xref: /openbmc/linux/fs/iomap/buffered-io.c (revision 5e2421ce)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Red Hat, Inc.
4  * Copyright (C) 2016-2019 Christoph Hellwig.
5  */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/iomap.h>
10 #include <linux/pagemap.h>
11 #include <linux/uio.h>
12 #include <linux/buffer_head.h>
13 #include <linux/dax.h>
14 #include <linux/writeback.h>
15 #include <linux/list_sort.h>
16 #include <linux/swap.h>
17 #include <linux/bio.h>
18 #include <linux/sched/signal.h>
19 #include <linux/migrate.h>
20 #include "trace.h"
21 
22 #include "../internal.h"
23 
24 /*
25  * Structure allocated for each folio when block size < folio size
26  * to track sub-folio uptodate status and I/O completions.
27  */
28 struct iomap_page {
29 	atomic_t		read_bytes_pending;
30 	atomic_t		write_bytes_pending;
31 	spinlock_t		uptodate_lock;
32 	unsigned long		uptodate[];
33 };
34 
35 static inline struct iomap_page *to_iomap_page(struct folio *folio)
36 {
37 	if (folio_test_private(folio))
38 		return folio_get_private(folio);
39 	return NULL;
40 }
41 
42 static struct bio_set iomap_ioend_bioset;
43 
44 static struct iomap_page *
45 iomap_page_create(struct inode *inode, struct folio *folio)
46 {
47 	struct iomap_page *iop = to_iomap_page(folio);
48 	unsigned int nr_blocks = i_blocks_per_folio(inode, folio);
49 
50 	if (iop || nr_blocks <= 1)
51 		return iop;
52 
53 	iop = kzalloc(struct_size(iop, uptodate, BITS_TO_LONGS(nr_blocks)),
54 			GFP_NOFS | __GFP_NOFAIL);
55 	spin_lock_init(&iop->uptodate_lock);
56 	if (folio_test_uptodate(folio))
57 		bitmap_fill(iop->uptodate, nr_blocks);
58 	folio_attach_private(folio, iop);
59 	return iop;
60 }
61 
62 static void iomap_page_release(struct folio *folio)
63 {
64 	struct iomap_page *iop = folio_detach_private(folio);
65 	struct inode *inode = folio->mapping->host;
66 	unsigned int nr_blocks = i_blocks_per_folio(inode, folio);
67 
68 	if (!iop)
69 		return;
70 	WARN_ON_ONCE(atomic_read(&iop->read_bytes_pending));
71 	WARN_ON_ONCE(atomic_read(&iop->write_bytes_pending));
72 	WARN_ON_ONCE(bitmap_full(iop->uptodate, nr_blocks) !=
73 			folio_test_uptodate(folio));
74 	kfree(iop);
75 }
76 
77 /*
78  * Calculate the range inside the folio that we actually need to read.
79  */
80 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio,
81 		loff_t *pos, loff_t length, size_t *offp, size_t *lenp)
82 {
83 	struct iomap_page *iop = to_iomap_page(folio);
84 	loff_t orig_pos = *pos;
85 	loff_t isize = i_size_read(inode);
86 	unsigned block_bits = inode->i_blkbits;
87 	unsigned block_size = (1 << block_bits);
88 	size_t poff = offset_in_folio(folio, *pos);
89 	size_t plen = min_t(loff_t, folio_size(folio) - poff, length);
90 	unsigned first = poff >> block_bits;
91 	unsigned last = (poff + plen - 1) >> block_bits;
92 
93 	/*
94 	 * If the block size is smaller than the page size, we need to check the
95 	 * per-block uptodate status and adjust the offset and length if needed
96 	 * to avoid reading in already uptodate ranges.
97 	 */
98 	if (iop) {
99 		unsigned int i;
100 
101 		/* move forward for each leading block marked uptodate */
102 		for (i = first; i <= last; i++) {
103 			if (!test_bit(i, iop->uptodate))
104 				break;
105 			*pos += block_size;
106 			poff += block_size;
107 			plen -= block_size;
108 			first++;
109 		}
110 
111 		/* truncate len if we find any trailing uptodate block(s) */
112 		for ( ; i <= last; i++) {
113 			if (test_bit(i, iop->uptodate)) {
114 				plen -= (last - i + 1) * block_size;
115 				last = i - 1;
116 				break;
117 			}
118 		}
119 	}
120 
121 	/*
122 	 * If the extent spans the block that contains the i_size, we need to
123 	 * handle both halves separately so that we properly zero data in the
124 	 * page cache for blocks that are entirely outside of i_size.
125 	 */
126 	if (orig_pos <= isize && orig_pos + length > isize) {
127 		unsigned end = offset_in_folio(folio, isize - 1) >> block_bits;
128 
129 		if (first <= end && last > end)
130 			plen -= (last - end) * block_size;
131 	}
132 
133 	*offp = poff;
134 	*lenp = plen;
135 }
136 
137 static void iomap_iop_set_range_uptodate(struct folio *folio,
138 		struct iomap_page *iop, size_t off, size_t len)
139 {
140 	struct inode *inode = folio->mapping->host;
141 	unsigned first = off >> inode->i_blkbits;
142 	unsigned last = (off + len - 1) >> inode->i_blkbits;
143 	unsigned long flags;
144 
145 	spin_lock_irqsave(&iop->uptodate_lock, flags);
146 	bitmap_set(iop->uptodate, first, last - first + 1);
147 	if (bitmap_full(iop->uptodate, i_blocks_per_folio(inode, folio)))
148 		folio_mark_uptodate(folio);
149 	spin_unlock_irqrestore(&iop->uptodate_lock, flags);
150 }
151 
152 static void iomap_set_range_uptodate(struct folio *folio,
153 		struct iomap_page *iop, size_t off, size_t len)
154 {
155 	if (folio_test_error(folio))
156 		return;
157 
158 	if (iop)
159 		iomap_iop_set_range_uptodate(folio, iop, off, len);
160 	else
161 		folio_mark_uptodate(folio);
162 }
163 
164 static void iomap_finish_folio_read(struct folio *folio, size_t offset,
165 		size_t len, int error)
166 {
167 	struct iomap_page *iop = to_iomap_page(folio);
168 
169 	if (unlikely(error)) {
170 		folio_clear_uptodate(folio);
171 		folio_set_error(folio);
172 	} else {
173 		iomap_set_range_uptodate(folio, iop, offset, len);
174 	}
175 
176 	if (!iop || atomic_sub_and_test(len, &iop->read_bytes_pending))
177 		folio_unlock(folio);
178 }
179 
180 static void iomap_read_end_io(struct bio *bio)
181 {
182 	int error = blk_status_to_errno(bio->bi_status);
183 	struct folio_iter fi;
184 
185 	bio_for_each_folio_all(fi, bio)
186 		iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error);
187 	bio_put(bio);
188 }
189 
190 struct iomap_readpage_ctx {
191 	struct folio		*cur_folio;
192 	bool			cur_folio_in_bio;
193 	struct bio		*bio;
194 	struct readahead_control *rac;
195 };
196 
197 /**
198  * iomap_read_inline_data - copy inline data into the page cache
199  * @iter: iteration structure
200  * @folio: folio to copy to
201  *
202  * Copy the inline data in @iter into @folio and zero out the rest of the folio.
