1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Red Hat, Inc. 4 * Copyright (C) 2016-2019 Christoph Hellwig. 5 */ 6 #include <linux/module.h> 7 #include <linux/compiler.h> 8 #include <linux/fs.h> 9 #include <linux/iomap.h> 10 #include <linux/pagemap.h> 11 #include <linux/uio.h> 12 #include <linux/buffer_head.h> 13 #include <linux/dax.h> 14 #include <linux/writeback.h> 15 #include <linux/list_sort.h> 16 #include <linux/swap.h> 17 #include <linux/bio.h> 18 #include <linux/sched/signal.h> 19 #include <linux/migrate.h> 20 #include "trace.h" 21 22 #include "../internal.h" 23 24 #define IOEND_BATCH_SIZE 4096 25 26 /* 27 * Structure allocated for each folio when block size < folio size 28 * to track sub-folio uptodate status and I/O completions. 29 */ 30 struct iomap_page { 31 atomic_t read_bytes_pending; 32 atomic_t write_bytes_pending; 33 spinlock_t uptodate_lock; 34 unsigned long uptodate[]; 35 }; 36 37 static inline struct iomap_page *to_iomap_page(struct folio *folio) 38 { 39 if (folio_test_private(folio)) 40 return folio_get_private(folio); 41 return NULL; 42 } 43 44 static struct bio_set iomap_ioend_bioset; 45 46 static struct iomap_page * 47 iomap_page_create(struct inode *inode, struct folio *folio, unsigned int flags) 48 { 49 struct iomap_page *iop = to_iomap_page(folio); 50 unsigned int nr_blocks = i_blocks_per_folio(inode, folio); 51 gfp_t gfp; 52 53 if (iop || nr_blocks <= 1) 54 return iop; 55 56 if (flags & IOMAP_NOWAIT) 57 gfp = GFP_NOWAIT; 58 else 59 gfp = GFP_NOFS | __GFP_NOFAIL; 60 61 iop = kzalloc(struct_size(iop, uptodate, BITS_TO_LONGS(nr_blocks)), 62 gfp); 63 if (iop) { 64 spin_lock_init(&iop->uptodate_lock); 65 if (folio_test_uptodate(folio)) 66 bitmap_fill(iop->uptodate, nr_blocks); 67 folio_attach_private(folio, iop); 68 } 69 return iop; 70 } 71 72 static void iomap_page_release(struct folio *folio) 73 { 74 struct iomap_page *iop = folio_detach_private(folio); 75 struct inode *inode = folio->mapping->host; 76 unsigned int nr_blocks = i_blocks_per_folio(inode, folio); 77 78 if (!iop) 79 return; 80 WARN_ON_ONCE(atomic_read(&iop->read_bytes_pending)); 81 WARN_ON_ONCE(atomic_read(&iop->write_bytes_pending)); 82 WARN_ON_ONCE(bitmap_full(iop->uptodate, nr_blocks) != 83 folio_test_uptodate(folio)); 84 kfree(iop); 85 } 86 87 /* 88 * Calculate the range inside the folio that we actually need to read. 89 */ 90 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio, 91 loff_t *pos, loff_t length, size_t *offp, size_t *lenp) 92 { 93 struct iomap_page *iop = to_iomap_page(folio); 94 loff_t orig_pos = *pos; 95 loff_t isize = i_size_read(inode); 96 unsigned block_bits = inode->i_blkbits; 97 unsigned block_size = (1 << block_bits); 98 size_t poff = offset_in_folio(folio, *pos); 99 size_t plen = min_t(loff_t, folio_size(folio) - poff, length); 100 unsigned first = poff >> block_bits; 101 unsigned last = (poff + plen - 1) >> block_bits; 102 103 /* 104 * If the block size is smaller than the page size, we need to check the 105 * per-block uptodate status and adjust the offset and length if needed 106 * to avoid reading in already uptodate ranges. 107 */ 108 if (iop) { 109 unsigned int i; 110 111 /* move forward for each leading block marked uptodate */ 112 for (i = first; i <= last; i++) { 113 if (!test_bit(i, iop->uptodate)) 114 break; 115 *pos += block_size; 116 poff += block_size; 117 plen -= block_size; 118 first++; 119 } 120 121 /* truncate len if we find any trailing uptodate block(s) */ 122 for ( ; i <= last; i++) { 123 if (test_bit(i, iop->uptodate)) { 124 plen -= (last - i + 1) * block_size; 125 last = i - 1; 126 break; 127 } 128 } 129 } 130 131 /* 132 * If the extent spans the block that contains the i_size, we need to 133 * handle both halves separately so that we properly zero data in the 134 * page cache for blocks that are entirely outside of i_size. 135 */ 136 if (orig_pos <= isize && orig_pos + length > isize) { 137 unsigned end = offset_in_folio(folio, isize - 1) >> block_bits; 138 139 if (first <= end && last > end) 140 plen -= (last - end) * block_size; 141 } 142 143 *offp = poff; 144 *lenp = plen; 145 } 146 147 static void iomap_iop_set_range_uptodate(struct folio *folio, 148 struct iomap_page *iop, size_t off, size_t len) 149 { 150 struct inode *inode = folio->mapping->host; 151 unsigned first = off >> inode->i_blkbits; 152 unsigned last = (off + len - 1) >> inode->i_blkbits; 153 unsigned long flags; 154 155 spin_lock_irqsave(&iop->uptodate_lock, flags); 156 bitmap_set(iop->uptodate, first, last - first + 1); 157 if (bitmap_full(iop->uptodate, i_blocks_per_folio(inode, folio))) 158 folio_mark_uptodate(folio); 159 spin_unlock_irqrestore(&iop->uptodate_lock, flags); 160 } 161 162 static void iomap_set_range_uptodate(struct folio *folio, 163 struct iomap_page *iop, size_t off, size_t len) 164 { 165 if (iop) 166 iomap_iop_set_range_uptodate(folio, iop, off, len); 167 else 168 folio_mark_uptodate(folio); 169 } 170 171 static void iomap_finish_folio_read(struct folio *folio, size_t offset, 172 size_t len, int error) 173 { 174 struct iomap_page *iop = to_iomap_page(folio); 175 176 if (unlikely(error)) { 177 folio_clear_uptodate(folio); 178 folio_set_error(folio); 179 } else { 180 iomap_set_range_uptodate(folio, iop, offset, len); 181 } 182 183 if (!iop || atomic_sub_and_test(len, &iop->read_bytes_pending)) 184 folio_unlock(folio); 185 } 186 187 static void iomap_read_end_io(struct bio *bio) 188 { 189 int error = blk_status_to_errno(bio->bi_status); 190 struct folio_iter fi; 191 192 bio_for_each_folio_all(fi, bio) 193 iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error); 194 bio_put(bio); 195 } 196 197 struct iomap_readpage_ctx { 198 struct folio *cur_folio; 199 bool cur_folio_in_bio; 200 struct bio *bio; 201 struct readahead_control *rac; 202 }; 203 204 /** 205 * iomap_read_inline_data - copy inline data into the page cache 206 * @iter: iteration structure 207 * @folio: folio to copy to 208 * 209 * Copy the inline data in @iter into @folio and zero out the rest of the folio. 210 * Only a single IOMAP_INLINE extent is allowed at the end of each file. 211 * Returns zero for success to complete the read, or the usual negative errno. 212 */ 213 static int iomap_read_inline_data(const struct iomap_iter *iter, 214 struct folio *folio) 215 { 216 struct iomap_page *iop; 217 const struct iomap *iomap = iomap_iter_srcmap(iter); 218 size_t size = i_size_read(iter->inode) - iomap->offset; 219 size_t poff = offset_in_page(iomap->offset); 220 size_t offset = offset_in_folio(folio, iomap->offset); 221 void *addr; 222 223 if (folio_test_uptodate(folio)) 224 return 0; 225 226 if (WARN_ON_ONCE(size > PAGE_SIZE - poff)) 227 return -EIO; 228 if (WARN_ON_ONCE(size > PAGE_SIZE - 229 offset_in_page(iomap->inline_data))) 230 return -EIO; 231 if (WARN_ON_ONCE(size > iomap->length)) 232 return -EIO; 233 if (offset > 0) 234 iop = iomap_page_create(iter->inode, folio, iter->flags); 235 else 236 iop = to_iomap_page(folio); 237 238 addr = kmap_local_folio(folio, offset); 239 memcpy(addr, iomap->inline_data, size); 240 memset(addr + size, 0, PAGE_SIZE - poff - size); 241 kunmap_local(addr); 242 iomap_set_range_uptodate(folio, iop, offset, PAGE_SIZE - poff); 243 return 0; 244 } 245 246 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter, 247 loff_t pos) 248 { 249 const struct iomap *srcmap = iomap_iter_srcmap(iter); 250 251 return srcmap->type != IOMAP_MAPPED || 252 (srcmap->flags & IOMAP_F_NEW) || 253 pos >= i_size_read(iter->inode); 254 } 255 256 static loff_t iomap_readpage_iter(const struct iomap_iter *iter, 257 struct iomap_readpage_ctx *ctx, loff_t offset) 258 { 259 const struct iomap *iomap = &iter->iomap; 260 loff_t pos = iter->pos + offset; 261 loff_t length = iomap_length(iter) - offset; 262 struct folio *folio = ctx->cur_folio; 263 struct iomap_page *iop; 264 loff_t orig_pos = pos; 265 size_t poff, plen; 266 sector_t sector; 267 268 if (iomap->type == IOMAP_INLINE) 269 return iomap_read_inline_data(iter, folio); 270 271 /* zero post-eof blocks as the page may be mapped */ 272 iop = iomap_page_create(iter->inode, folio, iter->flags); 273 iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen); 274 if (plen == 0) 275 goto done; 276 277 if (iomap_block_needs_zeroing(iter, pos)) { 278 folio_zero_range(folio, poff, plen); 279 iomap_set_range_uptodate(folio, iop, poff, plen); 280 goto done; 281 } 282 283 ctx->cur_folio_in_bio = true; 284 if (iop) 285 atomic_add(plen, &iop->read_bytes_pending); 286 287 sector = iomap_sector(iomap, pos); 288 if (!ctx->bio || 289 bio_end_sector(ctx->bio) != sector || 290 !bio_add_folio(ctx->bio, folio, plen, poff)) { 291 gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL); 292 gfp_t orig_gfp = gfp; 293 unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE); 294 295 if (ctx->bio) 296 submit_bio(ctx->bio); 297 298 if (ctx->rac) /* same as readahead_gfp_mask */ 299 gfp |= __GFP_NORETRY | __GFP_NOWARN; 300 ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs), 301 REQ_OP_READ, gfp); 302 /* 303 * If the bio_alloc fails, try it again for a single page to 304 * avoid having to deal with partial page reads. This emulates 305 * what do_mpage_read_folio does. 306 */ 307 if (!ctx->bio) { 308 ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ, 309 orig_gfp); 310 } 311 if (ctx->rac) 312 ctx->bio->bi_opf |= REQ_RAHEAD; 313 ctx->bio->bi_iter.bi_sector = sector; 314 ctx->bio->bi_end_io = iomap_read_end_io; 315 bio_add_folio(ctx->bio, folio, plen, poff); 316 } 317 318 done: 319 /* 320 * Move the caller beyond our range so that it keeps making progress. 321 * For that, we have to include any leading non-uptodate ranges, but 322 * we can skip trailing ones as they will be handled in the next 323 * iteration. 324 */ 325 return pos - orig_pos + plen; 326 } 327 328 int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops) 329 { 330 struct iomap_iter iter = { 331 .inode = folio->mapping->host, 332 .pos = folio_pos(folio), 333 .len = folio_size(folio), 334 }; 335 struct iomap_readpage_ctx ctx = { 336 .cur_folio = folio, 337 }; 338 int ret; 339 340 trace_iomap_readpage(iter.inode, 1); 341 342 while ((ret = iomap_iter(&iter, ops)) > 0) 343 iter.processed = iomap_readpage_iter(&iter, &ctx, 0); 344 345 if (ret < 0) 346 folio_set_error(folio); 347 348 if (ctx.bio) { 349 submit_bio(ctx.bio); 350 WARN_ON_ONCE(!ctx.cur_folio_in_bio); 351 } else { 352 WARN_ON_ONCE(ctx.cur_folio_in_bio); 353 folio_unlock(folio); 354 } 355 356 /* 357 * Just like mpage_readahead and block_read_full_folio, we always 358 * return 0 and just set the folio error flag on errors. This 359 * should be cleaned up throughout the stack eventually. 360 */ 361 return 0; 362 } 363 EXPORT_SYMBOL_GPL(iomap_read_folio); 364 365 static loff_t iomap_readahead_iter(const struct iomap_iter *iter, 366 struct iomap_readpage_ctx *ctx) 367 { 368 loff_t length = iomap_length(iter); 369 loff_t done, ret; 370 371 for (done = 0; done < length; done += ret) { 372 if (ctx->cur_folio && 373 offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) { 374 if (!ctx->cur_folio_in_bio) 375 folio_unlock(ctx->cur_folio); 376 ctx->cur_folio = NULL; 377 } 378 if (!ctx->cur_folio) { 379 ctx->cur_folio = readahead_folio(ctx->rac); 380 ctx->cur_folio_in_bio = false; 381 } 382 ret = iomap_readpage_iter(iter, ctx, done); 383 if (ret <= 0) 384 return ret; 385 } 386 387 return done; 388 } 389 390 /** 391 * iomap_readahead - Attempt to read pages from a file. 392 * @rac: Describes the pages to be read. 393 * @ops: The operations vector for the filesystem. 394 * 395 * This function is for filesystems to call to implement their readahead 396 * address_space operation. 397 * 398 * Context: The @ops callbacks may submit I/O (eg to read the addresses of 399 * blocks from disc), and may wait for it. The caller may be trying to 400 * access a different page, and so sleeping excessively should be avoided. 401 * It may allocate memory, but should avoid costly allocations. This 402 * function is called with memalloc_nofs set, so allocations will not cause 403 * the filesystem to be reentered. 404 */ 405 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops) 406 { 407 struct iomap_iter iter = { 408 .inode = rac->mapping->host, 409 .pos = readahead_pos(rac), 410 .len = readahead_length(rac), 411 }; 412 struct iomap_readpage_ctx ctx = { 413 .rac = rac, 414 }; 415 416 trace_iomap_readahead(rac->mapping->host, readahead_count(rac)); 417 418 while (iomap_iter(&iter, ops) > 0) 419 iter.processed = iomap_readahead_iter(&iter, &ctx); 420 421 if (ctx.bio) 422 submit_bio(ctx.bio); 423 if (ctx.cur_folio) { 424 if (!ctx.cur_folio_in_bio) 425 folio_unlock(ctx.cur_folio); 426 } 427 } 428 EXPORT_SYMBOL_GPL(iomap_readahead); 429 430 /* 431 * iomap_is_partially_uptodate checks whether blocks within a folio are 432 * uptodate or not. 433 * 434 * Returns true if all blocks which correspond to the specified part 435 * of the folio are uptodate. 436 */ 437 bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count) 438 { 439 struct iomap_page *iop = to_iomap_page(folio); 440 struct inode *inode = folio->mapping->host; 441 unsigned first, last, i; 442 443 if (!iop) 444 return false; 445 446 /* Caller's range may extend past the end of this folio */ 447 count = min(folio_size(folio) - from, count); 448 449 /* First and last blocks in range within folio */ 450 first = from >> inode->i_blkbits; 451 last = (from + count - 1) >> inode->i_blkbits; 452 453 for (i = first; i <= last; i++) 454 if (!test_bit(i, iop->uptodate)) 455 return false; 456 return true; 457 } 458 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate); 459 460 /** 461 * iomap_get_folio - get a folio reference for writing 462 * @iter: iteration structure 463 * @pos: start offset of write 464 * 465 * Returns a locked reference to the folio at @pos, or an error pointer if the 466 * folio could not be obtained. 