1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Red Hat, Inc. 4 * Copyright (C) 2016-2019 Christoph Hellwig. 5 */ 6 #include <linux/module.h> 7 #include <linux/compiler.h> 8 #include <linux/fs.h> 9 #include <linux/iomap.h> 10 #include <linux/pagemap.h> 11 #include <linux/uio.h> 12 #include <linux/buffer_head.h> 13 #include <linux/dax.h> 14 #include <linux/writeback.h> 15 #include <linux/list_sort.h> 16 #include <linux/swap.h> 17 #include <linux/bio.h> 18 #include <linux/sched/signal.h> 19 #include <linux/migrate.h> 20 #include "trace.h" 21 22 #include "../internal.h" 23 24 #define IOEND_BATCH_SIZE 4096 25 26 /* 27 * Structure allocated for each folio when block size < folio size 28 * to track sub-folio uptodate status and I/O completions. 29 */ 30 struct iomap_page { 31 atomic_t read_bytes_pending; 32 atomic_t write_bytes_pending; 33 spinlock_t uptodate_lock; 34 unsigned long uptodate[]; 35 }; 36 37 static inline struct iomap_page *to_iomap_page(struct folio *folio) 38 { 39 if (folio_test_private(folio)) 40 return folio_get_private(folio); 41 return NULL; 42 } 43 44 static struct bio_set iomap_ioend_bioset; 45 46 static struct iomap_page * 47 iomap_page_create(struct inode *inode, struct folio *folio, unsigned int flags) 48 { 49 struct iomap_page *iop = to_iomap_page(folio); 50 unsigned int nr_blocks = i_blocks_per_folio(inode, folio); 51 gfp_t gfp; 52 53 if (iop || nr_blocks <= 1) 54 return iop; 55 56 if (flags & IOMAP_NOWAIT) 57 gfp = GFP_NOWAIT; 58 else 59 gfp = GFP_NOFS | __GFP_NOFAIL; 60 61 iop = kzalloc(struct_size(iop, uptodate, BITS_TO_LONGS(nr_blocks)), 62 gfp); 63 if (iop) { 64 spin_lock_init(&iop->uptodate_lock); 65 if (folio_test_uptodate(folio)) 66 bitmap_fill(iop->uptodate, nr_blocks); 67 folio_attach_private(folio, iop); 68 } 69 return iop; 70 } 71 72 static void iomap_page_release(struct folio *folio) 73 { 74 struct iomap_page *iop = folio_detach_private(folio); 75 struct inode *inode = folio->mapping->host; 76 unsigned int nr_blocks = i_blocks_per_folio(inode, folio); 77 78 if (!iop) 79 return; 80 WARN_ON_ONCE(atomic_read(&iop->read_bytes_pending)); 81 WARN_ON_ONCE(atomic_read(&iop->write_bytes_pending)); 82 WARN_ON_ONCE(bitmap_full(iop->uptodate, nr_blocks) != 83 folio_test_uptodate(folio)); 84 kfree(iop); 85 } 86 87 /* 88 * Calculate the range inside the folio that we actually need to read. 89 */ 90 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio, 91 loff_t *pos, loff_t length, size_t *offp, size_t *lenp) 92 { 93 struct iomap_page *iop = to_iomap_page(folio); 94 loff_t orig_pos = *pos; 95 loff_t isize = i_size_read(inode); 96 unsigned block_bits = inode->i_blkbits; 97 unsigned block_size = (1 << block_bits); 98 size_t poff = offset_in_folio(folio, *pos); 99 size_t plen = min_t(loff_t, folio_size(folio) - poff, length); 100 unsigned first = poff >> block_bits; 101 unsigned last = (poff + plen - 1) >> block_bits; 102 103 /* 104 * If the block size is smaller than the page size, we need to check the 105 * per-block uptodate status and adjust the offset and length if needed 106 * to avoid reading in already uptodate ranges. 107 */ 108 if (iop) { 109 unsigned int i; 110 111 /* move forward for each leading block marked uptodate */ 112 for (i = first; i <= last; i++) { 113 if (!test_bit(i, iop->uptodate)) 114 break; 115 *pos += block_size; 116 poff += block_size; 117 plen -= block_size; 118 first++; 119 } 120 121 /* truncate len if we find any trailing uptodate block(s) */ 122 for ( ; i <= last; i++) { 123 if (test_bit(i, iop->uptodate)) { 124 plen -= (last - i + 1) * block_size; 125 last = i - 1; 126 break; 127 } 128 } 129 } 130 131 /* 132 * If the extent spans the block that contains the i_size, we need to 133 * handle both halves separately so that we properly zero data in the 134 * page cache for blocks that are entirely outside of i_size. 135 */ 136 if (orig_pos <= isize && orig_pos + length > isize) { 137 unsigned end = offset_in_folio(folio, isize - 1) >> block_bits; 138 139 if (first <= end && last > end) 140 plen -= (last - end) * block_size; 141 } 142 143 *offp = poff; 144 *lenp = plen; 145 } 146 147 static void iomap_iop_set_range_uptodate(struct folio *folio, 148 struct iomap_page *iop, size_t off, size_t len) 149 { 150 struct inode *inode = folio->mapping->host; 151 unsigned first = off >> inode->i_blkbits; 152 unsigned last = (off + len - 1) >> inode->i_blkbits; 153 unsigned long flags; 154 155 spin_lock_irqsave(&iop->uptodate_lock, flags); 156 bitmap_set(iop->uptodate, first, last - first + 1); 157 if (bitmap_full(iop->uptodate, i_blocks_per_folio(inode, folio))) 158 folio_mark_uptodate(folio); 159 spin_unlock_irqrestore(&iop->uptodate_lock, flags); 160 } 161 162 static void iomap_set_range_uptodate(struct folio *folio, 163 struct iomap_page *iop, size_t off, size_t len) 164 { 165 if (iop) 166 iomap_iop_set_range_uptodate(folio, iop, off, len); 167 else 168 folio_mark_uptodate(folio); 169 } 170 171 static void iomap_finish_folio_read(struct folio *folio, size_t offset, 172 size_t len, int error) 173 { 174 struct iomap_page *iop = to_iomap_page(folio); 175 176 if (unlikely(error)) { 177 folio_clear_uptodate(folio); 178 folio_set_error(folio); 179 } else { 180 iomap_set_range_uptodate(folio, iop, offset, len); 181 } 182 183 if (!iop || atomic_sub_and_test(len, &iop->read_bytes_pending)) 184 folio_unlock(folio); 185 } 186 187 static void iomap_read_end_io(struct bio *bio) 188 { 189 int error = blk_status_to_errno(bio->bi_status); 190 struct folio_iter fi; 191 192 bio_for_each_folio_all(fi, bio) 193 iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error); 194 bio_put(bio); 195 } 196 197 struct iomap_readpage_ctx { 198 struct folio *cur_folio; 199 bool cur_folio_in_bio; 200 struct bio *bio; 201 struct readahead_control *rac; 202 }; 203 204 /** 205 * iomap_read_inline_data - copy inline data into the page cache 206 * @iter: iteration structure 207 * @folio: folio to copy to 208 * 209 * Copy the inline data in @iter into @folio and zero out the rest of the folio. 210 * Only a single IOMAP_INLINE extent is allowed at the end of each file. 211 * Returns zero for success to complete the read, or the usual negative errno. 212 */ 213 static int iomap_read_inline_data(const struct iomap_iter *iter, 214 struct folio *folio) 215 { 216 struct iomap_page *iop; 217 const struct iomap *iomap = iomap_iter_srcmap(iter); 218 size_t size = i_size_read(iter->inode) - iomap->offset; 219 size_t poff = offset_in_page(iomap->offset); 220 size_t offset = offset_in_folio(folio, iomap->offset); 221 void *addr; 222 223 if (folio_test_uptodate(folio)) 224 return 0; 225 226 if (WARN_ON_ONCE(size > PAGE_SIZE - poff)) 227 return -EIO; 228 if (WARN_ON_ONCE(size > PAGE_SIZE - 229 offset_in_page(iomap->inline_data))) 230 return -EIO; 231 if (WARN_ON_ONCE(size > iomap->length)) 232 return -EIO; 233 if (offset > 0) 234 iop = iomap_page_create(iter->inode, folio, iter->flags); 235 else 236 iop = to_iomap_page(folio); 237 238 addr = kmap_local_folio(folio, offset); 239 memcpy(addr, iomap->inline_data, size); 240 memset(addr + size, 0, PAGE_SIZE - poff - size); 241 kunmap_local(addr); 242 iomap_set_range_uptodate(folio, iop, offset, PAGE_SIZE - poff); 243 return 0; 244 } 245 246 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter, 247 loff_t pos) 248 { 249 const struct iomap *srcmap = iomap_iter_srcmap(iter); 250 251 return srcmap->type != IOMAP_MAPPED || 