1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Red Hat, Inc. 4 * Copyright (C) 2016-2019 Christoph Hellwig. 5 */ 6 #include <linux/module.h> 7 #include <linux/compiler.h> 8 #include <linux/fs.h> 9 #include <linux/iomap.h> 10 #include <linux/pagemap.h> 11 #include <linux/uio.h> 12 #include <linux/buffer_head.h> 13 #include <linux/dax.h> 14 #include <linux/writeback.h> 15 #include <linux/list_sort.h> 16 #include <linux/swap.h> 17 #include <linux/bio.h> 18 #include <linux/sched/signal.h> 19 #include <linux/migrate.h> 20 #include "trace.h" 21 22 #include "../internal.h" 23 24 /* 25 * Structure allocated for each page when block size < PAGE_SIZE to track 26 * sub-page uptodate status and I/O completions. 27 */ 28 struct iomap_page { 29 atomic_t read_count; 30 atomic_t write_count; 31 DECLARE_BITMAP(uptodate, PAGE_SIZE / 512); 32 }; 33 34 static inline struct iomap_page *to_iomap_page(struct page *page) 35 { 36 if (page_has_private(page)) 37 return (struct iomap_page *)page_private(page); 38 return NULL; 39 } 40 41 static struct bio_set iomap_ioend_bioset; 42 43 static struct iomap_page * 44 iomap_page_create(struct inode *inode, struct page *page) 45 { 46 struct iomap_page *iop = to_iomap_page(page); 47 48 if (iop || i_blocksize(inode) == PAGE_SIZE) 49 return iop; 50 51 iop = kmalloc(sizeof(*iop), GFP_NOFS | __GFP_NOFAIL); 52 atomic_set(&iop->read_count, 0); 53 atomic_set(&iop->write_count, 0); 54 bitmap_zero(iop->uptodate, PAGE_SIZE / SECTOR_SIZE); 55 56 /* 57 * migrate_page_move_mapping() assumes that pages with private data have 58 * their count elevated by 1. 59 */ 60 get_page(page); 61 set_page_private(page, (unsigned long)iop); 62 SetPagePrivate(page); 63 return iop; 64 } 65 66 static void 67 iomap_page_release(struct page *page) 68 { 69 struct iomap_page *iop = to_iomap_page(page); 70 71 if (!iop) 72 return; 73 WARN_ON_ONCE(atomic_read(&iop->read_count)); 74 WARN_ON_ONCE(atomic_read(&iop->write_count)); 75 ClearPagePrivate(page); 76 set_page_private(page, 0); 77 put_page(page); 78 kfree(iop); 79 } 80 81 /* 82 * Calculate the range inside the page that we actually need to read. 83 */ 84 static void 85 iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop, 86 loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp) 87 { 88 loff_t orig_pos = *pos; 89 loff_t isize = i_size_read(inode); 90 unsigned block_bits = inode->i_blkbits; 91 unsigned block_size = (1 << block_bits); 92 unsigned poff = offset_in_page(*pos); 93 unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length); 94 unsigned first = poff >> block_bits; 95 unsigned last = (poff + plen - 1) >> block_bits; 96 97 /* 98 * If the block size is smaller than the page size we need to check the 99 * per-block uptodate status and adjust the offset and length if needed 100 * to avoid reading in already uptodate ranges. 101 */ 102 if (iop) { 103 unsigned int i; 104 105 /* move forward for each leading block marked uptodate */ 106 for (i = first; i <= last; i++) { 107 if (!test_bit(i, iop->uptodate)) 108 break; 109 *pos += block_size; 110 poff += block_size; 111 plen -= block_size; 112 first++; 113 } 114 115 /* truncate len if we find any trailing uptodate block(s) */ 116 for ( ; i <= last; i++) { 117 if (test_bit(i, iop->uptodate)) { 118 plen -= (last - i + 1) * block_size; 119 last = i - 1; 120 break; 121 } 122 } 123 } 124 125 /* 126 * If the extent spans the block that contains the i_size we need to 127 * handle both halves separately so that we properly zero data in the 128 * page cache for blocks that are entirely outside of i_size. 129 */ 130 if (orig_pos <= isize && orig_pos + length > isize) { 131 unsigned end = offset_in_page(isize - 1) >> block_bits; 132 133 if (first <= end && last > end) 134 plen -= (last - end) * block_size; 135 } 136 137 *offp = poff; 138 *lenp = plen; 139 } 140 141 static void 142 iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len) 143 { 144 struct iomap_page *iop = to_iomap_page(page); 145 struct inode *inode = page->mapping->host; 146 unsigned first = off >> inode->i_blkbits; 147 unsigned last = (off + len - 1) >> inode->i_blkbits; 148 unsigned int i; 149 bool uptodate = true; 150 151 if (iop) { 152 for (i = 0; i < PAGE_SIZE / i_blocksize(inode); i++) { 153 if (i >= first && i <= last) 154 set_bit(i, iop->uptodate); 155 else if (!test_bit(i, iop->uptodate)) 156 uptodate = false; 157 } 158 } 159 160 if (uptodate && !PageError(page)) 161 SetPageUptodate(page); 162 } 163 164 static void 165 iomap_read_finish(struct iomap_page *iop, struct page *page) 166 { 167 if (!iop || atomic_dec_and_test(&iop->read_count)) 168 unlock_page(page); 169 } 170 171 static void 172 iomap_read_page_end_io(struct bio_vec *bvec, int error) 173 { 174 struct page *page = bvec->bv_page; 175 struct iomap_page *iop = to_iomap_page(page); 176 177 if (unlikely(error)) { 178 ClearPageUptodate(page); 179 SetPageError(page); 180 } else { 181 iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len); 182 } 183 184 iomap_read_finish(iop, page); 185 } 186 187 static void 188 iomap_read_end_io(struct bio *bio) 189 { 190 int error = blk_status_to_errno(bio->bi_status); 191 struct bio_vec *bvec; 192 struct bvec_iter_all iter_all; 193 194 bio_for_each_segment_all(bvec, bio, iter_all) 195 iomap_read_page_end_io(bvec, error); 196 bio_put(bio); 197 } 198 199 struct iomap_readpage_ctx { 200 struct page *cur_page; 201 bool cur_page_in_bio; 202 bool is_readahead; 203 struct bio *bio; 204 struct list_head *pages; 205 }; 206 207 static void 208 iomap_read_inline_data(struct inode *inode, struct page *page, 209 struct iomap *iomap) 210 { 211 size_t size = i_size_read(inode); 212 void *addr; 213 214 if (PageUptodate(page)) 215 return; 216 217 BUG_ON(page->index); 218 BUG_ON(size > PAGE_SIZE - offset_in_page(iomap->inline_data)); 219 220 addr = kmap_atomic(page); 221 memcpy(addr, iomap->inline_data, size); 222 memset(addr + size, 0, PAGE_SIZE - size); 223 kunmap_atomic(addr); 224 SetPageUptodate(page); 225 } 226 227 static inline bool iomap_block_needs_zeroing(struct inode *inode, 228 struct iomap *iomap, loff_t