467 */ 468 struct folio *iomap_get_folio(struct iomap_iter *iter, loff_t pos) 469 { 470 unsigned fgp = FGP_WRITEBEGIN | FGP_NOFS; 471 472 if (iter->flags & IOMAP_NOWAIT) 473 fgp |= FGP_NOWAIT; 474 475 return __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT, 476 fgp, mapping_gfp_mask(iter->inode->i_mapping)); 477 } 478 EXPORT_SYMBOL_GPL(iomap_get_folio); 479 480 bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags) 481 { 482 trace_iomap_release_folio(folio->mapping->host, folio_pos(folio), 483 folio_size(folio)); 484 485 /* 486 * mm accommodates an old ext3 case where clean folios might 487 * not have had the dirty bit cleared. Thus, it can send actual 488 * dirty folios to ->release_folio() via shrink_active_list(); 489 * skip those here. 490 */ 491 if (folio_test_dirty(folio) || folio_test_writeback(folio)) 492 return false; 493 iomap_page_release(folio); 494 return true; 495 } 496 EXPORT_SYMBOL_GPL(iomap_release_folio); 497 498 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len) 499 { 500 trace_iomap_invalidate_folio(folio->mapping->host, 501 folio_pos(folio) + offset, len); 502 503 /* 504 * If we're invalidating the entire folio, clear the dirty state 505 * from it and release it to avoid unnecessary buildup of the LRU. 506 */ 507 if (offset == 0 && len == folio_size(folio)) { 508 WARN_ON_ONCE(folio_test_writeback(folio)); 509 folio_cancel_dirty(folio); 510 iomap_page_release(folio); 511 } else if (folio_test_large(folio)) { 512 /* Must release the iop so the page can be split */ 513 WARN_ON_ONCE(!folio_test_uptodate(folio) && 514 folio_test_dirty(folio)); 515 iomap_page_release(folio); 516 } 517 } 518 EXPORT_SYMBOL_GPL(iomap_invalidate_folio); 519 520 static void 521 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len) 522 { 523 loff_t i_size = i_size_read(inode); 524 525 /* 526 * Only truncate newly allocated pages beyoned EOF, even if the 527 * write started inside the existing inode size. 528 */ 529 if (pos + len > i_size) 530 truncate_pagecache_range(inode, max(pos, i_size), 531 pos + len - 1); 532 } 533 534 static int iomap_read_folio_sync(loff_t block_start, struct folio *folio, 535 size_t poff, size_t plen, const struct iomap *iomap) 536 { 537 struct bio_vec bvec; 538 struct bio bio; 539 540 bio_init(&bio, iomap->bdev, &bvec, 1, REQ_OP_READ); 541 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start); 542 bio_add_folio(&bio, folio, plen, poff); 543 return submit_bio_wait(&bio); 544 } 545 546 static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos, 547 size_t len, struct folio *folio) 548 { 549 const struct iomap *srcmap = iomap_iter_srcmap(iter); 550 struct iomap_page *iop; 551 loff_t block_size = i_blocksize(iter->inode); 552 loff_t block_start = round_down(pos, block_size); 553 loff_t block_end = round_up(pos + len, block_size); 554 unsigned int nr_blocks = i_blocks_per_folio(iter->inode, folio); 555 size_t from = offset_in_folio(folio, pos), to = from + len; 556 size_t poff, plen; 557 558 if (folio_test_uptodate(folio)) 559 return 0; 560 folio_clear_error(folio); 561 562 iop = iomap_page_create(iter->inode, folio, iter->flags); 563 if ((iter->flags & IOMAP_NOWAIT) && !iop && nr_blocks > 1) 564 return -EAGAIN; 565 566 do { 567 iomap_adjust_read_range(iter->inode, folio, &block_start, 568 block_end - block_start, &poff, &plen); 569 if (plen == 0) 570 break; 571 572 if (!(iter->flags & IOMAP_UNSHARE) && 573 (from <= poff || from >= poff + plen) && 574 (to <= poff || to >= poff + plen)) 575 continue; 576 577 if (iomap_block_needs_zeroing(iter, block_start)) { 578 if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE)) 579 return -EIO; 580 folio_zero_segments(folio, poff, from, to, poff + plen); 581 } else { 582 int status; 583 584 if (iter->flags & IOMAP_NOWAIT) 585 return -EAGAIN; 586 587 status = iomap_read_folio_sync(block_start, folio, 588 poff, plen, srcmap); 589 if (status) 590 return status; 591 } 592 iomap_set_range_uptodate(folio, iop, poff, plen); 593 } while ((block_start += plen) < block_end); 594 595 return 0; 596 } 597 598 static struct folio *__iomap_get_folio(struct iomap_iter *iter, loff_t pos, 599 size_t len) 600 { 601 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops; 602 603 if (folio_ops && folio_ops->get_folio) 604 return folio_ops->get_folio(iter, pos, len); 605 else 606 return iomap_get_folio(iter, pos); 607 } 608 609 static void __iomap_put_folio(struct iomap_iter *iter, loff_t pos, size_t ret, 610 struct folio *folio) 611 { 612 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops; 613 614 if (folio_ops && folio_ops->put_folio) { 615 folio_ops->put_folio(iter->inode, pos, ret, folio); 616 } else { 617 folio_unlock(folio); 618 folio_put(folio); 619 } 620 } 621 622 static int iomap_write_begin_inline(const struct iomap_iter *iter, 623 struct folio *folio) 624 { 625 /* needs more work for the tailpacking case; disable for now */ 626 if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0)) 627 return -EIO; 628 return iomap_read_inline_data(iter, folio); 629 } 630 631 static int iomap_write_begin(struct iomap_iter *iter, loff_t pos, 632 size_t len, struct folio **foliop) 633 { 634 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops; 635 const struct iomap *srcmap = iomap_iter_srcmap(iter); 636 struct folio *folio; 637 int status = 0; 638 639 BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length); 640 if (srcmap != &iter->iomap) 641 BUG_ON(pos + len > srcmap->offset + srcmap->length); 642 643 if (fatal_signal_pending(current)) 644 return -EINTR; 645 646 if (!mapping_large_folio_support(iter->inode->i_mapping)) 647 len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos)); 648 649 folio = __iomap_get_folio(iter, pos, len); 650 if (IS_ERR(folio)) 651 return PTR_ERR(folio); 652 653 /* 654 * Now we have a locked folio, before we do anything with it we need to 655 * check that the iomap we have cached is not stale. The inode extent 656 * mapping can change due to concurrent IO in flight (e.g. 657 * IOMAP_UNWRITTEN state can change and memory reclaim could have 658 * reclaimed a previously partially written page at this index after IO 659 * completion before this write reaches this file offset) and hence we 660 * could do the wrong thing here (zero a page range incorrectly or fail 661 * to zero) and corrupt data. 662 */ 663 if (folio_ops && folio_ops->iomap_valid) { 664 bool iomap_valid = folio_ops->iomap_valid(iter->inode, 665 &iter->iomap); 666 if (!iomap_valid) { 667 iter->iomap.flags |= IOMAP_F_STALE; 668 status = 0; 669 goto out_unlock; 670 } 671 } 672 673 if (pos + len > folio_pos(folio) + folio_size(folio)) 674 len = folio_pos(folio) + folio_size(folio) - pos; 675 676 if (srcmap->type == IOMAP_INLINE) 677 status = iomap_write_begin_inline(iter, folio); 678 else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) 679 status = __block_write_begin_int(folio, pos, len, NULL, srcmap); 680 else 681 status = __iomap_write_begin(iter, pos, len, folio); 682 683 if (unlikely(status)) 684 goto out_unlock; 685 686 *foliop = folio; 687 return 0; 688 689 out_unlock: 690 __iomap_put_folio(iter, pos, 0, folio); 691 iomap_write_failed(iter->inode, pos, len); 692 693 return status; 694 } 695 696 static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len, 697 size_t copied, struct folio *folio) 698 { 699 struct iomap_page *iop = to_iomap_page(folio); 700 flush_dcache_folio(folio); 701 702 /* 703 * The blocks that were entirely written will now be uptodate, so we 704 * don't have to worry about a read_folio reading them and overwriting a 705 * partial write. However, if we've encountered a short write and only 706 * partially written into a block, it will not be marked uptodate, so a 707 * read_folio might come in and destroy our partial write. 708 * 709 * Do the simplest thing and just treat any short write to a 710 * non-uptodate page as a zero-length write, and force the caller to 711 * redo the whole thing. 