIST_HEAD(submit_list);
1377 
1378 	WARN_ON_ONCE(i_blocksize(inode) < PAGE_SIZE && !iop);
1379 	WARN_ON_ONCE(iop && atomic_read(&iop->write_count) != 0);
1380 
1381 	/*
1382 	 * Walk through the page to find areas to write back. If we run off the
1383 	 * end of the current map or find the current map invalid, grab a new
1384 	 * one.
1385 	 */
1386 	for (i = 0, file_offset = page_offset(page);
1387 	     i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset;
1388 	     i++, file_offset += len) {
1389 		if (iop && !test_bit(i, iop->uptodate))
1390 			continue;
1391 
1392 		error = wpc->ops->map_blocks(wpc, inode, file_offset);
1393 		if (error)
1394 			break;
1395 		if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE))
1396 			continue;
1397 		if (wpc->iomap.type == IOMAP_HOLE)
1398 			continue;
1399 		iomap_add_to_ioend(inode, file_offset, page, iop, wpc, wbc,
1400 				 &submit_list);
1401 		count++;
1402 	}
1403 
1404 	WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list));
1405 	WARN_ON_ONCE(!PageLocked(page));
1406 	WARN_ON_ONCE(PageWriteback(page));
1407 
1408 	/*
1409 	 * We cannot cancel the ioend directly here on error.  We may have
1410 	 * already set other pages under writeback and hence we have to run I/O
1411 	 * completion to mark the error state of the pages under writeback
1412 	 * appropriately.
1413 	 */
1414 	if (unlikely(error)) {
1415 		if (!count) {
1416 			/*
1417 			 * If the current page hasn't been added to ioend, it
1418 			 * won't be affected by I/O completions and we must
1419 			 * discard and unlock it right here.
1420 			 */
1421 			if (wpc->ops->discard_page)
1422 				wpc->ops->discard_page(page);
1423 			ClearPageUptodate(page);
1424 			unlock_page(page);
1425 			goto done;
1426 		}
1427 
1428 		/*
1429 		 * If the page was not fully cleaned, we need to ensure that the
1430 		 * higher layers come back to it correctly.  That means we need
1431 		 * to keep the page dirty, and for WB_SYNC_ALL writeback we need
1432 		 * to ensure the PAGECACHE_TAG_TOWRITE index mark is not removed
1433 		 * so another attempt to write this page in this writeback sweep
1434 		 * will be made.
1435 		 */
1436 		set_page_writeback_keepwrite(page);
1437 	} else {
1438 		clear_page_dirty_for_io(page);
1439 		set_page_writeback(page);
1440 	}
1441 
1442 	unlock_page(page);
1443 
1444 	/*
1445 	 * Preserve the original error if there was one, otherwise catch
1446 	 * submission errors here and propagate into subsequent ioend
1447 	 * submissions.
1448 	 */
1449 	list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1450 		int error2;
1451 
1452 		list_del_init(&ioend->io_list);
1453 		error2 = iomap_submit_ioend(wpc, ioend, error);
1454 		if (error2 && !error)
1455 			error = error2;
1456 	}
1457 
1458 	/*
1459 	 * We can end up here with no error and nothing to write only if we race
1460 	 * with a partial page truncate on a sub-page block sized filesystem.
1461 	 */
1462 	if (!count)
1463 		end_page_writeback(page);
1464 done:
1465 	mapping_set_error(page->mapping, error);
1466 	return error;
1467 }
1468 
1469 /*
1470  * Write out a dirty page.
1471  *
1472  * For delalloc space on the page we need to allocate space and flush it.
1473  * For unwritten space on the page we need to start the conversion to
1474  * regular allocated space.
1475  */
1476 static int
1477 iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data)
1478 {
1479 	struct iomap_writepage_ctx *wpc = data;
1480 	struct inode *inode = page->mapping->host;
1481 	pgoff_t end_index;
1482 	u64 end_offset;
1483 	loff_t offset;
1484 
1485 	trace_iomap_writepage(inode, page_offset(page), PAGE_SIZE);
1486 
1487 	/*
1488 	 * Refuse to write the page out if we are called from reclaim context.
1489 	 *
1490 	 * This avoids stack overflows when called from deeply used stacks in
1491 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
1492 	 * allow reclaim from kswapd as the stack usage there is relatively low.
1493 	 *
1494 	 * This should never happen except in the case of a VM regression so
1495 	 * warn about it.
1496 	 */
1497 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1498 			PF_MEMALLOC))
1499 		goto redirty;
1500 
1501 	/*
1502 	 * Given that we do not allow direct reclaim to call us, we should
1503 	 * never be called in a recursive filesystem reclaim context.
