1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Red Hat, Inc. 4 * Copyright (C) 2016-2019 Christoph Hellwig. 5 */ 6 #include <linux/module.h> 7 #include <linux/compiler.h> 8 #include <linux/fs.h> 9 #include <linux/iomap.h> 10 #include <linux/pagemap.h> 11 #include <linux/uio.h> 12 #include <linux/buffer_head.h> 13 #include <linux/dax.h> 14 #include <linux/writeback.h> 15 #include <linux/list_sort.h> 16 #include <linux/swap.h> 17 #include <linux/bio.h> 18 #include <linux/sched/signal.h> 19 #include <linux/migrate.h> 20 #include "trace.h" 21 22 #include "../internal.h" 23 24 /* 25 * Structure allocated for each page when block size < PAGE_SIZE to track 26 * sub-page uptodate status and I/O completions. 27 */ 28 struct iomap_page { 29 atomic_t read_count; 30 atomic_t write_count; 31 spinlock_t uptodate_lock; 32 DECLARE_BITMAP(uptodate, PAGE_SIZE / 512); 33 }; 34 35 static inline struct iomap_page *to_iomap_page(struct page *page) 36 { 37 if (page_has_private(page)) 38 return (struct iomap_page *)page_private(page); 39 return NULL; 40 } 41 42 static struct bio_set iomap_ioend_bioset; 43 44 static struct iomap_page * 45 iomap_page_create(struct inode *inode, struct page *page) 46 { 47 struct iomap_page *iop = to_iomap_page(page); 48 49 if (iop || i_blocksize(inode) == PAGE_SIZE) 50 return iop; 51 52 iop = kmalloc(sizeof(*iop), GFP_NOFS | __GFP_NOFAIL); 53 atomic_set(&iop->read_count, 0); 54 atomic_set(&iop->write_count, 0); 55 spin_lock_init(&iop->uptodate_lock); 56 bitmap_zero(iop->uptodate, PAGE_SIZE / SECTOR_SIZE); 57 58 /* 59 * migrate_page_move_mapping() assumes that pages with private data have 60 * their count elevated by 1. 61 */ 62 get_page(page); 63 set_page_private(page, (unsigned long)iop); 64 SetPagePrivate(page); 65 return iop; 66 } 67 68 static void 69 iomap_page_release(struct page *page) 70 { 71 struct iomap_page *iop = to_iomap_page(page); 72 73 if (!iop) 74 return; 75 WARN_ON_ONCE(atomic_read(&iop->read_count)); 76 WARN_ON_ONCE(atomic_read(&iop->write_count)); 77 ClearPagePrivate(page); 78 set_page_private(page, 0); 79 put_page(page); 80 kfree(iop); 81 } 82 83 /* 84 * Calculate the range inside the page that we actually need to read. 85 */ 86 static void 87 iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop, 88 loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp) 89 { 90 loff_t orig_pos = *pos; 91 loff_t isize = i_size_read(inode); 92 unsigned block_bits = inode->i_blkbits; 93 unsigned block_size = (1 << block_bits); 94 unsigned poff = offset_in_page(*pos); 95 unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length); 96 unsigned first = poff >> block_bits; 97 unsigned last = (poff + plen - 1) >> block_bits; 98 99 /* 100 * If the block size is smaller than the page size we need to check the 101 * per-block uptodate status and adjust the offset and length if needed 102 * to avoid reading in already uptodate ranges. 103 */ 104 if (iop) { 105 unsigned int i; 106 107 /* move forward for each leading block marked uptodate */ 108 for (i = first; i <= last; i++) { 109 if (!test_bit(i, iop->uptodate)) 110 break; 111 *pos += block_size; 112 poff += block_size; 113 plen -= block_size; 114 first++; 115 } 116 117 /* truncate len if we find any trailing uptodate block(s) */ 118 for ( ; i <= last; i++) { 119 if (test_bit(i, iop->uptodate)) { 120 plen -= (last - i + 1) * block_size; 121 last = i - 1; 122 break; 123 } 124 } 125 } 126 127 /* 128 * If the extent spans the block that contains the i_size we need to 129 * handle both halves separately so that we properly zero data in the 130 * page cache for blocks that are entirely outside of i_size. 131 */ 132 if (orig_pos <= isize && orig_pos + length > isize) { 133 unsigned end = offset_in_page(isize - 1) >> block_bits; 134 135 if (first <= end && last > end) 136 plen -= (last - end) * block_size; 137 } 138 139 *offp = poff; 140 *lenp = plen; 141 } 142 143 static void 144 iomap_iop_set_range_uptodate(struct page *page, unsigned off, unsigned len) 145 { 146 struct iomap_page *iop = to_iomap_page(page); 147 struct inode *inode = page->mapping->host; 148 unsigned first = off >> inode->i_blkbits; 149 unsigned last = (off + len - 1) >> inode->i_blkbits; 150 bool uptodate = true; 151 unsigned long flags; 152 unsigned int i; 153 154 spin_lock_irqsave(&iop->uptodate_lock, flags); 155 for (i = 0; i < PAGE_SIZE / i_blocksize(inode); i++) { 156 if (i >= first && i <= last) 157 set_bit(i, iop->uptodate); 158 else if (!test_bit(i, iop->uptodate)) 159 uptodate = false; 160 } 161 162 if (uptodate) 163 SetPageUptodate(page); 164 spin_unlock_irqrestore(&iop->uptodate_lock, flags); 165 } 166 167 static void 168 iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len) 169 { 170 if (PageError(page)) 171 return; 172 173 if (page_has_private(page)) 174 iomap_iop_set_range_uptodate(page, off, len); 175 else 176 SetPageUptodate(page); 177 } 178 179 static void 180 iomap_read_finish(struct iomap_page *iop, struct page *page) 181 { 182 if (!iop || atomic_dec_and_test(&iop->read_count)) 183 unlock_page(page); 184 } 185 186 static void 187 iomap_read_page_end_io(struct bio_vec *bvec, int error) 188 { 189 struct page *page = bvec->bv_page; 190 struct iomap_page *iop = to_iomap_page(page); 191 192 if (unlikely(error)) { 193 ClearPageUptodate(page); 194 SetPageError(page); 195 } else { 196 iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len); 197 } 198 199 iomap_read_finish(iop, page); 200 } 201 202 static void 203 iomap_read_end_io(struct bio *bio) 204 { 205 int error = blk_status_to_errno(bio->bi_status); 206 struct bio_vec *bvec; 207 struct bvec_iter_all iter_all; 208 209 bio_for_each_segment_all(bvec, bio, iter_all) 210 iomap_read_page_end_io(bvec, error); 211 bio_put(bio); 212 } 213 214 struct iomap_readpage_ctx { 215 struct page *cur_page; 216 bool cur_page_in_bio; 217 bool is_readahead; 218 struct bio *bio; 219 struct list_head *pages; 220 }; 221 222 static void 223 iomap_read_inline_data(struct inode *inode, struct page *page, 224 struct iomap *iomap) 225 { 226 size_t size = i_size_read(inode); 227 void *addr; 228 229 if (PageUptodate(page)) 