pos) 229 { 230 return iomap->type != IOMAP_MAPPED || 231 (iomap->flags & IOMAP_F_NEW) || 232 pos >= i_size_read(inode); 233 } 234 235 static loff_t 236 iomap_readpage_actor(struct inode *inode, loff_t pos, loff_t length, void *data, 237 struct iomap *iomap, struct iomap *srcmap) 238 { 239 struct iomap_readpage_ctx *ctx = data; 240 struct page *page = ctx->cur_page; 241 struct iomap_page *iop = iomap_page_create(inode, page); 242 bool same_page = false, is_contig = false; 243 loff_t orig_pos = pos; 244 unsigned poff, plen; 245 sector_t sector; 246 247 if (iomap->type == IOMAP_INLINE) { 248 WARN_ON_ONCE(pos); 249 iomap_read_inline_data(inode, page, iomap); 250 return PAGE_SIZE; 251 } 252 253 /* zero post-eof blocks as the page may be mapped */ 254 iomap_adjust_read_range(inode, iop, &pos, length, &poff, &plen); 255 if (plen == 0) 256 goto done; 257 258 if (iomap_block_needs_zeroing(inode, iomap, pos)) { 259 zero_user(page, poff, plen); 260 iomap_set_range_uptodate(page, poff, plen); 261 goto done; 262 } 263 264 ctx->cur_page_in_bio = true; 265 266 /* 267 * Try to merge into a previous segment if we can. 268 */ 269 sector = iomap_sector(iomap, pos); 270 if (ctx->bio && bio_end_sector(ctx->bio) == sector) 271 is_contig = true; 272 273 if (is_contig && 274 __bio_try_merge_page(ctx->bio, page, plen, poff, &same_page)) { 275 if (!same_page && iop) 276 atomic_inc(&iop->read_count); 277 goto done; 278 } 279 280 /* 281 * If we start a new segment we need to increase the read count, and we 282 * need to do so before submitting any previous full bio to make sure 283 * that we don't prematurely unlock the page. 284 */ 285 if (iop) 286 atomic_inc(&iop->read_count); 287 288 if (!ctx->bio || !is_contig || bio_full(ctx->bio, plen)) { 289 gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL); 290 int nr_vecs = (length + PAGE_SIZE - 1) >> PAGE_SHIFT; 291 292 if (ctx->bio) 293 submit_bio(ctx->bio); 294 295 if (ctx->is_readahead) /* same as readahead_gfp_mask */ 296 gfp |= __GFP_NORETRY | __GFP_NOWARN; 297 ctx->bio = bio_alloc(gfp, min(BIO_MAX_PAGES, nr_vecs)); 298 ctx->bio->bi_opf = REQ_OP_READ; 299 if (ctx->is_readahead) 300 ctx->bio->bi_opf |= REQ_RAHEAD; 301 ctx->bio->bi_iter.bi_sector = sector; 302 bio_set_dev(ctx->bio, iomap->bdev); 303 ctx->bio->bi_end_io = iomap_read_end_io; 304 } 305 306 bio_add_page(ctx->bio, page, plen, poff); 307 done: 308 /* 309 * Move the caller beyond our range so that it keeps making progress. 310 * For that we have to include any leading non-uptodate ranges, but 311 * we can skip trailing ones as they will be handled in the next 312 * iteration. 313 */ 314 return pos - orig_pos + plen; 315 } 316 317 int 318 iomap_readpage(struct page *page, const struct iomap_ops *ops) 319 { 320 struct iomap_readpage_ctx ctx = { .cur_page = page }; 321 struct inode *inode = page->mapping->host; 322 unsigned poff; 323 loff_t ret; 324 325 trace_iomap_readpage(page->mapping->host, 1); 326 327 for (poff = 0; poff < PAGE_SIZE; poff += ret) { 328 ret = iomap_apply(inode, page_offset(page) + poff, 329 PAGE_SIZE - poff, 0, ops, &ctx, 330 iomap_readpage_actor); 331 if (ret <= 0) { 332 WARN_ON_ONCE(ret == 0); 333 SetPageError(page); 334 break; 335 } 336 } 337 338 if (ctx.bio) { 339 submit_bio(ctx.bio); 340 WARN_ON_ONCE(!ctx.cur_page_in_bio); 341 } else { 342 WARN_ON_ONCE(ctx.cur_page_in_bio); 343 unlock_page(page); 344 } 345 346 /* 347 * Just like mpage_readpages and block_read_full_page we always 348 * return 0 and just mark the page as PageError on errors. This 349 * should be cleaned up all through the stack eventually. 350 */ 351 return 0; 352 } 353 EXPORT_SYMBOL_GPL(iomap_readpage); 354 355 static struct page * 356 iomap_next_page(struct inode *inode, struct list_head *pages, loff_t pos, 357 loff_t length, loff_t *done) 358 { 359 while (!list_empty(pages)) { 360 struct page *page = lru_to_page(pages); 361 362 if (page_offset(page) >= (u64)pos + length) 363 break; 364 365 list_del(&page->lru); 366 if (!add_to_page_cache_lru(page, inode->i_mapping, page->index, 367 GFP_NOFS)) 368 return page; 369 370 /* 371 * If we already have a page in the page cache at index we are 372 * done. Upper layers don't care if it is uptodate after the 373 * readpages call itself as every page gets checked again once 374 * actually needed. 375 */ 376 *done += PAGE_SIZE; 377 put_page(page); 378 } 379 380 return NULL; 381 } 382 383 static loff_t 384 iomap_readpages_actor(struct inode *inode, loff_t pos, loff_t length, 385 void *data, struct iomap *iomap, struct iomap *srcmap) 386 { 387 struct iomap_readpage_ctx *ctx = data; 388 loff_t done, ret; 389 390 for (done = 0; done < length; done += ret) { 391 if (ctx->cur_page && offset_in_page(pos + done) == 0) { 392 if (!ctx->cur_page_in_bio) 393 unlock_page(ctx->cur_page); 394 put_page(ctx->cur_page); 395 ctx->cur_page = NULL; 396 } 397 if (!ctx->cur_page) { 398 ctx->cur_page = iomap_next_page(inode, ctx->pages, 399 pos, length, &done); 400 if (!ctx->cur_page) 401 break; 402 ctx->cur_page_in_bio = false; 403 } 404 ret = iomap_readpage_actor(inode, pos + done, length - done, 405 ctx, iomap, srcmap); 406 } 407 408 return done; 409 } 410 411 int 412 iomap_readpages(struct address_space *mapping, struct list_head *pages, 413 unsigned nr_pages, const struct iomap_ops *ops) 414 { 415 struct iomap_readpage_ctx ctx = { 416 .pages = pages, 417 .is_readahead = true, 418 }; 419 loff_t pos = page_offset(list_entry(pages->prev, struct page, lru)); 420 loff_t last = page_offset(list_entry(pages->next, struct page, lru)); 421 loff_t length = last - pos + PAGE_SIZE, ret = 0; 422 423 trace_iomap_readpages(mapping->host, nr_pages); 424 425 while (length > 0) { 426 ret = iomap_apply(mapping->host, pos, length, 0, ops, 427 &ctx, iomap_readpages_actor); 428 if (ret <= 0) { 429 WARN_ON_ONCE(ret == 0); 430 goto done; 431 } 432 pos += ret; 433 length -= ret; 434 } 435 ret = 0; 436 done: 437 if (ctx.bio) 438 submit_bio(ctx.bio); 439 if (ctx.cur_page) { 440 if (!ctx.cur_page_in_bio) 441 unlock_page(ctx.cur_page); 442 put_page(ctx.cur_page); 443 } 444 445 /* 446 * Check that we didn't lose a page due to the arcance calling 447 * conventions.. 