xref: /openbmc/linux/fs/iomap/buffered-io.c (revision 323dd2c3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Red Hat, Inc.
4  * Copyright (C) 2016-2019 Christoph Hellwig.
5  */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/iomap.h>
10 #include <linux/pagemap.h>
11 #include <linux/uio.h>
12 #include <linux/buffer_head.h>
13 #include <linux/dax.h>
14 #include <linux/writeback.h>
15 #include <linux/list_sort.h>
16 #include <linux/swap.h>
17 #include <linux/bio.h>
18 #include <linux/sched/signal.h>
19 #include <linux/migrate.h>
20 #include "trace.h"
21 
22 #include "../internal.h"
23 
24 /*
25  * Structure allocated for each page when block size < PAGE_SIZE to track
26  * sub-page uptodate status and I/O completions.
27  */
28 struct iomap_page {
29 	atomic_t		read_count;
30 	atomic_t		write_count;
31 	DECLARE_BITMAP(uptodate, PAGE_SIZE / 512);
32 };
33 
34 static inline struct iomap_page *to_iomap_page(struct page *page)
35 {
36 	if (page_has_private(page))
37 		return (struct iomap_page *)page_private(page);
38 	return NULL;
39 }
40 
41 static struct bio_set iomap_ioend_bioset;
42 
43 static struct iomap_page *
44 iomap_page_create(struct inode *inode, struct page *page)
45 {
46 	struct iomap_page *iop = to_iomap_page(page);
47 
48 	if (iop || i_blocksize(inode) == PAGE_SIZE)
49 		return iop;
50 
51 	iop = kmalloc(sizeof(*iop), GFP_NOFS | __GFP_NOFAIL);
52 	atomic_set(&iop->read_count, 0);
53 	atomic_set(&iop->write_count, 0);
54 	bitmap_zero(iop->uptodate, PAGE_SIZE / SECTOR_SIZE);
55 
56 	/*
57 	 * migrate_page_move_mapping() assumes that pages with private data have
58 	 * their count elevated by 1.
59 	 */
60 	get_page(page);
61 	set_page_private(page, (unsigned long)iop);
62 	SetPagePrivate(page);
63 	return iop;
64 }
65 
66 static void
67 iomap_page_release(struct page *page)
68 {
69 	struct iomap_page *iop = to_iomap_page(page);
70 
71 	if (!iop)
72 		return;
73 	WARN_ON_ONCE(atomic_read(&iop->read_count));
74 	WARN_ON_ONCE(atomic_read(&iop->write_count));
75 	ClearPagePrivate(page);
76 	set_page_private(page, 0);
77 	put_page(page);
78 	kfree(iop);
79 }
80 
81 /*
82  * Calculate the range inside the page that we actually need to read.
83  */
84 static void
85 iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop,
86 		loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp)
87 {
88 	loff_t orig_pos = *pos;
89 	loff_t isize = i_size_read(inode);
90 	unsigned block_bits = inode->i_blkbits;
91 	unsigned block_size = (1 << block_bits);
92 	unsigned poff = offset_in_page(*pos);
93 	unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length);
94 	unsigned first = poff >> block_bits;
95 	unsigned last = (poff + plen - 1) >> block_bits;
96 
97 	/*
98 	 * If the block size is smaller than the page size we need to check the
99 	 * per-block uptodate status and adjust the offset and length if needed
100 	 * to avoid reading in already uptodate ranges.
101 	 */
102 	if (iop) {
103 		unsigned int i;
104 
105 		/* move forward for each leading block marked uptodate */
106 		for (i = first; i <= last; i++) {
107 			if (!test_bit(i, iop->uptodate))
108 				break;
109 			*pos += block_size;
110 			poff += block_size;
111 			plen -= block_size;
112 			first++;
113 		}
114 
115 		/* truncate len if we find any trailing uptodate block(s) */
116 		for ( ; i <= last; i++) {
117 			if (test_bit(i, iop->uptodate)) {
118 				plen -= (last - i + 1) * block_size;
119 				last = i - 1;
120 				break;
121 			}
122 		}
123 	}
124 
125 	/*
126 	 * If the extent spans the block that contains the i_size we need to
127 	 * handle both halves separately so that we properly zero data in the
128 	 * page cache for blocks that are entirely outside of i_size.
