xref: /openbmc/linux/fs/iomap/buffered-io.c (revision 65a0d3c1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Red Hat, Inc.
4  * Copyright (C) 2016-2019 Christoph Hellwig.
5  */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/iomap.h>
10 #include <linux/pagemap.h>
11 #include <linux/uio.h>
12 #include <linux/buffer_head.h>
13 #include <linux/dax.h>
14 #include <linux/writeback.h>
15 #include <linux/list_sort.h>
16 #include <linux/swap.h>
17 #include <linux/bio.h>
18 #include <linux/sched/signal.h>
19 #include <linux/migrate.h>
20 #include "trace.h"
21 
22 #include "../internal.h"
23 
24 /*
25  * Structure allocated for each page or THP when block size < page size
26  * to track sub-page uptodate status and I/O completions.
27  */
28 struct iomap_page {
29 	atomic_t		read_bytes_pending;
30 	atomic_t		write_bytes_pending;
31 	spinlock_t		uptodate_lock;
32 	unsigned long		uptodate[];
33 };
34 
35 static inline struct iomap_page *to_iomap_page(struct page *page)
36 {
37 	/*
38 	 * per-block data is stored in the head page.  Callers should
39 	 * not be dealing with tail pages (and if they are, they can
40 	 * call thp_head() first.
41 	 */
42 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
43 
44 	if (page_has_private(page))
45 		return (struct iomap_page *)page_private(page);
46 	return NULL;
47 }
48 
49 static struct bio_set iomap_ioend_bioset;
50 
51 static struct iomap_page *
52 iomap_page_create(struct inode *inode, struct page *page)
53 {
54 	struct iomap_page *iop = to_iomap_page(page);
55 	unsigned int nr_blocks = i_blocks_per_page(inode, page);
56 
57 	if (iop || nr_blocks <= 1)
58 		return iop;
59 
60 	iop = kzalloc(struct_size(iop, uptodate, BITS_TO_LONGS(nr_blocks)),
61 			GFP_NOFS | __GFP_NOFAIL);
62 	spin_lock_init(&iop->uptodate_lock);
63 	if (PageUptodate(page))
64 		bitmap_fill(iop->uptodate, nr_blocks);
65 	attach_page_private(page, iop);
66 	return iop;
67 }
68 
69 static void
70 iomap_page_release(struct page *page)
71 {
72 	struct iomap_page *iop = detach_page_private(page);
73 	unsigned int nr_blocks = i_blocks_per_page(page->mapping->host, page);
74 
75 	if (!iop)
76 		return;
77 	WARN_ON_ONCE(atomic_read(&iop->read_bytes_pending));
78 	WARN_ON_ONCE(atomic_read(&iop->write_bytes_pending));
79 	WARN_ON_ONCE(bitmap_full(iop->uptodate, nr_blocks) !=
80 			PageUptodate(page));
81 	kfree(iop);
82 }
83 
84 /*
85  * Calculate the range inside the page that we actually need to read.
86  */
87 static void
88 iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop,
89 		loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp)
90 {
91 	loff_t orig_pos = *pos;
92 	loff_t isize = i_size_read(inode);
93 	unsigned block_bits = inode->i_blkbits;
94 	unsigned block_size = (1 << block_bits);
95 	unsigned poff = offset_in_page(*pos);
96 	unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length);
97 	unsigned first = poff >> block_bits;
98 	unsigned last = (poff + plen - 1) >> block_bits;
99 
100 	/*
101 	 * If the block size is smaller than the page size we need to check the
102 	 * per-block uptodate status and adjust the offset and length if needed
103 	 * to avoid reading in already uptodate ranges.
104 	 */
105 	if (iop) {
106 		unsigned int i;
107 
108 		/* move forward for each leading block marked uptodate */
109 		for (i = first; i <= last; i++) {
110 			if (!test_bit(i, iop->uptodate))
111 				break;
112 			*pos += block_size;
113 			poff += block_size;
114 			plen -= block_size;
115 			first++;
116 		}
117 
118 		/* truncate len if we find any trailing uptodate block(s) */
119 		for ( ; i <= last; i++) {
120 			if (test_bit(i, iop->uptodate)) {
121 				plen -= (last - i + 1) * block_size;
122 				last = i - 1;
123 				break;
124 			}
125 		}
126 	}
127 
128 	/*
129 	 * If the extent spans the block that contains the i_size we need to
130 	 * handle both halves separately so that we properly zero data in the
131 	 * page cache for blocks that are entirely outside of i_size.
132 	 */
133 	if (orig_pos <= isize && orig_pos + length > isize) {
134 		unsigned end = offset_in_page(isize - 1) >> block_bits;
135 
136 		if (first <= end && last > end)
137 			plen -= (last - end) * block_size;
138 	}
139 
140 	*offp = poff;
141 	*lenp = plen;
142 }
143 
144 static void
145 iomap_iop_set_range_uptodate(struct page *page, unsigned off, unsigned len)
146 {
147 	struct iomap_page *iop = to_iomap_page(page);
148 	struct inode *inode = page->mapping->host;
149 	unsigned first = off >> inode->i_blkbits;
150 	unsigned last = (off + len - 1) >> inode->i_blkbits;
151 	unsigned long flags;
152 
153 	spin_lock_irqsave(&iop->uptodate_lock, flags);
154 	bitmap_set(iop->uptodate, first, last - first + 1);
155 	if (bitmap_full(iop->uptodate, i_blocks_per_page(inode, page)))
156 		SetPageUptodate(page);
157 	spin_unlock_irqrestore(&iop->uptodate_lock, flags);
158 }
159 
160 static void
161 iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len)
162 {
163 	if (PageError(page))
164 		return;
165 
166 	if (page_has_private(page))
167 		iomap_iop_set_range_uptodate(page, off, len);
168 	else
169 		SetPageUptodate(page);
170 }
171 
172 static void
173 iomap_read_page_end_io(struct bio_vec *bvec, int error)
174 {
175 	struct page *page = bvec->bv_page;
176 	struct iomap_page *iop = to_iomap_page(page);
177 
178 	if (unlikely(error)) {
179 		ClearPageUptodate(page);
180 		SetPageError(page);
181 	} else {
182 		iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len);
183 	}
184 
185 	if (!iop || atomic_sub_and_test(bvec->bv_len, &iop->read_bytes_pending))
186 		unlock_page(page);
187 }
188 
189 static void
190 iomap_read_end_io(struct bio *bio)