712 */ 713 if (unlikely(copied < len && !folio_test_uptodate(folio))) 714 return 0; 715 iomap_set_range_uptodate(folio, iop, offset_in_folio(folio, pos), len); 716 filemap_dirty_folio(inode->i_mapping, folio); 717 return copied; 718 } 719 720 static size_t iomap_write_end_inline(const struct iomap_iter *iter, 721 struct folio *folio, loff_t pos, size_t copied) 722 { 723 const struct iomap *iomap = &iter->iomap; 724 void *addr; 725 726 WARN_ON_ONCE(!folio_test_uptodate(folio)); 727 BUG_ON(!iomap_inline_data_valid(iomap)); 728 729 flush_dcache_folio(folio); 730 addr = kmap_local_folio(folio, pos); 731 memcpy(iomap_inline_data(iomap, pos), addr, copied); 732 kunmap_local(addr); 733 734 mark_inode_dirty(iter->inode); 735 return copied; 736 } 737 738 /* Returns the number of bytes copied. May be 0. Cannot be an errno. */ 739 static size_t iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len, 740 size_t copied, struct folio *folio) 741 { 742 const struct iomap *srcmap = iomap_iter_srcmap(iter); 743 loff_t old_size = iter->inode->i_size; 744 size_t ret; 745 746 if (srcmap->type == IOMAP_INLINE) { 747 ret = iomap_write_end_inline(iter, folio, pos, copied); 748 } else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) { 749 ret = block_write_end(NULL, iter->inode->i_mapping, pos, len, 750 copied, &folio->page, NULL); 751 } else { 752 ret = __iomap_write_end(iter->inode, pos, len, copied, folio); 753 } 754 755 /* 756 * Update the in-memory inode size after copying the data into the page 757 * cache. It's up to the file system to write the updated size to disk, 758 * preferably after I/O completion so that no stale data is exposed. 759 */ 760 if (pos + ret > old_size) { 761 i_size_write(iter->inode, pos + ret); 762 iter->iomap.flags |= IOMAP_F_SIZE_CHANGED; 763 } 764 __iomap_put_folio(iter, pos, ret, folio); 765 766 if (old_size < pos) 767 pagecache_isize_extended(iter->inode, old_size, pos); 768 if (ret < len) 769 iomap_write_failed(iter->inode, pos + ret, len - ret); 770 return ret; 771 } 772 773 static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i) 774 { 775 loff_t length = iomap_length(iter); 776 loff_t pos = iter->pos; 777 ssize_t written = 0; 778 long status = 0; 779 struct address_space *mapping = iter->inode->i_mapping; 780 unsigned int bdp_flags = (iter->flags & IOMAP_NOWAIT) ? BDP_ASYNC : 0; 781 782 do { 783 struct folio *folio; 784 struct page *page; 785 unsigned long offset; /* Offset into pagecache page */ 786 unsigned long bytes; /* Bytes to write to page */ 787 size_t copied; /* Bytes copied from user */ 788 789 offset = offset_in_page(pos); 790 bytes = min_t(unsigned long, PAGE_SIZE - offset, 791 iov_iter_count(i)); 792 again: 793 status = balance_dirty_pages_ratelimited_flags(mapping, 794 bdp_flags); 795 if (unlikely(status)) 796 break; 797 798 if (bytes > length) 799 bytes = length; 800 801 /* 802 * Bring in the user page that we'll copy from _first_. 803 * Otherwise there's a nasty deadlock on copying from the 804 * same page as we're writing to, without it being marked 805 * up-to-date. 806 * 807 * For async buffered writes the assumption is that the user 808 * page has already been faulted in. This can be optimized by 809 * faulting the user page. 810 */ 811 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 812 status = -EFAULT; 813 break; 814 } 815 816 status = iomap_write_begin(iter, pos, bytes, &folio); 817 if (unlikely(status)) 818 break; 819 if (iter->iomap.flags & IOMAP_F_STALE) 820 break; 821 822 page = folio_file_page(folio, pos >> PAGE_SHIFT); 823 if (mapping_writably_mapped(mapping)) 824 flush_dcache_page(page); 825 826 copied = copy_page_from_iter_atomic(page, offset, bytes, i); 827 828 status = iomap_write_end(iter, pos, bytes, copied, folio); 829 830 if (unlikely(copied != status)) 831 iov_iter_revert(i, copied - status); 832 833 cond_resched(); 834 if (unlikely(status == 0)) { 835 /* 836 * A short copy made iomap_write_end() reject the 837 * thing entirely. Might be memory poisoning 838 * halfway through, might be a race with munmap, 839 * might be severe memory pressure. 840 */ 841 if (copied) 842 bytes = copied; 843 goto again; 844 } 845 pos += status; 846 written += status; 847 length -= status; 848 } while (iov_iter_count(i) && length); 849 850 if (status == -EAGAIN) { 851 iov_iter_revert(i, written); 852 return -EAGAIN; 853 } 854 return written ? written : status; 855 } 856 857 ssize_t 858 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i, 859 const struct iomap_ops *ops) 860 { 861 struct iomap_iter iter = { 862 .inode = iocb->ki_filp->f_mapping->host, 863 .pos = iocb->ki_pos, 864 .len = iov_iter_count(i), 865 .flags = IOMAP_WRITE, 866 }; 867 int ret; 868 869 if (iocb->ki_flags & IOCB_NOWAIT) 870 iter.flags |= IOMAP_NOWAIT; 871 872 while ((ret = iomap_iter(&iter, ops)) > 0) 873 iter.processed = iomap_write_iter(&iter, i); 874 if (iter.pos == iocb->ki_pos) 875 return ret; 876 return iter.pos - iocb->ki_pos; 877 } 878 EXPORT_SYMBOL_GPL(iomap_file_buffered_write); 879 880 /* 881 * Scan the data range passed to us for dirty page cache folios. If we find a 882 * dirty folio, punch out the preceeding range and update the offset from which 883 * the next punch will start from. 884 * 885 * We can punch out storage reservations under clean pages because they either 886 * contain data that has been written back - in which case the delalloc punch 887 * over that range is a no-op - or they have been read faults in which case they 888 * contain zeroes and we can remove the delalloc backing range and any new 889 * writes to those pages will do the normal hole filling operation... 890 * 891 * This makes the logic simple: we only need to keep the delalloc extents only 892 * over the dirty ranges of the page cache. 893 * 894 * This function uses [start_byte, end_byte) intervals (i.e. open ended) to 895 * simplify range iterations. 896 */ 897 static int iomap_write_delalloc_scan(struct inode *inode, 898 loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte, 899 int (*punch)(struct inode *inode, loff_t offset, loff_t length)) 900 { 901 while (start_byte < end_byte) { 902 struct folio *folio; 903 904 /* grab locked page */ 905 folio = filemap_lock_folio(inode->i_mapping, 906 start_byte >> PAGE_SHIFT); 907 if (IS_ERR(folio)) { 908 start_byte = ALIGN_DOWN(start_byte, PAGE_SIZE) + 909 PAGE_SIZE; 910 continue; 911 } 912 913 /* if dirty, punch up to offset */ 914 if (folio_test_dirty(folio)) { 915 if (start_byte > *punch_start_byte) { 916 int error; 917 918 error = punch(inode, *punch_start_byte, 919 start_byte - *punch_start_byte); 920 if (error) { 921 folio_unlock(folio); 922 folio_put(folio); 923 return error; 924 } 925 } 926 927 /* 928 * Make sure the next punch start is correctly bound to 929 * the end of this data range, not the end of the folio. 930 */ 931 *punch_start_byte = min_t(loff_t, end_byte, 932 folio_next_index(folio) << PAGE_SHIFT); 933 } 934 935 /* move offset to start of next folio in range */ 936 start_byte = folio_next_index(folio) << PAGE_SHIFT; 937 folio_unlock(folio); 938 folio_put(folio); 939 } 940 return 0; 941 } 942 943 /* 944 * Punch out all the delalloc blocks in the range given except for those that 945 * have dirty data still pending in the page cache - those are going to be 946 * written and so must still retain the delalloc backing for writeback. 947 * 948 * As we are scanning the page cache for data, we don't need to reimplement the 949 * wheel - mapping_seek_hole_data() does exactly what we need to identify the 950 * start and end of data ranges correctly even for sub-folio block sizes. This 951 * byte range based iteration is especially convenient because it means we 952 * don't have to care about variable size folios, nor where the start or end of 953 * the data range lies within a folio, if they lie within the same folio or even 954 * if there are multiple discontiguous data ranges within the folio. 