129 	 */
130 	if (orig_pos <= isize && orig_pos + length > isize) {
131 		unsigned end = offset_in_page(isize - 1) >> block_bits;
132 
133 		if (first <= end && last > end)
134 			plen -= (last - end) * block_size;
135 	}
136 
137 	*offp = poff;
138 	*lenp = plen;
139 }
140 
141 static void
142 iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len)
143 {
144 	struct iomap_page *iop = to_iomap_page(page);
145 	struct inode *inode = page->mapping->host;
146 	unsigned first = off >> inode->i_blkbits;
147 	unsigned last = (off + len - 1) >> inode->i_blkbits;
148 	unsigned int i;
149 	bool uptodate = true;
150 
151 	if (iop) {
152 		for (i = 0; i < PAGE_SIZE / i_blocksize(inode); i++) {
153 			if (i >= first && i <= last)
154 				set_bit(i, iop->uptodate);
155 			else if (!test_bit(i, iop->uptodate))
156 				uptodate = false;
157 		}
158 	}
159 
160 	if (uptodate && !PageError(page))
161 		SetPageUptodate(page);
162 }
163 
164 static void
165 iomap_read_finish(struct iomap_page *iop, struct page *page)
166 {
167 	if (!iop || atomic_dec_and_test(&iop->read_count))
168 		unlock_page(page);
169 }
170 
171 static void
172 iomap_read_page_end_io(struct bio_vec *bvec, int error)
173 {
174 	struct page *page = bvec->bv_page;
175 	struct iomap_page *iop = to_iomap_page(page);
176 
177 	if (unlikely(error)) {
178 		ClearPageUptodate(page);
179 		SetPageError(page);
180 	} else {
181 		iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len);
182 	}
183 
184 	iomap_read_finish(iop, page);
185 }
186 
187 static void
188 iomap_read_end_io(struct bio *bio)
189 {
190 	int error = blk_status_to_errno(bio->bi_status);
191 	struct bio_vec *bvec;
192 	struct bvec_iter_all iter_all;
193 
194 	bio_for_each_segment_all(bvec, bio, iter_all)
195 		iomap_read_page_end_io(bvec, error);
196 	bio_put(bio);
197 }
198 
199 struct iomap_readpage_ctx {
200 	struct page		*cur_page;
201 	bool			cur_page_in_bio;
202 	bool			is_readahead;
203 	struct bio		*bio;
204 	struct list_head	*pages;
205 };
206 
207 static void
208 iomap_read_inline_data(struct inode *inode, struct page *page,
209 		struct iomap *iomap)
210 {
211 	size_t size = i_size_read(inode);
212 	void *addr;
213 
214 	if (PageUptodate(page))
215 		return;
216 
217 	BUG_ON(page->index);
218 	BUG_ON(size > PAGE_SIZE - offset_in_page(iomap->inline_data));
219 
220 	addr = kmap_atomic(page);
221 	memcpy(addr, iomap->inline_data, size);
222 	memset(addr + size, 0, PAGE_SIZE - size);
223 	kunmap_atomic(addr);
224 	SetPageUptodate(page);
225 }
226 
227 static inline bool iomap_block_needs_zeroing(struct inode *inode,
228 		struct iomap *iomap, loff_t pos)
229 {
230 	return iomap->type != IOMAP_MAPPED ||
231 		(iomap->flags & IOMAP_F_NEW) ||
232 		pos >= i_size_read(inode);
233 }
234 
235 static loff_t
236 iomap_readpage_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
237 		struct iomap *iomap, struct iomap *srcmap)
238 {
239 	struct iomap_readpage_ctx *ctx = data;
240 	struct page *page = ctx->cur_page;
241 	struct iomap_page *iop = iomap_page_create(inode, page);
242 	bool same_page = false, is_contig = false;
243 	loff_t orig_pos = pos;
244 	unsigned poff, plen;
245 	sector_t sector;
246 
247 	if (iomap->type == IOMAP_INLINE) {
248 		WARN_ON_ONCE(pos);
249 		iomap_read_inline_data(inode, page, iomap);
250 		return PAGE_SIZE;
251 	}
252 
253 	/* zero post-eof blocks as the page may be mapped */
254 	iomap_adjust_read_range(inode, iop, &pos, length, &poff, &plen);
255 	if (plen == 0)
256 		goto done;
257 
258 	if (iomap_block_needs_zeroing(inode, iomap, pos)) {
259 		zero_user(page, poff, plen);
260 		iomap_set_range_uptodate(page, poff, plen);
261 		goto done;
262 	}
263 
264 	ctx->cur_page_in_bio = true;
265 
266 	/*
267 	 * Try to merge into a previous segment if we can.