203  * Only a single IOMAP_INLINE extent is allowed at the end of each file.
204  * Returns zero for success to complete the read, or the usual negative errno.
205  */
206 static int iomap_read_inline_data(const struct iomap_iter *iter,
207 		struct folio *folio)
208 {
209 	struct iomap_page *iop;
210 	const struct iomap *iomap = iomap_iter_srcmap(iter);
211 	size_t size = i_size_read(iter->inode) - iomap->offset;
212 	size_t poff = offset_in_page(iomap->offset);
213 	size_t offset = offset_in_folio(folio, iomap->offset);
214 	void *addr;
215 
216 	if (folio_test_uptodate(folio))
217 		return 0;
218 
219 	if (WARN_ON_ONCE(size > PAGE_SIZE - poff))
220 		return -EIO;
221 	if (WARN_ON_ONCE(size > PAGE_SIZE -
222 			 offset_in_page(iomap->inline_data)))
223 		return -EIO;
224 	if (WARN_ON_ONCE(size > iomap->length))
225 		return -EIO;
226 	if (offset > 0)
227 		iop = iomap_page_create(iter->inode, folio);
228 	else
229 		iop = to_iomap_page(folio);
230 
231 	addr = kmap_local_folio(folio, offset);
232 	memcpy(addr, iomap->inline_data, size);
233 	memset(addr + size, 0, PAGE_SIZE - poff - size);
234 	kunmap_local(addr);
235 	iomap_set_range_uptodate(folio, iop, offset, PAGE_SIZE - poff);
236 	return 0;
237 }
238 
239 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter,
240 		loff_t pos)
241 {
242 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
243 
244 	return srcmap->type != IOMAP_MAPPED ||
245 		(srcmap->flags & IOMAP_F_NEW) ||
246 		pos >= i_size_read(iter->inode);
247 }
248 
249 static loff_t iomap_readpage_iter(const struct iomap_iter *iter,
250 		struct iomap_readpage_ctx *ctx, loff_t offset)
251 {
252 	const struct iomap *iomap = &iter->iomap;
253 	loff_t pos = iter->pos + offset;
254 	loff_t length = iomap_length(iter) - offset;
255 	struct folio *folio = ctx->cur_folio;
256 	struct iomap_page *iop;
257 	loff_t orig_pos = pos;
258 	size_t poff, plen;
259 	sector_t sector;
260 
261 	if (iomap->type == IOMAP_INLINE)
262 		return iomap_read_inline_data(iter, folio);
263 
264 	/* zero post-eof blocks as the page may be mapped */
265 	iop = iomap_page_create(iter->inode, folio);
266 	iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen);
267 	if (plen == 0)
268 		goto done;
269 
270 	if (iomap_block_needs_zeroing(iter, pos)) {
271 		folio_zero_range(folio, poff, plen);
272 		iomap_set_range_uptodate(folio, iop, poff, plen);
273 		goto done;
274 	}
275 
276 	ctx->cur_folio_in_bio = true;
277 	if (iop)
278 		atomic_add(plen, &iop->read_bytes_pending);
279 
280 	sector = iomap_sector(iomap, pos);
281 	if (!ctx->bio ||
282 	    bio_end_sector(ctx->bio) != sector ||
283 	    !bio_add_folio(ctx->bio, folio, plen, poff)) {
284 		gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL);
285 		gfp_t orig_gfp = gfp;
286 		unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE);
287 
288 		if (ctx->bio)
289 			submit_bio(ctx->bio);
290 
291 		if (ctx->rac) /* same as readahead_gfp_mask */
292 			gfp |= __GFP_NORETRY | __GFP_NOWARN;
293 		ctx->bio = bio_alloc(gfp, bio_max_segs(nr_vecs));
294 		/*
295 		 * If the bio_alloc fails, try it again for a single page to
296 		 * avoid having to deal with partial page reads.  This emulates
297 		 * what do_mpage_readpage does.
298 		 */
299 		if (!ctx->bio)
300 			ctx->bio = bio_alloc(orig_gfp, 1);
301 		ctx->bio->bi_opf = REQ_OP_READ;
302 		if (ctx->rac)
303 			ctx->bio->bi_opf |= REQ_RAHEAD;
304 		ctx->bio->bi_iter.bi_sector = sector;
305 		bio_set_dev(ctx->bio, iomap->bdev);
306 		ctx->bio->bi_end_io = iomap_read_end_io;
307 		bio_add_folio(ctx->bio, folio, plen, poff);
308 	}
309 
310 done:
311 	/*
312 	 * Move the caller beyond our range so that it keeps making progress.
313 	 * For that, we have to include any leading non-uptodate ranges, but
314 	 * we can skip trailing ones as they will be handled in the next
315 	 * iteration.
316 	 */
317 	return pos - orig_pos + plen;
318 }
319 
320 int
321 iomap_readpage(struct page *page, const struct iomap_ops *ops)
322 {
323 	struct folio *folio = page_folio(page);
324 	struct iomap_iter iter = {
325 		.inode		= folio->mapping->host,
326 		.pos		= folio_pos(folio),
327 		.len		= folio_size(folio),
328 	};
329 	struct iomap_readpage_ctx ctx = {
330 		.cur_folio	= folio,
331 	};
332 	int ret;
333 
334 	trace_iomap_readpage(iter.inode, 1);
335 
336 	while ((ret = iomap_iter(&iter, ops)) > 0)
337 		iter.processed = iomap_readpage_iter(&iter, &ctx, 0);
338 
339 	if (ret < 0)
340 		folio_set_error(folio);
341 
342 	if (ctx.bio) {
343 		submit_bio(ctx.bio);
344 		WARN_ON_ONCE(!ctx.cur_folio_in_bio);
345 	} else {
346 		WARN_ON_ONCE(ctx.cur_folio_in_bio);
347 		folio_unlock(folio);
348 	}
349 
350 	/*
351 	 * Just like mpage_readahead and block_read_full_page, we always
352 	 * return 0 and just mark the page as PageError on errors.  This
353 	 * should be cleaned up throughout the stack eventually.
354 	 */
355 	return 0;
356 }
357 EXPORT_SYMBOL_GPL(iomap_readpage);
358 
359 static loff_t iomap_readahead_iter(const struct iomap_iter *iter,
360 		struct iomap_readpage_ctx *ctx)
361 {
362 	loff_t length = iomap_length(iter);
363 	loff_t done, ret;
364 
365 	for (done = 0; done < length; done += ret) {
366 		if (ctx->cur_folio &&
367 		    offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) {
368 			if (!ctx->cur_folio_in_bio)
369 				folio_unlock(ctx->cur_folio);
370 			ctx->cur_folio = NULL;
371 		}
372 		if (!ctx->cur_folio) {
373 			ctx->cur_folio = readahead_folio(ctx->rac);
374 			ctx->cur_folio_in_bio = false;
375 		}
376 		ret = iomap_readpage_iter(iter, ctx, done);
377 		if (ret <= 0)
378 			return ret;
379 	}
380 
381 	return done;
382 }
383 
384 /**
385  * iomap_readahead - Attempt to read pages from a file.