955 * 956 * It should be noted that mapping_seek_hole_data() is not aware of EOF, and so 957 * can return data ranges that exist in the cache beyond EOF. e.g. a page fault 958 * spanning EOF will initialise the post-EOF data to zeroes and mark it up to 959 * date. A write page fault can then mark it dirty. If we then fail a write() 960 * beyond EOF into that up to date cached range, we allocate a delalloc block 961 * beyond EOF and then have to punch it out. Because the range is up to date, 962 * mapping_seek_hole_data() will return it, and we will skip the punch because 963 * the folio is dirty. THis is incorrect - we always need to punch out delalloc 964 * beyond EOF in this case as writeback will never write back and covert that 965 * delalloc block beyond EOF. Hence we limit the cached data scan range to EOF, 966 * resulting in always punching out the range from the EOF to the end of the 967 * range the iomap spans. 968 * 969 * Intervals are of the form [start_byte, end_byte) (i.e. open ended) because it 970 * matches the intervals returned by mapping_seek_hole_data(). i.e. SEEK_DATA 971 * returns the start of a data range (start_byte), and SEEK_HOLE(start_byte) 972 * returns the end of the data range (data_end). Using closed intervals would 973 * require sprinkling this code with magic "+ 1" and "- 1" arithmetic and expose 974 * the code to subtle off-by-one bugs.... 975 */ 976 static int iomap_write_delalloc_release(struct inode *inode, 977 loff_t start_byte, loff_t end_byte, 978 int (*punch)(struct inode *inode, loff_t pos, loff_t length)) 979 { 980 loff_t punch_start_byte = start_byte; 981 loff_t scan_end_byte = min(i_size_read(inode), end_byte); 982 int error = 0; 983 984 /* 985 * Lock the mapping to avoid races with page faults re-instantiating 986 * folios and dirtying them via ->page_mkwrite whilst we walk the 987 * cache and perform delalloc extent removal. Failing to do this can 988 * leave dirty pages with no space reservation in the cache. 989 */ 990 filemap_invalidate_lock(inode->i_mapping); 991 while (start_byte < scan_end_byte) { 992 loff_t data_end; 993 994 start_byte = mapping_seek_hole_data(inode->i_mapping, 995 start_byte, scan_end_byte, SEEK_DATA); 996 /* 997 * If there is no more data to scan, all that is left is to 998 * punch out the remaining range. 999 */ 1000 if (start_byte == -ENXIO || start_byte == scan_end_byte) 1001 break; 1002 if (start_byte < 0) { 1003 error = start_byte; 1004 goto out_unlock; 1005 } 1006 WARN_ON_ONCE(start_byte < punch_start_byte); 1007 WARN_ON_ONCE(start_byte > scan_end_byte); 1008 1009 /* 1010 * We find the end of this contiguous cached data range by 1011 * seeking from start_byte to the beginning of the next hole. 1012 */ 1013 data_end = mapping_seek_hole_data(inode->i_mapping, start_byte, 1014 scan_end_byte, SEEK_HOLE); 1015 if (data_end < 0) { 1016 error = data_end; 1017 goto out_unlock; 1018 } 1019 WARN_ON_ONCE(data_end <= start_byte); 1020 WARN_ON_ONCE(data_end > scan_end_byte); 1021 1022 error = iomap_write_delalloc_scan(inode, &punch_start_byte, 1023 start_byte, data_end, punch); 1024 if (error) 1025 goto out_unlock; 1026 1027 /* The next data search starts at the end of this one. */ 1028 start_byte = data_end; 1029 } 1030 1031 if (punch_start_byte < end_byte) 1032 error = punch(inode, punch_start_byte, 1033 end_byte - punch_start_byte); 1034 out_unlock: 1035 filemap_invalidate_unlock(inode->i_mapping); 1036 return error; 1037 } 1038 1039 /* 1040 * When a short write occurs, the filesystem may need to remove reserved space 1041 * that was allocated in ->iomap_begin from it's ->iomap_end method. For 1042 * filesystems that use delayed allocation, we need to punch out delalloc 1043 * extents from the range that are not dirty in the page cache. As the write can 1044 * race with page faults, there can be dirty pages over the delalloc extent 1045 * outside the range of a short write but still within the delalloc extent 1046 * allocated for this iomap. 1047 * 1048 * This function uses [start_byte, end_byte) intervals (i.e. open ended) to 1049 * simplify range iterations. 1050 * 1051 * The punch() callback *must* only punch delalloc extents in the range passed 1052 * to it. It must skip over all other types of extents in the range and leave 1053 * them completely unchanged. It must do this punch atomically with respect to 1054 * other extent modifications. 1055 * 1056 * The punch() callback may be called with a folio locked to prevent writeback 1057 * extent allocation racing at the edge of the range we are currently punching. 1058 * The locked folio may or may not cover the range being punched, so it is not 1059 * safe for the punch() callback to lock folios itself. 1060 * 1061 * Lock order is: 1062 * 1063 * inode->i_rwsem (shared or exclusive) 1064 * inode->i_mapping->invalidate_lock (exclusive) 1065 * folio_lock() 1066 * ->punch 1067 * internal filesystem allocation lock 1068 */ 1069 int iomap_file_buffered_write_punch_delalloc(struct inode *inode, 1070 struct iomap *iomap, loff_t pos, loff_t length, 1071 ssize_t written, 1072 int (*punch)(struct inode *inode, loff_t pos, loff_t length)) 1073 { 1074 loff_t start_byte; 1075 loff_t end_byte; 1076 int blocksize = i_blocksize(inode); 1077 1078 if (iomap->type != IOMAP_DELALLOC) 1079 return 0; 1080 1081 /* If we didn't reserve the blocks, we're not allowed to punch them. */ 1082 if (!(iomap->flags & IOMAP_F_NEW)) 1083 return 0; 1084 1085 /* 1086 * start_byte refers to the first unused block after a short write. If 1087 * nothing was written, round offset down to point at the first block in 1088 * the range. 1089 */ 1090 if (unlikely(!written)) 1091 start_byte = round_down(pos, blocksize); 1092 else 1093 start_byte = round_up(pos + written, blocksize); 1094 end_byte = round_up(pos + length, blocksize); 1095 1096 /* Nothing to do if we've written the entire delalloc extent */ 1097 if (start_byte >= end_byte) 1098 return 0; 1099 1100 return iomap_write_delalloc_release(inode, start_byte, end_byte, 1101 punch); 1102 } 1103 EXPORT_SYMBOL_GPL(iomap_file_buffered_write_punch_delalloc); 1104 1105 static loff_t iomap_unshare_iter(struct iomap_iter *iter) 1106 { 1107 struct iomap *iomap = &iter->iomap; 1108 const struct iomap *srcmap = iomap_iter_srcmap(iter); 1109 loff_t pos = iter->pos; 1110 loff_t length = iomap_length(iter); 1111 long status = 0; 1112 loff_t written = 0; 1113 1114 /* don't bother with blocks that are not shared to start with */ 1115 if (!