268 	 */
269 	sector = iomap_sector(iomap, pos);
270 	if (ctx->bio && bio_end_sector(ctx->bio) == sector)
271 		is_contig = true;
272 
273 	if (is_contig &&
274 	    __bio_try_merge_page(ctx->bio, page, plen, poff, &same_page)) {
275 		if (!same_page && iop)
276 			atomic_inc(&iop->read_count);
277 		goto done;
278 	}
279 
280 	/*
281 	 * If we start a new segment we need to increase the read count, and we
282 	 * need to do so before submitting any previous full bio to make sure
283 	 * that we don't prematurely unlock the page.
284 	 */
285 	if (iop)
286 		atomic_inc(&iop->read_count);
287 
288 	if (!ctx->bio || !is_contig || bio_full(ctx->bio, plen)) {
289 		gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
290 		int nr_vecs = (length + PAGE_SIZE - 1) >> PAGE_SHIFT;
291 
292 		if (ctx->bio)
293 			submit_bio(ctx->bio);
294 
295 		if (ctx->is_readahead) /* same as readahead_gfp_mask */
296 			gfp |= __GFP_NORETRY | __GFP_NOWARN;
297 		ctx->bio = bio_alloc(gfp, min(BIO_MAX_PAGES, nr_vecs));
298 		ctx->bio->bi_opf = REQ_OP_READ;
299 		if (ctx->is_readahead)
300 			ctx->bio->bi_opf |= REQ_RAHEAD;
301 		ctx->bio->bi_iter.bi_sector = sector;
302 		bio_set_dev(ctx->bio, iomap->bdev);
303 		ctx->bio->bi_end_io = iomap_read_end_io;
304 	}
305 
306 	bio_add_page(ctx->bio, page, plen, poff);
307 done:
308 	/*
309 	 * Move the caller beyond our range so that it keeps making progress.
310 	 * For that we have to include any leading non-uptodate ranges, but
311 	 * we can skip trailing ones as they will be handled in the next
312 	 * iteration.
313 	 */
314 	return pos - orig_pos + plen;
315 }
316 
317 int
318 iomap_readpage(struct page *page, const struct iomap_ops *ops)
319 {
320 	struct iomap_readpage_ctx ctx = { .cur_page = page };
321 	struct inode *inode = page->mapping->host;
322 	unsigned poff;
323 	loff_t ret;
324 
325 	trace_iomap_readpage(page->mapping->host, 1);
326 
327 	for (poff = 0; poff < PAGE_SIZE; poff += ret) {
328 		ret = iomap_apply(inode, page_offset(page) + poff,
329 				PAGE_SIZE - poff, 0, ops, &ctx,
330 				iomap_readpage_actor);
331 		if (ret <= 0) {
332 			WARN_ON_ONCE(ret == 0);
333 			SetPageError(page);
334 			break;
335 		}
336 	}
337 
338 	if (ctx.bio) {
339 		submit_bio(ctx.bio);
340 		WARN_ON_ONCE(!ctx.cur_page_in_bio);
341 	} else {
342 		WARN_ON_ONCE(ctx.cur_page_in_bio);
343 		unlock_page(page);
344 	}
345 
346 	/*
347 	 * Just like mpage_readpages and block_read_full_page we always
348 	 * return 0 and just mark the page as PageError on errors.  This
349 	 * should be cleaned up all through the stack eventually.
350 	 */
351 	return 0;
352 }
353 EXPORT_SYMBOL_GPL(iomap_readpage);
354 
355 static struct page *
356 iomap_next_page(struct inode *inode, struct list_head *pages, loff_t pos,
357 		loff_t length, loff_t *done)
358 {
359 	while (!list_empty(pages)) {
360 		struct page *page = lru_to_page(pages);
361 
362 		if (page_offset(page) >= (u64)pos + length)
363 			break;
364 
365 		list_del(&page->lru);
366 		if (!add_to_page_cache_lru(page, inode->i_mapping, page->index,
367 				GFP_NOFS))
368 			return page;
369 
370 		/*
371 		 * If we already have a page in the page cache at index we are
372 		 * done.  Upper layers don't care if it is uptodate after the
373 		 * readpages call itself as every page gets checked again once
374 		 * actually needed.