252 (srcmap->flags & IOMAP_F_NEW) || 253 pos >= i_size_read(iter->inode); 254 } 255 256 static loff_t iomap_readpage_iter(const struct iomap_iter *iter, 257 struct iomap_readpage_ctx *ctx, loff_t offset) 258 { 259 const struct iomap *iomap = &iter->iomap; 260 loff_t pos = iter->pos + offset; 261 loff_t length = iomap_length(iter) - offset; 262 struct folio *folio = ctx->cur_folio; 263 struct iomap_page *iop; 264 loff_t orig_pos = pos; 265 size_t poff, plen; 266 sector_t sector; 267 268 if (iomap->type == IOMAP_INLINE) 269 return iomap_read_inline_data(iter, folio); 270 271 /* zero post-eof blocks as the page may be mapped */ 272 iop = iomap_page_create(iter->inode, folio, iter->flags); 273 iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen); 274 if (plen == 0) 275 goto done; 276 277 if (iomap_block_needs_zeroing(iter, pos)) { 278 folio_zero_range(folio, poff, plen); 279 iomap_set_range_uptodate(folio, iop, poff, plen); 280 goto done; 281 } 282 283 ctx->cur_folio_in_bio = true; 284 if (iop) 285 atomic_add(plen, &iop->read_bytes_pending); 286 287 sector = iomap_sector(iomap, pos); 288 if (!ctx->bio || 289 bio_end_sector(ctx->bio) != sector || 290 !bio_add_folio(ctx->bio, folio, plen, poff)) { 291 gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL); 292 gfp_t orig_gfp = gfp; 293 unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE); 294 295 if (ctx->bio) 296 submit_bio(ctx->bio); 297 298 if (ctx->rac) /* same as readahead_gfp_mask */ 299 gfp |= __GFP_NORETRY | __GFP_NOWARN; 300 ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs), 301 REQ_OP_READ, gfp); 302 /* 303 * If the bio_alloc fails, try it again for a single page to 304 * avoid having to deal with partial page reads. This emulates 305 * what do_mpage_read_folio does. 306 */ 307 if (!ctx->bio) { 308 ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ, 309 orig_gfp); 310 } 311 if (ctx->rac) 312 ctx->bio->bi_opf |= REQ_RAHEAD; 313 ctx->bio->bi_iter.bi_sector = sector; 314 ctx->bio->bi_end_io = iomap_read_end_io; 315 bio_add_folio_nofail(ctx->bio, folio, plen, poff); 316 } 317 318 done: 319 /* 320 * Move the caller beyond our range so that it keeps making progress. 321 * For that, we have to include any leading non-uptodate ranges, but 322 * we can skip trailing ones as they will be handled in the next 323 * iteration. 324 */ 325 return pos - orig_pos + plen; 326 } 327 328 int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops) 329 { 330 struct iomap_iter iter = { 331 .inode = folio->mapping->host, 332 .pos = folio_pos(folio), 333 .len = folio_size(folio), 334 }; 335 struct iomap_readpage_ctx ctx = { 336 .cur_folio = folio, 337 }; 338 int ret; 339 340 trace_iomap_readpage(iter.inode, 1); 341 342 while ((ret = iomap_iter(&iter, ops)) > 0) 343 iter.processed = iomap_readpage_iter(&iter, &ctx, 0); 344 345 if (ret < 0) 346 folio_set_error(folio); 347 348 if (ctx.bio) { 349 submit_bio(ctx.bio); 350 WARN_ON_ONCE(!ctx.cur_folio_in_bio); 351 } else { 352 WARN_ON_ONCE(ctx.cur_folio_in_bio); 353 folio_unlock(folio); 354 } 355 356 /* 357 * Just like mpage_readahead and block_read_full_folio, we always 358 * return 0 and just set the folio error flag on errors. This 359 * should be cleaned up throughout the stack eventually. 360 */ 361 return 0; 362 } 363 EXPORT_SYMBOL_GPL(iomap_read_folio); 364 365 static loff_t iomap_readahead_iter(const struct iomap_iter *iter, 366 struct iomap_readpage_ctx *ctx) 367 { 368 loff_t length = iomap_length(iter); 369 loff_t done, ret; 370 371 for (done = 0; done < length; done += ret) { 372 if (ctx->cur_folio && 373 offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) { 374 if (!ctx->cur_folio_in_bio) 375 folio_unlock(ctx->cur_folio); 376 ctx->cur_folio = NULL; 377 } 378 if (!ctx->cur_folio) { 379 ctx->cur_folio = readahead_folio(ctx->rac); 380 ctx->cur_folio_in_bio = false; 381 } 382 ret = iomap_readpage_iter(iter, ctx, done); 383 if (ret <= 0) 384 return ret; 385 } 386 387 return done; 388 } 389 390 /** 391 * iomap_readahead - Attempt to read pages from a file. 392 * @rac: Describes the pages to be read. 393 * @ops: The operations vector for the filesystem. 394 * 395 * This function is for filesystems to call to implement their readahead 396 * address_space operation. 397 * 398 * Context: The @ops callbacks may submit I/O (eg to read the addresses of 399 * blocks from disc), and may wait for it. The caller may be trying to 400 * access a different page, and so sleeping excessively should be avoided. 401 * It may allocate memory, but should avoid costly allocations. This 402 * function is called with memalloc_nofs set, so allocations will not cause 403 * the filesystem to be reentered. 404 */ 405 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops) 406 { 407 struct iomap_iter iter = { 408 .inode = rac->mapping->host, 409 .pos = readahead_pos(rac), 410 .len = readahead_length(rac), 411 }; 412 struct iomap_readpage_ctx ctx = { 413 .rac = rac, 414 }; 415 416 trace_iomap_readahead(rac->mapping->host, readahead_count(rac)); 417 418 while (iomap_iter(&iter, ops) > 0) 419 iter.processed = iomap_readahead_iter(&iter, &ctx); 420 421 if (ctx.bio) 422 submit_bio(ctx.bio); 423 if (ctx.cur_folio) { 424 if (!ctx.cur_folio_in_bio) 425 folio_unlock(ctx.cur_folio); 426 } 427 } 428 EXPORT_SYMBOL_GPL(iomap_readahead); 429 430 /* 431 * iomap_is_partially_uptodate checks whether blocks within a folio are 432 * uptodate or not. 433 * 434 * Returns true if all blocks which correspond to the specified part 435 * of the folio are uptodate. 436 */ 437 bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count) 438 { 439 struct iomap_page *iop = to_iomap_page(folio); 440 struct inode *inode = folio->mapping->host; 441 unsigned first, last, i; 442 443 if (!iop) 444 return false; 445 446 /* Caller's range may extend past the end of this folio */ 447 count = min(folio_size(folio) - from, count); 448 449 /* First and last blocks in range within folio */ 450 first = from >> inode->i_blkbits; 451 last = (from + count - 1) >> inode->i_blkbits; 452 453 for (i = first; i <= last; i++) 454 if (!test_bit(i, iop->uptodate)) 455 return false; 456 return true; 457 } 458 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate); 459 460 /** 461 * iomap_get_folio - get a folio reference for writing 462 * @iter: iteration structure 463 * @pos: start offset of write 464 * 465 * Returns a locked reference to the folio at @pos, or an error pointer if the 466 * folio could not be obtained. 