386  * @rac: Describes the pages to be read.
387  * @ops: The operations vector for the filesystem.
388  *
389  * This function is for filesystems to call to implement their readahead
390  * address_space operation.
391  *
392  * Context: The @ops callbacks may submit I/O (eg to read the addresses of
393  * blocks from disc), and may wait for it.  The caller may be trying to
394  * access a different page, and so sleeping excessively should be avoided.
395  * It may allocate memory, but should avoid costly allocations.  This
396  * function is called with memalloc_nofs set, so allocations will not cause
397  * the filesystem to be reentered.
398  */
399 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops)
400 {
401 	struct iomap_iter iter = {
402 		.inode	= rac->mapping->host,
403 		.pos	= readahead_pos(rac),
404 		.len	= readahead_length(rac),
405 	};
406 	struct iomap_readpage_ctx ctx = {
407 		.rac	= rac,
408 	};
409 
410 	trace_iomap_readahead(rac->mapping->host, readahead_count(rac));
411 
412 	while (iomap_iter(&iter, ops) > 0)
413 		iter.processed = iomap_readahead_iter(&iter, &ctx);
414 
415 	if (ctx.bio)
416 		submit_bio(ctx.bio);
417 	if (ctx.cur_folio) {
418 		if (!ctx.cur_folio_in_bio)
419 			folio_unlock(ctx.cur_folio);
420 	}
421 }
422 EXPORT_SYMBOL_GPL(iomap_readahead);
423 
424 /*
425  * iomap_is_partially_uptodate checks whether blocks within a page are
426  * uptodate or not.
427  *
428  * Returns true if all blocks which correspond to a file portion
429  * we want to read within the page are uptodate.
430  */
431 int
432 iomap_is_partially_uptodate(struct page *page, unsigned long from,
433 		unsigned long count)
434 {
435 	struct folio *folio = page_folio(page);
436 	struct iomap_page *iop = to_iomap_page(folio);
437 	struct inode *inode = page->mapping->host;
438 	unsigned len, first, last;
439 	unsigned i;
440 
441 	/* Limit range to one page */
442 	len = min_t(unsigned, PAGE_SIZE - from, count);
443 
444 	/* First and last blocks in range within page */
445 	first = from >> inode->i_blkbits;
446 	last = (from + len - 1) >> inode->i_blkbits;
447 
448 	if (iop) {
449 		for (i = first; i <= last; i++)
450 			if (!test_bit(i, iop->uptodate))
451 				return 0;
452 		return 1;
453 	}
454 
455 	return 0;
456 }
457 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
458 
459 int
460 iomap_releasepage(struct page *page, gfp_t gfp_mask)
461 {
462 	struct folio *folio = page_folio(page);
463 
464 	trace_iomap_releasepage(folio->mapping->host, folio_pos(folio),
465 			folio_size(folio));
466 
467 	/*
468 	 * mm accommodates an old ext3 case where clean pages might not have had
469 	 * the dirty bit cleared. Thus, it can send actual dirty pages to
470 	 * ->releasepage() via shrink_active_list(); skip those here.
471 	 */
472 	if (folio_test_dirty(folio) || folio_test_writeback(folio))
473 		return 0;
474 	iomap_page_release(folio);
475 	return 1;
476 }
477 EXPORT_SYMBOL_GPL(iomap_releasepage);
478 
479 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len)
480 {
481 	trace_iomap_invalidatepage(folio->mapping->host, offset, len);
482 
483 	/*
484 	 * If we're invalidating the entire folio, clear the dirty state
485 	 * from it and release it to avoid unnecessary buildup of the LRU.
486 	 */
487 	if (offset == 0 && len == folio_size(folio)) {
488 		WARN_ON_ONCE(folio_test_writeback(folio));
489 		folio_cancel_dirty(folio);
490 		iomap_page_release(folio);
491 	} else if (folio_test_large(folio)) {
492 		/* Must release the iop so the page can be split */
493 		WARN_ON_ONCE(!folio_test_uptodate(folio) &&
494 			     folio_test_dirty(folio));
495 		iomap_page_release(folio);
496 	}
497 }
498 EXPORT_SYMBOL_GPL(iomap_invalidate_folio);
499 
500 void iomap_invalidatepage(struct page *page, unsigned int offset,
501 		unsigned int len)
502 {
503 	iomap_invalidate_folio(page_folio(page), offset, len);
504 }
505 EXPORT_SYMBOL_GPL(iomap_invalidatepage);
506 
507 #ifdef CONFIG_MIGRATION
508 int
509 iomap_migrate_page(struct address_space *mapping, struct page *newpage,
510 		struct page *page, enum migrate_mode mode)
511 {
512 	struct folio *folio = page_folio(page);
513 	struct folio *newfolio = page_folio(newpage);
514 	int ret;
515 
516 	ret = folio_migrate_mapping(mapping, newfolio, folio, 0);
517 	if (ret != MIGRATEPAGE_SUCCESS)
518 		return ret;
519 
520 	if (folio_test_private(folio))
521 		folio_attach_private(newfolio, folio_detach_private(folio));
522 
523 	if (mode != MIGRATE_SYNC_NO_COPY)
524 		folio_migrate_copy(newfolio, folio);
525 	else
526 		folio_migrate_flags(newfolio, folio);
527 	return MIGRATEPAGE_SUCCESS;
528 }
529 EXPORT_SYMBOL_GPL(iomap_migrate_page);
530 #endif /* CONFIG_MIGRATION */
531 
532 static void
533 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
534 {
535 	loff_t i_size = i_size_read(inode);
536 
537 	/*
538 	 * Only truncate newly allocated pages beyoned EOF, even if the
539 	 * write started inside the existing inode size.