375 		 */
376 		*done += PAGE_SIZE;
377 		put_page(page);
378 	}
379 
380 	return NULL;
381 }
382 
383 static loff_t
384 iomap_readpages_actor(struct inode *inode, loff_t pos, loff_t length,
385 		void *data, struct iomap *iomap, struct iomap *srcmap)
386 {
387 	struct iomap_readpage_ctx *ctx = data;
388 	loff_t done, ret;
389 
390 	for (done = 0; done < length; done += ret) {
391 		if (ctx->cur_page && offset_in_page(pos + done) == 0) {
392 			if (!ctx->cur_page_in_bio)
393 				unlock_page(ctx->cur_page);
394 			put_page(ctx->cur_page);
395 			ctx->cur_page = NULL;
396 		}
397 		if (!ctx->cur_page) {
398 			ctx->cur_page = iomap_next_page(inode, ctx->pages,
399 					pos, length, &done);
400 			if (!ctx->cur_page)
401 				break;
402 			ctx->cur_page_in_bio = false;
403 		}
404 		ret = iomap_readpage_actor(inode, pos + done, length - done,
405 				ctx, iomap, srcmap);
406 	}
407 
408 	return done;
409 }
410 
411 int
412 iomap_readpages(struct address_space *mapping, struct list_head *pages,
413 		unsigned nr_pages, const struct iomap_ops *ops)
414 {
415 	struct iomap_readpage_ctx ctx = {
416 		.pages		= pages,
417 		.is_readahead	= true,
418 	};
419 	loff_t pos = page_offset(list_entry(pages->prev, struct page, lru));
420 	loff_t last = page_offset(list_entry(pages->next, struct page, lru));
421 	loff_t length = last - pos + PAGE_SIZE, ret = 0;
422 
423 	trace_iomap_readpages(mapping->host, nr_pages);
424 
425 	while (length > 0) {
426 		ret = iomap_apply(mapping->host, pos, length, 0, ops,
427 				&ctx, iomap_readpages_actor);
428 		if (ret <= 0) {
429 			WARN_ON_ONCE(ret == 0);
430 			goto done;
431 		}
432 		pos += ret;
433 		length -= ret;
434 	}
435 	ret = 0;
436 done:
437 	if (ctx.bio)
438 		submit_bio(ctx.bio);
439 	if (ctx.cur_page) {
440 		if (!ctx.cur_page_in_bio)
441 			unlock_page(ctx.cur_page);
442 		put_page(ctx.cur_page);
443 	}
444 
445 	/*
446 	 * Check that we didn't lose a page due to the arcance calling
447 	 * conventions..
448 	 */
449 	WARN_ON_ONCE(!ret && !list_empty(ctx.pages));
450 	return ret;
451 }
452 EXPORT_SYMBOL_GPL(iomap_readpages);
453 
454 /*
455  * iomap_is_partially_uptodate checks whether blocks within a page are
456  * uptodate or not.
457  *
458  * Returns true if all blocks which correspond to a file portion
459  * we want to read within the page are uptodate.
460  */
461 int
462 iomap_is_partially_uptodate(struct page *page, unsigned long from,
463 		unsigned long count)
464 {
465 	struct iomap_page *iop = to_iomap_page(page);
466 	struct inode *inode = page->mapping->host;
467 	unsigned len, first, last;
468 	unsigned i;
469 
470 	/* Limit range to one page */
471 	len = min_t(unsigned, PAGE_SIZE - from, count);
472 
473 	/* First and last blocks in range within page */
474 	first = from >> inode->i_blkbits;
475 	last = (from + len - 1) >> inode->i_blkbits;
476 
477 	if (iop) {
478 		for (i = first; i <= last; i++)
479 			if (!test_bit(i, iop->uptodate))
480 				return 0;
481 		return 1;
482 	}
483 
484 	return 0;
485 }
486 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
487 
488 int
489 iomap_releasepage(struct page *page, gfp_t gfp_mask)
490 {
491 	trace_iomap_releasepage(page->mapping->host, page, 0, 0);
492 
493 	/*
494 	 * mm accommodates an old ext3 case where clean pages might not have had
495 	 * the dirty bit cleared. Thus, it can send actual dirty pages to
496 	 * ->releasepage() via shrink_active_list(), skip those here.
497 	 */
498 	if (PageDirty(page) || PageWriteback(page))
499 		return 0;
500 	iomap_page_release(page);
501 	return 1;
502 }
503 EXPORT_SYMBOL_GPL(iomap_releasepage);
504 
505 void
506 iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len)
507 {
508 	trace_iomap_invalidatepage(page->mapping->host, page, offset, len);
509 
510 	/*
511 	 * If we are invalidating the entire page, clear the dirty state from it
512 	 * and release it to avoid unnecessary buildup of the LRU.