230 return; 231 232 BUG_ON(page->index); 233 BUG_ON(size > PAGE_SIZE - offset_in_page(iomap->inline_data)); 234 235 addr = kmap_atomic(page); 236 memcpy(addr, iomap->inline_data, size); 237 memset(addr + size, 0, PAGE_SIZE - size); 238 kunmap_atomic(addr); 239 SetPageUptodate(page); 240 } 241 242 static inline bool iomap_block_needs_zeroing(struct inode *inode, 243 struct iomap *iomap, loff_t pos) 244 { 245 return iomap->type != IOMAP_MAPPED || 246 (iomap->flags & IOMAP_F_NEW) || 247 pos >= i_size_read(inode); 248 } 249 250 static loff_t 251 iomap_readpage_actor(struct inode *inode, loff_t pos, loff_t length, void *data, 252 struct iomap *iomap, struct iomap *srcmap) 253 { 254 struct iomap_readpage_ctx *ctx = data; 255 struct page *page = ctx->cur_page; 256 struct iomap_page *iop = iomap_page_create(inode, page); 257 bool same_page = false, is_contig = false; 258 loff_t orig_pos = pos; 259 unsigned poff, plen; 260 sector_t sector; 261 262 if (iomap->type == IOMAP_INLINE) { 263 WARN_ON_ONCE(pos); 264 iomap_read_inline_data(inode, page, iomap); 265 return PAGE_SIZE; 266 } 267 268 /* zero post-eof blocks as the page may be mapped */ 269 iomap_adjust_read_range(inode, iop, &pos, length, &poff, &plen); 270 if (plen == 0) 271 goto done; 272 273 if (iomap_block_needs_zeroing(inode, iomap, pos)) { 274 zero_user(page, poff, plen); 275 iomap_set_range_uptodate(page, poff, plen); 276 goto done; 277 } 278 279 ctx->cur_page_in_bio = true; 280 281 /* 282 * Try to merge into a previous segment if we can. 283 */ 284 sector = iomap_sector(iomap, pos); 285 if (ctx->bio && bio_end_sector(ctx->bio) == sector) 286 is_contig = true; 287 288 if (is_contig && 289 __bio_try_merge_page(ctx->bio, page, plen, poff, &same_page)) { 290 if (!same_page && iop) 291 atomic_inc(&iop->read_count); 292 goto done; 293 } 294 295 /* 296 * If we start a new segment we need to increase the read count, and we 297 * need to do so before submitting any previous full bio to make sure 298 * that we don't prematurely unlock the page. 299 */ 300 if (iop) 301 atomic_inc(&iop->read_count); 302 303 if (!ctx->bio || !is_contig || bio_full(ctx->bio, plen)) { 304 gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL); 305 int nr_vecs = (length + PAGE_SIZE - 1) >> PAGE_SHIFT; 306 307 if (ctx->bio) 308 submit_bio(ctx->bio); 309 310 if (ctx->is_readahead) /* same as readahead_gfp_mask */ 311 gfp |= __GFP_NORETRY | __GFP_NOWARN; 312 ctx->bio = bio_alloc(gfp, min(BIO_MAX_PAGES, nr_vecs)); 313 ctx->bio->bi_opf = REQ_OP_READ; 314 if (ctx->is_readahead) 315 ctx->bio->bi_opf |= REQ_RAHEAD; 316 ctx->bio->bi_iter.bi_sector = sector; 317 bio_set_dev(ctx->bio, iomap->bdev); 318 ctx->bio->bi_end_io = iomap_read_end_io; 319 } 320 321 bio_add_page(ctx->bio, page, plen, poff); 322 done: 323 /* 324 * Move the caller beyond our range so that it keeps making progress. 325 * For that we have to include any leading non-uptodate ranges, but 326 * we can skip trailing ones as they will be handled in the next 327 * iteration. 328 */ 329 return pos - orig_pos + plen; 330 } 331 332 int 333 iomap_readpage(struct page *page, const struct iomap_ops *ops) 334 { 335 struct iomap_readpage_ctx ctx = { .cur_page = page }; 336 struct inode *inode = page->mapping->host; 337 unsigned poff; 338 loff_t ret; 339 340 trace_iomap_readpage(page->mapping->host, 1); 341 342 for (poff = 0; poff < PAGE_SIZE; poff += ret) { 343 ret = iomap_apply(inode, page_offset(page) + poff, 344 PAGE_SIZE - poff, 0, ops, &ctx, 345 iomap_readpage_actor); 346 if (ret <= 0) { 347 WARN_ON_ONCE(ret == 0); 348 SetPageError(page); 349 break; 350 } 351 } 352 353 if (ctx.bio) { 354 submit_bio(ctx.bio); 355 WARN_ON_ONCE(!ctx.cur_page_in_bio); 356 } else { 357 WARN_ON_ONCE(ctx.cur_page_in_bio); 358 unlock_page(page); 359 } 360 361 /* 362 * Just like mpage_readpages and block_read_full_page we always 363 * return 0 and just mark the page as PageError on errors. This 364 * should be cleaned up all through the stack eventually. 365 */ 366 return 0; 367 } 368 EXPORT_SYMBOL_GPL(iomap_readpage); 369 370 static struct page * 371 iomap_next_page(struct inode *inode, struct list_head *pages, loff_t pos, 372 loff_t length, loff_t *done) 373 { 374 while (!list_empty(pages)) { 375 struct page *page = lru_to_page(pages); 376 377 if (page_offset(page) >= (u64)pos + length) 378 break; 379 380 list_del(&page->lru); 381 if (!add_to_page_cache_lru(page, inode->i_mapping, page->index, 382 GFP_NOFS)) 383 return page; 384 385 /* 386 * If we already have a page in the page cache at index we are 387 * done. Upper layers don't care if it is uptodate after the 388 * readpages call itself as every page gets checked again once 389 * actually needed. 390 */ 391 *done += PAGE_SIZE; 392 put_page(page); 393 } 394 395 return NULL; 396 } 397 398 static loff_t 399 iomap_readpages_actor(struct inode *inode, loff_t pos, loff_t length, 400 void *data, struct iomap *iomap, struct iomap *srcmap) 401 { 402 struct iomap_readpage_ctx *ctx = data; 403 loff_t done, ret; 404 405 for (done = 0; done < length; done += ret) { 406 if (ctx->cur_page && offset_in_page(pos + done) == 0) { 407 if (!ctx->cur_page_in_bio) 408 unlock_page(ctx->cur_page); 409 put_page(ctx->cur_page); 410 ctx->cur_page = NULL; 411 } 412 if (!ctx->cur_page) { 413 ctx->cur_page = iomap_next_page(inode, ctx->pages, 414 pos, length, &done); 415 if (!ctx->cur_page) 416 break; 417 ctx->cur_page_in_bio = false; 418 } 419 ret = iomap_readpage_actor(inode, pos + done, length - done, 420 ctx, iomap, srcmap); 421 } 422 423 return done; 424 } 425 426 int 427 iomap_readpages(struct address_space *mapping, struct list_head *pages, 428 unsigned nr_pages, const struct iomap_ops *ops) 429 { 430 struct iomap_readpage_ctx ctx = { 431 .pages = pages, 432 .is_readahead = true, 433 }; 434 loff_t pos = page_offset(list_entry(pages->prev, struct page, lru)); 435 loff_t last = page_offset(list_entry(pages->next, struct page, lru)); 436 loff_t length = last - pos + PAGE_SIZE, ret = 0; 437 438 trace_iomap_readpages(mapping->host, nr_pages); 439 440 while (length > 0) { 441 ret = iomap_apply(mapping->host, pos, length, 0, ops, 442 &ctx, iomap_readpages_actor); 443 if (ret <= 0) { 444 WARN_ON_ONCE(ret == 0); 445 goto done; 446 } 447 pos += ret; 448 length -= ret; 449 } 450 ret = 0; 451 done: 452 if (ctx.bio) 453 submit_bio(ctx.bio); 454 if (ctx.cur_page) { 455 if (!ctx.cur_page_in_bio) 456 unlock_page(ctx.cur_page); 457 put_page(ctx.cur_page); 458 } 459 460 /* 461 * Check that we didn't lose a page due to the arcance calling 462 * conventions.. 