540 	 */
541 	if (pos + len > i_size)
542 		truncate_pagecache_range(inode, max(pos, i_size), pos + len);
543 }
544 
545 static int iomap_read_folio_sync(loff_t block_start, struct folio *folio,
546 		size_t poff, size_t plen, const struct iomap *iomap)
547 {
548 	struct bio_vec bvec;
549 	struct bio bio;
550 
551 	bio_init(&bio, &bvec, 1);
552 	bio.bi_opf = REQ_OP_READ;
553 	bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
554 	bio_set_dev(&bio, iomap->bdev);
555 	bio_add_folio(&bio, folio, plen, poff);
556 	return submit_bio_wait(&bio);
557 }
558 
559 static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos,
560 		size_t len, struct folio *folio)
561 {
562 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
563 	struct iomap_page *iop = iomap_page_create(iter->inode, folio);
564 	loff_t block_size = i_blocksize(iter->inode);
565 	loff_t block_start = round_down(pos, block_size);
566 	loff_t block_end = round_up(pos + len, block_size);
567 	size_t from = offset_in_folio(folio, pos), to = from + len;
568 	size_t poff, plen;
569 
570 	if (folio_test_uptodate(folio))
571 		return 0;
572 	folio_clear_error(folio);
573 
574 	do {
575 		iomap_adjust_read_range(iter->inode, folio, &block_start,
576 				block_end - block_start, &poff, &plen);
577 		if (plen == 0)
578 			break;
579 
580 		if (!(iter->flags & IOMAP_UNSHARE) &&
581 		    (from <= poff || from >= poff + plen) &&
582 		    (to <= poff || to >= poff + plen))
583 			continue;
584 
585 		if (iomap_block_needs_zeroing(iter, block_start)) {
586 			if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE))
587 				return -EIO;
588 			folio_zero_segments(folio, poff, from, to, poff + plen);
589 		} else {
590 			int status = iomap_read_folio_sync(block_start, folio,
591 					poff, plen, srcmap);
592 			if (status)
593 				return status;
594 		}
595 		iomap_set_range_uptodate(folio, iop, poff, plen);
596 	} while ((block_start += plen) < block_end);
597 
598 	return 0;
599 }
600 
601 static int iomap_write_begin_inline(const struct iomap_iter *iter,
602 		struct folio *folio)
603 {
604 	/* needs more work for the tailpacking case; disable for now */
605 	if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0))
606 		return -EIO;
607 	return iomap_read_inline_data(iter, folio);
608 }
609 
610 static int iomap_write_begin(const struct iomap_iter *iter, loff_t pos,
611 		size_t len, struct folio **foliop)
612 {
613 	const struct iomap_page_ops *page_ops = iter->iomap.page_ops;
614 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
615 	struct folio *folio;
616 	unsigned fgp = FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE | FGP_NOFS;
617 	int status = 0;
618 
619 	BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length);
620 	if (srcmap != &iter->iomap)
621 		BUG_ON(pos + len > srcmap->offset + srcmap->length);
622 
623 	if (fatal_signal_pending(current))
624 		return -EINTR;
625 
626 	if (!mapping_large_folio_support(iter->inode->i_mapping))
627 		len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos));
628 
629 	if (page_ops && page_ops->page_prepare) {
630 		status = page_ops->page_prepare(iter->inode, pos, len);
631 		if (status)
632 			return status;
633 	}
634 
635 	folio = __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT,
636 			fgp, mapping_gfp_mask(iter->inode->i_mapping));
637 	if (!folio) {
638 		status = -ENOMEM;
639 		goto out_no_page;
640 	}
641 	if (pos + len > folio_pos(folio) + folio_size(folio))
642 		len = folio_pos(folio) + folio_size(folio) - pos;
643 
644 	if (srcmap->type == IOMAP_INLINE)
645 		status = iomap_write_begin_inline(iter, folio);
646 	else if (srcmap->flags & IOMAP_F_BUFFER_HEAD)
647 		status = __block_write_begin_int(folio, pos, len, NULL, srcmap);
648 	else
649 		status = __iomap_write_begin(iter, pos, len, folio);
650 
651 	if (unlikely(status))
652 		goto out_unlock;
653 
654 	*foliop = folio;
655 	return 0;
656 
657 out_unlock:
658 	folio_unlock(folio);
659 	folio_put(folio);
660 	iomap_write_failed(iter->inode, pos, len);
661 
662 out_no_page:
663 	if (page_ops && page_ops->page_done)
664 		page_ops->page_done(iter->inode, pos, 0, NULL);
665 	return status;
666 }
667 
668 static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len,
669 		size_t copied, struct folio *folio)
670 {
671 	struct iomap_page *iop = to_iomap_page(folio);
672 	flush_dcache_folio(folio);
673 
674 	/*
675 	 * The blocks that were entirely written will now be uptodate, so we
676 	 * don't have to worry about a readpage reading them and overwriting a
677 	 * partial write.  However, if we've encountered a short write and only
678 	 * partially written into a block, it will not be marked uptodate, so a
679 	 * readpage might come in and destroy our partial write.
680 	 *
681 	 * Do the simplest thing and just treat any short write to a
682 	 * non-uptodate page as a zero-length write, and force the caller to
683 	 * redo the whole thing.
684 	 */
685 	if (unlikely(copied < len && !folio_test_uptodate(folio)))
686 		return 0;
687 	iomap_set_range_uptodate(folio, iop, offset_in_folio(folio, pos), len);
688 	filemap_dirty_folio(inode->i_mapping, folio);
689 	return copied;
690 }
691 
692 static size_t iomap_write_end_inline(const struct iomap_iter *iter,
693 		struct folio *folio, loff_t pos, size_t copied)
694 {
695 	const struct iomap *iomap = &iter->iomap;
696 	void *addr;
697 
698 	WARN_ON_ONCE(!folio_test_uptodate(folio));
699 	BUG_ON(!iomap_inline_data_valid(iomap));
700 
701 	flush_dcache_folio(folio);
702 	addr = kmap_local_folio(folio, pos);
703 	memcpy(iomap_inline_data(iomap, pos), addr, copied);
704 	kunmap_local(addr);
705 
706 	mark_inode_dirty(iter->inode);
707 	return copied;
708 }
709 
710 /* Returns the number of bytes copied.  May be 0.  Cannot be an errno. */
711 static size_t iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len,
712 		size_t copied, struct folio *folio)
713 {
714 	const struct iomap_page_ops *page_ops = iter->iomap.page_ops;
715 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
716 	loff_t old_size = iter->inode->i_size;
717 	size_t ret;
718 
719 	if (srcmap->type == IOMAP_INLINE) {
720 		ret = iomap_write_end_inline(iter, folio, pos, copied);
721 	} else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
722 		ret = block_write_end(NULL, iter->inode->i_mapping, pos, len,
723 				copied, &folio->page, NULL);
724 	} else {
725 		ret = __iomap_write_end(iter->inode, pos, len, copied, folio);
726 	}
727 
728 	/*
729 	 * Update the in-memory inode size after copying the data into the page
730 	 * cache.  It's up to the file system to write the updated size to disk,
731 	 * preferably after I/O completion so that no stale data is exposed.
732 	 */
733 	if (pos + ret > old_size) {
734 		i_size_write(iter->inode, pos + ret);
735 		iter->iomap.flags |= IOMAP_F_SIZE_CHANGED;
736 	}
737 	folio_unlock(folio);
738 
739 	if (old_size < pos)
740 		pagecache_isize_extended(iter->inode, old_size, pos);
741 	if (page_ops && page_ops->page_done)
742 		page_ops->page_done(iter->inode, pos, ret, &folio->page);
743 	folio_put(folio);
744 
745 	if (ret < len)
746 		iomap_write_failed(iter->inode, pos, len);
747 	return ret;
748 }
749 
750 static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i)
751 {
752 	loff_t length = iomap_length(iter);
753 	loff_t pos = iter->pos;
754 	ssize_t written = 0;
755 	long status = 0;
756 
757 	do {
758 		struct folio *folio;
759 		struct page *page;
760 		unsigned long offset;	/* Offset into pagecache page */
761 		unsigned long bytes;	/* Bytes to write to page */
762 		size_t copied;		/* Bytes copied from user */
763 
764 		offset = offset_in_page(pos);
765 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
766 						iov_iter_count(i));
767 again:
768 		if (bytes > length)
769 			bytes = length;
770 
771 		/*
772 		 * Bring in the user page that we'll copy from _first_.