513 	 */
514 	if (offset == 0 && len == PAGE_SIZE) {
515 		WARN_ON_ONCE(PageWriteback(page));
516 		cancel_dirty_page(page);
517 		iomap_page_release(page);
518 	}
519 }
520 EXPORT_SYMBOL_GPL(iomap_invalidatepage);
521 
522 #ifdef CONFIG_MIGRATION
523 int
524 iomap_migrate_page(struct address_space *mapping, struct page *newpage,
525 		struct page *page, enum migrate_mode mode)
526 {
527 	int ret;
528 
529 	ret = migrate_page_move_mapping(mapping, newpage, page, 0);
530 	if (ret != MIGRATEPAGE_SUCCESS)
531 		return ret;
532 
533 	if (page_has_private(page)) {
534 		ClearPagePrivate(page);
535 		get_page(newpage);
536 		set_page_private(newpage, page_private(page));
537 		set_page_private(page, 0);
538 		put_page(page);
539 		SetPagePrivate(newpage);
540 	}
541 
542 	if (mode != MIGRATE_SYNC_NO_COPY)
543 		migrate_page_copy(newpage, page);
544 	else
545 		migrate_page_states(newpage, page);
546 	return MIGRATEPAGE_SUCCESS;
547 }
548 EXPORT_SYMBOL_GPL(iomap_migrate_page);
549 #endif /* CONFIG_MIGRATION */
550 
551 enum {
552 	IOMAP_WRITE_F_UNSHARE		= (1 << 0),
553 };
554 
555 static void
556 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
557 {
558 	loff_t i_size = i_size_read(inode);
559 
560 	/*
561 	 * Only truncate newly allocated pages beyoned EOF, even if the
562 	 * write started inside the existing inode size.
563 	 */
564 	if (pos + len > i_size)
565 		truncate_pagecache_range(inode, max(pos, i_size), pos + len);
566 }
567 
568 static int
569 iomap_read_page_sync(loff_t block_start, struct page *page, unsigned poff,
570 		unsigned plen, struct iomap *iomap)
571 {
572 	struct bio_vec bvec;
573 	struct bio bio;
574 
575 	bio_init(&bio, &bvec, 1);
576 	bio.bi_opf = REQ_OP_READ;
577 	bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
578 	bio_set_dev(&bio, iomap->bdev);
579 	__bio_add_page(&bio, page, plen, poff);
580 	return submit_bio_wait(&bio);
581 }
582 
583 static int
584 __iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, int flags,
585 		struct page *page, struct iomap *srcmap)
586 {
587 	struct iomap_page *iop = iomap_page_create(inode, page);
588 	loff_t block_size = i_blocksize(inode);
589 	loff_t block_start = pos & ~(block_size - 1);
590 	loff_t block_end = (pos + len + block_size - 1) & ~(block_size - 1);
591 	unsigned from = offset_in_page(pos), to = from + len, poff, plen;
592 	int status;
593 
594 	if (PageUptodate(page))
595 		return 0;
596 
597 	do {
598 		iomap_adjust_read_range(inode, iop, &block_start,
599 				block_end - block_start, &poff, &plen);
600 		if (plen == 0)
601 			break;
602 
603 		if (!(flags & IOMAP_WRITE_F_UNSHARE) &&
604 		    (from <= poff || from >= poff + plen) &&
605 		    (to <= poff || to >= poff + plen))
606 			continue;
607 
608 		if (iomap_block_needs_zeroing(inode, srcmap, block_start)) {
609 			if (WARN_ON_ONCE(flags & IOMAP_WRITE_F_UNSHARE))
610 				return -EIO;
611 			zero_user_segments(page, poff, from, to, poff + plen);
612 			iomap_set_range_uptodate(page, poff, plen);
613 			continue;
614 		}
615 
616 		status = iomap_read_page_sync(block_start, page, poff, plen,
617 				srcmap);
618 		if (status)
619 			return status;
620 	} while ((block_start += plen) < block_end);
621 
622 	return 0;
623 }
624 
625 static int
626 iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags,
627 		struct page **pagep, struct iomap *iomap, struct iomap *srcmap)
628 {
629 	const struct iomap_page_ops *page_ops = iomap->page_ops;
630 	struct page *page;
631 	int status = 0;
632 
633 	BUG_ON(pos + len > iomap->offset + iomap->length);
634 	if (srcmap != iomap)
635 		BUG_ON(pos + len > srcmap->offset + srcmap->length);
636 
637 	if (fatal_signal_pending(current))
638 		return -EINTR;
639 
640 	if (page_ops && page_ops->page_prepare) {
641 		status = page_ops->page_prepare(inode, pos, len, iomap);
642 		if (status)