467 */ 468 struct folio *iomap_get_folio(struct iomap_iter *iter, loff_t pos) 469 { 470 unsigned fgp = FGP_WRITEBEGIN | FGP_NOFS; 471 472 if (iter->flags & IOMAP_NOWAIT) 473 fgp |= FGP_NOWAIT; 474 475 return __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT, 476 fgp, mapping_gfp_mask(iter->inode->i_mapping)); 477 } 478 EXPORT_SYMBOL_GPL(iomap_get_folio); 479 480 bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags) 481 { 482 trace_iomap_release_folio(folio->mapping->host, folio_pos(folio), 483 folio_size(folio)); 484 485 /* 486 * mm accommodates an old ext3 case where clean folios might 487 * not have had the dirty bit cleared. Thus, it can send actual 488 * dirty folios to ->release_folio() via shrink_active_list(); 489 * skip those here. 490 */ 491 if (folio_test_dirty(folio) || folio_test_writeback(folio)) 492 return false; 493 iomap_page_release(folio); 494 return true; 495 } 496 EXPORT_SYMBOL_GPL(iomap_release_folio); 497 498 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len) 499 { 500 trace_iomap_invalidate_folio(folio->mapping->host, 501 folio_pos(folio) + offset, len); 502 503 /* 504 * If we're invalidating the entire folio, clear the dirty state 505 * from it and release it to avoid unnecessary buildup of the LRU. 506 */ 507 if (offset == 0 && len == folio_size(folio)) { 508 WARN_ON_ONCE(folio_test_writeback(folio)); 509 folio_cancel_dirty(folio); 510 iomap_page_release(folio); 511 } else if (folio_test_large(folio)) { 512 /* Must release the iop so the page can be split */ 513 WARN_ON_ONCE(!folio_test_uptodate(folio) && 514 folio_test_dirty(folio)); 515 iomap_page_release(folio); 516 } 517 } 518 EXPORT_SYMBOL_GPL(iomap_invalidate_folio); 519 520 static void 521 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len) 522 { 523 loff_t i_size = i_size_read(inode); 524 525 /* 526 * Only truncate newly allocated pages beyoned EOF, even if the 527 * write started inside the existing inode size. 528 */ 529 if (pos + len > i_size) 530 truncate_pagecache_range(inode, max(pos, i_size), 531 pos + len - 1); 532 } 533 534 static int iomap_read_folio_sync(loff_t block_start, struct folio *folio, 535 size_t poff, size_t plen, const struct iomap *iomap) 536 { 537 struct bio_vec bvec; 538 struct bio bio; 539 540 bio_init(&bio, iomap->bdev, &bvec, 1, REQ_OP_READ); 541 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start); 542 bio_add_folio_nofail(&bio, folio, plen, poff); 543 return submit_bio_wait(&bio); 544 } 545 546 static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos, 547 size_t len, struct folio *folio) 548 { 549 const struct iomap *srcmap = iomap_iter_srcmap(iter); 550 struct iomap_page *iop; 551 loff_t block_size = i_blocksize(iter->inode); 552 loff_t block_start = round_down(pos, block_size); 553 loff_t block_end = round_up(pos + len, block_size); 554 unsigned int nr_blocks = i_blocks_per_folio(iter->inode, folio); 555 size_t from = offset_in_folio(folio, pos), to = from + len; 556 size_t poff, plen; 557 558 if (folio_test_uptodate(folio)) 559 return 0; 560 folio_clear_error(folio); 561 562 iop = iomap_page_create(iter->inode, folio, iter->flags); 563 if ((iter->flags & IOMAP_NOWAIT) && !iop && nr_blocks > 1) 564 return -EAGAIN; 565 566 do { 567 iomap_adjust_read_range(iter->inode, folio, &block_start, 568 block_end - block_start, &poff, &plen); 569 if (plen == 0) 570 break; 571 572 if (!(iter->flags & IOMAP_UNSHARE) && 573 (from <= poff || from >= poff + plen) && 574 (to <= poff || to >= poff + plen)) 575 continue; 576 577 if (iomap_block_needs_zeroing(iter, block_start)) { 578 if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE)) 579 return -EIO; 580 folio_zero_segments(folio, poff, from, to, poff + plen); 581 } else { 582 int status; 583 584 if (iter->flags & IOMAP_NOWAIT) 585 return -EAGAIN; 586 587 status = iomap_read_folio_sync(block_start, folio, 588 poff, plen, srcmap); 589 if (status) 590 return status; 591 } 592 iomap_set_range_uptodate(folio, iop, poff, plen); 593 } while ((block_start += plen) < block_end); 594 595 return 0; 596 } 597 598 static struct folio *__iomap_get_folio(struct iomap_iter *iter, loff_t pos, 599 size_t len) 600 { 601 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops; 602 603 if (folio_ops && folio_ops->get_folio) 604 return folio_ops->get_folio(iter, pos, len); 605 else 606 return iomap_get_folio(iter, pos); 607 } 608 609 static void __iomap_put_folio(struct iomap_iter *iter, loff_t pos, size_t ret, 610 struct folio *folio) 611 { 612 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops; 613 614 if (folio_ops && folio_ops->put_folio) { 615 folio_ops->put_folio(iter->inode, pos, ret, folio); 616 } else { 617 folio_unlock(folio); 618 folio_put(folio); 619 } 620 } 621 622 static int iomap_write_begin_inline(const struct iomap_iter *iter, 623 struct folio *folio) 624 { 625 /* needs more work for the tailpacking case; disable for now */ 626 if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0)) 627 return -EIO; 628 return iomap_read_inline_data(iter, folio); 629 } 630 631 static int iomap_write_begin(struct iomap_iter *iter, loff_t pos, 632 size_t len, struct folio **foliop) 633 { 634 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops; 635 const struct iomap *srcmap = iomap_iter_srcmap(iter); 636 struct folio *folio; 637 int status = 0; 638 639 BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length); 640 if (srcmap != &iter->iomap) 641 BUG_ON(pos + len > srcmap->offset + srcmap->length); 642 643 if (fatal_signal_pending(current)) 644 return -EINTR; 645 646 if (!mapping_large_folio_support(iter->inode->i_mapping)) 647 len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos)); 648 649 folio = __iomap_get_folio(iter, pos, len); 650 if (IS_ERR(folio)) 651 return PTR_ERR(folio); 652 653 /* 654 * Now we have a locked folio, before we do anything with it we need to 655 * check that the iomap we have cached is not stale. The inode extent 656 * mapping can change due to concurrent IO in flight (e.g. 657 * IOMAP_UNWRITTEN state can change and memory reclaim could have 658 * reclaimed a previously partially written page at this index after IO 659 * completion before this write reaches this file offset) and hence we 660 * could do the wrong thing here (zero a page range incorrectly or fail 661 * to zero) and corrupt data. 662 */ 663 if (folio_ops && folio_ops->iomap_valid) { 664 bool iomap_valid = folio_ops->iomap_valid(iter->inode, 665 &iter->iomap); 666 if (!iomap_valid) { 667 iter->iomap.flags |= IOMAP_F_STALE; 668 status = 0; 669 goto out_unlock; 670 } 671 } 672 673 if (pos + len > folio_pos(folio) + folio_size(folio)) 674 len = folio_pos(folio) + folio_size(folio) - pos; 675 676 if (srcmap->type == IOMAP_INLINE) 677 status = iomap_write_begin_inline(iter, folio); 678 else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) 679 status = __block_write_begin_int(folio, pos, len, NULL, srcmap); 680 else 681 status = __iomap_write_begin(iter, pos, len, folio); 682 683 if (unlikely(status)) 684 goto out_unlock; 685 686 *foliop = folio; 687 return 0; 688 689 out_unlock: 690 __iomap_put_folio(iter, pos, 0, folio); 691 iomap_write_failed(iter->inode, pos, len); 692 693 return status; 694 } 695 696 static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len, 697 size_t copied, struct folio *folio) 698 { 699 struct iomap_page *iop = to_iomap_page(folio); 700 flush_dcache_folio(folio); 701 702 /* 703 * The blocks that were entirely written will now be uptodate, so we 704 * don't have to worry about a read_folio reading them and overwriting a 705 * partial write. However, if we've encountered a short write and only 706 * partially written into a block, it will not be marked uptodate, so a 707 * read_folio might come in and destroy our partial write. 708 * 709 * Do the simplest thing and just treat any short write to a 710 * non-uptodate page as a zero-length write, and force the caller to 711 * redo the whole thing. 