773 		 * Otherwise there's a nasty deadlock on copying from the
774 		 * same page as we're writing to, without it being marked
775 		 * up-to-date.
776 		 */
777 		if (unlikely(fault_in_iov_iter_readable(i, bytes))) {
778 			status = -EFAULT;
779 			break;
780 		}
781 
782 		status = iomap_write_begin(iter, pos, bytes, &folio);
783 		if (unlikely(status))
784 			break;
785 
786 		page = folio_file_page(folio, pos >> PAGE_SHIFT);
787 		if (mapping_writably_mapped(iter->inode->i_mapping))
788 			flush_dcache_page(page);
789 
790 		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
791 
792 		status = iomap_write_end(iter, pos, bytes, copied, folio);
793 
794 		if (unlikely(copied != status))
795 			iov_iter_revert(i, copied - status);
796 
797 		cond_resched();
798 		if (unlikely(status == 0)) {
799 			/*
800 			 * A short copy made iomap_write_end() reject the
801 			 * thing entirely.  Might be memory poisoning
802 			 * halfway through, might be a race with munmap,
803 			 * might be severe memory pressure.
804 			 */
805 			if (copied)
806 				bytes = copied;
807 			goto again;
808 		}
809 		pos += status;
810 		written += status;
811 		length -= status;
812 
813 		balance_dirty_pages_ratelimited(iter->inode->i_mapping);
814 	} while (iov_iter_count(i) && length);
815 
816 	return written ? written : status;
817 }
818 
819 ssize_t
820 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i,
821 		const struct iomap_ops *ops)
822 {
823 	struct iomap_iter iter = {
824 		.inode		= iocb->ki_filp->f_mapping->host,
825 		.pos		= iocb->ki_pos,
826 		.len		= iov_iter_count(i),
827 		.flags		= IOMAP_WRITE,
828 	};
829 	int ret;
830 
831 	while ((ret = iomap_iter(&iter, ops)) > 0)
832 		iter.processed = iomap_write_iter(&iter, i);
833 	if (iter.pos == iocb->ki_pos)
834 		return ret;
835 	return iter.pos - iocb->ki_pos;
836 }
837 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
838 
839 static loff_t iomap_unshare_iter(struct iomap_iter *iter)
840 {
841 	struct iomap *iomap = &iter->iomap;
842 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
843 	loff_t pos = iter->pos;
844 	loff_t length = iomap_length(iter);
845 	long status = 0;
846 	loff_t written = 0;
847 
848 	/* don't bother with blocks that are not shared to start with */
849 	if (!(iomap->flags & IOMAP_F_SHARED))
850 		return length;
851 	/* don't bother with holes or unwritten extents */
852 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
853 		return length;
854 
855 	do {
856 		unsigned long offset = offset_in_page(pos);
857 		unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length);
858 		struct folio *folio;
859 
860 		status = iomap_write_begin(iter, pos, bytes, &folio);
861 		if (unlikely(status))
862 			return status;
863 
864 		status = iomap_write_end(iter, pos, bytes, bytes, folio);
865 		if (WARN_ON_ONCE(status == 0))
866 			return -EIO;
867 
868 		cond_resched();
869 
870 		pos += status;
871 		written += status;
872 		length -= status;
873 
874 		balance_dirty_pages_ratelimited(iter->inode->i_mapping);
875 	} while (length);
876 
877 	return written;
878 }
879 
880 int
881 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
882 		const struct iomap_ops *ops)
883 {
884 	struct iomap_iter iter = {
885 		.inode		= inode,
886 		.pos		= pos,
887 		.len		= len,
888 		.flags		= IOMAP_WRITE | IOMAP_UNSHARE,
889 	};
890 	int ret;
891 
892 	while ((ret = iomap_iter(&iter, ops)) > 0)
893 		iter.processed = iomap_unshare_iter(&iter);
894 	return ret;
895 }
896 EXPORT_SYMBOL_GPL(iomap_file_unshare);
897 
898 static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero)
899 {
900 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
901 	loff_t pos = iter->pos;
902 	loff_t length = iomap_length(iter);
903 	loff_t written = 0;
904 
905 	/* already zeroed?  we're done. */
906 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
907 		return length;
908 
909 	do {
910 		struct folio *folio;
911 		int status;
912 		size_t offset;
913 		size_t bytes = min_t(u64, SIZE_MAX, length);
914 
915 		status = iomap_write_begin(iter, pos, bytes, &folio);
916 		if (status)
917 			return status;
918 
919 		offset = offset_in_folio(folio, pos);
920 		if (bytes > folio_size(folio) - offset)
921 			bytes = folio_size(folio) - offset;
922 
923 		folio_zero_range(folio, offset, bytes);
924 		folio_mark_accessed(folio);
925 
926 		bytes = iomap_write_end(iter, pos, bytes, bytes, folio);
927 		if (WARN_ON_ONCE(bytes == 0))
928 			return -EIO;
929 
930 		pos += bytes;
931 		length -= bytes;
932 		written += bytes;
933 		if (did_zero)
934 			*did_zero = true;
935 	} while (length > 0);
936 
937 	return written;
938 }
939 
940 int
941 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
942 		const struct iomap_ops *ops)
943 {
944 	struct iomap_iter iter = {
945 		.inode		= inode,
946 		.pos		= pos,
947 		.len		= len,
948 		.flags		= IOMAP_ZERO,
949 	};
950 	int ret;
951 
952 	while ((ret = iomap_iter(&iter, ops)) > 0)
953 		iter.processed = iomap_zero_iter(&iter, did_zero);
954 	return ret;
955 }
956 EXPORT_SYMBOL_GPL(iomap_zero_range);
957 
958 int
959 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
960 		const struct iomap_ops *ops)
961 {
962 	unsigned int blocksize = i_blocksize(inode);
963 	unsigned int off = pos & (blocksize - 1);
964 
965 	/* Block boundary? Nothing to do */
966 	if (!off)
967 		return 0;
968 	return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
969 }
970 EXPORT_SYMBOL_GPL(iomap_truncate_page);
971 
972 static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter,
973 		struct folio *folio)
974 {
975 	loff_t length = iomap_length(iter);
976 	int ret;
977 
978 	if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) {
979 		ret = __block_write_begin_int(folio, iter->pos, length, NULL,
980 					      &iter->iomap);
981 		if (ret)
982 			return ret;
983 		block_commit_write(&folio->page, 0, length);
984 	} else {
985 		WARN_ON_ONCE(!folio_test_uptodate(folio));
986 		folio_mark_dirty(folio);
987 	}
988 
989 	return length;
990 }
991 
992 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
993 {
994 	struct iomap_iter iter = {
995 		.inode		= file_inode(vmf->vma->vm_file),
996 		.flags		= IOMAP_WRITE | IOMAP_FAULT,
997 	};
998 	struct folio *folio = page_folio(vmf->page);
999 	ssize_t ret;
1000 
1001 	folio_lock(folio);
1002 	ret = folio_mkwrite_check_truncate(folio, iter.inode);
1003 	if (ret < 0)
1004 		goto out_unlock;
1005 	iter.pos = folio_pos(folio);
1006 	iter.len = ret;
1007 	while ((ret = iomap_iter(&iter, ops)) > 0)
1008 		iter.processed = iomap_folio_mkwrite_iter(&iter, folio);
1009 
1010 	if (ret < 0)
1011 		goto out_unlock;
1012 	folio_wait_stable(folio);
1013 	return VM_FAULT_LOCKED;
1014 out_unlock:
1015 	folio_unlock(folio);
1016 	return block_page_mkwrite_return(ret);
1017 }
1018 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1019 
1020 static void iomap_finish_folio_write(struct inode *inode, struct folio *folio,
1021 		size_t len, int error)
1022 {
1023 	struct iomap_page *iop = to_iomap_page(folio);
1024 
1025 	if (error) {
1026 		folio_set_error(folio);
1027 		mapping_set_error(inode->i_mapping, error);
1028 	}
1029 
1030 	WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !iop);
1031 	WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) <= 0);
1032 
1033 	if (!iop || atomic_sub_and_test(len, &iop->write_bytes_pending))
1034 		folio_end_writeback(folio);
1035 }
1036 
1037 /*
1038  * We're now finished for good with this ioend structure.  Update the page
1039  * state, release holds on bios, and finally free up memory.  Do not use the
1040  * ioend after this.