191 {
192 	int error = blk_status_to_errno(bio->bi_status);
193 	struct bio_vec *bvec;
194 	struct bvec_iter_all iter_all;
195 
196 	bio_for_each_segment_all(bvec, bio, iter_all)
197 		iomap_read_page_end_io(bvec, error);
198 	bio_put(bio);
199 }
200 
201 struct iomap_readpage_ctx {
202 	struct page		*cur_page;
203 	bool			cur_page_in_bio;
204 	struct bio		*bio;
205 	struct readahead_control *rac;
206 };
207 
208 static void
209 iomap_read_inline_data(struct inode *inode, struct page *page,
210 		struct iomap *iomap)
211 {
212 	size_t size = i_size_read(inode);
213 	void *addr;
214 
215 	if (PageUptodate(page))
216 		return;
217 
218 	BUG_ON(page->index);
219 	BUG_ON(size > PAGE_SIZE - offset_in_page(iomap->inline_data));
220 
221 	addr = kmap_atomic(page);
222 	memcpy(addr, iomap->inline_data, size);
223 	memset(addr + size, 0, PAGE_SIZE - size);
224 	kunmap_atomic(addr);
225 	SetPageUptodate(page);
226 }
227 
228 static inline bool iomap_block_needs_zeroing(struct inode *inode,
229 		struct iomap *iomap, loff_t pos)
230 {
231 	return iomap->type != IOMAP_MAPPED ||
232 		(iomap->flags & IOMAP_F_NEW) ||
233 		pos >= i_size_read(inode);
234 }
235 
236 static loff_t
237 iomap_readpage_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
238 		struct iomap *iomap, struct iomap *srcmap)
239 {
240 	struct iomap_readpage_ctx *ctx = data;
241 	struct page *page = ctx->cur_page;
242 	struct iomap_page *iop = iomap_page_create(inode, page);
243 	bool same_page = false, is_contig = false;
244 	loff_t orig_pos = pos;
245 	unsigned poff, plen;
246 	sector_t sector;
247 
248 	if (iomap->type == IOMAP_INLINE) {
249 		WARN_ON_ONCE(pos);
250 		iomap_read_inline_data(inode, page, iomap);
251 		return PAGE_SIZE;
252 	}
253 
254 	/* zero post-eof blocks as the page may be mapped */
255 	iomap_adjust_read_range(inode, iop, &pos, length, &poff, &plen);
256 	if (plen == 0)
257 		goto done;
258 
259 	if (iomap_block_needs_zeroing(inode, iomap, pos)) {
260 		zero_user(page, poff, plen);
261 		iomap_set_range_uptodate(page, poff, plen);
262 		goto done;
263 	}
264 
265 	ctx->cur_page_in_bio = true;
266 	if (iop)
267 		atomic_add(plen, &iop->read_bytes_pending);
268 
269 	/* Try to merge into a previous segment if we can */
270 	sector = iomap_sector(iomap, pos);
271 	if (ctx->bio && bio_end_sector(ctx->bio) == sector) {
272 		if (__bio_try_merge_page(ctx->bio, page, plen, poff,
273 				&same_page))
274 			goto done;
275 		is_contig = true;
276 	}
277 
278 	if (!is_contig || bio_full(ctx->bio, plen)) {
279 		gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
280 		gfp_t orig_gfp = gfp;
281 		unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE);
282 
283 		if (ctx->bio)
284 			submit_bio(ctx->bio);
285 
286 		if (ctx->rac) /* same as readahead_gfp_mask */
287 			gfp |= __GFP_NORETRY | __GFP_NOWARN;
288 		ctx->bio = bio_alloc(gfp, bio_max_segs(nr_vecs));
289 		/*
290 		 * If the bio_alloc fails, try it again for a single page to
291 		 * avoid having to deal with partial page reads.  This emulates
292 		 * what do_mpage_readpage does.
293 		 */
294 		if (!ctx->bio)
295 			ctx->bio = bio_alloc(orig_gfp, 1);
296 		ctx->bio->bi_opf = REQ_OP_READ;
297 		if (ctx->rac)
298 			ctx->bio->bi_opf |= REQ_RAHEAD;
299 		ctx->bio->bi_iter.bi_sector = sector;
300 		bio_set_dev(ctx->bio, iomap->bdev);
301 		ctx->bio->bi_end_io = iomap_read_end_io;
302 	}
303 
304 	bio_add_page(ctx->bio, page, plen, poff);
305 done:
306 	/*
307 	 * Move the caller beyond our range so that it keeps making progress.
308 	 * For that we have to include any leading non-uptodate ranges, but
309 	 * we can skip trailing ones as they will be handled in the next
310 	 * iteration.
311 	 */
312 	return pos - orig_pos + plen;
313 }
314 
315 int
316 iomap_readpage(struct page *page, const struct iomap_ops *ops)
317 {
318 	struct iomap_readpage_ctx ctx = { .cur_page = page };
319 	struct inode *inode = page->mapping->host;
320 	unsigned poff;
321 	loff_t ret;
322 
323 	trace_iomap_readpage(page->mapping->host, 1);
324 
325 	for (poff = 0; poff < PAGE_SIZE; poff += ret) {
326 		ret = iomap_apply(inode, page_offset(page) + poff,
327 				PAGE_SIZE - poff, 0, ops, &ctx,
328 				iomap_readpage_actor);
329 		if (ret <= 0) {
330 			WARN_ON_ONCE(ret == 0);
331 			SetPageError(page);
332 			break;
333 		}
334 	}
335 
336 	if (ctx.bio) {
337 		submit_bio(ctx.bio);
338 		WARN_ON_ONCE(!ctx.cur_page_in_bio);
339 	} else {
340 		WARN_ON_ONCE(ctx.cur_page_in_bio);
341 		unlock_page(page);
342 	}
343 
344 	/*
345 	 * Just like mpage_readahead and block_read_full_page we always
346 	 * return 0 and just mark the page as PageError on errors.  This
347 	 * should be cleaned up all through the stack eventually.
348 	 */
349 	return 0;
350 }
351 EXPORT_SYMBOL_GPL(iomap_readpage);
352 
353 static loff_t
354 iomap_readahead_actor(struct inode *inode, loff_t pos, loff_t length,
355 		void *data, struct iomap *iomap, struct iomap *srcmap)
356 {
357 	struct iomap_readpage_ctx *ctx = data;
358 	loff_t done, ret;
359 
360 	for (done = 0; done < length; done += ret) {
361 		if (ctx->cur_page && offset_in_page(pos + done) == 0) {
362 			if (!ctx->cur_page_in_bio)
363 				unlock_page(ctx->cur_page);
364 			put_page(ctx->cur_page);
365 			ctx->cur_page = NULL;
366 		}
367 		if (!ctx->cur_page) {
368 			ctx->cur_page = readahead_page(ctx->rac);
369 			ctx->cur_page_in_bio = false;
370 		}
371 		ret = iomap_readpage_actor(inode, pos + done, length - done,
372 				ctx, iomap, srcmap);
373 	}
374 
375 	return done;
376 }
377 
378 /**
379  * iomap_readahead - Attempt to read pages from a file.
380  * @rac: Describes the pages to be read.