463 */ 464 WARN_ON_ONCE(!ret && !list_empty(ctx.pages)); 465 return ret; 466 } 467 EXPORT_SYMBOL_GPL(iomap_readpages); 468 469 /* 470 * iomap_is_partially_uptodate checks whether blocks within a page are 471 * uptodate or not. 472 * 473 * Returns true if all blocks which correspond to a file portion 474 * we want to read within the page are uptodate. 475 */ 476 int 477 iomap_is_partially_uptodate(struct page *page, unsigned long from, 478 unsigned long count) 479 { 480 struct iomap_page *iop = to_iomap_page(page); 481 struct inode *inode = page->mapping->host; 482 unsigned len, first, last; 483 unsigned i; 484 485 /* Limit range to one page */ 486 len = min_t(unsigned, PAGE_SIZE - from, count); 487 488 /* First and last blocks in range within page */ 489 first = from >> inode->i_blkbits; 490 last = (from + len - 1) >> inode->i_blkbits; 491 492 if (iop) { 493 for (i = first; i <= last; i++) 494 if (!test_bit(i, iop->uptodate)) 495 return 0; 496 return 1; 497 } 498 499 return 0; 500 } 501 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate); 502 503 int 504 iomap_releasepage(struct page *page, gfp_t gfp_mask) 505 { 506 trace_iomap_releasepage(page->mapping->host, page, 0, 0); 507 508 /* 509 * mm accommodates an old ext3 case where clean pages might not have had 510 * the dirty bit cleared. Thus, it can send actual dirty pages to 511 * ->releasepage() via shrink_active_list(), skip those here. 512 */ 513 if (PageDirty(page) || PageWriteback(page)) 514 return 0; 515 iomap_page_release(page); 516 return 1; 517 } 518 EXPORT_SYMBOL_GPL(iomap_releasepage); 519 520 void 521 iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len) 522 { 523 trace_iomap_invalidatepage(page->mapping->host, page, offset, len); 524 525 /* 526 * If we are invalidating the entire page, clear the dirty state from it 527 * and release it to avoid unnecessary buildup of the LRU. 528 */ 529 if (offset == 0 && len == PAGE_SIZE) { 530 WARN_ON_ONCE(PageWriteback(page)); 531 cancel_dirty_page(page); 532 iomap_page_release(page); 533 } 534 } 535 EXPORT_SYMBOL_GPL(iomap_invalidatepage); 536 537 #ifdef CONFIG_MIGRATION 538 int 539 iomap_migrate_page(struct address_space *mapping, struct page *newpage, 540 struct page *page, enum migrate_mode mode) 541 { 542 int ret; 543 544 ret = migrate_page_move_mapping(mapping, newpage, page, 0); 545 if (ret != MIGRATEPAGE_SUCCESS) 546 return ret; 547 548 if (page_has_private(page)) { 549 ClearPagePrivate(page); 550 get_page(newpage); 551 set_page_private(newpage, page_private(page)); 552 set_page_private(page, 0); 553 put_page(page); 554 SetPagePrivate(newpage); 555 } 556 557 if (mode != MIGRATE_SYNC_NO_COPY) 558 migrate_page_copy(newpage, page); 559 else 560 migrate_page_states(newpage, page); 561 return MIGRATEPAGE_SUCCESS; 562 } 563 EXPORT_SYMBOL_GPL(iomap_migrate_page); 564 #endif /* CONFIG_MIGRATION */ 565 566 enum { 567 IOMAP_WRITE_F_UNSHARE = (1 << 0), 568 }; 569 570 static void 571 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len) 572 { 573 loff_t i_size = i_size_read(inode); 574 575 /* 576 * Only truncate newly allocated pages beyoned EOF, even if the 577 * write started inside the existing inode size. 578 */ 579 if (pos + len > i_size) 580 truncate_pagecache_range(inode, max(pos, i_size), pos + len); 581 } 582 583 static int 584 iomap_read_page_sync(loff_t block_start, struct page *page, unsigned poff, 585 unsigned plen, struct iomap *iomap) 586 { 587 struct bio_vec bvec; 588 struct bio bio; 589 590 bio_init(&bio, &bvec, 1); 591 bio.bi_opf = REQ_OP_READ; 592 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start); 593 bio_set_dev(&bio, iomap->bdev); 594 __bio_add_page(&bio, page, plen, poff); 595 return submit_bio_wait(&bio); 596 } 597 598 static int 599 __iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, int flags, 600 struct page *page, struct iomap *srcmap) 601 { 602 struct iomap_page *iop = iomap_page_create(inode, page); 603 loff_t block_size = i_blocksize(inode); 604 loff_t block_start = pos & ~(block_size - 1); 605 loff_t block_end = (pos + len + block_size - 1) & ~(block_size - 1); 606 unsigned from = offset_in_page(pos), to = from + len, poff, plen; 607 int status; 608 609 if (PageUptodate(page)) 610 return 0; 611 612 do { 613 iomap_adjust_read_range(inode, iop, &block_start, 614 block_end - block_start, &poff, &plen); 615 if (plen == 0) 616 break; 617 618 if (!(flags & IOMAP_WRITE_F_UNSHARE) && 619 (from <= poff || from >= poff + plen) && 620 (to <= poff || to >= poff + plen)) 621 continue; 622 623 if (iomap_block_needs_zeroing(inode, srcmap, block_start)) { 624 if (WARN_ON_ONCE(flags & IOMAP_WRITE_F_UNSHARE)) 625 return -EIO; 626 zero_user_segments(page, poff, from, to, poff + plen); 627 iomap_set_range_uptodate(page, poff, plen); 628 continue; 629 } 630 631 status = iomap_read_page_sync(block_start, page, poff, plen, 632 srcmap); 633 if (status) 634 return status; 635 } while ((block_start += plen) < block_end); 636 637 return 0; 638 } 639 640 static int 641 iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags, 642 struct page **pagep, struct iomap *iomap, struct iomap *srcmap) 643 { 644 const struct iomap_page_ops *page_ops = iomap->page_ops; 645 struct page *page; 646 int status = 0; 647 648 BUG_ON(pos + len > iomap->offset + iomap->length); 649 if (srcmap != iomap) 650 BUG_ON(pos + len > srcmap->offset + srcmap->length); 651 652 if (fatal_signal_pending(current)) 653 return -EINTR; 654 655 if (page_ops && page_ops->page_prepare) { 656 status = page_ops->page_prepare(inode, pos, len, iomap); 657 if (status) 658 return status; 659 } 660 661 page = grab_cache_page_write_begin(inode->i_mapping, pos >> PAGE_SHIFT, 