712 */ 713 if (unlikely(copied < len && !folio_test_uptodate(folio))) 714 return 0; 715 iomap_set_range_uptodate(folio, iop, offset_in_folio(folio, pos), len); 716 filemap_dirty_folio(inode->i_mapping, folio); 717 return copied; 718 } 719 720 static size_t iomap_write_end_inline(const struct iomap_iter *iter, 721 struct folio *folio, loff_t pos, size_t copied) 722 { 723 const struct iomap *iomap = &iter->iomap; 724 void *addr; 725 726 WARN_ON_ONCE(!folio_test_uptodate(folio)); 727 BUG_ON(!iomap_inline_data_valid(iomap)); 728 729 flush_dcache_folio(folio); 730 addr = kmap_local_folio(folio, pos); 731 memcpy(iomap_inline_data(iomap, pos), addr, copied); 732 kunmap_local(addr); 733 734 mark_inode_dirty(iter->inode); 735 return copied; 736 } 737 738 /* Returns the number of bytes copied. May be 0. Cannot be an errno. */ 739 static size_t iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len, 740 size_t copied, struct folio *folio) 741 { 742 const struct iomap *srcmap = iomap_iter_srcmap(iter); 743 loff_t old_size = iter->inode->i_size; 744 size_t ret; 745 746 if (srcmap->type == IOMAP_INLINE) { 747 ret = iomap_write_end_inline(iter, folio, pos, copied); 748 } else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) { 749 ret = block_write_end(NULL, iter->inode->i_mapping, pos, len, 750 copied, &folio->page, NULL); 751 } else { 752 ret = __iomap_write_end(iter->inode, pos, len, copied, folio); 753 } 754 755 /* 756 * Update the in-memory inode size after copying the data into the page 757 * cache. It's up to the file system to write the updated size to disk, 758 * preferably after I/O completion so that no stale data is exposed. 759 */ 760 if (pos + ret > old_size) { 761 i_size_write(iter->inode, pos + ret); 762 iter->iomap.flags |= IOMAP_F_SIZE_CHANGED; 763 } 764 __iomap_put_folio(iter, pos, ret, folio); 765 766 if (old_size < pos) 767 pagecache_isize_extended(iter->inode, old_size, pos); 768 if (ret < len) 769 iomap_write_failed(iter->inode, pos + ret, len - ret); 770 return ret; 771 } 772 773 static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i) 774 { 775 loff_t length = iomap_length(iter); 776 loff_t pos = iter->pos; 777 ssize_t written = 0; 778 long status = 0; 779 struct address_space *mapping = iter->inode->i_mapping; 780 unsigned int bdp_flags = (iter->flags & IOMAP_NOWAIT) ? BDP_ASYNC : 0; 781 782 do { 783 struct folio *folio; 784 struct page *page; 785 unsigned long offset; /* Offset into pagecache page */ 786 unsigned long bytes; /* Bytes to write to page */ 787 size_t copied; /* Bytes copied from user */ 788 789 offset = offset_in_page(pos); 790 bytes = min_t(unsigned long, PAGE_SIZE - offset, 791 iov_iter_count(i)); 792 again: 793 status = balance_dirty_pages_ratelimited_flags(mapping, 794 bdp_flags); 795 if (unlikely(status)) 796 break; 797 798 if (bytes > length) 799 bytes = length; 800 801 /* 802 * Bring in the user page that we'll copy from _first_. 803 * Otherwise there's a nasty deadlock on copying from the 804 * same page as we're writing to, without it being marked 805 * up-to-date. 806 * 807 * For async buffered writes the assumption is that the user 808 * page has already been faulted in. This can be optimized by 809 * faulting the user page. 810 */ 811 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 812 status = -EFAULT; 813 break; 814 } 815 816 status = iomap_write_begin(iter, pos, bytes, &folio); 817 if (unlikely(status)) 818 break; 819 if (iter->iomap.flags & IOMAP_F_STALE) 820 break; 821 822 page = folio_file_page(folio, pos >> PAGE_SHIFT); 823 if (mapping_writably_mapped(mapping)) 824 flush_dcache_page(page); 825 826 copied = copy_page_from_iter_atomic(page, offset, bytes, i); 827 828 status = iomap_write_end(iter, pos, bytes, copied, folio); 829 830 if (unlikely(copied != status)) 831 iov_iter_revert(i, copied - status); 832 833 cond_resched(); 834 if (unlikely(status == 0)) { 835 /* 836 * A short copy made iomap_write_end() reject the 837 * thing entirely. Might be memory poisoning 838 * halfway through, might be a race with munmap, 839 * might be severe memory pressure. 840 */ 841 if (copied) 842 bytes = copied; 843 goto again; 844 } 845 pos += status; 846 written += status; 847 length -= status; 848 } while (iov_iter_count(i) && length); 849 850 if (status == -EAGAIN) { 851 iov_iter_revert(i, written); 852 return -EAGAIN; 853 } 854 return written ? written : status; 855 } 856 857 ssize_t 858 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i, 859 const struct iomap_ops *ops) 860 { 861 struct iomap_iter iter = { 862 .inode = iocb->ki_filp->f_mapping->host, 863 .pos = iocb->ki_pos, 864 .len = iov_iter_count(i), 865 .flags = IOMAP_WRITE, 866 }; 867 ssize_t ret; 868 869 if (iocb->ki_flags & IOCB_NOWAIT) 870 iter.flags |= IOMAP_NOWAIT; 871 872 while ((ret = iomap_iter(&iter, ops)) > 0) 873 iter.processed = iomap_write_iter(&iter, i); 874 875 if (unlikely(iter.pos == iocb->ki_pos)) 876 return ret; 877 ret = iter.pos - iocb->ki_pos; 878 iocb->ki_pos = iter.pos; 879 return ret; 880 } 881 EXPORT_SYMBOL_GPL(iomap_file_buffered_write); 882 883 /* 884 * Scan the data range passed to us for dirty page cache folios. If we find a 885 * dirty folio, punch out the preceeding range and update the offset from which 886 * the next punch will start from. 887 * 888 * We can punch out storage reservations under clean pages because they either 889 * contain data that has been written back - in which case the delalloc punch 890 * over that range is a no-op - or they have been read faults in which case they 891 * contain zeroes and we can remove the delalloc backing range and any new 892 * writes to those pages will do the normal hole filling operation... 893 * 894 * This makes the logic simple: we only need to keep the delalloc extents only 895 * over the dirty ranges of the page cache. 896 * 897 * This function uses [start_byte, end_byte) intervals (i.e. open ended) to 898 * simplify range iterations. 899 */ 900 static int iomap_write_delalloc_scan(struct inode *inode, 901 loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte, 902 int (*punch)(struct inode *inode, loff_t offset, loff_t length)) 903 { 904 while (start_byte < end_byte) { 905 struct folio *folio; 906 907 /* grab locked page */ 908 folio = filemap_lock_folio(inode->i_mapping, 909 start_byte >> PAGE_SHIFT); 910 if (IS_ERR(folio)) { 911 start_byte = ALIGN_DOWN(start_byte, PAGE_SIZE) + 912 PAGE_SIZE; 913 continue; 914 } 915 916 /* if dirty, punch up to offset */ 917 if (folio_test_dirty(folio)) { 918 if (start_byte > *punch_start_byte) { 919 int error; 920 921 error = punch(inode, *punch_start_byte, 922 start_byte - *punch_start_byte); 923 if (error) { 924 folio_unlock(folio); 925 folio_put(folio); 926 return error; 927 } 928 } 929 930 /* 931 * Make sure the next punch start is correctly bound to 932 * the end of this data range, not the end of the folio. 933 */ 934 *punch_start_byte = min_t(loff_t, end_byte, 935 folio_next_index(folio) << PAGE_SHIFT); 936 } 937 938 /* move offset to start of next folio in range */ 939 start_byte = folio_next_index(folio) << PAGE_SHIFT; 940 folio_unlock(folio); 941 folio_put(folio); 942 } 943 return 0; 944 } 945 946 /* 947 * Punch out all the delalloc blocks in the range given except for those that 948 * have dirty data still pending in the page cache - those are going to be 949 * written and so must still retain the delalloc backing for writeback. 950 * 951 * As we are scanning the page cache for data, we don't need to reimplement the 952 * wheel - mapping_seek_hole_data() does exactly what we need to identify the 953 * start and end of data ranges correctly even for sub-folio block sizes. This 954 * byte range based iteration is especially convenient because it means we 955 * don't have to care about variable size folios, nor where the start or end of 956 * the data range lies within a folio, if they lie within the same folio or even 957 * if there are multiple discontiguous data ranges within the folio. 