1041  */
1042 static void
1043 iomap_finish_ioend(struct iomap_ioend *ioend, int error)
1044 {
1045 	struct inode *inode = ioend->io_inode;
1046 	struct bio *bio = &ioend->io_inline_bio;
1047 	struct bio *last = ioend->io_bio, *next;
1048 	u64 start = bio->bi_iter.bi_sector;
1049 	loff_t offset = ioend->io_offset;
1050 	bool quiet = bio_flagged(bio, BIO_QUIET);
1051 
1052 	for (bio = &ioend->io_inline_bio; bio; bio = next) {
1053 		struct folio_iter fi;
1054 
1055 		/*
1056 		 * For the last bio, bi_private points to the ioend, so we
1057 		 * need to explicitly end the iteration here.
1058 		 */
1059 		if (bio == last)
1060 			next = NULL;
1061 		else
1062 			next = bio->bi_private;
1063 
1064 		/* walk all folios in bio, ending page IO on them */
1065 		bio_for_each_folio_all(fi, bio)
1066 			iomap_finish_folio_write(inode, fi.folio, fi.length,
1067 					error);
1068 		bio_put(bio);
1069 	}
1070 	/* The ioend has been freed by bio_put() */
1071 
1072 	if (unlikely(error && !quiet)) {
1073 		printk_ratelimited(KERN_ERR
1074 "%s: writeback error on inode %lu, offset %lld, sector %llu",
1075 			inode->i_sb->s_id, inode->i_ino, offset, start);
1076 	}
1077 }
1078 
1079 void
1080 iomap_finish_ioends(struct iomap_ioend *ioend, int error)
1081 {
1082 	struct list_head tmp;
1083 
1084 	list_replace_init(&ioend->io_list, &tmp);
1085 	iomap_finish_ioend(ioend, error);
1086 
1087 	while (!list_empty(&tmp)) {
1088 		ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
1089 		list_del_init(&ioend->io_list);
1090 		iomap_finish_ioend(ioend, error);
1091 	}
1092 }
1093 EXPORT_SYMBOL_GPL(iomap_finish_ioends);
1094 
1095 /*
1096  * We can merge two adjacent ioends if they have the same set of work to do.
1097  */
1098 static bool
1099 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
1100 {
1101 	if (ioend->io_bio->bi_status != next->io_bio->bi_status)
1102 		return false;
1103 	if ((ioend->io_flags & IOMAP_F_SHARED) ^
1104 	    (next->io_flags & IOMAP_F_SHARED))
1105 		return false;
1106 	if ((ioend->io_type == IOMAP_UNWRITTEN) ^
1107 	    (next->io_type == IOMAP_UNWRITTEN))
1108 		return false;
1109 	if (ioend->io_offset + ioend->io_size != next->io_offset)
1110 		return false;
1111 	return true;
1112 }
1113 
1114 void
1115 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends)
1116 {
1117 	struct iomap_ioend *next;
1118 
1119 	INIT_LIST_HEAD(&ioend->io_list);
1120 
1121 	while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
1122 			io_list))) {
1123 		if (!iomap_ioend_can_merge(ioend, next))
1124 			break;
1125 		list_move_tail(&next->io_list, &ioend->io_list);
1126 		ioend->io_size += next->io_size;
1127 	}
1128 }
1129 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
1130 
1131 static int
1132 iomap_ioend_compare(void *priv, const struct list_head *a,
1133 		const struct list_head *b)
1134 {
1135 	struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
1136 	struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
1137 
1138 	if (ia->io_offset < ib->io_offset)
1139 		return -1;
1140 	if (ia->io_offset > ib->io_offset)
1141 		return 1;
1142 	return 0;
1143 }
1144 
1145 void
1146 iomap_sort_ioends(struct list_head *ioend_list)
1147 {
1148 	list_sort(NULL, ioend_list, iomap_ioend_compare);
1149 }
1150 EXPORT_SYMBOL_GPL(iomap_sort_ioends);
1151 
1152 static void iomap_writepage_end_bio(struct bio *bio)
1153 {
1154 	struct iomap_ioend *ioend = bio->bi_private;
1155 
1156 	iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status));
1157 }
1158 
1159 /*
1160  * Submit the final bio for an ioend.
1161  *
1162  * If @error is non-zero, it means that we have a situation where some part of
1163  * the submission process has failed after we've marked pages for writeback
1164  * and unlocked them.  In this situation, we need to fail the bio instead of
1165  * submitting it.  This typically only happens on a filesystem shutdown.
1166  */
1167 static int
1168 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend,
1169 		int error)
1170 {
1171 	ioend->io_bio->bi_private = ioend;
1172 	ioend->io_bio->bi_end_io = iomap_writepage_end_bio;
1173 
1174 	if (wpc->ops->prepare_ioend)
1175 		error = wpc->ops->prepare_ioend(ioend, error);
1176 	if (error) {
1177 		/*
1178 		 * If we're failing the IO now, just mark the ioend with an
1179 		 * error and finish it.  This will run IO completion immediately
1180 		 * as there is only one reference to the ioend at this point in
1181 		 * time.