643 			return status;
644 	}
645 
646 	page = grab_cache_page_write_begin(inode->i_mapping, pos >> PAGE_SHIFT,
647 			AOP_FLAG_NOFS);
648 	if (!page) {
649 		status = -ENOMEM;
650 		goto out_no_page;
651 	}
652 
653 	if (srcmap->type == IOMAP_INLINE)
654 		iomap_read_inline_data(inode, page, srcmap);
655 	else if (iomap->flags & IOMAP_F_BUFFER_HEAD)
656 		status = __block_write_begin_int(page, pos, len, NULL, srcmap);
657 	else
658 		status = __iomap_write_begin(inode, pos, len, flags, page,
659 				srcmap);
660 
661 	if (unlikely(status))
662 		goto out_unlock;
663 
664 	*pagep = page;
665 	return 0;
666 
667 out_unlock:
668 	unlock_page(page);
669 	put_page(page);
670 	iomap_write_failed(inode, pos, len);
671 
672 out_no_page:
673 	if (page_ops && page_ops->page_done)
674 		page_ops->page_done(inode, pos, 0, NULL, iomap);
675 	return status;
676 }
677 
678 int
679 iomap_set_page_dirty(struct page *page)
680 {
681 	struct address_space *mapping = page_mapping(page);
682 	int newly_dirty;
683 
684 	if (unlikely(!mapping))
685 		return !TestSetPageDirty(page);
686 
687 	/*
688 	 * Lock out page->mem_cgroup migration to keep PageDirty
689 	 * synchronized with per-memcg dirty page counters.
690 	 */
691 	lock_page_memcg(page);
692 	newly_dirty = !TestSetPageDirty(page);
693 	if (newly_dirty)
694 		__set_page_dirty(page, mapping, 0);
695 	unlock_page_memcg(page);
696 
697 	if (newly_dirty)
698 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
699 	return newly_dirty;
700 }
701 EXPORT_SYMBOL_GPL(iomap_set_page_dirty);
702 
703 static int
704 __iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
705 		unsigned copied, struct page *page)
706 {
707 	flush_dcache_page(page);
708 
709 	/*
710 	 * The blocks that were entirely written will now be uptodate, so we
711 	 * don't have to worry about a readpage reading them and overwriting a
712 	 * partial write.  However if we have encountered a short write and only
713 	 * partially written into a block, it will not be marked uptodate, so a
714 	 * readpage might come in and destroy our partial write.
715 	 *
716 	 * Do the simplest thing, and just treat any short write to a non
717 	 * uptodate page as a zero-length write, and force the caller to redo
718 	 * the whole thing.
719 	 */
720 	if (unlikely(copied < len && !PageUptodate(page)))
721 		return 0;
722 	iomap_set_range_uptodate(page, offset_in_page(pos), len);
723 	iomap_set_page_dirty(page);
724 	return copied;
725 }
726 
727 static int
728 iomap_write_end_inline(struct inode *inode, struct page *page,
729 		struct iomap *iomap, loff_t pos, unsigned copied)
730 {
731 	void *addr;
732 
733 	WARN_ON_ONCE(!PageUptodate(page));
734 	BUG_ON(pos + copied > PAGE_SIZE - offset_in_page(iomap->inline_data));
735 
736 	addr = kmap_atomic(page);
737 	memcpy(iomap->inline_data + pos, addr + pos, copied);
738 	kunmap_atomic(addr);
739 
740 	mark_inode_dirty(inode);
741 	return copied;
742 }
743 
744 static int
745 iomap_write_end(struct inode *inode, loff_t pos, unsigned len, unsigned copied,
746 		struct page *page, struct iomap *iomap, struct iomap *srcmap)
747 {
748 	const struct iomap_page_ops *page_ops = iomap->page_ops;
749 	loff_t old_size = inode->i_size;
750 	int ret;
751 
752 	if (srcmap->type == IOMAP_INLINE) {
753 		ret = iomap_write_end_inline(inode, page, iomap, pos, copied);
754 	} else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
755 		ret = block_write_end(NULL, inode->i_mapping, pos, len, copied,
756 				page, NULL);
757 	} else {
758 		ret = __iomap_write_end(inode, pos, len, copied, page);
759 	}
760 
761 	/*
762 	 * Update the in-memory inode size after copying the data into the page
763 	 * cache.  It's up to the file system to write the updated size to disk,
764 	 * preferably after I/O completion so that no stale data is exposed.