1504 	 */
1505 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
1506 		goto redirty;
1507 
1508 	/*
1509 	 * Is this page beyond the end of the file?
1510 	 *
1511 	 * The page index is less than the end_index, adjust the end_offset
1512 	 * to the highest offset that this page should represent.
1513 	 * -----------------------------------------------------
1514 	 * |			file mapping	       | <EOF> |
1515 	 * -----------------------------------------------------
1516 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
1517 	 * ^--------------------------------^----------|--------
1518 	 * |     desired writeback range    |      see else    |
1519 	 * ---------------------------------^------------------|
1520 	 */
1521 	offset = i_size_read(inode);
1522 	end_index = offset >> PAGE_SHIFT;
1523 	if (page->index < end_index)
1524 		end_offset = (loff_t)(page->index + 1) << PAGE_SHIFT;
1525 	else {
1526 		/*
1527 		 * Check whether the page to write out is beyond or straddles
1528 		 * i_size or not.
1529 		 * -------------------------------------------------------
1530 		 * |		file mapping		        | <EOF>  |
1531 		 * -------------------------------------------------------
1532 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1533 		 * ^--------------------------------^-----------|---------
1534 		 * |				    |      Straddles     |
1535 		 * ---------------------------------^-----------|--------|
1536 		 */
1537 		unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1538 
1539 		/*
1540 		 * Skip the page if it is fully outside i_size, e.g. due to a
1541 		 * truncate operation that is in progress. We must redirty the
1542 		 * page so that reclaim stops reclaiming it. Otherwise
1543 		 * iomap_vm_releasepage() is called on it and gets confused.
1544 		 *
1545 		 * Note that the end_index is unsigned long, it would overflow
1546 		 * if the given offset is greater than 16TB on 32-bit system
1547 		 * and if we do check the page is fully outside i_size or not
1548 		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1549 		 * will be evaluated to 0.  Hence this page will be redirtied
1550 		 * and be written out repeatedly which would result in an
1551 		 * infinite loop, the user program that perform this operation
1552 		 * will hang.  Instead, we can verify this situation by checking
1553 		 * if the page to write is totally beyond the i_size or if it's
1554 		 * offset is just equal to the EOF.
1555 		 */
1556 		if (page->index > end_index ||
1557 		    (page->index == end_index && offset_into_page == 0))
1558 			goto redirty;
1559 
1560 		/*
1561 		 * The page straddles i_size.  It must be zeroed out on each
1562 		 * and every writepage invocation because it may be mmapped.
1563 		 * "A file is mapped in multiples of the page size.  For a file
1564 		 * that is not a multiple of the page size, the remaining
1565 		 * memory is zeroed when mapped, and writes to that region are
1566 		 * not written out to the file."
1567 		 */
1568 		zero_user_segment(page, offset_into_page, PAGE_SIZE);
1569 
1570 		/* Adjust the end_offset to the end of file */
1571 		end_offset = offset;
1572 	}
1573 
1574 	return iomap_writepage_map(wpc, wbc, inode, page, end_offset);
1575 
1576 redirty:
1577 	redirty_page_for_writepage(wbc, page);
1578 	unlock_page(page);
1579 	return 0;
1580 }
1581 
1582 int
1583 iomap_writepage(struct page *page, struct writeback_control *wbc,
1584 		struct iomap_writepage_ctx *wpc,
1585 		const struct iomap_writeback_ops *ops)
1586 {
1587 	int ret;
1588 
1589 	wpc->ops = ops;
1590 	ret = iomap_do_writepage(page, wbc, wpc);
1591 	if (!wpc->ioend)
1592 		return ret;
1593 	return iomap_submit_ioend(wpc, wpc->ioend, ret);
1594 }
1595 EXPORT_SYMBOL_GPL(iomap_writepage);
1596 
1597 int
1598 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
1599 		struct iomap_writepage_ctx *wpc,
1600 		const struct iomap_writeback_ops *ops)
1601 {
1602 	int			ret;
1603 
1604 	wpc->ops = ops;
1605 	ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc);
1606 	if (!wpc->ioend)
1607 		return ret;
1608 	return iomap_submit_ioend(wpc, wpc->ioend, ret);
1609 }
1610 EXPORT_SYMBOL_GPL(iomap_writepages);
1611 
1612 static int __init iomap_init(void)
1613 {
1614 	return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
1615 			   offsetof(struct iomap_ioend, io_inline_bio),
1616 			   BIOSET_NEED_BVECS);
1617 }
1618 fs_initcall(iomap_init);
1619