448 */ 449 WARN_ON_ONCE(!ret && !list_empty(ctx.pages)); 450 return ret; 451 } 452 EXPORT_SYMBOL_GPL(iomap_readpages); 453 454 /* 455 * iomap_is_partially_uptodate checks whether blocks within a page are 456 * uptodate or not. 457 * 458 * Returns true if all blocks which correspond to a file portion 459 * we want to read within the page are uptodate. 460 */ 461 int 462 iomap_is_partially_uptodate(struct page *page, unsigned long from, 463 unsigned long count) 464 { 465 struct iomap_page *iop = to_iomap_page(page); 466 struct inode *inode = page->mapping->host; 467 unsigned len, first, last; 468 unsigned i; 469 470 /* Limit range to one page */ 471 len = min_t(unsigned, PAGE_SIZE - from, count); 472 473 /* First and last blocks in range within page */ 474 first = from >> inode->i_blkbits; 475 last = (from + len - 1) >> inode->i_blkbits; 476 477 if (iop) { 478 for (i = first; i <= last; i++) 479 if (!test_bit(i, iop->uptodate)) 480 return 0; 481 return 1; 482 } 483 484 return 0; 485 } 486 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate); 487 488 int 489 iomap_releasepage(struct page *page, gfp_t gfp_mask) 490 { 491 trace_iomap_releasepage(page->mapping->host, page, 0, 0); 492 493 /* 494 * mm accommodates an old ext3 case where clean pages might not have had 495 * the dirty bit cleared. Thus, it can send actual dirty pages to 496 * ->releasepage() via shrink_active_list(), skip those here. 497 */ 498 if (PageDirty(page) || PageWriteback(page)) 499 return 0; 500 iomap_page_release(page); 501 return 1; 502 } 503 EXPORT_SYMBOL_GPL(iomap_releasepage); 504 505 void 506 iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len) 507 { 508 trace_iomap_invalidatepage(page->mapping->host, page, offset, len); 509 510 /* 511 * If we are invalidating the entire page, clear the dirty state from it 512 * and release it to avoid unnecessary buildup of the LRU. 513 */ 514 if (offset == 0 && len == PAGE_SIZE) { 515 WARN_ON_ONCE(PageWriteback(page)); 516 cancel_dirty_page(page); 517 iomap_page_release(page); 518 } 519 } 520 EXPORT_SYMBOL_GPL(iomap_invalidatepage); 521 522 #ifdef CONFIG_MIGRATION 523 int 524 iomap_migrate_page(struct address_space *mapping, struct page *newpage, 525 struct page *page, enum migrate_mode mode) 526 { 527 int ret; 528 529 ret = migrate_page_move_mapping(mapping, newpage, page, 0); 530 if (ret != MIGRATEPAGE_SUCCESS) 531 return ret; 532 533 if (page_has_private(page)) { 534 ClearPagePrivate(page); 535 get_page(newpage); 536 set_page_private(newpage, page_private(page)); 537 set_page_private(page, 0); 538 put_page(page); 539 SetPagePrivate(newpage); 540 } 541 542 if (mode != MIGRATE_SYNC_NO_COPY) 543 migrate_page_copy(newpage, page); 544 else 545 migrate_page_states(newpage, page); 546 return MIGRATEPAGE_SUCCESS; 547 } 548 EXPORT_SYMBOL_GPL(iomap_migrate_page); 549 #endif /* CONFIG_MIGRATION */ 550 551 enum { 552 IOMAP_WRITE_F_UNSHARE = (1 << 0), 553 }; 554 555 static void 556 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len) 557 { 558 loff_t i_size = i_size_read(inode); 559 560 /* 561 * Only truncate newly allocated pages beyoned EOF, even if the 562 * write started inside the existing inode size. 563 */ 564 if (pos + len > i_size) 565 truncate_pagecache_range(inode, max(pos, i_size), pos + len); 566 } 567 568 static int 569 iomap_read_page_sync(loff_t block_start, struct page *page, unsigned poff, 570 unsigned plen, struct iomap *iomap) 571 { 572 struct bio_vec bvec; 573 struct bio bio; 574 575 bio_init(&bio, &bvec, 1); 576 bio.bi_opf = REQ_OP_READ; 577 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start); 578 bio_set_dev(&bio, iomap->bdev); 579 __bio_add_page(&bio, page, plen, poff); 580 return submit_bio_wait(&bio); 581 } 582 583 static int 584 __iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, int flags, 585 struct page *page, struct iomap *srcmap) 586 { 587 struct iomap_page *iop = iomap_page_create(inode, page); 588 loff_t block_size = i_blocksize(inode); 589 loff_t block_start = pos & ~(block_size - 1); 590 loff_t block_end = (pos + len + block_size - 1) & ~(block_size - 1); 591 unsigned from = offset_in_page(pos), to = from + len, poff, plen; 592 int status; 593 594 if (PageUptodate(page)) 595 return 0; 596 597 do { 598 iomap_adjust_read_range(inode, iop, &block_start, 599 block_end - block_start, &poff, &plen); 600 if (plen == 0) 601 break; 602 603 if (!(flags & IOMAP_WRITE_F_UNSHARE) && 604 (from <= poff || from >= poff + plen) && 605 (to <= poff || to >= poff + plen)) 606 continue; 607 608 if (iomap_block_needs_zeroing(inode, srcmap, block_start)) { 609 if (WARN_ON_ONCE(flags & IOMAP_WRITE_F_UNSHARE)) 610 return -EIO; 611 zero_user_segments(page, poff, from, to, poff + plen); 612 iomap_set_range_uptodate(page, poff, plen); 613 continue; 614 } 615 616 status = iomap_read_page_sync(block_start, page, poff, plen, 617 srcmap); 618 if (status) 619 return status; 620 } while ((block_start += plen) < block_end); 621 622 return 0; 623 } 624 625 static int 626 iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags, 627 struct page **pagep, struct iomap *iomap, struct iomap *srcmap) 628 { 629 const struct iomap_page_ops *page_ops = iomap->page_ops; 630 struct page *page; 631 int status = 0; 632 633 BUG_ON(pos + len > iomap->offset + iomap->length); 634 if (srcmap != iomap) 635 BUG_ON(pos + len > srcmap->offset + srcmap->length); 636 637 if (fatal_signal_pending(current)) 638 return -EINTR; 639 640 if (page_ops && page_ops->page_prepare) { 641 status = page_ops->page_prepare(inode, pos, len, iomap); 642 if (status) 643 return status; 644 } 645 646 page = grab_cache_page_write_begin(inode->i_mapping, pos >> PAGE_SHIFT, 647 AOP_FLAG_NOFS); 648 if (!page) { 649 status = -ENOMEM; 650 goto out_no_page; 651 } 652 653 if (srcmap->type == IOMAP_INLINE) 654 iomap_read_inline_data(inode, page, srcmap); 655 else if (iomap->flags & IOMAP_F_BUFFER_HEAD) 656 status = __block_write_begin_int(page, pos, len, NULL, srcmap); 657 else 658 status = __iomap_write_begin(inode, pos, len, flags, page, 659 srcmap); 660 661 if (unlikely(status)) 662 goto out_unlock; 663 664 *pagep = page; 665 return 0; 666 667 out_unlock: 668 unlock_page(page); 669 put_page(page); 670 iomap_write_failed(inode, pos, len); 671 672 out_no_page: 673 if (page_ops && page_ops->page_done) 674 page_ops->page_done(inode, pos, 0, NULL, iomap); 675 return status; 676 } 677 678 int 679 iomap_set_page_dirty(struct page *page) 680 { 681 struct address_space *mapping = page_mapping(page); 682 int newly_dirty; 683 684 if (unlikely(!mapping)) 685 return !TestSetPageDirty(page); 686 687 /* 688 * Lock out page->mem_cgroup migration to keep PageDirty 689 * synchronized with per-memcg dirty page counters. 