958 * 959 * It should be noted that mapping_seek_hole_data() is not aware of EOF, and so 960 * can return data ranges that exist in the cache beyond EOF. e.g. a page fault 961 * spanning EOF will initialise the post-EOF data to zeroes and mark it up to 962 * date. A write page fault can then mark it dirty. If we then fail a write() 963 * beyond EOF into that up to date cached range, we allocate a delalloc block 964 * beyond EOF and then have to punch it out. Because the range is up to date, 965 * mapping_seek_hole_data() will return it, and we will skip the punch because 966 * the folio is dirty. THis is incorrect - we always need to punch out delalloc 967 * beyond EOF in this case as writeback will never write back and covert that 968 * delalloc block beyond EOF. Hence we limit the cached data scan range to EOF, 969 * resulting in always punching out the range from the EOF to the end of the 970 * range the iomap spans. 971 * 972 * Intervals are of the form [start_byte, end_byte) (i.e. open ended) because it 973 * matches the intervals returned by mapping_seek_hole_data(). i.e. SEEK_DATA 974 * returns the start of a data range (start_byte), and SEEK_HOLE(start_byte) 975 * returns the end of the data range (data_end). Using closed intervals would 976 * require sprinkling this code with magic "+ 1" and "- 1" arithmetic and expose 977 * the code to subtle off-by-one bugs.... 978 */ 979 static int iomap_write_delalloc_release(struct inode *inode, 980 loff_t start_byte, loff_t end_byte, 981 int (*punch)(struct inode *inode, loff_t pos, loff_t length)) 982 { 983 loff_t punch_start_byte = start_byte; 984 loff_t scan_end_byte = min(i_size_read(inode), end_byte); 985 int error = 0; 986 987 /* 988 * Lock the mapping to avoid races with page faults re-instantiating 989 * folios and dirtying them via ->page_mkwrite whilst we walk the 990 * cache and perform delalloc extent removal. Failing to do this can 991 * leave dirty pages with no space reservation in the cache. 992 */ 993 filemap_invalidate_lock(inode->i_mapping); 994 while (start_byte < scan_end_byte) { 995 loff_t data_end; 996 997 start_byte = mapping_seek_hole_data(inode->i_mapping, 998 start_byte, scan_end_byte, SEEK_DATA); 999 /* 1000 * If there is no more data to scan, all that is left is to 1001 * punch out the remaining range. 1002 */ 1003 if (start_byte == -ENXIO || start_byte == scan_end_byte) 1004 break; 1005 if (start_byte < 0) { 1006 error = start_byte; 1007 goto out_unlock; 1008 } 1009 WARN_ON_ONCE(start_byte < punch_start_byte); 1010 WARN_ON_ONCE(start_byte > scan_end_byte); 1011 1012 /* 1013 * We find the end of this contiguous cached data range by 1014 * seeking from start_byte to the beginning of the next hole. 1015 */ 1016 data_end = mapping_seek_hole_data(inode->i_mapping, start_byte, 1017 scan_end_byte, SEEK_HOLE); 1018 if (data_end < 0) { 1019 error = data_end; 1020 goto out_unlock; 1021 } 1022 WARN_ON_ONCE(data_end <= start_byte); 1023 WARN_ON_ONCE(data_end > scan_end_byte); 1024 1025 error = iomap_write_delalloc_scan(inode, &punch_start_byte, 1026 start_byte, data_end, punch); 1027 if (error) 1028 goto out_unlock; 1029 1030 /* The next data search starts at the end of this one. */ 1031 start_byte = data_end; 1032 } 1033 1034 if (punch_start_byte < end_byte) 1035 error = punch(inode, punch_start_byte, 1036 end_byte - punch_start_byte); 1037 out_unlock: 1038 filemap_invalidate_unlock(inode->i_mapping); 1039 return error; 1040 } 1041 1042 /* 1043 * When a short write occurs, the filesystem may need to remove reserved space 1044 * that was allocated in ->iomap_begin from it's ->iomap_end method. For 1045 * filesystems that use delayed allocation, we need to punch out delalloc 1046 * extents from the range that are not dirty in the page cache. As the write can 1047 * race with page faults, there can be dirty pages over the delalloc extent 1048 * outside the range of a short write but still within the delalloc extent 1049 * allocated for this iomap. 1050 * 1051 * This function uses [start_byte, end_byte) intervals (i.e. open ended) to 1052 * simplify range iterations. 1053 * 1054 * The punch() callback *must* only punch delalloc extents in the range passed 1055 * to it. It must skip over all other types of extents in the range and leave 1056 * them completely unchanged. It must do this punch atomically with respect to 1057 * other extent modifications. 1058 * 1059 * The punch() callback may be called with a folio locked to prevent writeback 1060 * extent allocation racing at the edge of the range we are currently punching. 1061 * The locked folio may or may not cover the range being punched, so it is not 1062 * safe for the punch() callback to lock folios itself. 1063 * 1064 * Lock order is: 1065 * 1066 * inode->i_rwsem (shared or exclusive) 1067 * inode->i_mapping->invalidate_lock (exclusive) 1068 * folio_lock() 1069 * ->punch 1070 * internal filesystem allocation lock 1071 */ 1072 int iomap_file_buffered_write_punch_delalloc(struct inode *inode, 1073 struct iomap *iomap, loff_t pos, loff_t length, 1074 ssize_t written, 1075 int (*punch)(struct inode *inode, loff_t pos, loff_t length)) 1076 { 1077 loff_t start_byte; 1078 loff_t end_byte; 1079 unsigned int blocksize = i_blocksize(inode); 1080 1081 if (iomap->type != IOMAP_DELALLOC) 1082 return 0; 1083 1084 /* If we didn't reserve the blocks, we're not allowed to punch them. */ 1085 if (!(iomap->flags & IOMAP_F_NEW)) 1086 return 0; 1087 1088 /* 1089 * start_byte refers to the first unused block after a short write. If 1090 * nothing was written, round offset down to point at the first block in 1091 * the range. 1092 */ 1093 if (unlikely(!written)) 1094 start_byte = round_down(pos, blocksize); 1095 else 1096 start_byte = round_up(pos + written, blocksize); 1097 end_byte = round_up(pos + length, blocksize); 1098 1099 /* Nothing to do if we've written the entire delalloc extent */ 1100 if (start_byte >= end_byte) 1101 return 0; 1102 1103 return iomap_write_delalloc_release(inode, start_byte, end_byte, 1104 punch); 1105 } 1106 EXPORT_SYMBOL_GPL(iomap_file_buffered_write_punch_delalloc); 1107 1108 static loff_t iomap_unshare_iter(struct iomap_iter *iter) 1109 { 1110 struct iomap *iomap = &iter->iomap; 1111 const struct iomap *srcmap = iomap_iter_srcmap(iter); 1112 loff_t pos = iter->pos; 1113 loff_t length = iomap_length(iter); 1114 long status = 0; 1115 loff_t written = 0; 1116 1117 /* don't bother with blocks that are not shared to start with */ 1118 if (!