381  * @ops: The operations vector for the filesystem.
382  *
383  * This function is for filesystems to call to implement their readahead
384  * address_space operation.
385  *
386  * Context: The @ops callbacks may submit I/O (eg to read the addresses of
387  * blocks from disc), and may wait for it.  The caller may be trying to
388  * access a different page, and so sleeping excessively should be avoided.
389  * It may allocate memory, but should avoid costly allocations.  This
390  * function is called with memalloc_nofs set, so allocations will not cause
391  * the filesystem to be reentered.
392  */
393 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops)
394 {
395 	struct inode *inode = rac->mapping->host;
396 	loff_t pos = readahead_pos(rac);
397 	size_t length = readahead_length(rac);
398 	struct iomap_readpage_ctx ctx = {
399 		.rac	= rac,
400 	};
401 
402 	trace_iomap_readahead(inode, readahead_count(rac));
403 
404 	while (length > 0) {
405 		ssize_t ret = iomap_apply(inode, pos, length, 0, ops,
406 				&ctx, iomap_readahead_actor);
407 		if (ret <= 0) {
408 			WARN_ON_ONCE(ret == 0);
409 			break;
410 		}
411 		pos += ret;
412 		length -= ret;
413 	}
414 
415 	if (ctx.bio)
416 		submit_bio(ctx.bio);
417 	if (ctx.cur_page) {
418 		if (!ctx.cur_page_in_bio)
419 			unlock_page(ctx.cur_page);
420 		put_page(ctx.cur_page);
421 	}
422 }
423 EXPORT_SYMBOL_GPL(iomap_readahead);
424 
425 /*
426  * iomap_is_partially_uptodate checks whether blocks within a page are
427  * uptodate or not.
428  *
429  * Returns true if all blocks which correspond to a file portion
430  * we want to read within the page are uptodate.
431  */
432 int
433 iomap_is_partially_uptodate(struct page *page, unsigned long from,
434 		unsigned long count)
435 {
436 	struct iomap_page *iop = to_iomap_page(page);
437 	struct inode *inode = page->mapping->host;
438 	unsigned len, first, last;
439 	unsigned i;
440 
441 	/* Limit range to one page */
442 	len = min_t(unsigned, PAGE_SIZE - from, count);
443 
444 	/* First and last blocks in range within page */
445 	first = from >> inode->i_blkbits;
446 	last = (from + len - 1) >> inode->i_blkbits;
447 
448 	if (iop) {
449 		for (i = first; i <= last; i++)
450 			if (!test_bit(i, iop->uptodate))
451 				return 0;
452 		return 1;
453 	}
454 
455 	return 0;
456 }
457 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
458 
459 int
460 iomap_releasepage(struct page *page, gfp_t gfp_mask)
461 {
462 	trace_iomap_releasepage(page->mapping->host, page_offset(page),
463 			PAGE_SIZE);
464 
465 	/*
466 	 * mm accommodates an old ext3 case where clean pages might not have had
467 	 * the dirty bit cleared. Thus, it can send actual dirty pages to
468 	 * ->releasepage() via shrink_active_list(), skip those here.
469 	 */
470 	if (PageDirty(page) || PageWriteback(page))
471 		return 0;
472 	iomap_page_release(page);
473 	return 1;
474 }
475 EXPORT_SYMBOL_GPL(iomap_releasepage);
476 
477 void
478 iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len)
479 {
480 	trace_iomap_invalidatepage(page->mapping->host, offset, len);
481 
482 	/*
483 	 * If we are invalidating the entire page, clear the dirty state from it
484 	 * and release it to avoid unnecessary buildup of the LRU.
485 	 */
486 	if (offset == 0 && len == PAGE_SIZE) {
487 		WARN_ON_ONCE(PageWriteback(page));
488 		cancel_dirty_page(page);
489 		iomap_page_release(page);
490 	}
491 }
492 EXPORT_SYMBOL_GPL(iomap_invalidatepage);
493 
494 #ifdef CONFIG_MIGRATION
495 int
496 iomap_migrate_page(struct address_space *mapping, struct page *newpage,
497 		struct page *page, enum migrate_mode mode)
498 {
499 	int ret;
500 
501 	ret = migrate_page_move_mapping(mapping, newpage, page, 0);
502 	if (ret != MIGRATEPAGE_SUCCESS)
503 		return ret;
504 
505 	if (page_has_private(page))
506 		attach_page_private(newpage, detach_page_private(page));
507 
508 	if (mode != MIGRATE_SYNC_NO_COPY)
509 		migrate_page_copy(newpage, page);
510 	else
511 		migrate_page_states(newpage, page);
512 	return MIGRATEPAGE_SUCCESS;
513 }
514 EXPORT_SYMBOL_GPL(iomap_migrate_page);
515 #endif /* CONFIG_MIGRATION */
516 
517 enum {
518 	IOMAP_WRITE_F_UNSHARE		= (1 << 0),
519 };
520 
521 static void
522 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
523 {
524 	loff_t i_size = i_size_read(inode);
525 
526 	/*
527 	 * Only truncate newly allocated pages beyoned EOF, even if the
528 	 * write started inside the existing inode size.