690 */ 691 lock_page_memcg(page); 692 newly_dirty = !TestSetPageDirty(page); 693 if (newly_dirty) 694 __set_page_dirty(page, mapping, 0); 695 unlock_page_memcg(page); 696 697 if (newly_dirty) 698 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 699 return newly_dirty; 700 } 701 EXPORT_SYMBOL_GPL(iomap_set_page_dirty); 702 703 static int 704 __iomap_write_end(struct inode *inode, loff_t pos, unsigned len, 705 unsigned copied, struct page *page) 706 { 707 flush_dcache_page(page); 708 709 /* 710 * The blocks that were entirely written will now be uptodate, so we 711 * don't have to worry about a readpage reading them and overwriting a 712 * partial write. However if we have encountered a short write and only 713 * partially written into a block, it will not be marked uptodate, so a 714 * readpage might come in and destroy our partial write. 715 * 716 * Do the simplest thing, and just treat any short write to a non 717 * uptodate page as a zero-length write, and force the caller to redo 718 * the whole thing. 719 */ 720 if (unlikely(copied < len && !PageUptodate(page))) 721 return 0; 722 iomap_set_range_uptodate(page, offset_in_page(pos), len); 723 iomap_set_page_dirty(page); 724 return copied; 725 } 726 727 static int 728 iomap_write_end_inline(struct inode *inode, struct page *page, 729 struct iomap *iomap, loff_t pos, unsigned copied) 730 { 731 void *addr; 732 733 WARN_ON_ONCE(!PageUptodate(page)); 734 BUG_ON(pos + copied > PAGE_SIZE - offset_in_page(iomap->inline_data)); 735 736 addr = kmap_atomic(page); 737 memcpy(iomap->inline_data + pos, addr + pos, copied); 738 kunmap_atomic(addr); 739 740 mark_inode_dirty(inode); 741 return copied; 742 } 743 744 static int 745 iomap_write_end(struct inode *inode, loff_t pos, unsigned len, unsigned copied, 746 struct page *page, struct iomap *iomap, struct iomap *srcmap) 747 { 748 const struct iomap_page_ops *page_ops = iomap->page_ops; 749 loff_t old_size = inode->i_size; 750 int ret; 751 752 if (srcmap->type == IOMAP_INLINE) { 753 ret = iomap_write_end_inline(inode, page, iomap, pos, copied); 754 } else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) { 755 ret = block_write_end(NULL, inode->i_mapping, pos, len, copied, 756 page, NULL); 757 } else { 758 ret = __iomap_write_end(inode, pos, len, copied, page); 759 } 760 761 /* 762 * Update the in-memory inode size after copying the data into the page 763 * cache. It's up to the file system to write the updated size to disk, 764 * preferably after I/O completion so that no stale data is exposed. 765 */ 766 if (pos + ret > old_size) { 767 i_size_write(inode, pos + ret); 768 iomap->flags |= IOMAP_F_SIZE_CHANGED; 769 } 770 unlock_page(page); 771 772 if (old_size < pos) 773 pagecache_isize_extended(inode, old_size, pos); 774 if (page_ops && page_ops->page_done) 775 page_ops->page_done(inode, pos, ret, page, iomap); 776 put_page(page); 777 778 if (ret < len) 779 iomap_write_failed(inode, pos, len); 780 return ret; 781 } 782 783 static loff_t 784 iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data, 785 struct iomap *iomap, struct iomap *srcmap) 786 { 787 struct iov_iter *i = data; 788 long status = 0; 789 ssize_t written = 0; 790 791 do { 792 struct page *page; 793 unsigned long offset; /* Offset into pagecache page */ 794 unsigned long bytes; /* Bytes to write to page */ 795 size_t copied; /* Bytes copied from user */ 796 797 offset = offset_in_page(pos); 798 bytes = min_t(unsigned long, PAGE_SIZE - offset, 799 iov_iter_count(i)); 800 again: 801 if (bytes > length) 802 bytes = length; 803 804 /* 805 * Bring in the user page that we will copy from _first_. 806 * Otherwise there's a nasty deadlock on copying from the 807 * same page as we're writing to, without it being marked 808 * up-to-date. 809 * 810 * Not only is this an optimisation, but it is also required 811 * to check that the address is actually valid, when atomic 812 * usercopies are used, below. 813 */ 814 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 815 status = -EFAULT; 816 break; 817 } 818 819 status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap, 820 srcmap); 821 if (unlikely(status)) 822 break; 823 824 if (mapping_writably_mapped(inode->i_mapping)) 825 flush_dcache_page(page); 826 827 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 828 829 flush_dcache_page(page); 830 831 status = iomap_write_end(inode, pos, bytes, copied, page, iomap, 832 srcmap); 833 if (unlikely(status < 0)) 834 break; 835 copied = status; 836 837 cond_resched(); 838 839 iov_iter_advance(i, copied); 840 if (unlikely(copied == 0)) { 841 /* 842 * If we were unable to copy any data at all, we must 843 * fall back to a single segment length write. 844 * 845 * If we didn't fallback here, we could livelock 846 * because not all segments in the iov can be copied at 847 * once without a pagefault. 