1182 		 */
1183 		ioend->io_bio->bi_status = errno_to_blk_status(error);
1184 		bio_endio(ioend->io_bio);
1185 		return error;
1186 	}
1187 
1188 	submit_bio(ioend->io_bio);
1189 	return 0;
1190 }
1191 
1192 static struct iomap_ioend *
1193 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc,
1194 		loff_t offset, sector_t sector, struct writeback_control *wbc)
1195 {
1196 	struct iomap_ioend *ioend;
1197 	struct bio *bio;
1198 
1199 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_VECS, &iomap_ioend_bioset);
1200 	bio_set_dev(bio, wpc->iomap.bdev);
1201 	bio->bi_iter.bi_sector = sector;
1202 	bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
1203 	bio->bi_write_hint = inode->i_write_hint;
1204 	wbc_init_bio(wbc, bio);
1205 
1206 	ioend = container_of(bio, struct iomap_ioend, io_inline_bio);
1207 	INIT_LIST_HEAD(&ioend->io_list);
1208 	ioend->io_type = wpc->iomap.type;
1209 	ioend->io_flags = wpc->iomap.flags;
1210 	ioend->io_inode = inode;
1211 	ioend->io_size = 0;
1212 	ioend->io_offset = offset;
1213 	ioend->io_bio = bio;
1214 	return ioend;
1215 }
1216 
1217 /*
1218  * Allocate a new bio, and chain the old bio to the new one.
1219  *
1220  * Note that we have to perform the chaining in this unintuitive order
1221  * so that the bi_private linkage is set up in the right direction for the
1222  * traversal in iomap_finish_ioend().
1223  */
1224 static struct bio *
1225 iomap_chain_bio(struct bio *prev)
1226 {
1227 	struct bio *new;
1228 
1229 	new = bio_alloc(GFP_NOFS, BIO_MAX_VECS);
1230 	bio_copy_dev(new, prev);/* also copies over blkcg information */
1231 	new->bi_iter.bi_sector = bio_end_sector(prev);
1232 	new->bi_opf = prev->bi_opf;
1233 	new->bi_write_hint = prev->bi_write_hint;
1234 
1235 	bio_chain(prev, new);
1236 	bio_get(prev);		/* for iomap_finish_ioend */
1237 	submit_bio(prev);
1238 	return new;
1239 }
1240 
1241 static bool
1242 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset,
1243 		sector_t sector)
1244 {
1245 	if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
1246 	    (wpc->ioend->io_flags & IOMAP_F_SHARED))
1247 		return false;
1248 	if (wpc->iomap.type != wpc->ioend->io_type)
1249 		return false;
1250 	if (offset != wpc->ioend->io_offset + wpc->ioend->io_size)
1251 		return false;
1252 	if (sector != bio_end_sector(wpc->ioend->io_bio))
1253 		return false;
1254 	return true;
1255 }
1256 
1257 /*
1258  * Test to see if we have an existing ioend structure that we could append to
1259  * first; otherwise finish off the current ioend and start another.
1260  */
1261 static void
1262 iomap_add_to_ioend(struct inode *inode, loff_t pos, struct folio *folio,
1263 		struct iomap_page *iop, struct iomap_writepage_ctx *wpc,
1264 		struct writeback_control *wbc, struct list_head *iolist)
1265 {
1266 	sector_t sector = iomap_sector(&wpc->iomap, pos);
1267 	unsigned len = i_blocksize(inode);
1268 	size_t poff = offset_in_folio(folio, pos);
1269 
1270 	if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos, sector)) {
1271 		if (wpc->ioend)
1272 			list_add(&wpc->ioend->io_list, iolist);
1273 		wpc->ioend = iomap_alloc_ioend(inode, wpc, pos, sector, wbc);
1274 	}
1275 
1276 	if (!bio_add_folio(wpc->ioend->io_bio, folio, len, poff)) {
1277 		wpc->ioend->io_bio = iomap_chain_bio(wpc->ioend->io_bio);
1278 		bio_add_folio(wpc->ioend->io_bio, folio, len, poff);
1279 	}
1280 
1281 	if (iop)
1282 		atomic_add(len, &iop->write_bytes_pending);
1283 	wpc->ioend->io_size += len;
1284 	wbc_account_cgroup_owner(wbc, &folio->page, len);
1285 }
1286 
1287 /*
1288  * We implement an immediate ioend submission policy here to avoid needing to
1289  * chain multiple ioends and hence nest mempool allocations which can violate
1290  * the forward progress guarantees we need to provide. The current ioend we're
1291  * adding blocks to is cached in the writepage context, and if the new block
1292  * doesn't append to the cached ioend, it will create a new ioend and cache that
1293  * instead.
1294  *
1295  * If a new ioend is created and cached, the old ioend is returned and queued
1296  * locally for submission once the entire page is processed or an error has been
1297  * detected.  While ioends are submitted immediately after they are completed,
1298  * batching optimisations are provided by higher level block plugging.
1299  *
1300  * At the end of a writeback pass, there will be a cached ioend remaining on the
1301  * writepage context that the caller will need to submit.
1302  */
1303 static int
1304 iomap_writepage_map(struct iomap_writepage_ctx *wpc,
1305 		struct writeback_control *wbc, struct inode *inode,
1306 		struct folio *folio, u64 end_pos)
1307 {
1308 	struct iomap_page *iop = iomap_page_create(inode, folio);
1309 	struct iomap_ioend *ioend, *next;
1310 	unsigned len = i_blocksize(inode);
1311 	unsigned nblocks = i_blocks_per_folio(inode, folio);
1312 	u64 pos = folio_pos(folio);
1313 	int error = 0, count = 0, i;
1314 	LIST_HEAD(submit_list);
1315 
1316 	WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) != 0);
1317 
1318 	/*
1319 	 * Walk through the folio to find areas to write back. If we
1320 	 * run off the end of the current map or find the current map
1321 	 * invalid, grab a new one.
1322 	 */
1323 	for (i = 0; i < nblocks && pos < end_pos; i++, pos += len) {
1324 		if (iop && !test_bit(i, iop->uptodate))
1325 			continue;
1326 
1327 		error = wpc->ops->map_blocks(wpc, inode, pos);
1328 		if (error)
1329 			break;
1330 		if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE))
1331 			continue;
1332 		if (wpc->iomap.type == IOMAP_HOLE)
1333 			continue;
1334 		iomap_add_to_ioend(inode, pos, folio, iop, wpc, wbc,
1335 				 &submit_list);
1336 		count++;
1337 	}
1338 
1339 	WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list));
1340 	WARN_ON_ONCE(!folio_test_locked(folio));
1341 	WARN_ON_ONCE(folio_test_writeback(folio));
1342 	WARN_ON_ONCE(folio_test_dirty(folio));
1343 
1344 	/*
1345 	 * We cannot cancel the ioend directly here on error.  We may have
1346 	 * already set other pages under writeback and hence we have to run I/O
1347 	 * completion to mark the error state of the pages under writeback
1348 	 * appropriately.