765 	 */
766 	if (pos + ret > old_size) {
767 		i_size_write(inode, pos + ret);
768 		iomap->flags |= IOMAP_F_SIZE_CHANGED;
769 	}
770 	unlock_page(page);
771 
772 	if (old_size < pos)
773 		pagecache_isize_extended(inode, old_size, pos);
774 	if (page_ops && page_ops->page_done)
775 		page_ops->page_done(inode, pos, ret, page, iomap);
776 	put_page(page);
777 
778 	if (ret < len)
779 		iomap_write_failed(inode, pos, len);
780 	return ret;
781 }
782 
783 static loff_t
784 iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
785 		struct iomap *iomap, struct iomap *srcmap)
786 {
787 	struct iov_iter *i = data;
788 	long status = 0;
789 	ssize_t written = 0;
790 
791 	do {
792 		struct page *page;
793 		unsigned long offset;	/* Offset into pagecache page */
794 		unsigned long bytes;	/* Bytes to write to page */
795 		size_t copied;		/* Bytes copied from user */
796 
797 		offset = offset_in_page(pos);
798 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
799 						iov_iter_count(i));
800 again:
801 		if (bytes > length)
802 			bytes = length;
803 
804 		/*
805 		 * Bring in the user page that we will copy from _first_.
806 		 * Otherwise there's a nasty deadlock on copying from the
807 		 * same page as we're writing to, without it being marked
808 		 * up-to-date.
809 		 *
810 		 * Not only is this an optimisation, but it is also required
811 		 * to check that the address is actually valid, when atomic
812 		 * usercopies are used, below.
813 		 */
814 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
815 			status = -EFAULT;
816 			break;
817 		}
818 
819 		status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap,
820 				srcmap);
821 		if (unlikely(status))
822 			break;
823 
824 		if (mapping_writably_mapped(inode->i_mapping))
825 			flush_dcache_page(page);
826 
827 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
828 
829 		flush_dcache_page(page);
830 
831 		status = iomap_write_end(inode, pos, bytes, copied, page, iomap,
832 				srcmap);
833 		if (unlikely(status < 0))
834 			break;
835 		copied = status;
836 
837 		cond_resched();
838 
839 		iov_iter_advance(i, copied);
840 		if (unlikely(copied == 0)) {
841 			/*
842 			 * If we were unable to copy any data at all, we must
843 			 * fall back to a single segment length write.
844 			 *
845 			 * If we didn't fallback here, we could livelock
846 			 * because not all segments in the iov can be copied at
847 			 * once without a pagefault.
848 			 */
849 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
850 						iov_iter_single_seg_count(i));
851 			goto again;
852 		}
853 		pos += copied;
854 		written += copied;
855 		length -= copied;
856 
857 		balance_dirty_pages_ratelimited(inode->i_mapping);
858 	} while (iov_iter_count(i) && length);
859 
860 	return written ? written : status;
861 }
862 
863 ssize_t
864 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter,
865 		const struct iomap_ops *ops)
866 {
867 	struct inode *inode = iocb->ki_filp->f_mapping->host;
868 	loff_t pos = iocb->ki_pos, ret = 0, written = 0;
869 
870 	while (iov_iter_count(iter)) {
871 		ret = iomap_apply(inode, pos, iov_iter_count(iter),
872 				IOMAP_WRITE, ops, iter, iomap_write_actor);
873 		if (ret <= 0)
874 			break;
875 		pos += ret;
876 		written += ret;
877 	}
878 
879 	return written ? written : ret;
880 }
881 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
882 
883 static loff_t
884 iomap_unshare_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
885 		struct iomap *iomap, struct iomap *srcmap)
886 {
887 	long status = 0;
888 	ssize_t written = 0;
889 
890 	/* don't bother with blocks that are not shared to start with */
891 	if (!(iomap->flags & IOMAP_F_SHARED))
892 		return length;
893 	/* don't bother with holes or unwritten extents */
894 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
895 		return length;
896 
897 	do {
898 		unsigned long offset = offset_in_page(pos);
899 		unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length);
900 		struct page *page;
901 
902 		status = iomap_write_begin(inode, pos, bytes,