(iomap->flags & IOMAP_F_SHARED)) 1116 return length; 1117 /* don't bother with holes or unwritten extents */ 1118 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 1119 return length; 1120 1121 do { 1122 unsigned long offset = offset_in_page(pos); 1123 unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length); 1124 struct folio *folio; 1125 1126 status = iomap_write_begin(iter, pos, bytes, &folio); 1127 if (unlikely(status)) 1128 return status; 1129 if (iter->iomap.flags & IOMAP_F_STALE) 1130 break; 1131 1132 status = iomap_write_end(iter, pos, bytes, bytes, folio); 1133 if (WARN_ON_ONCE(status == 0)) 1134 return -EIO; 1135 1136 cond_resched(); 1137 1138 pos += status; 1139 written += status; 1140 length -= status; 1141 1142 balance_dirty_pages_ratelimited(iter->inode->i_mapping); 1143 } while (length); 1144 1145 return written; 1146 } 1147 1148 int 1149 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len, 1150 const struct iomap_ops *ops) 1151 { 1152 struct iomap_iter iter = { 1153 .inode = inode, 1154 .pos = pos, 1155 .len = len, 1156 .flags = IOMAP_WRITE | IOMAP_UNSHARE, 1157 }; 1158 int ret; 1159 1160 while ((ret = iomap_iter(&iter, ops)) > 0) 1161 iter.processed = iomap_unshare_iter(&iter); 1162 return ret; 1163 } 1164 EXPORT_SYMBOL_GPL(iomap_file_unshare); 1165 1166 static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero) 1167 { 1168 const struct iomap *srcmap = iomap_iter_srcmap(iter); 1169 loff_t pos = iter->pos; 1170 loff_t length = iomap_length(iter); 1171 loff_t written = 0; 1172 1173 /* already zeroed? we're done. */ 1174 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 1175 return length; 1176 1177 do { 1178 struct folio *folio; 1179 int status; 1180 size_t offset; 1181 size_t bytes = min_t(u64, SIZE_MAX, length); 1182 1183 status = iomap_write_begin(iter, pos, bytes, &folio); 1184 if (status) 1185 return status; 1186 if (iter->iomap.flags & IOMAP_F_STALE) 1187 break; 1188 1189 offset = offset_in_folio(folio, pos); 1190 if (bytes > folio_size(folio) - offset) 1191 bytes = folio_size(folio) - offset; 1192 1193 folio_zero_range(folio, offset, bytes); 1194 folio_mark_accessed(folio); 1195 1196 bytes = iomap_write_end(iter, pos, bytes, bytes, folio); 1197 if (WARN_ON_ONCE(bytes == 0)) 1198 return -EIO; 1199 1200 pos += bytes; 1201 length -= bytes; 1202 written += bytes; 1203 } while (length > 0); 1204 1205 if (did_zero) 1206 *did_zero = true; 1207 return written; 1208 } 1209 1210 int 1211 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero, 1212 const struct iomap_ops *ops) 1213 { 1214 struct iomap_iter iter = { 1215 .inode = inode, 1216 .pos = pos, 1217 .len = len, 1218 .flags = IOMAP_ZERO, 1219 }; 1220 int ret; 1221 1222 while ((ret = iomap_iter(&iter, ops)) > 0) 1223 iter.processed = iomap_zero_iter(&iter, did_zero); 1224 return ret; 1225 } 1226 EXPORT_SYMBOL_GPL(iomap_zero_range); 1227 1228 int 1229 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero, 1230 const struct iomap_ops *ops) 1231 { 1232 unsigned int blocksize = i_blocksize(inode); 1233 unsigned int off = pos & (blocksize - 1); 1234 1235 /* Block boundary? Nothing to do */ 1236 if (!off) 1237 return 0; 1238 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops); 1239 } 1240 EXPORT_SYMBOL_GPL(iomap_truncate_page); 1241 1242 static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter, 1243 struct folio *folio) 1244 { 1245 loff_t length = iomap_length(iter); 1246 int ret; 1247 1248 if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) { 1249 ret = __block_write_begin_int(folio, iter->pos, length, NULL, 1250 &iter->iomap); 1251 if (ret) 1252 return ret; 1253 block_commit_write(&folio->page, 0, length); 1254 } else { 1255 WARN_ON_ONCE(!folio_test_uptodate(folio)); 1256 folio_mark_dirty(folio); 1257 } 1258 1259 return length; 1260 } 1261 1262 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops) 1263 { 1264 struct iomap_iter iter = { 1265 .inode = file_inode(vmf->vma->vm_file), 1266 .flags = IOMAP_WRITE | IOMAP_FAULT, 1267 }; 1268 struct folio *folio = page_folio(vmf->page); 1269 ssize_t ret; 1270 1271 folio_lock(folio); 1272 ret = folio_mkwrite_check_truncate(folio, iter.inode); 1273 if (ret < 0) 1274 goto out_unlock; 1275 iter.pos = folio_pos(folio); 1276 iter.len = ret; 1277 while ((ret = iomap_iter(&iter, ops)) > 0) 1278 iter.processed = iomap_folio_mkwrite_iter(&iter, folio); 1279 1280 if (ret < 0) 1281 goto out_unlock; 1282 folio_wait_stable(folio); 1283 return VM_FAULT_LOCKED; 1284 out_unlock: 1285 folio_unlock(folio); 1286 return block_page_mkwrite_return(ret); 1287 } 1288 EXPORT_SYMBOL_GPL(iomap_page_mkwrite); 1289 1290 static void iomap_finish_folio_write(struct inode *inode, struct folio *folio, 1291 size_t len, int error) 1292 { 1293 struct iomap_page *iop = to_iomap_page(folio); 1294 1295 if (error) { 1296 folio_set_error(folio); 1297 mapping_set_error(inode->i_mapping, error); 1298 } 1299 1300 WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !iop); 1301 WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) <= 0); 1302 1303 if (!iop || atomic_sub_and_test(len, &iop->write_bytes_pending)) 1304 folio_end_writeback(folio); 1305 } 1306 1307 /* 1308 * We're now finished for good with this ioend structure. Update the page 1309 * state, release holds on bios, and finally free up memory. Do not use the 1310 * ioend after this. 1311 */ 1312 static u32 1313 iomap_finish_ioend(struct iomap_ioend *ioend, int error) 1314 { 1315 struct inode *inode = ioend->io_inode; 1316 struct bio *bio = &ioend->io_inline_bio; 1317 struct bio *last = ioend->io_bio, *next; 1318 u64 start = bio->bi_iter.bi_sector; 1319 loff_t offset = ioend->io_offset; 1320 bool quiet = bio_flagged(bio, BIO_QUIET); 1321 u32 folio_count = 0; 1322 1323 for (bio = &ioend->io_inline_bio; bio; bio = next) { 1324 struct folio_iter fi; 1325 1326 /* 1327 * For the last bio, bi_private points to the ioend, so we 1328 * need to explicitly end the iteration here. 1329 */ 1330 if (bio == last) 1331 next = NULL; 1332 else 1333 next = bio->bi_private; 1334 1335 /* walk all folios in bio, ending page IO on them */ 1336 bio_for_each_folio_all(fi, bio) { 1337 iomap_finish_folio_write(inode, fi.folio, fi.length, 1338 error); 1339 folio_count++; 1340 } 1341 bio_put(bio); 1342 } 1343 /* The ioend has been freed by bio_put() */ 1344 1345 if (unlikely(error && !quiet)) { 1346 printk_ratelimited(KERN_ERR 1347 "%s: writeback error on inode %lu, offset %lld, sector %llu", 1348 inode->i_sb->s_id, inode->i_ino, offset, start); 1349 } 1350 return folio_count; 1351 } 1352 1353 /* 1354 * Ioend completion routine for merged bios. This can only be called from task 1355 * contexts as merged ioends can be of unbound length. Hence we have to break up 1356 * the writeback completions into manageable chunks to avoid long scheduler 1357 * holdoffs. We aim to keep scheduler holdoffs down below 10ms so that we get 1358 * good batch processing throughput without creating adverse scheduler latency 1359 * conditions. 1360 */ 1361 void 1362 iomap_finish_ioends(struct iomap_ioend *ioend, int error) 1363 { 1364 struct list_head tmp; 1365 u32 completions; 1366 1367 might_sleep(); 1368 1369 list_replace_init(&ioend->io_list, &tmp); 1370 completions = iomap_finish_ioend(ioend, error); 1371 1372 while (!list_empty(&tmp)) { 1373 if (completions > IOEND_BATCH_SIZE * 8) { 1374 cond_resched(); 1375 completions = 0; 1376 } 1377 ioend = list_first_entry(&tmp, struct iomap_ioend, io_list); 1378 list_del_init(&ioend->io_list); 1379 completions += iomap_finish_ioend(ioend, error); 1380 } 1381 } 1382 EXPORT_SYMBOL_GPL(iomap_finish_ioends); 1383 1384 /* 1385 * We can merge two adjacent ioends if they have the same set of work to do. 1386 */ 1387 static bool 1388 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next) 1389 { 1390 if (ioend->io_bio->bi_status != next->io_bio->bi_status) 1391 return false; 1392 if ((ioend->io_flags & IOMAP_F_SHARED) ^ 1393 (next->io_flags & IOMAP_F_SHARED)) 1394 return false; 1395 if ((ioend->io_type == IOMAP_UNWRITTEN) ^ 1396 (next->io_type == IOMAP_UNWRITTEN)) 1397 return false; 1398 if (ioend->io_offset + ioend->io_size != next->io_offset) 1399 return false; 1400 /* 1401 * Do not merge physically discontiguous ioends. The filesystem 1402 * completion functions will have to iterate the physical 1403 * discontiguities even if we merge the ioends at a logical level, so 1404 * we don't gain anything by merging physical discontiguities here. 1405 * 1406 * We cannot use bio->bi_iter.bi_sector here as it is modified during 1407 * submission so does not point to the start sector of the bio at 1408 * completion. 