(iomap->flags & IOMAP_F_SHARED)) 1119 return length; 1120 /* don't bother with holes or unwritten extents */ 1121 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 1122 return length; 1123 1124 do { 1125 unsigned long offset = offset_in_page(pos); 1126 unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length); 1127 struct folio *folio; 1128 1129 status = iomap_write_begin(iter, pos, bytes, &folio); 1130 if (unlikely(status)) 1131 return status; 1132 if (iter->iomap.flags & IOMAP_F_STALE) 1133 break; 1134 1135 status = iomap_write_end(iter, pos, bytes, bytes, folio); 1136 if (WARN_ON_ONCE(status == 0)) 1137 return -EIO; 1138 1139 cond_resched(); 1140 1141 pos += status; 1142 written += status; 1143 length -= status; 1144 1145 balance_dirty_pages_ratelimited(iter->inode->i_mapping); 1146 } while (length); 1147 1148 return written; 1149 } 1150 1151 int 1152 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len, 1153 const struct iomap_ops *ops) 1154 { 1155 struct iomap_iter iter = { 1156 .inode = inode, 1157 .pos = pos, 1158 .len = len, 1159 .flags = IOMAP_WRITE | IOMAP_UNSHARE, 1160 }; 1161 int ret; 1162 1163 while ((ret = iomap_iter(&iter, ops)) > 0) 1164 iter.processed = iomap_unshare_iter(&iter); 1165 return ret; 1166 } 1167 EXPORT_SYMBOL_GPL(iomap_file_unshare); 1168 1169 static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero) 1170 { 1171 const struct iomap *srcmap = iomap_iter_srcmap(iter); 1172 loff_t pos = iter->pos; 1173 loff_t length = iomap_length(iter); 1174 loff_t written = 0; 1175 1176 /* already zeroed? we're done. */ 1177 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 1178 return length; 1179 1180 do { 1181 struct folio *folio; 1182 int status; 1183 size_t offset; 1184 size_t bytes = min_t(u64, SIZE_MAX, length); 1185 1186 status = iomap_write_begin(iter, pos, bytes, &folio); 1187 if (status) 1188 return status; 1189 if (iter->iomap.flags & IOMAP_F_STALE) 1190 break; 1191 1192 offset = offset_in_folio(folio, pos); 1193 if (bytes > folio_size(folio) - offset) 1194 bytes = folio_size(folio) - offset; 1195 1196 folio_zero_range(folio, offset, bytes); 1197 folio_mark_accessed(folio); 1198 1199 bytes = iomap_write_end(iter, pos, bytes, bytes, folio); 1200 if (WARN_ON_ONCE(bytes == 0)) 1201 return -EIO; 1202 1203 pos += bytes; 1204 length -= bytes; 1205 written += bytes; 1206 } while (length > 0); 1207 1208 if (did_zero) 1209 *did_zero = true; 1210 return written; 1211 } 1212 1213 int 1214 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero, 1215 const struct iomap_ops *ops) 1216 { 1217 struct iomap_iter iter = { 1218 .inode = inode, 1219 .pos = pos, 1220 .len = len, 1221 .flags = IOMAP_ZERO, 1222 }; 1223 int ret; 1224 1225 while ((ret = iomap_iter(&iter, ops)) > 0) 1226 iter.processed = iomap_zero_iter(&iter, did_zero); 1227 return ret; 1228 } 1229 EXPORT_SYMBOL_GPL(iomap_zero_range); 1230 1231 int 1232 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero, 1233 const struct iomap_ops *ops) 1234 { 1235 unsigned int blocksize = i_blocksize(inode); 1236 unsigned int off = pos & (blocksize - 1); 1237 1238 /* Block boundary? Nothing to do */ 1239 if (!off) 1240 return 0; 1241 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops); 1242 } 1243 EXPORT_SYMBOL_GPL(iomap_truncate_page); 1244 1245 static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter, 1246 struct folio *folio) 1247 { 1248 loff_t length = iomap_length(iter); 1249 int ret; 1250 1251 if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) { 1252 ret = __block_write_begin_int(folio, iter->pos, length, NULL, 1253 &iter->iomap); 1254 if (ret) 1255 return ret; 1256 block_commit_write(&folio->page, 0, length); 1257 } else { 1258 WARN_ON_ONCE(!folio_test_uptodate(folio)); 1259 folio_mark_dirty(folio); 1260 } 1261 1262 return length; 1263 } 1264 1265 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops) 1266 { 1267 struct iomap_iter iter = { 1268 .inode = file_inode(vmf->vma->vm_file), 1269 .flags = IOMAP_WRITE | IOMAP_FAULT, 1270 }; 1271 struct folio *folio = page_folio(vmf->page); 1272 ssize_t ret; 1273 1274 folio_lock(folio); 1275 ret = folio_mkwrite_check_truncate(folio, iter.inode); 1276 if (ret < 0) 1277 goto out_unlock; 1278 iter.pos = folio_pos(folio); 1279 iter.len = ret; 1280 while ((ret = iomap_iter(&iter, ops)) > 0) 1281 iter.processed = iomap_folio_mkwrite_iter(&iter, folio); 1282 1283 if (ret < 0) 1284 goto out_unlock; 1285 folio_wait_stable(folio); 1286 return VM_FAULT_LOCKED; 1287 out_unlock: 1288 folio_unlock(folio); 1289 return block_page_mkwrite_return(ret); 1290 } 1291 EXPORT_SYMBOL_GPL(iomap_page_mkwrite); 1292 1293 static void iomap_finish_folio_write(struct inode *inode, struct folio *folio, 1294 size_t len, int error) 1295 { 1296 struct iomap_page *iop = to_iomap_page(folio); 1297 1298 if (error) { 1299 folio_set_error(folio); 1300 mapping_set_error(inode->i_mapping, error); 1301 } 1302 1303 WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !iop); 1304 WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) <= 0); 1305 1306 if (!iop || atomic_sub_and_test(len, &iop->write_bytes_pending)) 1307 folio_end_writeback(folio); 1308 } 1309 1310 /* 1311 * We're now finished for good with this ioend structure. Update the page 1312 * state, release holds on bios, and finally free up memory. Do not use the 1313 * ioend after this. 1314 */ 1315 static u32 1316 iomap_finish_ioend(struct iomap_ioend *ioend, int error) 1317 { 1318 struct inode *inode = ioend->io_inode; 1319 struct bio *bio = &ioend->io_inline_bio; 1320 struct bio *last = ioend->io_bio, *next; 1321 u64 start = bio->bi_iter.bi_sector; 1322 loff_t offset = ioend->io_offset; 1323 bool quiet = bio_flagged(bio, BIO_QUIET); 1324 u32 folio_count = 0; 1325 1326 for (bio = &ioend->io_inline_bio; bio; bio = next) { 1327 struct folio_iter fi; 1328 1329 /* 1330 * For the last bio, bi_private points to the ioend, so we 1331 * need to explicitly end the iteration here. 1332 */ 1333 if (bio == last) 1334 next = NULL; 1335 else 1336 next = bio->bi_private; 1337 1338 /* walk all folios in bio, ending page IO on them */ 1339 bio_for_each_folio_all(fi, bio) { 1340 iomap_finish_folio_write(inode, fi.folio, fi.length, 1341 error); 1342 folio_count++; 1343 } 1344 bio_put(bio); 1345 } 1346 /* The ioend has been freed by bio_put() */ 1347 1348 if (unlikely(error && !quiet)) { 1349 printk_ratelimited(KERN_ERR 1350 "%s: writeback error on inode %lu, offset %lld, sector %llu", 1351 inode->i_sb->s_id, inode->i_ino, offset, start); 1352 } 1353 return folio_count; 1354 } 1355 1356 /* 1357 * Ioend completion routine for merged bios. This can only be called from task 1358 * contexts as merged ioends can be of unbound length. Hence we have to break up 1359 * the writeback completions into manageable chunks to avoid long scheduler 1360 * holdoffs. We aim to keep scheduler holdoffs down below 10ms so that we get 1361 * good batch processing throughput without creating adverse scheduler latency 1362 * conditions. 1363 */ 1364 void 1365 iomap_finish_ioends(struct iomap_ioend *ioend, int error) 1366 { 1367 struct list_head tmp; 1368 u32 completions; 1369 1370 might_sleep(); 1371 1372 list_replace_init(&ioend->io_list, &tmp); 1373 completions = iomap_finish_ioend(ioend, error); 1374 1375 while (!list_empty(&tmp)) { 1376 if (completions > IOEND_BATCH_SIZE * 8) { 1377 cond_resched(); 1378 completions = 0; 1379 } 1380 ioend = list_first_entry(&tmp, struct iomap_ioend, io_list); 1381 list_del_init(&ioend->io_list); 1382 completions += iomap_finish_ioend(ioend, error); 1383 } 1384 } 1385 EXPORT_SYMBOL_GPL(iomap_finish_ioends); 1386 1387 /* 1388 * We can merge two adjacent ioends if they have the same set of work to do. 1389 */ 1390 static bool 1391 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next) 1392 { 1393 if (ioend->io_bio->bi_status != next->io_bio->bi_status) 1394 return false; 1395 if ((ioend->io_flags & IOMAP_F_SHARED) ^ 1396 (next->io_flags & IOMAP_F_SHARED)) 1397 return false; 1398 if ((ioend->io_type == IOMAP_UNWRITTEN) ^ 1399 (next->io_type == IOMAP_UNWRITTEN)) 1400 return false; 1401 if (ioend->io_offset + ioend->io_size != next->io_offset) 1402 return false; 1403 /* 1404 * Do not merge physically discontiguous ioends. The filesystem 1405 * completion functions will have to iterate the physical 1406 * discontiguities even if we merge the ioends at a logical level, so 1407 * we don't gain anything by merging physical discontiguities here. 1408 * 1409 * We cannot use bio->bi_iter.bi_sector here as it is modified during 1410 * submission so does not point to the start sector of the bio at 1411 * completion. 