662 AOP_FLAG_NOFS); 663 if (!page) { 664 status = -ENOMEM; 665 goto out_no_page; 666 } 667 668 if (srcmap->type == IOMAP_INLINE) 669 iomap_read_inline_data(inode, page, srcmap); 670 else if (iomap->flags & IOMAP_F_BUFFER_HEAD) 671 status = __block_write_begin_int(page, pos, len, NULL, srcmap); 672 else 673 status = __iomap_write_begin(inode, pos, len, flags, page, 674 srcmap); 675 676 if (unlikely(status)) 677 goto out_unlock; 678 679 *pagep = page; 680 return 0; 681 682 out_unlock: 683 unlock_page(page); 684 put_page(page); 685 iomap_write_failed(inode, pos, len); 686 687 out_no_page: 688 if (page_ops && page_ops->page_done) 689 page_ops->page_done(inode, pos, 0, NULL, iomap); 690 return status; 691 } 692 693 int 694 iomap_set_page_dirty(struct page *page) 695 { 696 struct address_space *mapping = page_mapping(page); 697 int newly_dirty; 698 699 if (unlikely(!mapping)) 700 return !TestSetPageDirty(page); 701 702 /* 703 * Lock out page->mem_cgroup migration to keep PageDirty 704 * synchronized with per-memcg dirty page counters. 705 */ 706 lock_page_memcg(page); 707 newly_dirty = !TestSetPageDirty(page); 708 if (newly_dirty) 709 __set_page_dirty(page, mapping, 0); 710 unlock_page_memcg(page); 711 712 if (newly_dirty) 713 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 714 return newly_dirty; 715 } 716 EXPORT_SYMBOL_GPL(iomap_set_page_dirty); 717 718 static int 719 __iomap_write_end(struct inode *inode, loff_t pos, unsigned len, 720 unsigned copied, struct page *page) 721 { 722 flush_dcache_page(page); 723 724 /* 725 * The blocks that were entirely written will now be uptodate, so we 726 * don't have to worry about a readpage reading them and overwriting a 727 * partial write. However if we have encountered a short write and only 728 * partially written into a block, it will not be marked uptodate, so a 729 * readpage might come in and destroy our partial write. 730 * 731 * Do the simplest thing, and just treat any short write to a non 732 * uptodate page as a zero-length write, and force the caller to redo 733 * the whole thing. 734 */ 735 if (unlikely(copied < len && !PageUptodate(page))) 736 return 0; 737 iomap_set_range_uptodate(page, offset_in_page(pos), len); 738 iomap_set_page_dirty(page); 739 return copied; 740 } 741 742 static int 743 iomap_write_end_inline(struct inode *inode, struct page *page, 744 struct iomap *iomap, loff_t pos, unsigned copied) 745 { 746 void *addr; 747 748 WARN_ON_ONCE(!PageUptodate(page)); 749 BUG_ON(pos + copied > PAGE_SIZE - offset_in_page(iomap->inline_data)); 750 751 addr = kmap_atomic(page); 752 memcpy(iomap->inline_data + pos, addr + pos, copied); 753 kunmap_atomic(addr); 754 755 mark_inode_dirty(inode); 756 return copied; 757 } 758 759 static int 760 iomap_write_end(struct inode *inode, loff_t pos, unsigned len, unsigned copied, 761 struct page *page, struct iomap *iomap, struct iomap *srcmap) 762 { 763 const struct iomap_page_ops *page_ops = iomap->page_ops; 764 loff_t old_size = inode->i_size; 765 int ret; 766 767 if (srcmap->type == IOMAP_INLINE) { 768 ret = iomap_write_end_inline(inode, page, iomap, pos, copied); 769 } else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) { 770 ret = block_write_end(NULL, inode->i_mapping, pos, len, copied, 771 page, NULL); 772 } else { 773 ret = __iomap_write_end(inode, pos, len, copied, page); 774 } 775 776 /* 777 * Update the in-memory inode size after copying the data into the page 778 * cache. It's up to the file system to write the updated size to disk, 779 * preferably after I/O completion so that no stale data is exposed. 780 */ 781 if (pos + ret > old_size) { 782 i_size_write(inode, pos + ret); 783 iomap->flags |= IOMAP_F_SIZE_CHANGED; 784 } 785 unlock_page(page); 786 787 if (old_size < pos) 788 pagecache_isize_extended(inode, old_size, pos); 789 if (page_ops && page_ops->page_done) 790 page_ops->page_done(inode, pos, ret, page, iomap); 791 put_page(page); 792 793 if (ret < len) 794 iomap_write_failed(inode, pos, len); 795 return ret; 796 } 797 798 static loff_t 799 iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data, 800 struct iomap *iomap, struct iomap *srcmap) 801 { 802 struct iov_iter *i = data; 803 long status = 0; 804 ssize_t written = 0; 805 806 do { 807 struct page *page; 808 unsigned long offset; /* Offset into pagecache page */ 809 unsigned long bytes; /* Bytes to write to page */ 810 size_t copied; /* Bytes copied from user */ 811 812 offset = offset_in_page(pos); 813 bytes = min_t(unsigned long, PAGE_SIZE - offset, 814 iov_iter_count(i)); 815 again: 816 if (bytes > length) 817 bytes = length; 818 819 /* 820 * Bring in the user page that we will copy from _first_. 821 * Otherwise there's a nasty deadlock on copying from the 822 * same page as we're writing to, without it being marked 823 * up-to-date. 824 * 825 * Not only is this an optimisation, but it is also required 826 * to check that the address is actually valid, when atomic 827 * usercopies are used, below. 828 */ 829 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 830 status = -EFAULT; 831 break; 832 } 833 834 status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap, 835 srcmap); 836 if (unlikely(status)) 837 break; 838 839 if (mapping_writably_mapped(inode->i_mapping)) 840 flush_dcache_page(page); 841 842 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 843 844 flush_dcache_page(page); 845 846 status = iomap_write_end(inode, pos, bytes, copied, page, iomap, 847 srcmap); 848 if (unlikely(status < 0)) 849 break; 850 copied = status; 851 852 cond_resched(); 853 854 iov_iter_advance(i, copied); 855 if (unlikely(copied == 0)) { 856 /* 857 * If we were unable to copy any data at all, we must 858 * fall back to a single segment length write. 859 * 860 * If we didn't fallback here, we could livelock 861 * because not all segments in the iov can be copied at 862 * once without a pagefault. 