1349 	 */
1350 	if (unlikely(error)) {
1351 		/*
1352 		 * Let the filesystem know what portion of the current page
1353 		 * failed to map. If the page hasn't been added to ioend, it
1354 		 * won't be affected by I/O completion and we must unlock it
1355 		 * now.
1356 		 */
1357 		if (wpc->ops->discard_folio)
1358 			wpc->ops->discard_folio(folio, pos);
1359 		if (!count) {
1360 			folio_clear_uptodate(folio);
1361 			folio_unlock(folio);
1362 			goto done;
1363 		}
1364 	}
1365 
1366 	folio_start_writeback(folio);
1367 	folio_unlock(folio);
1368 
1369 	/*
1370 	 * Preserve the original error if there was one; catch
1371 	 * submission errors here and propagate into subsequent ioend
1372 	 * submissions.
1373 	 */
1374 	list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1375 		int error2;
1376 
1377 		list_del_init(&ioend->io_list);
1378 		error2 = iomap_submit_ioend(wpc, ioend, error);
1379 		if (error2 && !error)
1380 			error = error2;
1381 	}
1382 
1383 	/*
1384 	 * We can end up here with no error and nothing to write only if we race
1385 	 * with a partial page truncate on a sub-page block sized filesystem.
1386 	 */
1387 	if (!count)
1388 		folio_end_writeback(folio);
1389 done:
1390 	mapping_set_error(folio->mapping, error);
1391 	return error;
1392 }
1393 
1394 /*
1395  * Write out a dirty page.
1396  *
1397  * For delalloc space on the page, we need to allocate space and flush it.
1398  * For unwritten space on the page, we need to start the conversion to
1399  * regular allocated space.
1400  */
1401 static int
1402 iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data)
1403 {
1404 	struct folio *folio = page_folio(page);
1405 	struct iomap_writepage_ctx *wpc = data;
1406 	struct inode *inode = folio->mapping->host;
1407 	u64 end_pos, isize;
1408 
1409 	trace_iomap_writepage(inode, folio_pos(folio), folio_size(folio));
1410 
1411 	/*
1412 	 * Refuse to write the folio out if we're called from reclaim context.
1413 	 *
1414 	 * This avoids stack overflows when called from deeply used stacks in
1415 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
1416 	 * allow reclaim from kswapd as the stack usage there is relatively low.
1417 	 *
1418 	 * This should never happen except in the case of a VM regression so
1419 	 * warn about it.
1420 	 */
1421 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1422 			PF_MEMALLOC))
1423 		goto redirty;
1424 
1425 	/*
1426 	 * Is this folio beyond the end of the file?
1427 	 *
1428 	 * The folio index is less than the end_index, adjust the end_pos
1429 	 * to the highest offset that this folio should represent.
1430 	 * -----------------------------------------------------
1431 	 * |			file mapping	       | <EOF> |
1432 	 * -----------------------------------------------------
1433 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
1434 	 * ^--------------------------------^----------|--------
1435 	 * |     desired writeback range    |      see else    |
1436 	 * ---------------------------------^------------------|
1437 	 */
1438 	isize = i_size_read(inode);
1439 	end_pos = folio_pos(folio) + folio_size(folio);
1440 	if (end_pos > isize) {
1441 		/*
1442 		 * Check whether the page to write out is beyond or straddles
1443 		 * i_size or not.
1444 		 * -------------------------------------------------------
1445 		 * |		file mapping		        | <EOF>  |
1446 		 * -------------------------------------------------------
1447 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1448 		 * ^--------------------------------^-----------|---------
1449 		 * |				    |      Straddles     |
1450 		 * ---------------------------------^-----------|--------|
1451 		 */
1452 		size_t poff = offset_in_folio(folio, isize);
1453 		pgoff_t end_index = isize >> PAGE_SHIFT;
1454 
1455 		/*
1456 		 * Skip the page if it's fully outside i_size, e.g. due to a
1457 		 * truncate operation that's in progress. We must redirty the
1458 		 * page so that reclaim stops reclaiming it. Otherwise
1459 		 * iomap_vm_releasepage() is called on it and gets confused.
1460 		 *
1461 		 * Note that the end_index is unsigned long.  If the given
1462 		 * offset is greater than 16TB on a 32-bit system then if we
1463 		 * checked if the page is fully outside i_size with
1464 		 * "if (page->index >= end_index + 1)", "end_index + 1" would
1465 		 * overflow and evaluate to 0.  Hence this page would be
1466 		 * redirtied and written out repeatedly, which would result in
1467 		 * an infinite loop; the user program performing this operation
1468 		 * would hang.  Instead, we can detect this situation by
1469 		 * checking if the page is totally beyond i_size or if its
1470 		 * offset is just equal to the EOF.
1471 		 */
1472 		if (folio->index > end_index ||
1473 		    (folio->index == end_index && poff == 0))
1474 			goto redirty;
1475 
1476 		/*
1477 		 * The page straddles i_size.  It must be zeroed out on each
1478 		 * and every writepage invocation because it may be mmapped.
1479 		 * "A file is mapped in multiples of the page size.  For a file
1480 		 * that is not a multiple of the page size, the remaining
1481 		 * memory is zeroed when mapped, and writes to that region are
1482 		 * not written out to the file."
1483 		 */
1484 		folio_zero_segment(folio, poff, folio_size(folio));
1485 		end_pos = isize;
1486 	}
1487 
1488 	return iomap_writepage_map(wpc, wbc, inode, folio, end_pos);
1489 
1490 redirty:
1491 	folio_redirty_for_writepage(wbc, folio);
1492 	folio_unlock(folio);
1493 	return 0;
1494 }
1495 
1496 int
1497 iomap_writepage(struct page *page, struct writeback_control *wbc,
1498 		struct iomap_writepage_ctx *wpc,
1499 		const struct iomap_writeback_ops *ops)
1500 {
1501 	int ret;
1502 
1503 	wpc->ops = ops;
1504 	ret = iomap_do_writepage(page, wbc, wpc);
1505 	if (!wpc->ioend)
1506 		return ret;
1507 	return iomap_submit_ioend(wpc, wpc->ioend, ret);
1508 }
1509 EXPORT_SYMBOL_GPL(iomap_writepage);
1510 
1511 int
1512 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
1513 		struct iomap_writepage_ctx *wpc,
1514 		const struct iomap_writeback_ops *ops)
1515 {
1516 	int			ret;
1517 
1518 	wpc->ops = ops;
1519 	ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc);
1520 	if (!wpc->ioend)
1521 		return ret;
1522 	return iomap_submit_ioend(wpc, wpc->ioend, ret);
1523 }
1524 EXPORT_SYMBOL_GPL(iomap_writepages);
1525 
1526 static int __init iomap_init(void)
1527 {
1528 	return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
1529 			   offsetof(struct iomap_ioend, io_inline_bio),
1530 			   BIOSET_NEED_BVECS);
1531 }
1532 fs_initcall(iomap_init);
1533