1409 */ 1410 if (ioend->io_sector + (ioend->io_size >> 9) != next->io_sector) 1411 return false; 1412 return true; 1413 } 1414 1415 void 1416 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends) 1417 { 1418 struct iomap_ioend *next; 1419 1420 INIT_LIST_HEAD(&ioend->io_list); 1421 1422 while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend, 1423 io_list))) { 1424 if (!iomap_ioend_can_merge(ioend, next)) 1425 break; 1426 list_move_tail(&next->io_list, &ioend->io_list); 1427 ioend->io_size += next->io_size; 1428 } 1429 } 1430 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge); 1431 1432 static int 1433 iomap_ioend_compare(void *priv, const struct list_head *a, 1434 const struct list_head *b) 1435 { 1436 struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list); 1437 struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list); 1438 1439 if (ia->io_offset < ib->io_offset) 1440 return -1; 1441 if (ia->io_offset > ib->io_offset) 1442 return 1; 1443 return 0; 1444 } 1445 1446 void 1447 iomap_sort_ioends(struct list_head *ioend_list) 1448 { 1449 list_sort(NULL, ioend_list, iomap_ioend_compare); 1450 } 1451 EXPORT_SYMBOL_GPL(iomap_sort_ioends); 1452 1453 static void iomap_writepage_end_bio(struct bio *bio) 1454 { 1455 struct iomap_ioend *ioend = bio->bi_private; 1456 1457 iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status)); 1458 } 1459 1460 /* 1461 * Submit the final bio for an ioend. 1462 * 1463 * If @error is non-zero, it means that we have a situation where some part of 1464 * the submission process has failed after we've marked pages for writeback 1465 * and unlocked them. In this situation, we need to fail the bio instead of 1466 * submitting it. This typically only happens on a filesystem shutdown. 1467 */ 1468 static int 1469 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend, 1470 int error) 1471 { 1472 ioend->io_bio->bi_private = ioend; 1473 ioend->io_bio->bi_end_io = iomap_writepage_end_bio; 1474 1475 if (wpc->ops->prepare_ioend) 1476 error = wpc->ops->prepare_ioend(ioend, error); 1477 if (error) { 1478 /* 1479 * If we're failing the IO now, just mark the ioend with an 1480 * error and finish it. This will run IO completion immediately 1481 * as there is only one reference to the ioend at this point in 1482 * time. 1483 */ 1484 ioend->io_bio->bi_status = errno_to_blk_status(error); 1485 bio_endio(ioend->io_bio); 1486 return error; 1487 } 1488 1489 submit_bio(ioend->io_bio); 1490 return 0; 1491 } 1492 1493 static struct iomap_ioend * 1494 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc, 1495 loff_t offset, sector_t sector, struct writeback_control *wbc) 1496 { 1497 struct iomap_ioend *ioend; 1498 struct bio *bio; 1499 1500 bio = bio_alloc_bioset(wpc->iomap.bdev, BIO_MAX_VECS, 1501 REQ_OP_WRITE | wbc_to_write_flags(wbc), 1502 GFP_NOFS, &iomap_ioend_bioset); 1503 bio->bi_iter.bi_sector = sector; 1504 wbc_init_bio(wbc, bio); 1505 1506 ioend = container_of(bio, struct iomap_ioend, io_inline_bio); 1507 INIT_LIST_HEAD(&ioend->io_list); 1508 ioend->io_type = wpc->iomap.type; 1509 ioend->io_flags = wpc->iomap.flags; 1510 ioend->io_inode = inode; 1511 ioend->io_size = 0; 1512 ioend->io_folios = 0; 1513 ioend->io_offset = offset; 1514 ioend->io_bio = bio; 1515 ioend->io_sector = sector; 1516 return ioend; 1517 } 1518 1519 /* 1520 * Allocate a new bio, and chain the old bio to the new one. 1521 * 1522 * Note that we have to perform the chaining in this unintuitive order 1523 * so that the bi_private linkage is set up in the right direction for the 1524 * traversal in iomap_finish_ioend(). 1525 */ 1526 static struct bio * 1527 iomap_chain_bio(struct bio *prev) 1528 { 1529 struct bio *new; 1530 1531 new = bio_alloc(prev->bi_bdev, BIO_MAX_VECS, prev->bi_opf, GFP_NOFS); 1532 bio_clone_blkg_association(new, prev); 1533 new->bi_iter.bi_sector = bio_end_sector(prev); 1534 1535 bio_chain(prev, new); 1536 bio_get(prev); /* for iomap_finish_ioend */ 1537 submit_bio(prev); 1538 return new; 1539 } 1540 1541 static bool 1542 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset, 1543 sector_t sector) 1544 { 1545 if ((wpc->iomap.flags & IOMAP_F_SHARED) != 1546 (wpc->ioend->io_flags & IOMAP_F_SHARED)) 1547 return false; 1548 if (wpc->iomap.type != wpc->ioend->io_type) 1549 return false; 1550 if (offset != wpc->ioend->io_offset + wpc->ioend->io_size) 1551 return false; 1552 if (sector != bio_end_sector(wpc->ioend->io_bio)) 1553 return false; 1554 /* 1555 * Limit ioend bio chain lengths to minimise IO completion latency. This 1556 * also prevents long tight loops ending page writeback on all the 1557 * folios in the ioend. 1558 */ 1559 if (wpc->ioend->io_folios >= IOEND_BATCH_SIZE) 1560 return false; 1561 return true; 1562 } 1563 1564 /* 1565 * Test to see if we have an existing ioend structure that we could append to 1566 * first; otherwise finish off the current ioend and start another. 1567 */ 1568 static void 1569 iomap_add_to_ioend(struct inode *inode, loff_t pos, struct folio *folio, 1570 struct iomap_page *iop, struct iomap_writepage_ctx *wpc, 1571 struct writeback_control *wbc, struct list_head *iolist) 1572 { 1573 sector_t sector = iomap_sector(&wpc->iomap, pos); 1574 unsigned len = i_blocksize(inode); 1575 size_t poff = offset_in_folio(folio, pos); 1576 1577 if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos, sector)) { 1578 if (wpc->ioend) 1579 list_add(&wpc->ioend->io_list, iolist); 1580 wpc->ioend = iomap_alloc_ioend(inode, wpc, pos, sector, wbc); 1581 } 1582 1583 if (!bio_add_folio(wpc->ioend->io_bio, folio, len, poff)) { 1584 wpc->ioend->io_bio = iomap_chain_bio(wpc->ioend->io_bio); 1585 bio_add_folio(wpc->ioend->io_bio, folio, len, poff); 1586 } 1587 1588 if (iop) 1589 atomic_add(len, &iop->write_bytes_pending); 1590 wpc->ioend->io_size += len; 1591 wbc_account_cgroup_owner(wbc, &folio->page, len); 1592 } 1593 1594 /* 1595 * We implement an immediate ioend submission policy here to avoid needing to 1596 * chain multiple ioends and hence nest mempool allocations which can violate 1597 * the forward progress guarantees we need to provide. The current ioend we're 1598 * adding blocks to is cached in the writepage context, and if the new block 1599 * doesn't append to the cached ioend, it will create a new ioend and cache that 1600 * instead. 1601 * 1602 * If a new ioend is created and cached, the old ioend is returned and queued 1603 * locally for submission once the entire page is processed or an error has been 1604 * detected. While ioends are submitted immediately after they are completed, 1605 * batching optimisations are provided by higher level block plugging. 1606 * 1607 * At the end of a writeback pass, there will be a cached ioend remaining on the 1608 * writepage context that the caller will need to submit. 