863 */ 864 bytes = min_t(unsigned long, PAGE_SIZE - offset, 865 iov_iter_single_seg_count(i)); 866 goto again; 867 } 868 pos += copied; 869 written += copied; 870 length -= copied; 871 872 balance_dirty_pages_ratelimited(inode->i_mapping); 873 } while (iov_iter_count(i) && length); 874 875 return written ? written : status; 876 } 877 878 ssize_t 879 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter, 880 const struct iomap_ops *ops) 881 { 882 struct inode *inode = iocb->ki_filp->f_mapping->host; 883 loff_t pos = iocb->ki_pos, ret = 0, written = 0; 884 885 while (iov_iter_count(iter)) { 886 ret = iomap_apply(inode, pos, iov_iter_count(iter), 887 IOMAP_WRITE, ops, iter, iomap_write_actor); 888 if (ret <= 0) 889 break; 890 pos += ret; 891 written += ret; 892 } 893 894 return written ? written : ret; 895 } 896 EXPORT_SYMBOL_GPL(iomap_file_buffered_write); 897 898 static loff_t 899 iomap_unshare_actor(struct inode *inode, loff_t pos, loff_t length, void *data, 900 struct iomap *iomap, struct iomap *srcmap) 901 { 902 long status = 0; 903 ssize_t written = 0; 904 905 /* don't bother with blocks that are not shared to start with */ 906 if (!(iomap->flags & IOMAP_F_SHARED)) 907 return length; 908 /* don't bother with holes or unwritten extents */ 909 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 910 return length; 911 912 do { 913 unsigned long offset = offset_in_page(pos); 914 unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length); 915 struct page *page; 916 917 status = iomap_write_begin(inode, pos, bytes, 918 IOMAP_WRITE_F_UNSHARE, &page, iomap, srcmap); 919 if (unlikely(status)) 920 return status; 921 922 status = iomap_write_end(inode, pos, bytes, bytes, page, iomap, 923 srcmap); 924 if (unlikely(status <= 0)) { 925 if (WARN_ON_ONCE(status == 0)) 926 return -EIO; 927 return status; 928 } 929 930 cond_resched(); 931 932 pos += status; 933 written += status; 934 length -= status; 935 936 balance_dirty_pages_ratelimited(inode->i_mapping); 937 } while (length); 938 939 return written; 940 } 941 942 int 943 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len, 944 const struct iomap_ops *ops) 945 { 946 loff_t ret; 947 948 while (len) { 949 ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL, 950 iomap_unshare_actor); 951 if (ret <= 0) 952 return ret; 953 pos += ret; 954 len -= ret; 955 } 956 957 return 0; 958 } 959 EXPORT_SYMBOL_GPL(iomap_file_unshare); 960 961 static int iomap_zero(struct inode *inode, loff_t pos, unsigned offset, 962 unsigned bytes, struct iomap *iomap, struct iomap *srcmap) 963 { 964 struct page *page; 965 int status; 966 967 status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap, srcmap); 968 if (status) 969 return status; 970 971 zero_user(page, offset, bytes); 972 mark_page_accessed(page); 973 974 return iomap_write_end(inode, pos, bytes, bytes, page, iomap, srcmap); 975 } 976 977 static int iomap_dax_zero(loff_t pos, unsigned offset, unsigned bytes, 978 struct iomap *iomap) 979 { 980 return __dax_zero_page_range(iomap->bdev, iomap->dax_dev, 981 iomap_sector(iomap, pos & PAGE_MASK), offset, bytes); 982 } 983 984 static loff_t 985 iomap_zero_range_actor(struct inode *inode, loff_t pos, loff_t count, 986 void *data, struct iomap *iomap, struct iomap *srcmap) 987 { 988 bool *did_zero = data; 989 loff_t written = 0; 990 int status; 991 992 /* already zeroed? we're done. */ 993 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 994 return count; 995 996 do { 997 unsigned offset, bytes; 998 999 offset = offset_in_page(pos); 1000 bytes = min_t(loff_t, PAGE_SIZE - offset, count); 1001 1002 if (IS_DAX(inode)) 1003 status = iomap_dax_zero(pos, offset, bytes, iomap); 1004 else 1005 status = iomap_zero(inode, pos, offset, bytes, iomap, 1006 srcmap); 1007 if (status < 0) 1008 return status; 1009 1010 pos += bytes; 1011 count -= bytes; 1012 written += bytes; 1013 if (did_zero) 1014 *did_zero = true; 1015 } while (count > 0); 1016 1017 return written; 1018 } 1019 1020 int 1021 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero, 1022 const struct iomap_ops *ops) 1023 { 1024 loff_t ret; 1025 1026 while (len > 0) { 1027 ret = iomap_apply(inode, pos, len, IOMAP_ZERO, 1028 ops, did_zero, iomap_zero_range_actor); 1029 if (ret <= 0) 1030 return ret; 1031 1032 pos += ret; 1033 len -= ret; 1034 } 1035 1036 return 0; 1037 } 1038 EXPORT_SYMBOL_GPL(iomap_zero_range); 1039 1040 int 1041 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero, 1042 const struct iomap_ops *ops) 1043 { 1044 unsigned int blocksize = i_blocksize(inode); 1045 unsigned int off = pos & (blocksize - 1); 1046 1047 /* Block boundary? Nothing to do */ 1048 if (!off) 1049 return 0; 1050 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops); 1051 } 1052 EXPORT_SYMBOL_GPL(iomap_truncate_page); 1053 1054 static loff_t 1055 iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length, 1056 void *data, struct iomap *iomap, struct iomap *srcmap) 1057 { 1058 struct page *page = data; 1059 int ret; 1060 1061 if (iomap->flags & IOMAP_F_BUFFER_HEAD) { 1062 ret = __block_write_begin_int(page, pos, length, NULL, iomap); 1063 if (ret) 1064 return ret; 1065 block_commit_write(page, 0, length); 1066 } else { 1067 WARN_ON_ONCE(!PageUptodate(page)); 1068 iomap_page_create(inode, page); 1069 set_page_dirty(page); 1070 } 1071 1072 return length; 1073 } 1074 1075 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops) 1076 { 1077 struct page *page = vmf->page; 1078 struct inode *inode = file_inode(vmf->vma->vm_file); 1079 unsigned long length; 1080 loff_t offset; 1081 ssize_t ret; 1082 1083 lock_page(page); 1084 ret = page_mkwrite_check_truncate(page, inode); 1085 if (ret < 0) 1086 goto out_unlock; 1087 length = ret; 1088 1089 offset = page_offset(page); 1090 while (length > 0) { 1091 ret = iomap_apply(inode, offset, length, 1092 IOMAP_WRITE | IOMAP_FAULT, ops, page, 1093 iomap_page_mkwrite_actor); 1094 if (unlikely(ret <= 0)) 1095 goto out_unlock; 1096 offset += ret; 1097 length -= ret; 1098 } 1099 1100 wait_for_stable_page(page); 1101 return VM_FAULT_LOCKED; 1102 out_unlock: 1103 unlock_page(page); 1104 return block_page_mkwrite_return(ret); 1105 } 1106 EXPORT_SYMBOL_GPL(iomap_page_mkwrite); 1107 1108 static void 1109 iomap_finish_page_writeback(struct inode *inode, struct page *page, 1110 int error) 1111 { 1112 