529 	 */
530 	if (pos + len > i_size)
531 		truncate_pagecache_range(inode, max(pos, i_size), pos + len);
532 }
533 
534 static int
535 iomap_read_page_sync(loff_t block_start, struct page *page, unsigned poff,
536 		unsigned plen, struct iomap *iomap)
537 {
538 	struct bio_vec bvec;
539 	struct bio bio;
540 
541 	bio_init(&bio, &bvec, 1);
542 	bio.bi_opf = REQ_OP_READ;
543 	bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
544 	bio_set_dev(&bio, iomap->bdev);
545 	__bio_add_page(&bio, page, plen, poff);
546 	return submit_bio_wait(&bio);
547 }
548 
549 static int
550 __iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, int flags,
551 		struct page *page, struct iomap *srcmap)
552 {
553 	struct iomap_page *iop = iomap_page_create(inode, page);
554 	loff_t block_size = i_blocksize(inode);
555 	loff_t block_start = round_down(pos, block_size);
556 	loff_t block_end = round_up(pos + len, block_size);
557 	unsigned from = offset_in_page(pos), to = from + len, poff, plen;
558 
559 	if (PageUptodate(page))
560 		return 0;
561 	ClearPageError(page);
562 
563 	do {
564 		iomap_adjust_read_range(inode, iop, &block_start,
565 				block_end - block_start, &poff, &plen);
566 		if (plen == 0)
567 			break;
568 
569 		if (!(flags & IOMAP_WRITE_F_UNSHARE) &&
570 		    (from <= poff || from >= poff + plen) &&
571 		    (to <= poff || to >= poff + plen))
572 			continue;
573 
574 		if (iomap_block_needs_zeroing(inode, srcmap, block_start)) {
575 			if (WARN_ON_ONCE(flags & IOMAP_WRITE_F_UNSHARE))
576 				return -EIO;
577 			zero_user_segments(page, poff, from, to, poff + plen);
578 		} else {
579 			int status = iomap_read_page_sync(block_start, page,
580 					poff, plen, srcmap);
581 			if (status)
582 				return status;
583 		}
584 		iomap_set_range_uptodate(page, poff, plen);
585 	} while ((block_start += plen) < block_end);
586 
587 	return 0;
588 }
589 
590 static int
591 iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags,
592 		struct page **pagep, struct iomap *iomap, struct iomap *srcmap)
593 {
594 	const struct iomap_page_ops *page_ops = iomap->page_ops;
595 	struct page *page;
596 	int status = 0;
597 
598 	BUG_ON(pos + len > iomap->offset + iomap->length);
599 	if (srcmap != iomap)
600 		BUG_ON(pos + len > srcmap->offset + srcmap->length);
601 
602 	if (fatal_signal_pending(current))
603 		return -EINTR;
604 
605 	if (page_ops && page_ops->page_prepare) {
606 		status = page_ops->page_prepare(inode, pos, len, iomap);
607 		if (status)
608 			return status;
609 	}
610 
611 	page = grab_cache_page_write_begin(inode->i_mapping, pos >> PAGE_SHIFT,
612 			AOP_FLAG_NOFS);
613 	if (!page) {
614 		status = -ENOMEM;
615 		goto out_no_page;
616 	}
617 
618 	if (srcmap->type == IOMAP_INLINE)
619 		iomap_read_inline_data(inode, page, srcmap);
620 	else if (iomap->flags & IOMAP_F_BUFFER_HEAD)
621 		status = __block_write_begin_int(page, pos, len, NULL, srcmap);
622 	else
623 		status = __iomap_write_begin(inode, pos, len, flags, page,
624 				srcmap);
625 
626 	if (unlikely(status))
627 		goto out_unlock;
628 
629 	*pagep = page;
630 	return 0;
631 
632 out_unlock:
633 	unlock_page(page);
634 	put_page(page);
635 	iomap_write_failed(inode, pos, len);
636 
637 out_no_page:
638 	if (page_ops && page_ops->page_done)
639 		page_ops->page_done(inode, pos, 0, NULL, iomap);
640 	return status;
641 }
642 
643 static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len,
644 		size_t copied, struct page *page)
645 {
646 	flush_dcache_page(page);
647 
648 	/*
649 	 * The blocks that were entirely written will now be uptodate, so we
650 	 * don't have to worry about a readpage reading them and overwriting a
651 	 * partial write.  However if we have encountered a short write and only
652 	 * partially written into a block, it will not be marked uptodate, so a
653 	 * readpage might come in and destroy our partial write.
654 	 *
655 	 * Do the simplest thing, and just treat any short write to a non
656 	 * uptodate page as a zero-length write, and force the caller to redo
657 	 * the whole thing.
658 	 */
659 	if (unlikely(copied < len && !PageUptodate(page)))
660 		return 0;
661 	iomap_set_range_uptodate(page, offset_in_page(pos), len);
662 	__set_page_dirty_nobuffers(page);
663 	return copied;
664 }
665 
666 static size_t iomap_write_end_inline(struct inode *inode, struct page *page,
667 		struct iomap *iomap, loff_t pos, size_t copied)
668 {
669 	void *addr;
670 
671 	WARN_ON_ONCE(!PageUptodate(page));
672 	BUG_ON(pos + copied > PAGE_SIZE - offset_in_page(iomap->inline_data));
673 
674 	flush_dcache_page(page);
675 	addr = kmap_atomic(page);
676 	memcpy(iomap->inline_data + pos, addr + pos, copied);
677 	kunmap_atomic(addr);
678 
679 	mark_inode_dirty(inode);
680 	return copied;
681 }
682 
683 /* Returns the number of bytes copied.  May be 0.  Cannot be an errno. */
684 static size_t iomap_write_end(struct inode *inode, loff_t pos, size_t len,
685 		size_t copied, struct page *page, struct iomap *iomap,
686 		struct iomap *srcmap)
687 {
688 	const struct iomap_page_ops *page_ops = iomap->page_ops;
689 	loff_t old_size = inode->i_size;
690 	size_t ret;
691 
692 	if (srcmap->type == IOMAP_INLINE) {
693 		ret = iomap_write_end_inline(inode, page, iomap, pos, copied);
694 	} else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
695 		ret = block_write_end(NULL, inode->i_mapping, pos, len, copied,
696 				page, NULL);
697 	} else {
698 		ret = __iomap_write_end(inode, pos, len, copied, page);
699 	}
700 
701 	/*
702 	 * Update the in-memory inode size after copying the data into the page
703 	 * cache.  It's up to the file system to write the updated size to disk,
704 	 * preferably after I/O completion so that no stale data is exposed.
705 	 */
706 	if (pos + ret > old_size) {
707 		i_size_write(inode, pos + ret);
708 		iomap->flags |= IOMAP_F_SIZE_CHANGED;
709 	}
710 	unlock_page(page);
711 
712 	if (old_size < pos)
713 		pagecache_isize_extended(inode, old_size, pos);
714 	if (page_ops && page_ops->page_done)
715 		page_ops->page_done(inode, pos, ret, page, iomap);
716 	put_page(page);
717 
718 	if (ret < len)
719 		iomap_write_failed(inode, pos, len);
720 	return ret;
721 }
722 
723 static loff_t
724 iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
725 		struct iomap *iomap, struct iomap *srcmap)
726 {
727 	struct iov_iter *i = data;
728 	long status = 0;
729 	ssize_t written = 0;
730 
731 	do {
732 		struct page *page;
733 		unsigned long offset;	/* Offset into pagecache page */
734 		unsigned long bytes;	/* Bytes to write to page */
735 		size_t copied;		/* Bytes copied from user */
736 
737 		offset = offset_in_page(pos);
738 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
739 						iov_iter_count(i));
740 again:
741 		if (bytes > length)
742 			bytes = length;
743 
744 		/*
745 		 * Bring in the user page that we will copy from _first_.
746 		 * Otherwise there's a nasty deadlock on copying from the
747 		 * same page as we're writing to, without it being marked
748 		 * up-to-date.
749 		 *
750 		 * Not only is this an optimisation, but it is also required
751 		 * to check that the address is actually valid, when atomic
752 		 * usercopies are used, below.
753 		 */
754 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
755 			status = -EFAULT;
756 			break;
757 		}
758 
759 		status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap,
760 				srcmap);
761 		if (unlikely(status))
762 			break;
763 
764 		if (mapping_writably_mapped(inode->i_mapping))
765 			flush_dcache_page(page);
766 
767 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
768 
769 		copied = iomap_write_end(inode, pos, bytes, copied, page, iomap,
770 				srcmap);
771 
772 		cond_resched();
773 
774 		iov_iter_advance(i, copied);
775 		if (unlikely(copied == 0)) {
776 			/*
777 			 * If we were unable to copy any data at all, we must
778 			 * fall back to a single segment length write.