848 */ 849 bytes = min_t(unsigned long, PAGE_SIZE - offset, 850 iov_iter_single_seg_count(i)); 851 goto again; 852 } 853 pos += copied; 854 written += copied; 855 length -= copied; 856 857 balance_dirty_pages_ratelimited(inode->i_mapping); 858 } while (iov_iter_count(i) && length); 859 860 return written ? written : status; 861 } 862 863 ssize_t 864 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter, 865 const struct iomap_ops *ops) 866 { 867 struct inode *inode = iocb->ki_filp->f_mapping->host; 868 loff_t pos = iocb->ki_pos, ret = 0, written = 0; 869 870 while (iov_iter_count(iter)) { 871 ret = iomap_apply(inode, pos, iov_iter_count(iter), 872 IOMAP_WRITE, ops, iter, iomap_write_actor); 873 if (ret <= 0) 874 break; 875 pos += ret; 876 written += ret; 877 } 878 879 return written ? written : ret; 880 } 881 EXPORT_SYMBOL_GPL(iomap_file_buffered_write); 882 883 static loff_t 884 iomap_unshare_actor(struct inode *inode, loff_t pos, loff_t length, void *data, 885 struct iomap *iomap, struct iomap *srcmap) 886 { 887 long status = 0; 888 ssize_t written = 0; 889 890 /* don't bother with blocks that are not shared to start with */ 891 if (!(iomap->flags & IOMAP_F_SHARED)) 892 return length; 893 /* don't bother with holes or unwritten extents */ 894 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 895 return length; 896 897 do { 898 unsigned long offset = offset_in_page(pos); 899 unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length); 900 struct page *page; 901 902 status = iomap_write_begin(inode, pos, bytes, 903 IOMAP_WRITE_F_UNSHARE, &page, iomap, srcmap); 904 if (unlikely(status)) 905 return status; 906 907 status = iomap_write_end(inode, pos, bytes, bytes, page, iomap, 908 srcmap); 909 if (unlikely(status <= 0)) { 910 if (WARN_ON_ONCE(status == 0)) 911 return -EIO; 912 return status; 913 } 914 915 cond_resched(); 916 917 pos += status; 918 written += status; 919 length -= status; 920 921 balance_dirty_pages_ratelimited(inode->i_mapping); 922 } while (length); 923 924 return written; 925 } 926 927 int 928 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len, 929 const struct iomap_ops *ops) 930 { 931 loff_t ret; 932 933 while (len) { 934 ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL, 935 iomap_unshare_actor); 936 if (ret <= 0) 937 return ret; 938 pos += ret; 939 len -= ret; 940 } 941 942 return 0; 943 } 944 EXPORT_SYMBOL_GPL(iomap_file_unshare); 945 946 static int iomap_zero(struct inode *inode, loff_t pos, unsigned offset, 947 unsigned bytes, struct iomap *iomap, struct iomap *srcmap) 948 { 949 struct page *page; 950 int status; 951 952 status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap, srcmap); 953 if (status) 954 return status; 955 956 zero_user(page, offset, bytes); 957 mark_page_accessed(page); 958 959 return iomap_write_end(inode, pos, bytes, bytes, page, iomap, srcmap); 960 } 961 962 static int iomap_dax_zero(loff_t pos, unsigned offset, unsigned bytes, 963 struct iomap *iomap) 964 { 965 return __dax_zero_page_range(iomap->bdev, iomap->dax_dev, 966 iomap_sector(iomap, pos & PAGE_MASK), offset, bytes); 967 } 968 969 static loff_t 970 iomap_zero_range_actor(struct inode *inode, loff_t pos, loff_t count, 971 void *data, struct iomap *iomap, struct iomap *srcmap) 972 { 973 bool *did_zero = data; 974 loff_t written = 0; 975 int status; 976 977 /* already zeroed? we're done. */ 978 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 979 return count; 980 981 do { 982 unsigned offset, bytes; 983 984 offset = offset_in_page(pos); 985 bytes = min_t(loff_t, PAGE_SIZE - offset, count); 986 987 if (IS_DAX(inode)) 988 status = iomap_dax_zero(pos, offset, bytes, iomap); 989 else 990 status = iomap_zero(inode, pos, offset, bytes, iomap, 991 srcmap); 992 if (status < 0) 993 return status; 994 995 pos += bytes; 996 count -= bytes; 997 written += bytes; 998 if (did_zero) 999 *did_zero = true; 1000 } while (count > 0); 1001 1002 return written; 1003 } 1004 1005 int 1006 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero, 1007 const struct iomap_ops *ops) 1008 { 1009 loff_t ret; 1010 1011 while (len > 0) { 1012 ret = iomap_apply(inode, pos, len, IOMAP_ZERO, 1013 ops, did_zero, iomap_zero_range_actor); 1014 if (ret <= 0) 1015 return ret; 1016 1017 pos += ret; 1018 len -= ret; 1019 } 1020 1021 return 0; 1022 } 1023 EXPORT_SYMBOL_GPL(iomap_zero_range); 1024 1025 int 1026 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero, 1027 const struct iomap_ops *ops) 1028 { 1029 unsigned int blocksize = i_blocksize(inode); 1030 unsigned int off = pos & (blocksize - 1); 1031 1032 /* Block boundary? Nothing to do */ 1033 if (!off) 1034 return 0; 1035 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops); 1036 } 1037 EXPORT_SYMBOL_GPL(iomap_truncate_page); 1038 1039 static loff_t 1040 iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length, 1041 void *data, struct iomap *iomap, struct iomap *srcmap) 1042 { 1043 struct page *page = data; 1044 int ret; 1045 1046 if (iomap->flags & IOMAP_F_BUFFER_HEAD) { 1047 ret = __block_write_begin_int(page, pos, length, NULL, iomap); 1048 if (ret) 1049 return ret; 1050 block_commit_write(page, 0, length); 1051 } else { 1052 WARN_ON_ONCE(!PageUptodate(page)); 1053 iomap_page_create(inode, page); 1054 set_page_dirty(page); 1055 } 1056 1057 return length; 1058 } 1059 1060 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops) 1061 { 1062 struct page *page = vmf->page; 1063 struct inode *inode = file_inode(vmf->vma->vm_file); 1064 unsigned long length; 1065 loff_t offset, size; 1066 ssize_t ret; 1067 1068 lock_page(page); 1069 size = i_size_read(inode); 1070 offset = page_offset(page); 1071 if (page->mapping != inode->i_mapping || offset > size) { 1072 /* We overload EFAULT to mean page got truncated */ 1073 ret = -EFAULT; 1074 goto out_unlock; 1075 } 1076 1077 /* page is wholly or partially inside EOF */ 1078 if (offset > size - PAGE_SIZE) 1079 length = offset_in_page(size); 1080 else 1081 length = PAGE_SIZE; 1082 1083 while (length > 0) { 1084 ret = iomap_apply(inode, offset, length, 1085 IOMAP_WRITE | IOMAP_FAULT, ops, page, 1086 iomap_page_mkwrite_actor); 1087 if (unlikely(ret <= 0)) 1088 goto out_unlock; 1089 offset += ret; 1090 length -= ret; 1091 } 1092 1093 wait_for_stable_page(page); 1094 return VM_FAULT_LOCKED; 1095 out_unlock: 1096 unlock_page(page); 1097 return block_page_mkwrite_return(ret); 1098 } 1099 EXPORT_SYMBOL_GPL(iomap_page_mkwrite); 1100 1101 static void 1102 iomap_finish_page_writeback(struct inode *inode, struct page *page, 1103 int error) 1104 { 1105 struct iomap_page *iop = to_iomap_page(page); 1106 1107 if (error) { 1108 SetPageError(page); 1109 mapping_set_error(inode->i_mapping, -EIO); 1110 } 1111 1112 WARN_ON_ONCE(i_blocksize(inode) < PAGE_SIZE && !iop); 1113 WARN_ON_ONCE(iop && atomic_read(&iop->write_count) <= 0); 1114 1115 if (!iop || atomic_dec_and_test(&iop->write_count)) 1116 end_page_writeback(page); 1117 } 1118 1119 /* 1120 * We're now finished for good with this ioend structure. Update the page 1121 * state, release holds on bios, and finally free up memory. Do not use the 1122 * ioend after this. 1123 */ 1124 static void 1125 iomap_finish_ioend(struct iomap_ioend *ioend, int error) 1126 { 1127 struct inode *inode = ioend->io_inode; 1128 struct bio *bio = &ioend->io_inline_bio; 1129 struct bio *last = ioend->io_bio, *next; 1130 u64 start = bio->bi_iter.bi_sector; 1131 bool quiet = bio_flagged(bio, BIO_QUIET); 1132 1133 for (bio = &ioend->io_inline_bio; bio; bio = next) { 1134 struct bio_vec *bv; 1135 struct bvec_iter_all iter_all; 1136 1137 /* 1138 * For the last bio, bi_private points to the ioend, so we 1139 * need to explicitly end the iteration here. 1140 */ 1141 if (bio == last) 1142 next = NULL; 1143 else 1144 next = bio->bi_private; 1145 1146 /* walk each page on bio, ending page IO on them */ 1147 bio_for_each_segment_all(bv, bio, iter_all) 1148 iomap_finish_page_writeback(inode, bv->bv_page, error); 1149 bio_put(bio); 1150 } 1151 1152 if (unlikely(error && !quiet)) { 1153 printk_ratelimited(KERN_ERR 1154 "%s: writeback error on inode %lu, offset %lld, sector %llu", 1155 inode->i_sb->s_id, inode->i_ino, ioend->io_offset, 1156 start); 1157 } 1158 } 1159 1160 void 1161 iomap_finish_ioends(struct iomap_ioend *ioend, int error) 1162 { 1163 struct list_head tmp; 1164 1165 list_replace_init(&ioend->io_list, &tmp); 1166 iomap_finish_ioend(ioend, error); 1167 1168 while (!list_empty(&tmp)) { 1169 ioend = list_first_entry(&tmp, struct iomap_ioend, io_list); 1170 list_del_init(&ioend->io_list); 1171 iomap_finish_ioend(ioend, error); 1172 } 1173 } 1174 EXPORT_SYMBOL_GPL(iomap_finish_ioends); 1175 1176 /* 1177 * We can merge two adjacent ioends if they have the same set of work to do. 1178 */ 1179 static bool 1180 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next) 1181 { 1182 if (ioend->io_bio->bi_status != next->io_bio->bi_status) 1183 return false; 1184 if ((ioend->io_flags & IOMAP_F_SHARED) ^ 1185 (next->io_flags & IOMAP_F_SHARED)) 1186 return false; 1187 if ((ioend->io_type == IOMAP_UNWRITTEN) ^ 1188 (next->io_type == IOMAP_UNWRITTEN)) 1189 return false; 1190 if (ioend->io_offset + ioend->io_size != next->io_offset) 1191 return false; 1192 return true; 1193 } 1194 1195 void 1196 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends, 1197 void (*merge_private)(struct iomap_ioend *ioend, 1198 struct iomap_ioend *next)) 1199 { 1200 struct iomap_ioend *next; 1201 1202 INIT_LIST_HEAD(&ioend->io_list); 1203 1204 while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend, 1205 io_list))) { 1206 if (!iomap_ioend_can_merge(ioend, next)) 1207 break; 1208 list_move_tail(&next->io_list, &ioend->io_list); 1209 ioend->io_size += next->io_size; 1210 if (next->io_private && merge_private) 1211 merge_private(ioend, next); 1212 } 1213 } 1214 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge); 1215 1216 static int 1217 iomap_ioend_compare(void *priv, struct list_head *a, struct list_head *b) 1218 { 1219 struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list); 1220 struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list); 1221 1222 if (ia->io_offset < ib->io_offset) 1223 return -1; 1224 if (ia->io_offset > ib->io_offset) 1225 return 1; 1226 return 0; 1227 } 1228 1229 void 1230 iomap_sort_ioends(struct list_head *ioend_list) 1231 { 1232 list_sort(NULL, ioend_list, iomap_ioend_compare); 1233 } 1234 EXPORT_SYMBOL_GPL(iomap_sort_ioends); 1235 1236 static void iomap_writepage_end_bio(struct bio *bio) 1237 { 1238 struct iomap_ioend *ioend = bio->bi_private; 1239 1240 iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status)); 1241 } 1242 1243 /* 1244 * Submit the final bio for an ioend. 1245 * 1246 * If @error is non-zero, it means that we have a situation where some part of 1247 * the submission process has failed after we have marked paged for writeback 1248 * and unlocked them. In this situation, we need to fail the bio instead of 1249 * submitting it. This typically only happens on a filesystem shutdown. 1250 */ 1251 static int 1252 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend, 1253 int error) 1254 { 1255 ioend->io_bio->bi_private = ioend; 1256 ioend->io_bio->bi_end_io = iomap_writepage_end_bio; 1257 1258 if (wpc->ops->prepare_ioend) 1259 error = wpc->ops->prepare_ioend(ioend, error); 1260 if (error) { 1261 /* 1262 * If we are failing the IO now, just mark the ioend with an 1263 * error and finish it. This will run IO completion immediately 1264 * as there is only one reference to the ioend at this point in 1265 * time. 1266 */ 1267 ioend->io_bio->bi_status = errno_to_blk_status(error); 1268 bio_endio(ioend->io_bio); 1269 return error; 1270 } 1271 1272 submit_bio(ioend->io_bio); 1273 return 0; 1274 } 1275 1276 static struct iomap_ioend * 1277 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc, 1278 loff_t offset, sector_t sector, struct writeback_control *wbc) 1279 { 1280 struct iomap_ioend *ioend; 1281 struct bio *bio; 1282 1283 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &iomap_ioend_bioset); 1284 bio_set_dev(bio, wpc->iomap.bdev); 1285 bio->bi_iter.bi_sector = sector; 1286 bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc); 1287 bio->bi_write_hint = inode->i_write_hint; 1288 wbc_init_bio(wbc, bio); 1289 1290 ioend = container_of(bio, struct iomap_ioend, io_inline_bio); 1291 INIT_LIST_HEAD(&ioend->io_list); 1292 ioend->io_type = wpc->iomap.type; 1293 ioend->io_flags = wpc->iomap.flags; 1294 ioend->io_inode = inode; 1295 ioend->io_size = 0; 1296 ioend->io_offset = offset; 1297 ioend->io_private = NULL; 1298 ioend->io_bio = bio; 1299 return ioend; 1300 } 1301 1302 /* 1303 * Allocate a new bio, and chain the old bio to the new one. 1304 * 1305 * Note that we have to do perform the chaining in this unintuitive order 1306 * so that the bi_private linkage is set up in the right direction for the 1307 * traversal in iomap_finish_ioend(). 