struct iomap_page *iop = to_iomap_page(page); 1113 1114 if (error) { 1115 SetPageError(page); 1116 mapping_set_error(inode->i_mapping, -EIO); 1117 } 1118 1119 WARN_ON_ONCE(i_blocksize(inode) < PAGE_SIZE && !iop); 1120 WARN_ON_ONCE(iop && atomic_read(&iop->write_count) <= 0); 1121 1122 if (!iop || atomic_dec_and_test(&iop->write_count)) 1123 end_page_writeback(page); 1124 } 1125 1126 /* 1127 * We're now finished for good with this ioend structure. Update the page 1128 * state, release holds on bios, and finally free up memory. Do not use the 1129 * ioend after this. 1130 */ 1131 static void 1132 iomap_finish_ioend(struct iomap_ioend *ioend, int error) 1133 { 1134 struct inode *inode = ioend->io_inode; 1135 struct bio *bio = &ioend->io_inline_bio; 1136 struct bio *last = ioend->io_bio, *next; 1137 u64 start = bio->bi_iter.bi_sector; 1138 loff_t offset = ioend->io_offset; 1139 bool quiet = bio_flagged(bio, BIO_QUIET); 1140 1141 for (bio = &ioend->io_inline_bio; bio; bio = next) { 1142 struct bio_vec *bv; 1143 struct bvec_iter_all iter_all; 1144 1145 /* 1146 * For the last bio, bi_private points to the ioend, so we 1147 * need to explicitly end the iteration here. 1148 */ 1149 if (bio == last) 1150 next = NULL; 1151 else 1152 next = bio->bi_private; 1153 1154 /* walk each page on bio, ending page IO on them */ 1155 bio_for_each_segment_all(bv, bio, iter_all) 1156 iomap_finish_page_writeback(inode, bv->bv_page, error); 1157 bio_put(bio); 1158 } 1159 /* The ioend has been freed by bio_put() */ 1160 1161 if (unlikely(error && !quiet)) { 1162 printk_ratelimited(KERN_ERR 1163 "%s: writeback error on inode %lu, offset %lld, sector %llu", 1164 inode->i_sb->s_id, inode->i_ino, offset, start); 1165 } 1166 } 1167 1168 void 1169 iomap_finish_ioends(struct iomap_ioend *ioend, int error) 1170 { 1171 struct list_head tmp; 1172 1173 list_replace_init(&ioend->io_list, &tmp); 1174 iomap_finish_ioend(ioend, error); 1175 1176 while (!list_empty(&tmp)) { 1177 ioend = list_first_entry(&tmp, struct iomap_ioend, io_list); 1178 list_del_init(&ioend->io_list); 1179 iomap_finish_ioend(ioend, error); 1180 } 1181 } 1182 EXPORT_SYMBOL_GPL(iomap_finish_ioends); 1183 1184 /* 1185 * We can merge two adjacent ioends if they have the same set of work to do. 1186 */ 1187 static bool 1188 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next) 1189 { 1190 if (ioend->io_bio->bi_status != next->io_bio->bi_status) 1191 return false; 1192 if ((ioend->io_flags & IOMAP_F_SHARED) ^ 1193 (next->io_flags & IOMAP_F_SHARED)) 1194 return false; 1195 if ((ioend->io_type == IOMAP_UNWRITTEN) ^ 1196 (next->io_type == IOMAP_UNWRITTEN)) 1197 return false; 1198 if (ioend->io_offset + ioend->io_size != next->io_offset) 1199 return false; 1200 return true; 1201 } 1202 1203 void 1204 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends, 1205 void (*merge_private)(struct iomap_ioend *ioend, 1206 struct iomap_ioend *next)) 1207 { 1208 struct iomap_ioend *next; 1209 1210 INIT_LIST_HEAD(&ioend->io_list); 1211 1212 while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend, 1213 io_list))) { 1214 if (!iomap_ioend_can_merge(ioend, next)) 1215 break; 1216 list_move_tail(&next->io_list, &ioend->io_list); 1217 ioend->io_size += next->io_size; 1218 if (next->io_private && merge_private) 1219 merge_private(ioend, next); 1220 } 1221 } 1222 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge); 1223 1224 static int 1225 iomap_ioend_compare(void *priv, struct list_head *a, struct list_head *b) 1226 { 1227 struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list); 1228 struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list); 1229 1230 if (ia->io_offset < ib->io_offset) 1231 return -1; 1232 if (ia->io_offset > ib->io_offset) 1233 return 1; 1234 return 0; 1235 } 1236 1237 void 1238 iomap_sort_ioends(struct list_head *ioend_list) 1239 { 1240 list_sort(NULL, ioend_list, iomap_ioend_compare); 1241 } 1242 EXPORT_SYMBOL_GPL(iomap_sort_ioends); 1243 1244 static void iomap_writepage_end_bio(struct bio *bio) 1245 { 1246 struct iomap_ioend *ioend = bio->bi_private; 1247 1248 iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status)); 1249 } 1250 1251 /* 1252 * Submit the final bio for an ioend. 1253 * 1254 * If @error is non-zero, it means that we have a situation where some part of 1255 * the submission process has failed after we have marked paged for writeback 1256 * and unlocked them. In this situation, we need to fail the bio instead of 1257 * submitting it. This typically only happens on a filesystem shutdown. 1258 */ 1259 static int 1260 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend, 1261 int error) 1262 { 1263 ioend->io_bio->bi_private = ioend; 1264 ioend->io_bio->bi_end_io = iomap_writepage_end_bio; 1265 1266 if (wpc->ops->prepare_ioend) 1267 error = wpc->ops->prepare_ioend(ioend, error); 1268 if (error) { 1269 /* 1270 * If we are failing the IO now, just mark the ioend with an 1271 * error and finish it. This will run IO completion immediately 1272 * as there is only one reference to the ioend at this point in 1273 * time. 1274 */ 1275 ioend->io_bio->bi_status = errno_to_blk_status(error); 1276 bio_endio(ioend->io_bio); 1277 return error; 1278 } 1279 1280 submit_bio(ioend->io_bio); 1281 return 0; 1282 } 1283 1284 static struct iomap_ioend * 1285 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc, 1286 loff_t offset, sector_t sector, struct writeback_control *wbc) 1287 { 1288 struct iomap_ioend *ioend; 1289 struct bio *bio; 1290 1291 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &iomap_ioend_bioset); 1292 bio_set_dev(bio, wpc->iomap.bdev); 1293 bio->bi_iter.bi_sector = sector; 1294 bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc); 1295 bio->bi_write_hint = inode->i_write_hint; 1296 wbc_init_bio(wbc, bio); 1297 1298 ioend = container_of(bio, struct iomap_ioend, io_inline_bio); 1299 INIT_LIST_HEAD(&ioend->io_list); 1300 ioend->io_type = wpc->iomap.type; 1301 ioend->io_flags = wpc->iomap.flags; 1302 ioend->io_inode = inode; 1303 ioend->io_size = 0; 1304 ioend->io_offset = offset; 1305 ioend->io_private = NULL; 1306 ioend->io_bio = bio; 1307 return ioend; 1308 } 1309 1310 /* 1311 * Allocate a new bio, and chain the old bio to the new one. 1312 * 1313 * Note that we have to do perform the chaining in this unintuitive order 1314 * so that the bi_private linkage is set up in the right direction for the 1315 * traversal in iomap_finish_ioend(). 