779 			 *
780 			 * If we didn't fallback here, we could livelock
781 			 * because not all segments in the iov can be copied at
782 			 * once without a pagefault.
783 			 */
784 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
785 						iov_iter_single_seg_count(i));
786 			goto again;
787 		}
788 		pos += copied;
789 		written += copied;
790 		length -= copied;
791 
792 		balance_dirty_pages_ratelimited(inode->i_mapping);
793 	} while (iov_iter_count(i) && length);
794 
795 	return written ? written : status;
796 }
797 
798 ssize_t
799 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter,
800 		const struct iomap_ops *ops)
801 {
802 	struct inode *inode = iocb->ki_filp->f_mapping->host;
803 	loff_t pos = iocb->ki_pos, ret = 0, written = 0;
804 
805 	while (iov_iter_count(iter)) {
806 		ret = iomap_apply(inode, pos, iov_iter_count(iter),
807 				IOMAP_WRITE, ops, iter, iomap_write_actor);
808 		if (ret <= 0)
809 			break;
810 		pos += ret;
811 		written += ret;
812 	}
813 
814 	return written ? written : ret;
815 }
816 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
817 
818 static loff_t
819 iomap_unshare_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
820 		struct iomap *iomap, struct iomap *srcmap)
821 {
822 	long status = 0;
823 	loff_t written = 0;
824 
825 	/* don't bother with blocks that are not shared to start with */
826 	if (!(iomap->flags & IOMAP_F_SHARED))
827 		return length;
828 	/* don't bother with holes or unwritten extents */
829 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
830 		return length;
831 
832 	do {
833 		unsigned long offset = offset_in_page(pos);
834 		unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length);
835 		struct page *page;
836 
837 		status = iomap_write_begin(inode, pos, bytes,
838 				IOMAP_WRITE_F_UNSHARE, &page, iomap, srcmap);
839 		if (unlikely(status))
840 			return status;
841 
842 		status = iomap_write_end(inode, pos, bytes, bytes, page, iomap,
843 				srcmap);
844 		if (WARN_ON_ONCE(status == 0))
845 			return -EIO;
846 
847 		cond_resched();
848 
849 		pos += status;
850 		written += status;
851 		length -= status;
852 
853 		balance_dirty_pages_ratelimited(inode->i_mapping);
854 	} while (length);
855 
856 	return written;
857 }
858 
859 int
860 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
861 		const struct iomap_ops *ops)
862 {
863 	loff_t ret;
864 
865 	while (len) {
866 		ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL,
867 				iomap_unshare_actor);
868 		if (ret <= 0)
869 			return ret;
870 		pos += ret;
871 		len -= ret;
872 	}
873 
874 	return 0;
875 }
876 EXPORT_SYMBOL_GPL(iomap_file_unshare);
877 
878 static s64 iomap_zero(struct inode *inode, loff_t pos, u64 length,
879 		struct iomap *iomap, struct iomap *srcmap)
880 {
881 	struct page *page;
882 	int status;
883 	unsigned offset = offset_in_page(pos);
884 	unsigned bytes = min_t(u64, PAGE_SIZE - offset, length);
885 
886 	status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap, srcmap);
887 	if (status)
888 		return status;
889 
890 	zero_user(page, offset, bytes);
891 	mark_page_accessed(page);
892 
893 	return iomap_write_end(inode, pos, bytes, bytes, page, iomap, srcmap);
894 }
895 
896 static loff_t iomap_zero_range_actor(struct inode *inode, loff_t pos,
897 		loff_t length, void *data, struct iomap *iomap,
898 		struct iomap *srcmap)
899 {
900 	bool *did_zero = data;
901 	loff_t written = 0;
902 
903 	/* already zeroed?  we're done. */
904 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
905 		return length;
906 
907 	do {
908 		s64 bytes;
909 
910 		if (IS_DAX(inode))
911 			bytes = dax_iomap_zero(pos, length, iomap);
912 		else
913 			bytes = iomap_zero(inode, pos, length, iomap, srcmap);
914 		if (bytes < 0)
915 			return bytes;
916 
917 		pos += bytes;
918 		length -= bytes;
919 		written += bytes;
920 		if (did_zero)
921 			*did_zero = true;
922 	} while (length > 0);
923 
924 	return written;
925 }
926 
927 int
928 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
929 		const struct iomap_ops *ops)
930 {
931 	loff_t ret;
932 
933 	while (len > 0) {
934 		ret = iomap_apply(inode, pos, len, IOMAP_ZERO,
935 				ops, did_zero, iomap_zero_range_actor);
936 		if (ret <= 0)
937 			return ret;
938 
939 		pos += ret;
940 		len -= ret;
941 	}
942 
943 	return 0;
944 }
945 EXPORT_SYMBOL_GPL(iomap_zero_range);
946 
947 int
948 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
949 		const struct iomap_ops *ops)
950 {
951 	unsigned int blocksize = i_blocksize(inode);
952 	unsigned int off = pos & (blocksize - 1);
953 
954 	/* Block boundary? Nothing to do */
955 	if (!off)
956 		return 0;
957 	return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
958 }
959 EXPORT_SYMBOL_GPL(iomap_truncate_page);
960 
961 static loff_t
962 iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length,
963 		void *data, struct iomap *iomap, struct iomap *srcmap)
964 {
965 	struct page *page = data;
966 	int ret;
967 
968 	if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
969 		ret = __block_write_begin_int(page, pos, length, NULL, iomap);
970 		if (ret)
971 			return ret;
972 		block_commit_write(page, 0, length);
973 	} else {
974 		WARN_ON_ONCE(!PageUptodate(page));
975 		iomap_page_create(inode, page);
976 		set_page_dirty(page);
977 	}
978 
979 	return length;
980 }
981 
982 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
983 {
984 	struct page *page = vmf->page;
985 	struct inode *inode = file_inode(vmf->vma->vm_file);
986 	unsigned long length;
987 	loff_t offset;
988 	ssize_t ret;
989 
990 	lock_page(page);
991 	ret = page_mkwrite_check_truncate(page, inode);
992 	if (ret < 0)
993 		goto out_unlock;
994 	length = ret;
995 
996 	offset = page_offset(page);
997 	while (length > 0) {
998 		ret = iomap_apply(inode, offset, length,
999 				IOMAP_WRITE | IOMAP_FAULT, ops, page,
1000 				iomap_page_mkwrite_actor);
1001 		if (unlikely(ret <= 0))
1002 			goto out_unlock;
1003 		offset += ret;
1004 		length -= ret;
1005 	}
1006 
1007 	wait_for_stable_page(page);
1008 	return VM_FAULT_LOCKED;
1009 out_unlock:
1010 	unlock_page(page);
1011 	return block_page_mkwrite_return(ret);
1012 }
1013 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1014 
1015 static void
1016 iomap_finish_page_writeback(struct inode *inode, struct page *page,
1017 		int error, unsigned int len)
1018 {
1019 	struct iomap_page *iop = to_iomap_page(page);
1020 
1021 	if (error) {
1022 		SetPageError(page);
1023 		mapping_set_error(inode->i_mapping, -EIO);
1024 	}
1025 
1026 	WARN_ON_ONCE(i_blocks_per_page(inode, page) > 1 && !iop);
1027 	WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) <= 0);
1028 
1029 	if (!iop || atomic_sub_and_test(len, &iop->write_bytes_pending))
1030 		end_page_writeback(page);
1031 }
1032 
1033 /*
1034  * We're now finished for good with this ioend structure.  Update the page
1035  * state, release holds on bios, and finally free up memory.  Do not use the
1036  * ioend after this.