1412 */ 1413 if (ioend->io_sector + (ioend->io_size >> 9) != next->io_sector) 1414 return false; 1415 return true; 1416 } 1417 1418 void 1419 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends) 1420 { 1421 struct iomap_ioend *next; 1422 1423 INIT_LIST_HEAD(&ioend->io_list); 1424 1425 while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend, 1426 io_list))) { 1427 if (!iomap_ioend_can_merge(ioend, next)) 1428 break; 1429 list_move_tail(&next->io_list, &ioend->io_list); 1430 ioend->io_size += next->io_size; 1431 } 1432 } 1433 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge); 1434 1435 static int 1436 iomap_ioend_compare(void *priv, const struct list_head *a, 1437 const struct list_head *b) 1438 { 1439 struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list); 1440 struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list); 1441 1442 if (ia->io_offset < ib->io_offset) 1443 return -1; 1444 if (ia->io_offset > ib->io_offset) 1445 return 1; 1446 return 0; 1447 } 1448 1449 void 1450 iomap_sort_ioends(struct list_head *ioend_list) 1451 { 1452 list_sort(NULL, ioend_list, iomap_ioend_compare); 1453 } 1454 EXPORT_SYMBOL_GPL(iomap_sort_ioends); 1455 1456 static void iomap_writepage_end_bio(struct bio *bio) 1457 { 1458 struct iomap_ioend *ioend = bio->bi_private; 1459 1460 iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status)); 1461 } 1462 1463 /* 1464 * Submit the final bio for an ioend. 1465 * 1466 * If @error is non-zero, it means that we have a situation where some part of 1467 * the submission process has failed after we've marked pages for writeback 1468 * and unlocked them. In this situation, we need to fail the bio instead of 1469 * submitting it. This typically only happens on a filesystem shutdown. 1470 */ 1471 static int 1472 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend, 1473 int error) 1474 { 1475 ioend->io_bio->bi_private = ioend; 1476 ioend->io_bio->bi_end_io = iomap_writepage_end_bio; 1477 1478 if (wpc->ops->prepare_ioend) 1479 error = wpc->ops->prepare_ioend(ioend, error); 1480 if (error) { 1481 /* 1482 * If we're failing the IO now, just mark the ioend with an 1483 * error and finish it. This will run IO completion immediately 1484 * as there is only one reference to the ioend at this point in 1485 * time. 1486 */ 1487 ioend->io_bio->bi_status = errno_to_blk_status(error); 1488 bio_endio(ioend->io_bio); 1489 return error; 1490 } 1491 1492 submit_bio(ioend->io_bio); 1493 return 0; 1494 } 1495 1496 static struct iomap_ioend * 1497 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc, 1498 loff_t offset, sector_t sector, struct writeback_control *wbc) 1499 { 1500 struct iomap_ioend *ioend; 1501 struct bio *bio; 1502 1503 bio = bio_alloc_bioset(wpc->iomap.bdev, BIO_MAX_VECS, 1504 REQ_OP_WRITE | wbc_to_write_flags(wbc), 1505 GFP_NOFS, &iomap_ioend_bioset); 1506 bio->bi_iter.bi_sector = sector; 1507 wbc_init_bio(wbc, bio); 1508 1509 ioend = container_of(bio, struct iomap_ioend, io_inline_bio); 1510 INIT_LIST_HEAD(&ioend->io_list); 1511 ioend->io_type = wpc->iomap.type; 1512 ioend->io_flags = wpc->iomap.flags; 1513 ioend->io_inode = inode; 1514 ioend->io_size = 0; 1515 ioend->io_folios = 0; 1516 ioend->io_offset = offset; 1517 ioend->io_bio = bio; 1518 ioend->io_sector = sector; 1519 return ioend; 1520 } 1521 1522 /* 1523 * Allocate a new bio, and chain the old bio to the new one. 1524 * 1525 * Note that we have to perform the chaining in this unintuitive order 1526 * so that the bi_private linkage is set up in the right direction for the 1527 * traversal in iomap_finish_ioend(). 1528 */ 1529 static struct bio * 1530 iomap_chain_bio(struct bio *prev) 1531 { 1532 struct bio *new; 1533 1534 new = bio_alloc(prev->bi_bdev, BIO_MAX_VECS, prev->bi_opf, GFP_NOFS); 1535 bio_clone_blkg_association(new, prev); 1536 new->bi_iter.bi_sector = bio_end_sector(prev); 1537 1538 bio_chain(prev, new); 1539 bio_get(prev); /* for iomap_finish_ioend */ 1540 submit_bio(prev); 1541 return new; 1542 } 1543 1544 static bool 1545 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset, 1546 sector_t sector) 1547 { 1548 if ((wpc->iomap.flags & IOMAP_F_SHARED) != 1549 (wpc->ioend->io_flags & IOMAP_F_SHARED)) 1550 return false; 1551 if (wpc->iomap.type != wpc->ioend->io_type) 1552 return false; 1553 if (offset != wpc->ioend->io_offset + wpc->ioend->io_size) 1554 return false; 1555 if (sector != bio_end_sector(wpc->ioend->io_bio)) 1556 return false; 1557 /* 1558 * Limit ioend bio chain lengths to minimise IO completion latency. This 1559 * also prevents long tight loops ending page writeback on all the 1560 * folios in the ioend. 1561 */ 1562 if (wpc->ioend->io_folios >= IOEND_BATCH_SIZE) 1563 return false; 1564 return true; 1565 } 1566 1567 /* 1568 * Test to see if we have an existing ioend structure that we could append to 1569 * first; otherwise finish off the current ioend and start another. 1570 */ 1571 static void 1572 iomap_add_to_ioend(struct inode *inode, loff_t pos, struct folio *folio, 1573 struct iomap_page *iop, struct iomap_writepage_ctx *wpc, 1574 struct writeback_control *wbc, struct list_head *iolist) 1575 { 1576 sector_t sector = iomap_sector(&wpc->iomap, pos); 1577 unsigned len = i_blocksize(inode); 1578 size_t poff = offset_in_folio(folio, pos); 1579 1580 if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos, sector)) { 1581 if (wpc->ioend) 1582 list_add(&wpc->ioend->io_list, iolist); 1583 wpc->ioend = iomap_alloc_ioend(inode, wpc, pos, sector, wbc); 1584 } 1585 1586 if (!bio_add_folio(wpc->ioend->io_bio, folio, len, poff)) { 1587 wpc->ioend->io_bio = iomap_chain_bio(wpc->ioend->io_bio); 1588 bio_add_folio_nofail(wpc->ioend->io_bio, folio, len, poff); 1589 } 1590 1591 if (iop) 1592 atomic_add(len, &iop->write_bytes_pending); 1593 wpc->ioend->io_size += len; 1594 wbc_account_cgroup_owner(wbc, &folio->page, len); 1595 } 1596 1597 /* 1598 * We implement an immediate ioend submission policy here to avoid needing to 1599 * chain multiple ioends and hence nest mempool allocations which can violate 1600 * the forward progress guarantees we need to provide. The current ioend we're 1601 * adding blocks to is cached in the writepage context, and if the new block 1602 * doesn't append to the cached ioend, it will create a new ioend and cache that 1603 * instead. 1604 * 1605 * If a new ioend is created and cached, the old ioend is returned and queued 1606 * locally for submission once the entire page is processed or an error has been 1607 * detected. While ioends are submitted immediately after they are completed, 1608 * batching optimisations are provided by higher level block plugging. 1609 * 1610 * At the end of a writeback pass, there will be a cached ioend remaining on the 1611 * writepage context that the caller will need to submit. 