1308 */ 1309 static struct bio * 1310 iomap_chain_bio(struct bio *prev) 1311 { 1312 struct bio *new; 1313 1314 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES); 1315 bio_copy_dev(new, prev);/* also copies over blkcg information */ 1316 new->bi_iter.bi_sector = bio_end_sector(prev); 1317 new->bi_opf = prev->bi_opf; 1318 new->bi_write_hint = prev->bi_write_hint; 1319 1320 bio_chain(prev, new); 1321 bio_get(prev); /* for iomap_finish_ioend */ 1322 submit_bio(prev); 1323 return new; 1324 } 1325 1326 static bool 1327 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset, 1328 sector_t sector) 1329 { 1330 if ((wpc->iomap.flags & IOMAP_F_SHARED) != 1331 (wpc->ioend->io_flags & IOMAP_F_SHARED)) 1332 return false; 1333 if (wpc->iomap.type != wpc->ioend->io_type) 1334 return false; 1335 if (offset != wpc->ioend->io_offset + wpc->ioend->io_size) 1336 return false; 1337 if (sector != bio_end_sector(wpc->ioend->io_bio)) 1338 return false; 1339 return true; 1340 } 1341 1342 /* 1343 * Test to see if we have an existing ioend structure that we could append to 1344 * first, otherwise finish off the current ioend and start another. 1345 */ 1346 static void 1347 iomap_add_to_ioend(struct inode *inode, loff_t offset, struct page *page, 1348 struct iomap_page *iop, struct iomap_writepage_ctx *wpc, 1349 struct writeback_control *wbc, struct list_head *iolist) 1350 { 1351 sector_t sector = iomap_sector(&wpc->iomap, offset); 1352 unsigned len = i_blocksize(inode); 1353 unsigned poff = offset & (PAGE_SIZE - 1); 1354 bool merged, same_page = false; 1355 1356 if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, offset, sector)) { 1357 if (wpc->ioend) 1358 list_add(&wpc->ioend->io_list, iolist); 1359 wpc->ioend = iomap_alloc_ioend(inode, wpc, offset, sector, wbc); 1360 } 1361 1362 merged = __bio_try_merge_page(wpc->ioend->io_bio, page, len, poff, 1363 &same_page); 1364 if (iop && !same_page) 1365 atomic_inc(&iop->write_count); 1366 1367 if (!merged) { 1368 if (bio_full(wpc->ioend->io_bio, len)) { 1369 wpc->ioend->io_bio = 1370 iomap_chain_bio(wpc->ioend->io_bio); 1371 } 1372 bio_add_page(wpc->ioend->io_bio, page, len, poff); 1373 } 1374 1375 wpc->ioend->io_size += len; 1376 wbc_account_cgroup_owner(wbc, page, len); 1377 } 1378 1379 /* 1380 * We implement an immediate ioend submission policy here to avoid needing to 1381 * chain multiple ioends and hence nest mempool allocations which can violate 1382 * forward progress guarantees we need to provide. The current ioend we are 1383 * adding blocks to is cached on the writepage context, and if the new block 1384 * does not append to the cached ioend it will create a new ioend and cache that 1385 * instead. 1386 * 1387 * If a new ioend is created and cached, the old ioend is returned and queued 1388 * locally for submission once the entire page is processed or an error has been 1389 * detected. While ioends are submitted immediately after they are completed, 1390 * batching optimisations are provided by higher level block plugging. 1391 * 1392 * At the end of a writeback pass, there will be a cached ioend remaining on the 1393 * writepage context that the caller will need to submit. 1394 */ 1395 static int 1396 iomap_writepage_map(struct iomap_writepage_ctx *wpc, 1397 struct writeback_control *wbc, struct inode *inode, 1398 struct page *page, u64 end_offset) 1399 { 1400 struct iomap_page *iop = to_iomap_page(page); 1401 struct iomap_ioend *ioend, *next; 1402 unsigned len = i_blocksize(inode); 1403 u64 file_offset; /* file offset of page */ 1404 int error = 0, count = 0, i; 1405 LIST_HEAD(submit_list); 1406 1407 WARN_ON_ONCE(i_blocksize(inode) < PAGE_SIZE && !iop); 1408 WARN_ON_ONCE(iop && atomic_read(&iop->write_count) != 0); 1409 1410 /* 1411 * Walk through the page to find areas to write back. If we run off the 1412 * end of the current map or find the current map invalid, grab a new 1413 * one. 1414 */ 1415 for (i = 0, file_offset = page_offset(page); 1416 i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset; 1417 i++, file_offset += len) { 1418 if (iop && !test_bit(i, iop->uptodate)) 1419 continue; 1420 1421 error = wpc->ops->map_blocks(wpc, inode, file_offset); 1422 if (error) 1423 break; 1424 if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE)) 1425 continue; 1426 if (wpc->iomap.type == IOMAP_HOLE) 1427 continue; 1428 iomap_add_to_ioend(inode, file_offset, page, iop, wpc, wbc, 1429 &submit_list); 1430 count++; 1431 } 1432 1433 WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list)); 1434 WARN_ON_ONCE(!PageLocked(page)); 1435 WARN_ON_ONCE(PageWriteback(page)); 1436 1437 /* 1438 * We cannot cancel the ioend directly here on error. We may have 1439 * already set other pages under writeback and hence we have to run I/O 1440 * completion to mark the error state of the pages under writeback 1441 * appropriately. 1442 */ 1443 if (unlikely(error)) { 1444 if (!count) { 1445 /* 1446 * If the current page hasn't been added to ioend, it 1447 * won't be affected by I/O completions and we must 1448 * discard and unlock it right here. 1449 */ 1450 if (wpc->ops->discard_page) 1451 wpc->ops->discard_page(page); 1452 ClearPageUptodate(page); 1453 unlock_page(page); 1454 goto done; 1455 } 1456 1457 /* 1458 * If the page was not fully cleaned, we need to ensure that the 1459 * higher layers come back to it correctly. That means we need 1460 * to keep the page dirty, and for WB_SYNC_ALL writeback we need 1461 * to ensure the PAGECACHE_TAG_TOWRITE index mark is not removed 1462 * so another attempt to write this page in this writeback sweep 1463 * will be made. 1464 */ 1465 set_page_writeback_keepwrite(page); 1466 } else { 1467 clear_page_dirty_for_io(page); 1468 set_page_writeback(page); 1469 } 1470 1471 unlock_page(page); 1472 1473 /* 1474 * Preserve the original error if there was one, otherwise catch 1475 * submission errors here and propagate into subsequent ioend 1476 * submissions. 