1037  */
1038 static void
1039 iomap_finish_ioend(struct iomap_ioend *ioend, int error)
1040 {
1041 	struct inode *inode = ioend->io_inode;
1042 	struct bio *bio = &ioend->io_inline_bio;
1043 	struct bio *last = ioend->io_bio, *next;
1044 	u64 start = bio->bi_iter.bi_sector;
1045 	loff_t offset = ioend->io_offset;
1046 	bool quiet = bio_flagged(bio, BIO_QUIET);
1047 
1048 	for (bio = &ioend->io_inline_bio; bio; bio = next) {
1049 		struct bio_vec *bv;
1050 		struct bvec_iter_all iter_all;
1051 
1052 		/*
1053 		 * For the last bio, bi_private points to the ioend, so we
1054 		 * need to explicitly end the iteration here.
1055 		 */
1056 		if (bio == last)
1057 			next = NULL;
1058 		else
1059 			next = bio->bi_private;
1060 
1061 		/* walk each page on bio, ending page IO on them */
1062 		bio_for_each_segment_all(bv, bio, iter_all)
1063 			iomap_finish_page_writeback(inode, bv->bv_page, error,
1064 					bv->bv_len);
1065 		bio_put(bio);
1066 	}
1067 	/* The ioend has been freed by bio_put() */
1068 
1069 	if (unlikely(error && !quiet)) {
1070 		printk_ratelimited(KERN_ERR
1071 "%s: writeback error on inode %lu, offset %lld, sector %llu",
1072 			inode->i_sb->s_id, inode->i_ino, offset, start);
1073 	}
1074 }
1075 
1076 void
1077 iomap_finish_ioends(struct iomap_ioend *ioend, int error)
1078 {
1079 	struct list_head tmp;
1080 
1081 	list_replace_init(&ioend->io_list, &tmp);
1082 	iomap_finish_ioend(ioend, error);
1083 
1084 	while (!list_empty(&tmp)) {
1085 		ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
1086 		list_del_init(&ioend->io_list);
1087 		iomap_finish_ioend(ioend, error);
1088 	}
1089 }
1090 EXPORT_SYMBOL_GPL(iomap_finish_ioends);
1091 
1092 /*
1093  * We can merge two adjacent ioends if they have the same set of work to do.
1094  */
1095 static bool
1096 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
1097 {
1098 	if (ioend->io_bio->bi_status != next->io_bio->bi_status)
1099 		return false;
1100 	if ((ioend->io_flags & IOMAP_F_SHARED) ^
1101 	    (next->io_flags & IOMAP_F_SHARED))
1102 		return false;
1103 	if ((ioend->io_type == IOMAP_UNWRITTEN) ^
1104 	    (next->io_type == IOMAP_UNWRITTEN))
1105 		return false;
1106 	if (ioend->io_offset + ioend->io_size != next->io_offset)
1107 		return false;
1108 	return true;
1109 }
1110 
1111 void
1112 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends)
1113 {
1114 	struct iomap_ioend *next;
1115 
1116 	INIT_LIST_HEAD(&ioend->io_list);
1117 
1118 	while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
1119 			io_list))) {
1120 		if (!iomap_ioend_can_merge(ioend, next))
1121 			break;
1122 		list_move_tail(&next->io_list, &ioend->io_list);
1123 		ioend->io_size += next->io_size;
1124 	}
1125 }
1126 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
1127 
1128 static int
1129 iomap_ioend_compare(void *priv, const struct list_head *a,
1130 		const struct list_head *b)
1131 {
1132 	struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
1133 	struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
1134 
1135 	if (ia->io_offset < ib->io_offset)
1136 		return -1;
1137 	if (ia->io_offset > ib->io_offset)
1138 		return 1;
1139 	return 0;
1140 }
1141 
1142 void
1143 iomap_sort_ioends(struct list_head *ioend_list)
1144 {
1145 	list_sort(NULL, ioend_list, iomap_ioend_compare);
1146 }
1147 EXPORT_SYMBOL_GPL(iomap_sort_ioends);
1148 
1149 static void iomap_writepage_end_bio(struct bio *bio)
1150 {
1151 	struct iomap_ioend *ioend = bio->bi_private;
1152 
1153 	iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status));
1154 }
1155 
1156 /*
1157  * Submit the final bio for an ioend.
1158  *
1159  * If @error is non-zero, it means that we have a situation where some part of
1160  * the submission process has failed after we have marked paged for writeback
1161  * and unlocked them.  In this situation, we need to fail the bio instead of
1162  * submitting it.  This typically only happens on a filesystem shutdown.
1163  */
1164 static int
1165 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend,
1166 		int error)
1167 {
1168 	ioend->io_bio->bi_private = ioend;
1169 	ioend->io_bio->bi_end_io = iomap_writepage_end_bio;
1170 
1171 	if (wpc->ops->prepare_ioend)
1172 		error = wpc->ops->prepare_ioend(ioend, error);
1173 	if (error) {
1174 		/*
1175 		 * If we are failing the IO now, just mark the ioend with an
1176 		 * error and finish it.  This will run IO completion immediately
1177 		 * as there is only one reference to the ioend at this point in
1178 		 * time.