1316 */ 1317 static struct bio * 1318 iomap_chain_bio(struct bio *prev) 1319 { 1320 struct bio *new; 1321 1322 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES); 1323 bio_copy_dev(new, prev);/* also copies over blkcg information */ 1324 new->bi_iter.bi_sector = bio_end_sector(prev); 1325 new->bi_opf = prev->bi_opf; 1326 new->bi_write_hint = prev->bi_write_hint; 1327 1328 bio_chain(prev, new); 1329 bio_get(prev); /* for iomap_finish_ioend */ 1330 submit_bio(prev); 1331 return new; 1332 } 1333 1334 static bool 1335 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset, 1336 sector_t sector) 1337 { 1338 if ((wpc->iomap.flags & IOMAP_F_SHARED) != 1339 (wpc->ioend->io_flags & IOMAP_F_SHARED)) 1340 return false; 1341 if (wpc->iomap.type != wpc->ioend->io_type) 1342 return false; 1343 if (offset != wpc->ioend->io_offset + wpc->ioend->io_size) 1344 return false; 1345 if (sector != bio_end_sector(wpc->ioend->io_bio)) 1346 return false; 1347 return true; 1348 } 1349 1350 /* 1351 * Test to see if we have an existing ioend structure that we could append to 1352 * first, otherwise finish off the current ioend and start another. 1353 */ 1354 static void 1355 iomap_add_to_ioend(struct inode *inode, loff_t offset, struct page *page, 1356 struct iomap_page *iop, struct iomap_writepage_ctx *wpc, 1357 struct writeback_control *wbc, struct list_head *iolist) 1358 { 1359 sector_t sector = iomap_sector(&wpc->iomap, offset); 1360 unsigned len = i_blocksize(inode); 1361 unsigned poff = offset & (PAGE_SIZE - 1); 1362 bool merged, same_page = false; 1363 1364 if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, offset, sector)) { 1365 if (wpc->ioend) 1366 list_add(&wpc->ioend->io_list, iolist); 1367 wpc->ioend = iomap_alloc_ioend(inode, wpc, offset, sector, wbc); 1368 } 1369 1370 merged = __bio_try_merge_page(wpc->ioend->io_bio, page, len, poff, 1371 &same_page); 1372 if (iop && !same_page) 1373 atomic_inc(&iop->write_count); 1374 1375 if (!merged) { 1376 if (bio_full(wpc->ioend->io_bio, len)) { 1377 wpc->ioend->io_bio = 1378 iomap_chain_bio(wpc->ioend->io_bio); 1379 } 1380 bio_add_page(wpc->ioend->io_bio, page, len, poff); 1381 } 1382 1383 wpc->ioend->io_size += len; 1384 wbc_account_cgroup_owner(wbc, page, len); 1385 } 1386 1387 /* 1388 * We implement an immediate ioend submission policy here to avoid needing to 1389 * chain multiple ioends and hence nest mempool allocations which can violate 1390 * forward progress guarantees we need to provide. The current ioend we are 1391 * adding blocks to is cached on the writepage context, and if the new block 1392 * does not append to the cached ioend it will create a new ioend and cache that 1393 * instead. 1394 * 1395 * If a new ioend is created and cached, the old ioend is returned and queued 1396 * locally for submission once the entire page is processed or an error has been 1397 * detected. While ioends are submitted immediately after they are completed, 1398 * batching optimisations are provided by higher level block plugging. 1399 * 1400 * At the end of a writeback pass, there will be a cached ioend remaining on the 1401 * writepage context that the caller will need to submit. 1402 */ 1403 static int 1404 iomap_writepage_map(struct iomap_writepage_ctx *wpc, 1405 struct writeback_control *wbc, struct inode *inode, 1406 struct page *page, u64 end_offset) 1407 { 1408 struct iomap_page *iop = to_iomap_page(page); 1409 struct iomap_ioend *ioend, *next; 1410 unsigned len = i_blocksize(inode); 1411 u64 file_offset; /* file offset of page */ 1412 int error = 0, count = 0, i; 1413 LIST_HEAD(submit_list); 1414 1415 WARN_ON_ONCE(i_blocksize(inode) < PAGE_SIZE && !iop); 1416 WARN_ON_ONCE(iop && atomic_read(&iop->write_count) != 0); 1417 1418 /* 1419 * Walk through the page to find areas to write back. If we run off the 1420 * end of the current map or find the current map invalid, grab a new 1421 * one. 1422 */ 1423 for (i = 0, file_offset = page_offset(page); 1424 i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset; 1425 i++, file_offset += len) { 1426 if (iop && !test_bit(i, iop->uptodate)) 1427 continue; 1428 1429 error = wpc->ops->map_blocks(wpc, inode, file_offset); 1430 if (error) 1431 break; 1432 if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE)) 1433 continue; 1434 if (wpc->iomap.type == IOMAP_HOLE) 1435 continue; 1436 iomap_add_to_ioend(inode, file_offset, page, iop, wpc, wbc, 1437 &submit_list); 1438 count++; 1439 } 1440 1441 WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list)); 1442 WARN_ON_ONCE(!PageLocked(page)); 1443 WARN_ON_ONCE(PageWriteback(page)); 1444 1445 /* 1446 * We cannot cancel the ioend directly here on error. We may have 1447 * already set other pages under writeback and hence we have to run I/O 1448 * completion to mark the error state of the pages under writeback 1449 * appropriately. 1450 */ 1451 if (unlikely(error)) { 1452 if (!count) { 1453 /* 1454 * If the current page hasn't been added to ioend, it 1455 * won't be affected by I/O completions and we must 1456 * discard and unlock it right here. 1457 */ 1458 if (wpc->ops->discard_page) 1459 wpc->ops->discard_page(page); 1460 ClearPageUptodate(page); 1461 unlock_page(page); 1462 goto done; 1463 } 1464 1465 /* 1466 * If the page was not fully cleaned, we need to ensure that the 1467 * higher layers come back to it correctly. That means we need 1468 * to keep the page dirty, and for WB_SYNC_ALL writeback we need 1469 * to ensure the PAGECACHE_TAG_TOWRITE index mark is not removed 1470 * so another attempt to write this page in this writeback sweep 1471 * will be made. 1472 */ 1473 set_page_writeback_keepwrite(page); 1474 } else { 1475 clear_page_dirty_for_io(page); 1476 set_page_writeback(page); 1477 } 1478 1479 unlock_page(page); 1480 1481 /* 1482 * Preserve the original error if there was one, otherwise catch 1483 * submission errors here and propagate into subsequent ioend 1484 * submissions. 