1477 */ 1478 list_for_each_entry_safe(ioend, next, &submit_list, io_list) { 1479 int error2; 1480 1481 list_del_init(&ioend->io_list); 1482 error2 = iomap_submit_ioend(wpc, ioend, error); 1483 if (error2 && !error) 1484 error = error2; 1485 } 1486 1487 /* 1488 * We can end up here with no error and nothing to write only if we race 1489 * with a partial page truncate on a sub-page block sized filesystem. 1490 */ 1491 if (!count) 1492 end_page_writeback(page); 1493 done: 1494 mapping_set_error(page->mapping, error); 1495 return error; 1496 } 1497 1498 /* 1499 * Write out a dirty page. 1500 * 1501 * For delalloc space on the page we need to allocate space and flush it. 1502 * For unwritten space on the page we need to start the conversion to 1503 * regular allocated space. 1504 */ 1505 static int 1506 iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data) 1507 { 1508 struct iomap_writepage_ctx *wpc = data; 1509 struct inode *inode = page->mapping->host; 1510 pgoff_t end_index; 1511 u64 end_offset; 1512 loff_t offset; 1513 1514 trace_iomap_writepage(inode, page, 0, 0); 1515 1516 /* 1517 * Refuse to write the page out if we are called from reclaim context. 1518 * 1519 * This avoids stack overflows when called from deeply used stacks in 1520 * random callers for direct reclaim or memcg reclaim. We explicitly 1521 * allow reclaim from kswapd as the stack usage there is relatively low. 1522 * 1523 * This should never happen except in the case of a VM regression so 1524 * warn about it. 1525 */ 1526 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 1527 PF_MEMALLOC)) 1528 goto redirty; 1529 1530 /* 1531 * Given that we do not allow direct reclaim to call us, we should 1532 * never be called in a recursive filesystem reclaim context. 1533 */ 1534 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS)) 1535 goto redirty; 1536 1537 /* 1538 * Is this page beyond the end of the file? 1539 * 1540 * The page index is less than the end_index, adjust the end_offset 1541 * to the highest offset that this page should represent. 1542 * ----------------------------------------------------- 1543 * | file mapping | <EOF> | 1544 * ----------------------------------------------------- 1545 * | Page ... | Page N-2 | Page N-1 | Page N | | 1546 * ^--------------------------------^----------|-------- 1547 * | desired writeback range | see else | 1548 * ---------------------------------^------------------| 1549 */ 1550 offset = i_size_read(inode); 1551 end_index = offset >> PAGE_SHIFT; 1552 if (page->index < end_index) 1553 end_offset = (loff_t)(page->index + 1) << PAGE_SHIFT; 1554 else { 1555 /* 1556 * Check whether the page to write out is beyond or straddles 1557 * i_size or not. 1558 * ------------------------------------------------------- 1559 * | file mapping | <EOF> | 1560 * ------------------------------------------------------- 1561 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond | 1562 * ^--------------------------------^-----------|--------- 1563 * | | Straddles | 1564 * ---------------------------------^-----------|--------| 1565 */ 1566 unsigned offset_into_page = offset & (PAGE_SIZE - 1); 1567 1568 /* 1569 * Skip the page if it is fully outside i_size, e.g. due to a 1570 * truncate operation that is in progress. We must redirty the 1571 * page so that reclaim stops reclaiming it. Otherwise 1572 * iomap_vm_releasepage() is called on it and gets confused. 1573 * 1574 * Note that the end_index is unsigned long, it would overflow 1575 * if the given offset is greater than 16TB on 32-bit system 1576 * and if we do check the page is fully outside i_size or not 1577 * via "if (page->index >= end_index + 1)" as "end_index + 1" 1578 * will be evaluated to 0. Hence this page will be redirtied 1579 * and be written out repeatedly which would result in an 1580 * infinite loop, the user program that perform this operation 1581 * will hang. Instead, we can verify this situation by checking 1582 * if the page to write is totally beyond the i_size or if it's 1583 * offset is just equal to the EOF. 1584 */ 1585 if (page->index > end_index || 1586 (page->index == end_index && offset_into_page == 0)) 1587 goto redirty; 1588 1589 /* 1590 * The page straddles i_size. It must be zeroed out on each 1591 * and every writepage invocation because it may be mmapped. 1592 * "A file is mapped in multiples of the page size. For a file 1593 * that is not a multiple of the page size, the remaining 1594 * memory is zeroed when mapped, and writes to that region are 1595 * not written out to the file." 1596 */ 1597 zero_user_segment(page, offset_into_page, PAGE_SIZE); 1598 1599 /* Adjust the end_offset to the end of file */ 1600 end_offset = offset; 1601 } 1602 1603 return iomap_writepage_map(wpc, wbc, inode, page, end_offset); 1604 1605 redirty: 1606 redirty_page_for_writepage(wbc, page); 1607 unlock_page(page); 1608 return 0; 1609 } 1610 1611 int 1612 iomap_writepage(struct page *page, struct writeback_control *wbc, 1613 struct iomap_writepage_ctx *wpc, 1614 const struct iomap_writeback_ops *ops) 1615 { 1616 int ret; 1617 1618 wpc->ops = ops; 1619 ret = iomap_do_writepage(page, wbc, wpc); 1620 if (!wpc->ioend) 1621 return ret; 1622 return iomap_submit_ioend(wpc, wpc->ioend, ret); 1623 } 1624 EXPORT_SYMBOL_GPL(iomap_writepage); 1625 1626 int 1627 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc, 1628 struct iomap_writepage_ctx *wpc, 1629 const struct iomap_writeback_ops *ops) 1630 { 1631 int ret; 1632 1633 wpc->ops = ops; 1634 ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc); 1635 if (!wpc->ioend) 1636 return ret; 1637 return iomap_submit_ioend(wpc, wpc->ioend, ret); 1638 } 1639 EXPORT_SYMBOL_GPL(iomap_writepages); 1640 1641 static int __init iomap_init(void) 1642 { 1643 return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE), 1644 offsetof(struct iomap_ioend, io_inline_bio), 1645 BIOSET_NEED_BVECS); 1646 } 1647 fs_initcall(iomap_init); 1648