1609 */ 1610 static int 1611 iomap_writepage_map(struct iomap_writepage_ctx *wpc, 1612 struct writeback_control *wbc, struct inode *inode, 1613 struct folio *folio, u64 end_pos) 1614 { 1615 struct iomap_page *iop = iomap_page_create(inode, folio, 0); 1616 struct iomap_ioend *ioend, *next; 1617 unsigned len = i_blocksize(inode); 1618 unsigned nblocks = i_blocks_per_folio(inode, folio); 1619 u64 pos = folio_pos(folio); 1620 int error = 0, count = 0, i; 1621 LIST_HEAD(submit_list); 1622 1623 WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) != 0); 1624 1625 /* 1626 * Walk through the folio to find areas to write back. If we 1627 * run off the end of the current map or find the current map 1628 * invalid, grab a new one. 1629 */ 1630 for (i = 0; i < nblocks && pos < end_pos; i++, pos += len) { 1631 if (iop && !test_bit(i, iop->uptodate)) 1632 continue; 1633 1634 error = wpc->ops->map_blocks(wpc, inode, pos); 1635 if (error) 1636 break; 1637 trace_iomap_writepage_map(inode, &wpc->iomap); 1638 if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE)) 1639 continue; 1640 if (wpc->iomap.type == IOMAP_HOLE) 1641 continue; 1642 iomap_add_to_ioend(inode, pos, folio, iop, wpc, wbc, 1643 &submit_list); 1644 count++; 1645 } 1646 if (count) 1647 wpc->ioend->io_folios++; 1648 1649 WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list)); 1650 WARN_ON_ONCE(!folio_test_locked(folio)); 1651 WARN_ON_ONCE(folio_test_writeback(folio)); 1652 WARN_ON_ONCE(folio_test_dirty(folio)); 1653 1654 /* 1655 * We cannot cancel the ioend directly here on error. We may have 1656 * already set other pages under writeback and hence we have to run I/O 1657 * completion to mark the error state of the pages under writeback 1658 * appropriately. 1659 */ 1660 if (unlikely(error)) { 1661 /* 1662 * Let the filesystem know what portion of the current page 1663 * failed to map. If the page hasn't been added to ioend, it 1664 * won't be affected by I/O completion and we must unlock it 1665 * now. 1666 */ 1667 if (wpc->ops->discard_folio) 1668 wpc->ops->discard_folio(folio, pos); 1669 if (!count) { 1670 folio_unlock(folio); 1671 goto done; 1672 } 1673 } 1674 1675 folio_start_writeback(folio); 1676 folio_unlock(folio); 1677 1678 /* 1679 * Preserve the original error if there was one; catch 1680 * submission errors here and propagate into subsequent ioend 1681 * submissions. 1682 */ 1683 list_for_each_entry_safe(ioend, next, &submit_list, io_list) { 1684 int error2; 1685 1686 list_del_init(&ioend->io_list); 1687 error2 = iomap_submit_ioend(wpc, ioend, error); 1688 if (error2 && !error) 1689 error = error2; 1690 } 1691 1692 /* 1693 * We can end up here with no error and nothing to write only if we race 1694 * with a partial page truncate on a sub-page block sized filesystem. 1695 */ 1696 if (!count) 1697 folio_end_writeback(folio); 1698 done: 1699 mapping_set_error(inode->i_mapping, error); 1700 return error; 1701 } 1702 1703 /* 1704 * Write out a dirty page. 1705 * 1706 * For delalloc space on the page, we need to allocate space and flush it. 1707 * For unwritten space on the page, we need to start the conversion to 1708 * regular allocated space. 1709 */ 1710 static int iomap_do_writepage(struct folio *folio, 1711 struct writeback_control *wbc, void *data) 1712 { 1713 struct iomap_writepage_ctx *wpc = data; 1714 struct inode *inode = folio->mapping->host; 1715 u64 end_pos, isize; 1716 1717 trace_iomap_writepage(inode, folio_pos(folio), folio_size(folio)); 1718 1719 /* 1720 * Refuse to write the folio out if we're called from reclaim context. 1721 * 1722 * This avoids stack overflows when called from deeply used stacks in 1723 * random callers for direct reclaim or memcg reclaim. We explicitly 1724 * allow reclaim from kswapd as the stack usage there is relatively low. 1725 * 1726 * This should never happen except in the case of a VM regression so 1727 * warn about it. 1728 */ 1729 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 1730 PF_MEMALLOC)) 1731 goto redirty; 1732 1733 /* 1734 * Is this folio beyond the end of the file? 1735 * 1736 * The folio index is less than the end_index, adjust the end_pos 1737 * to the highest offset that this folio should represent. 1738 * ----------------------------------------------------- 1739 * | file mapping | <EOF> | 1740 * ----------------------------------------------------- 1741 * | Page ... | Page N-2 | Page N-1 | Page N | | 1742 * ^--------------------------------^----------|-------- 1743 * | desired writeback range | see else | 1744 * ---------------------------------^------------------| 1745 */ 1746 isize = i_size_read(inode); 1747 end_pos = folio_pos(folio) + folio_size(folio); 1748 if (end_pos > isize) { 1749 /* 1750 * Check whether the page to write out is beyond or straddles 1751 * i_size or not. 1752 * ------------------------------------------------------- 1753 * | file mapping | <EOF> | 1754 * ------------------------------------------------------- 1755 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond | 1756 * ^--------------------------------^-----------|--------- 1757 * | | Straddles | 1758 * ---------------------------------^-----------|--------| 1759 */ 1760 size_t poff = offset_in_folio(folio, isize); 1761 pgoff_t end_index = isize >> PAGE_SHIFT; 1762 1763 /* 1764 * Skip the page if it's fully outside i_size, e.g. 1765 * due to a truncate operation that's in progress. We've 1766 * cleaned this page and truncate will finish things off for 1767 * us. 1768 * 1769 * Note that the end_index is unsigned long. If the given 1770 * offset is greater than 16TB on a 32-bit system then if we 1771 * checked if the page is fully outside i_size with 1772 * "if (page->index >= end_index + 1)", "end_index + 1" would 1773 * overflow and evaluate to 0. Hence this page would be 1774 * redirtied and written out repeatedly, which would result in 1775 * an infinite loop; the user program performing this operation 1776 * would hang. Instead, we can detect this situation by 1777 * checking if the page is totally beyond i_size or if its 1778 * offset is just equal to the EOF. 1779 */ 1780 if (folio->index > end_index || 1781 (folio->index == end_index && poff == 0)) 1782 goto unlock; 1783 1784 /* 1785 * The page straddles i_size. It must be zeroed out on each 1786 * and every writepage invocation because it may be mmapped. 1787 * "A file is mapped in multiples of the page size. For a file 1788 * that is not a multiple of the page size, the remaining 1789 * memory is zeroed when mapped, and writes to that region are 1790 * not written out to the file." 1791 */ 1792 folio_zero_segment(folio, poff, folio_size(folio)); 1793 end_pos = isize; 1794 } 1795 1796 return iomap_writepage_map(wpc, wbc, inode, folio, end_pos); 1797 1798 redirty: 1799 folio_redirty_for_writepage(wbc, folio); 1800 unlock: 1801 folio_unlock(folio); 1802 return 0; 1803 } 1804 1805 int 1806 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc, 1807 struct iomap_writepage_ctx *wpc, 1808 const struct iomap_writeback_ops *ops) 1809 { 1810 int ret; 1811 1812 wpc->ops = ops; 1813 ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc); 1814 if (!wpc->ioend) 1815 return ret; 1816 return iomap_submit_ioend(wpc, wpc->ioend, ret); 1817 } 1818 EXPORT_SYMBOL_GPL(iomap_writepages); 1819 1820 static int __init iomap_init(void) 1821 { 1822 return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE), 1823 offsetof(struct iomap_ioend, io_inline_bio), 1824 BIOSET_NEED_BVECS); 1825 } 1826 fs_initcall(iomap_init); 1827