1179 		 */
1180 		ioend->io_bio->bi_status = errno_to_blk_status(error);
1181 		bio_endio(ioend->io_bio);
1182 		return error;
1183 	}
1184 
1185 	submit_bio(ioend->io_bio);
1186 	return 0;
1187 }
1188 
1189 static struct iomap_ioend *
1190 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc,
1191 		loff_t offset, sector_t sector, struct writeback_control *wbc)
1192 {
1193 	struct iomap_ioend *ioend;
1194 	struct bio *bio;
1195 
1196 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_VECS, &iomap_ioend_bioset);
1197 	bio_set_dev(bio, wpc->iomap.bdev);
1198 	bio->bi_iter.bi_sector = sector;
1199 	bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
1200 	bio->bi_write_hint = inode->i_write_hint;
1201 	wbc_init_bio(wbc, bio);
1202 
1203 	ioend = container_of(bio, struct iomap_ioend, io_inline_bio);
1204 	INIT_LIST_HEAD(&ioend->io_list);
1205 	ioend->io_type = wpc->iomap.type;
1206 	ioend->io_flags = wpc->iomap.flags;
1207 	ioend->io_inode = inode;
1208 	ioend->io_size = 0;
1209 	ioend->io_offset = offset;
1210 	ioend->io_bio = bio;
1211 	return ioend;
1212 }
1213 
1214 /*
1215  * Allocate a new bio, and chain the old bio to the new one.
1216  *
1217  * Note that we have to do perform the chaining in this unintuitive order
1218  * so that the bi_private linkage is set up in the right direction for the
1219  * traversal in iomap_finish_ioend().
1220  */
1221 static struct bio *
1222 iomap_chain_bio(struct bio *prev)
1223 {
1224 	struct bio *new;
1225 
1226 	new = bio_alloc(GFP_NOFS, BIO_MAX_VECS);
1227 	bio_copy_dev(new, prev);/* also copies over blkcg information */
1228 	new->bi_iter.bi_sector = bio_end_sector(prev);
1229 	new->bi_opf = prev->bi_opf;
1230 	new->bi_write_hint = prev->bi_write_hint;
1231 
1232 	bio_chain(prev, new);
1233 	bio_get(prev);		/* for iomap_finish_ioend */
1234 	submit_bio(prev);
1235 	return new;
1236 }
1237 
1238 static bool
1239 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset,
1240 		sector_t sector)
1241 {
1242 	if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
1243 	    (wpc->ioend->io_flags & IOMAP_F_SHARED))
1244 		return false;
1245 	if (wpc->iomap.type != wpc->ioend->io_type)
1246 		return false;
1247 	if (offset != wpc->ioend->io_offset + wpc->ioend->io_size)
1248 		return false;
1249 	if (sector != bio_end_sector(wpc->ioend->io_bio))
1250 		return false;
1251 	return true;
1252 }
1253 
1254 /*
1255  * Test to see if we have an existing ioend structure that we could append to
1256  * first, otherwise finish off the current ioend and start another.
1257  */
1258 static void
1259 iomap_add_to_ioend(struct inode *inode, loff_t offset, struct page *page,
1260 		struct iomap_page *iop, struct iomap_writepage_ctx *wpc,
1261 		struct writeback_control *wbc, struct list_head *iolist)
1262 {
1263 	sector_t sector = iomap_sector(&wpc->iomap, offset);
1264 	unsigned len = i_blocksize(inode);
1265 	unsigned poff = offset & (PAGE_SIZE - 1);
1266 	bool merged, same_page = false;
1267 
1268 	if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, offset, sector)) {
1269 		if (wpc->ioend)
1270 			list_add(&wpc->ioend->io_list, iolist);
1271 		wpc->ioend = iomap_alloc_ioend(inode, wpc, offset, sector, wbc);
1272 	}
1273 
1274 	merged = __bio_try_merge_page(wpc->ioend->io_bio, page, len, poff,
1275 			&same_page);
1276 	if (iop)
1277 		atomic_add(len, &iop->write_bytes_pending);
1278 
1279 	if (!merged) {
1280 		if (bio_full(wpc->ioend->io_bio, len)) {
1281 			wpc->ioend->io_bio =
1282 				iomap_chain_bio(wpc->ioend->io_bio);
1283 		}
1284 		bio_add_page(wpc->ioend->io_bio, page, len, poff);
1285 	}
1286 
1287 	wpc->ioend->io_size += len;
1288 	wbc_account_cgroup_owner(wbc, page, len);
1289 }
1290 
1291 /*
1292  * We implement an immediate ioend submission policy here to avoid needing to
1293  * chain multiple ioends and hence nest mempool allocations which can violate
1294  * forward progress guarantees we need to provide. The current ioend we are
1295  * adding blocks to is cached on the writepage context, and if the new block
1296  * does not append to the cached ioend it will create a new ioend and cache that
1297  * instead.
1298  *
1299  * If a new ioend is created and cached, the old ioend is returned and queued
1300  * locally for submission once the entire page is processed or an error has been
1301  * detected.  While ioends are submitted immediately after they are completed,
1302  * batching optimisations are provided by higher level block plugging.
1303  *
1304  * At the end of a writeback pass, there will be a cached ioend remaining on the
1305  * writepage context that the caller will need to submit.
1306  */
1307 static int
1308 iomap_writepage_map(struct iomap_writepage_ctx *wpc,
1309 		struct writeback_control *wbc, struct inode *inode,
1310 		struct page *page, u64 end_offset)
1311 {
1312 	struct iomap_page *iop = to_iomap_page(page);
1313 	struct iomap_ioend *ioend, *next;
1314 	unsigned len = i_blocksize(inode);
1315 	u64 file_offset; /* file offset of page */
1316 	int error = 0, count = 0, i;
1317 	LIST_HEAD(submit_list);
1318 
1319 	WARN_ON_ONCE(i_blocks_per_page(inode, page) > 1 && !iop);
1320 	WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) != 0);
1321 
1322 	/*
1323 	 * Walk through the page to find areas to write back. If we run off the
1324 	 * end of the current map or find the current map invalid, grab a new
1325 	 * one.
1326 	 */
1327 	for (i = 0, file_offset = page_offset(page);
1328 	     i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset;
1329 	     i++, file_offset += len) {
1330 		if (iop && !test_bit(i, iop->uptodate))
1331 			continue;
1332 
1333 		error = wpc->ops->map_blocks(wpc, inode, file_offset);
1334 		if (error)
1335 			break;
1336 		if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE))
1337 			continue;
1338 		if (wpc->iomap.type == IOMAP_HOLE)
1339 			continue;
1340 		iomap_add_to_ioend(inode, file_offset, page, iop, wpc, wbc,
1341 				 &submit_list);
1342 		count++;
1343 	}
1344 
1345 	WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list));
1346 	WARN_ON_ONCE(!PageLocked(page));
1347 	WARN_ON_ONCE(PageWriteback(page));
1348 	WARN_ON_ONCE(PageDirty(page));
1349 
1350 	/*
1351 	 * We cannot cancel the ioend directly here on error.  We may have
1352 	 * already set other pages under writeback and hence we have to run I/O
1353 	 * completion to mark the error state of the pages under writeback
1354 	 * appropriately.