1485 */ 1486 list_for_each_entry_safe(ioend, next, &submit_list, io_list) { 1487 int error2; 1488 1489 list_del_init(&ioend->io_list); 1490 error2 = iomap_submit_ioend(wpc, ioend, error); 1491 if (error2 && !error) 1492 error = error2; 1493 } 1494 1495 /* 1496 * We can end up here with no error and nothing to write only if we race 1497 * with a partial page truncate on a sub-page block sized filesystem. 1498 */ 1499 if (!count) 1500 end_page_writeback(page); 1501 done: 1502 mapping_set_error(page->mapping, error); 1503 return error; 1504 } 1505 1506 /* 1507 * Write out a dirty page. 1508 * 1509 * For delalloc space on the page we need to allocate space and flush it. 1510 * For unwritten space on the page we need to start the conversion to 1511 * regular allocated space. 1512 */ 1513 static int 1514 iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data) 1515 { 1516 struct iomap_writepage_ctx *wpc = data; 1517 struct inode *inode = page->mapping->host; 1518 pgoff_t end_index; 1519 u64 end_offset; 1520 loff_t offset; 1521 1522 trace_iomap_writepage(inode, page, 0, 0); 1523 1524 /* 1525 * Refuse to write the page out if we are called from reclaim context. 1526 * 1527 * This avoids stack overflows when called from deeply used stacks in 1528 * random callers for direct reclaim or memcg reclaim. We explicitly 1529 * allow reclaim from kswapd as the stack usage there is relatively low. 1530 * 1531 * This should never happen except in the case of a VM regression so 1532 * warn about it. 1533 */ 1534 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 1535 PF_MEMALLOC)) 1536 goto redirty; 1537 1538 /* 1539 * Given that we do not allow direct reclaim to call us, we should 1540 * never be called in a recursive filesystem reclaim context. 1541 */ 1542 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS)) 1543 goto redirty; 1544 1545 /* 1546 * Is this page beyond the end of the file? 1547 * 1548 * The page index is less than the end_index, adjust the end_offset 1549 * to the highest offset that this page should represent. 1550 * ----------------------------------------------------- 1551 * | file mapping | <EOF> | 1552 * ----------------------------------------------------- 1553 * | Page ... | Page N-2 | Page N-1 | Page N | | 1554 * ^--------------------------------^----------|-------- 1555 * | desired writeback range | see else | 1556 * ---------------------------------^------------------| 1557 */ 1558 offset = i_size_read(inode); 1559 end_index = offset >> PAGE_SHIFT; 1560 if (page->index < end_index) 1561 end_offset = (loff_t)(page->index + 1) << PAGE_SHIFT; 1562 else { 1563 /* 1564 * Check whether the page to write out is beyond or straddles 1565 * i_size or not. 1566 * ------------------------------------------------------- 1567 * | file mapping | <EOF> | 1568 * ------------------------------------------------------- 1569 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond | 1570 * ^--------------------------------^-----------|--------- 1571 * | | Straddles | 1572 * ---------------------------------^-----------|--------| 1573 */ 1574 unsigned offset_into_page = offset & (PAGE_SIZE - 1); 1575 1576 /* 1577 * Skip the page if it is fully outside i_size, e.g. due to a 1578 * truncate operation that is in progress. We must redirty the 1579 * page so that reclaim stops reclaiming it. Otherwise 1580 * iomap_vm_releasepage() is called on it and gets confused. 1581 * 1582 * Note that the end_index is unsigned long, it would overflow 1583 * if the given offset is greater than 16TB on 32-bit system 1584 * and if we do check the page is fully outside i_size or not 1585 * via "if (page->index >= end_index + 1)" as "end_index + 1" 1586 * will be evaluated to 0. Hence this page will be redirtied 1587 * and be written out repeatedly which would result in an 1588 * infinite loop, the user program that perform this operation 1589 * will hang. Instead, we can verify this situation by checking 1590 * if the page to write is totally beyond the i_size or if it's 1591 * offset is just equal to the EOF. 1592 */ 1593 if (page->index > end_index || 1594 (page->index == end_index && offset_into_page == 0)) 1595 goto redirty; 1596 1597 /* 1598 * The page straddles i_size. It must be zeroed out on each 1599 * and every writepage invocation because it may be mmapped. 1600 * "A file is mapped in multiples of the page size. For a file 1601 * that is not a multiple of the page size, the remaining 1602 * memory is zeroed when mapped, and writes to that region are 1603 * not written out to the file." 1604 */ 1605 zero_user_segment(page, offset_into_page, PAGE_SIZE); 1606 1607 /* Adjust the end_offset to the end of file */ 1608 end_offset = offset; 1609 } 1610 1611 return iomap_writepage_map(wpc, wbc, inode, page, end_offset); 1612 1613 redirty: 1614 redirty_page_for_writepage(wbc, page); 1615 unlock_page(page); 1616 return 0; 1617 } 1618 1619 int 1620 iomap_writepage(struct page *page, struct writeback_control *wbc, 1621 struct iomap_writepage_ctx *wpc, 1622 const struct iomap_writeback_ops *ops) 1623 { 1624 int ret; 1625 1626 wpc->ops = ops; 1627 ret = iomap_do_writepage(page, wbc, wpc); 1628 if (!wpc->ioend) 1629 return ret; 1630 return iomap_submit_ioend(wpc, wpc->ioend, ret); 1631 } 1632 EXPORT_SYMBOL_GPL(iomap_writepage); 1633 1634 int 1635 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc, 1636 struct iomap_writepage_ctx *wpc, 1637 const struct iomap_writeback_ops *ops) 1638 { 1639 int ret; 1640 1641 wpc->ops = ops; 1642 ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc); 1643 if (!wpc->ioend) 1644 return ret; 1645 return iomap_submit_ioend(wpc, wpc->ioend, ret); 1646 } 1647 EXPORT_SYMBOL_GPL(iomap_writepages); 1648 1649 static int __init iomap_init(void) 1650 { 1651 return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE), 1652 offsetof(struct iomap_ioend, io_inline_bio), 1653 BIOSET_NEED_BVECS); 1654 } 1655 fs_initcall(iomap_init); 1656