1612 */ 1613 static int 1614 iomap_writepage_map(struct iomap_writepage_ctx *wpc, 1615 struct writeback_control *wbc, struct inode *inode, 1616 struct folio *folio, u64 end_pos) 1617 { 1618 struct iomap_page *iop = iomap_page_create(inode, folio, 0); 1619 struct iomap_ioend *ioend, *next; 1620 unsigned len = i_blocksize(inode); 1621 unsigned nblocks = i_blocks_per_folio(inode, folio); 1622 u64 pos = folio_pos(folio); 1623 int error = 0, count = 0, i; 1624 LIST_HEAD(submit_list); 1625 1626 WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) != 0); 1627 1628 /* 1629 * Walk through the folio to find areas to write back. If we 1630 * run off the end of the current map or find the current map 1631 * invalid, grab a new one. 1632 */ 1633 for (i = 0; i < nblocks && pos < end_pos; i++, pos += len) { 1634 if (iop && !test_bit(i, iop->uptodate)) 1635 continue; 1636 1637 error = wpc->ops->map_blocks(wpc, inode, pos); 1638 if (error) 1639 break; 1640 trace_iomap_writepage_map(inode, &wpc->iomap); 1641 if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE)) 1642 continue; 1643 if (wpc->iomap.type == IOMAP_HOLE) 1644 continue; 1645 iomap_add_to_ioend(inode, pos, folio, iop, wpc, wbc, 1646 &submit_list); 1647 count++; 1648 } 1649 if (count) 1650 wpc->ioend->io_folios++; 1651 1652 WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list)); 1653 WARN_ON_ONCE(!folio_test_locked(folio)); 1654 WARN_ON_ONCE(folio_test_writeback(folio)); 1655 WARN_ON_ONCE(folio_test_dirty(folio)); 1656 1657 /* 1658 * We cannot cancel the ioend directly here on error. We may have 1659 * already set other pages under writeback and hence we have to run I/O 1660 * completion to mark the error state of the pages under writeback 1661 * appropriately. 1662 */ 1663 if (unlikely(error)) { 1664 /* 1665 * Let the filesystem know what portion of the current page 1666 * failed to map. If the page hasn't been added to ioend, it 1667 * won't be affected by I/O completion and we must unlock it 1668 * now. 1669 */ 1670 if (wpc->ops->discard_folio) 1671 wpc->ops->discard_folio(folio, pos); 1672 if (!count) { 1673 folio_unlock(folio); 1674 goto done; 1675 } 1676 } 1677 1678 folio_start_writeback(folio); 1679 folio_unlock(folio); 1680 1681 /* 1682 * Preserve the original error if there was one; catch 1683 * submission errors here and propagate into subsequent ioend 1684 * submissions. 1685 */ 1686 list_for_each_entry_safe(ioend, next, &submit_list, io_list) { 1687 int error2; 1688 1689 list_del_init(&ioend->io_list); 1690 error2 = iomap_submit_ioend(wpc, ioend, error); 1691 if (error2 && !error) 1692 error = error2; 1693 } 1694 1695 /* 1696 * We can end up here with no error and nothing to write only if we race 1697 * with a partial page truncate on a sub-page block sized filesystem. 1698 */ 1699 if (!count) 1700 folio_end_writeback(folio); 1701 done: 1702 mapping_set_error(inode->i_mapping, error); 1703 return error; 1704 } 1705 1706 /* 1707 * Write out a dirty page. 1708 * 1709 * For delalloc space on the page, we need to allocate space and flush it. 1710 * For unwritten space on the page, we need to start the conversion to 1711 * regular allocated space. 1712 */ 1713 static int iomap_do_writepage(struct folio *folio, 1714 struct writeback_control *wbc, void *data) 1715 { 1716 struct iomap_writepage_ctx *wpc = data; 1717 struct inode *inode = folio->mapping->host; 1718 u64 end_pos, isize; 1719 1720 trace_iomap_writepage(inode, folio_pos(folio), folio_size(folio)); 1721 1722 /* 1723 * Refuse to write the folio out if we're called from reclaim context. 1724 * 1725 * This avoids stack overflows when called from deeply used stacks in 1726 * random callers for direct reclaim or memcg reclaim. We explicitly 1727 * allow reclaim from kswapd as the stack usage there is relatively low. 1728 * 1729 * This should never happen except in the case of a VM regression so 1730 * warn about it. 1731 */ 1732 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 1733 PF_MEMALLOC)) 1734 goto redirty; 1735 1736 /* 1737 * Is this folio beyond the end of the file? 1738 * 1739 * The folio index is less than the end_index, adjust the end_pos 1740 * to the highest offset that this folio should represent. 1741 * ----------------------------------------------------- 1742 * | file mapping | <EOF> | 1743 * ----------------------------------------------------- 1744 * | Page ... | Page N-2 | Page N-1 | Page N | | 1745 * ^--------------------------------^----------|-------- 1746 * | desired writeback range | see else | 1747 * ---------------------------------^------------------| 1748 */ 1749 isize = i_size_read(inode); 1750 end_pos = folio_pos(folio) + folio_size(folio); 1751 if (end_pos > isize) { 1752 /* 1753 * Check whether the page to write out is beyond or straddles 1754 * i_size or not. 1755 * ------------------------------------------------------- 1756 * | file mapping | <EOF> | 1757 * ------------------------------------------------------- 1758 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond | 1759 * ^--------------------------------^-----------|--------- 1760 * | | Straddles | 1761 * ---------------------------------^-----------|--------| 1762 */ 1763 size_t poff = offset_in_folio(folio, isize); 1764 pgoff_t end_index = isize >> PAGE_SHIFT; 1765 1766 /* 1767 * Skip the page if it's fully outside i_size, e.g. 1768 * due to a truncate operation that's in progress. We've 1769 * cleaned this page and truncate will finish things off for 1770 * us. 1771 * 1772 * Note that the end_index is unsigned long. If the given 1773 * offset is greater than 16TB on a 32-bit system then if we 1774 * checked if the page is fully outside i_size with 1775 * "if (page->index >= end_index + 1)", "end_index + 1" would 1776 * overflow and evaluate to 0. Hence this page would be 1777 * redirtied and written out repeatedly, which would result in 1778 * an infinite loop; the user program performing this operation 1779 * would hang. Instead, we can detect this situation by 1780 * checking if the page is totally beyond i_size or if its 1781 * offset is just equal to the EOF. 1782 */ 1783 if (folio->index > end_index || 1784 (folio->index == end_index && poff == 0)) 1785 goto unlock; 1786 1787 /* 1788 * The page straddles i_size. It must be zeroed out on each 1789 * and every writepage invocation because it may be mmapped. 1790 * "A file is mapped in multiples of the page size. For a file 1791 * that is not a multiple of the page size, the remaining 1792 * memory is zeroed when mapped, and writes to that region are 1793 * not written out to the file." 1794 */ 1795 folio_zero_segment(folio, poff, folio_size(folio)); 1796 end_pos = isize; 1797 } 1798 1799 return iomap_writepage_map(wpc, wbc, inode, folio, end_pos); 1800 1801 redirty: 1802 folio_redirty_for_writepage(wbc, folio); 1803 unlock: 1804 folio_unlock(folio); 1805 return 0; 1806 } 1807 1808 int 1809 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc, 1810 struct iomap_writepage_ctx *wpc, 1811 const struct iomap_writeback_ops *ops) 1812 { 1813 int ret; 1814 1815 wpc->ops = ops; 1816 ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc); 1817 if (!wpc->ioend) 1818 return ret; 1819 return iomap_submit_ioend(wpc, wpc->ioend, ret); 1820 } 1821 EXPORT_SYMBOL_GPL(iomap_writepages); 1822 1823 static int __init iomap_init(void) 1824 { 1825 return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE), 1826 offsetof(struct iomap_ioend, io_inline_bio), 1827 BIOSET_NEED_BVECS); 1828 } 1829 fs_initcall(iomap_init); 1830