1355 	 */
1356 	if (unlikely(error)) {
1357 		/*
1358 		 * Let the filesystem know what portion of the current page
1359 		 * failed to map. If the page wasn't been added to ioend, it
1360 		 * won't be affected by I/O completion and we must unlock it
1361 		 * now.
1362 		 */
1363 		if (wpc->ops->discard_page)
1364 			wpc->ops->discard_page(page, file_offset);
1365 		if (!count) {
1366 			ClearPageUptodate(page);
1367 			unlock_page(page);
1368 			goto done;
1369 		}
1370 	}
1371 
1372 	set_page_writeback(page);
1373 	unlock_page(page);
1374 
1375 	/*
1376 	 * Preserve the original error if there was one, otherwise catch
1377 	 * submission errors here and propagate into subsequent ioend
1378 	 * submissions.
1379 	 */
1380 	list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1381 		int error2;
1382 
1383 		list_del_init(&ioend->io_list);
1384 		error2 = iomap_submit_ioend(wpc, ioend, error);
1385 		if (error2 && !error)
1386 			error = error2;
1387 	}
1388 
1389 	/*
1390 	 * We can end up here with no error and nothing to write only if we race
1391 	 * with a partial page truncate on a sub-page block sized filesystem.
1392 	 */
1393 	if (!count)
1394 		end_page_writeback(page);
1395 done:
1396 	mapping_set_error(page->mapping, error);
1397 	return error;
1398 }
1399 
1400 /*
1401  * Write out a dirty page.
1402  *
1403  * For delalloc space on the page we need to allocate space and flush it.
1404  * For unwritten space on the page we need to start the conversion to
1405  * regular allocated space.
1406  */
1407 static int
1408 iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data)
1409 {
1410 	struct iomap_writepage_ctx *wpc = data;
1411 	struct inode *inode = page->mapping->host;
1412 	pgoff_t end_index;
1413 	u64 end_offset;
1414 	loff_t offset;
1415 
1416 	trace_iomap_writepage(inode, page_offset(page), PAGE_SIZE);
1417 
1418 	/*
1419 	 * Refuse to write the page out if we are called from reclaim context.
1420 	 *
1421 	 * This avoids stack overflows when called from deeply used stacks in
1422 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
1423 	 * allow reclaim from kswapd as the stack usage there is relatively low.
1424 	 *
1425 	 * This should never happen except in the case of a VM regression so
1426 	 * warn about it.
1427 	 */
1428 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1429 			PF_MEMALLOC))
1430 		goto redirty;
1431 
1432 	/*
1433 	 * Is this page beyond the end of the file?
1434 	 *
1435 	 * The page index is less than the end_index, adjust the end_offset
1436 	 * to the highest offset that this page should represent.
1437 	 * -----------------------------------------------------
1438 	 * |			file mapping	       | <EOF> |
1439 	 * -----------------------------------------------------
1440 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
1441 	 * ^--------------------------------^----------|--------
1442 	 * |     desired writeback range    |      see else    |
1443 	 * ---------------------------------^------------------|
1444 	 */
1445 	offset = i_size_read(inode);
1446 	end_index = offset >> PAGE_SHIFT;
1447 	if (page->index < end_index)
1448 		end_offset = (loff_t)(page->index + 1) << PAGE_SHIFT;
1449 	else {
1450 		/*
1451 		 * Check whether the page to write out is beyond or straddles
1452 		 * i_size or not.
1453 		 * -------------------------------------------------------
1454 		 * |		file mapping		        | <EOF>  |
1455 		 * -------------------------------------------------------
1456 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1457 		 * ^--------------------------------^-----------|---------
1458 		 * |				    |      Straddles     |
1459 		 * ---------------------------------^-----------|--------|
1460 		 */
1461 		unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1462 
1463 		/*
1464 		 * Skip the page if it is fully outside i_size, e.g. due to a
1465 		 * truncate operation that is in progress. We must redirty the
1466 		 * page so that reclaim stops reclaiming it. Otherwise
1467 		 * iomap_vm_releasepage() is called on it and gets confused.
1468 		 *
1469 		 * Note that the end_index is unsigned long, it would overflow
1470 		 * if the given offset is greater than 16TB on 32-bit system
1471 		 * and if we do check the page is fully outside i_size or not
1472 		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1473 		 * will be evaluated to 0.  Hence this page will be redirtied
1474 		 * and be written out repeatedly which would result in an
1475 		 * infinite loop, the user program that perform this operation
1476 		 * will hang.  Instead, we can verify this situation by checking
1477 		 * if the page to write is totally beyond the i_size or if it's
1478 		 * offset is just equal to the EOF.
1479 		 */
1480 		if (page->index > end_index ||
1481 		    (page->index == end_index && offset_into_page == 0))
1482 			goto redirty;
1483 
1484 		/*
1485 		 * The page straddles i_size.  It must be zeroed out on each
1486 		 * and every writepage invocation because it may be mmapped.
1487 		 * "A file is mapped in multiples of the page size.  For a file
1488 		 * that is not a multiple of the page size, the remaining
1489 		 * memory is zeroed when mapped, and writes to that region are
1490 		 * not written out to the file."
1491 		 */
1492 		zero_user_segment(page, offset_into_page, PAGE_SIZE);
1493 
1494 		/* Adjust the end_offset to the end of file */
1495 		end_offset = offset;
1496 	}
1497 
1498 	return iomap_writepage_map(wpc, wbc, inode, page, end_offset);
1499 
1500 redirty:
1501 	redirty_page_for_writepage(wbc, page);
1502 	unlock_page(page);
1503 	return 0;
1504 }
1505 
1506 int
1507 iomap_writepage(struct page *page, struct writeback_control *wbc,
1508 		struct iomap_writepage_ctx *wpc,
1509 		const struct iomap_writeback_ops *ops)
1510 {
1511 	int ret;
1512 
1513 	wpc->ops = ops;
1514 	ret = iomap_do_writepage(page, wbc, wpc);
1515 	if (!wpc->ioend)
1516 		return ret;
1517 	return iomap_submit_ioend(wpc, wpc->ioend, ret);
1518 }
1519 EXPORT_SYMBOL_GPL(iomap_writepage);
1520 
1521 int
1522 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
1523 		struct iomap_writepage_ctx *wpc,
1524 		const struct iomap_writeback_ops *ops)
1525 {
1526 	int			ret;
1527 
1528 	wpc->ops = ops;
1529 	ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc);
1530 	if (!wpc->ioend)
1531 		return ret;
1532 	return iomap_submit_ioend(wpc, wpc->ioend, ret);
1533 }
1534 EXPORT_SYMBOL_GPL(iomap_writepages);
1535 
1536 static int __init iomap_init(void)
1537 {
1538 	return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
1539 			   offsetof(struct iomap_ioend, io_inline_bio),
1540 			   BIOSET_NEED_BVECS);
1541 }
1542 fs_initcall(iomap_init);
1543