903 				IOMAP_WRITE_F_UNSHARE, &page, iomap, srcmap);
904 		if (unlikely(status))
905 			return status;
906 
907 		status = iomap_write_end(inode, pos, bytes, bytes, page, iomap,
908 				srcmap);
909 		if (unlikely(status <= 0)) {
910 			if (WARN_ON_ONCE(status == 0))
911 				return -EIO;
912 			return status;
913 		}
914 
915 		cond_resched();
916 
917 		pos += status;
918 		written += status;
919 		length -= status;
920 
921 		balance_dirty_pages_ratelimited(inode->i_mapping);
922 	} while (length);
923 
924 	return written;
925 }
926 
927 int
928 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
929 		const struct iomap_ops *ops)
930 {
931 	loff_t ret;
932 
933 	while (len) {
934 		ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL,
935 				iomap_unshare_actor);
936 		if (ret <= 0)
937 			return ret;
938 		pos += ret;
939 		len -= ret;
940 	}
941 
942 	return 0;
943 }
944 EXPORT_SYMBOL_GPL(iomap_file_unshare);
945 
946 static int iomap_zero(struct inode *inode, loff_t pos, unsigned offset,
947 		unsigned bytes, struct iomap *iomap, struct iomap *srcmap)
948 {
949 	struct page *page;
950 	int status;
951 
952 	status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap, srcmap);
953 	if (status)
954 		return status;
955 
956 	zero_user(page, offset, bytes);
957 	mark_page_accessed(page);
958 
959 	return iomap_write_end(inode, pos, bytes, bytes, page, iomap, srcmap);
960 }
961 
962 static int iomap_dax_zero(loff_t pos, unsigned offset, unsigned bytes,
963 		struct iomap *iomap)
964 {
965 	return __dax_zero_page_range(iomap->bdev, iomap->dax_dev,
966 			iomap_sector(iomap, pos & PAGE_MASK), offset, bytes);
967 }
968 
969 static loff_t
970 iomap_zero_range_actor(struct inode *inode, loff_t pos, loff_t count,
971 		void *data, struct iomap *iomap, struct iomap *srcmap)
972 {
973 	bool *did_zero = data;
974 	loff_t written = 0;
975 	int status;
976 
977 	/* already zeroed?  we're done. */
978 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
979 		return count;
980 
981 	do {
982 		unsigned offset, bytes;
983 
984 		offset = offset_in_page(pos);
985 		bytes = min_t(loff_t, PAGE_SIZE - offset, count);
986 
987 		if (IS_DAX(inode))
988 			status = iomap_dax_zero(pos, offset, bytes, iomap);
989 		else
990 			status = iomap_zero(inode, pos, offset, bytes, iomap,
991 					srcmap);
992 		if (status < 0)
993 			return status;
994 
995 		pos += bytes;
996 		count -= bytes;
997 		written += bytes;
998 		if (did_zero)
999 			*did_zero = true;
1000 	} while (count > 0);
1001 
1002 	return written;
1003 }
1004 
1005 int
1006 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1007 		const struct iomap_ops *ops)
1008 {
1009 	loff_t ret;
1010 
1011 	while (len > 0) {
1012 		ret = iomap_apply(inode, pos, len, IOMAP_ZERO,
1013 				ops, did_zero, iomap_zero_range_actor);
1014 		if (ret <= 0)
1015 			return ret;
1016 
1017 		pos += ret;
1018 		len -= ret;
1019 	}
1020 
1021 	return 0;
1022 }
1023 EXPORT_SYMBOL_GPL(iomap_zero_range);
1024 
1025 int
1026 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1027 		const struct iomap_ops *ops)
1028 {
1029 	unsigned int blocksize = i_blocksize(inode);
1030 	unsigned int off = pos & (blocksize - 1);
1031 
1032 	/* Block boundary? Nothing to do */
1033 	if (!off)
1034 		return 0;
1035 	return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
1036 }
1037 EXPORT_SYMBOL_GPL(iomap_truncate_page);
1038 
1039 static loff_t
1040 iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length,
1041 		void *data, struct iomap *iomap, struct iomap *srcmap)
1042 {
1043 	struct page *page = data;
1044 	int ret;
1045 
1046 	if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
1047 		ret = __block_write_begin_int(page, pos, length, NULL, iomap);
1048 		if (ret)
1049 			return ret;
1050 		block_commit_write(page, 0, length);
1051 	} else {
1052 		WARN_ON_ONCE(!PageUptodate(page));
1053 		iomap_page_create(inode, page);
1054 		set_page_dirty(page);
1055 	}
1056 
1057 	return length;
1058 }
1059 
1060 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1061 {
1062 	struct page *page = vmf->page;
1063 	struct inode *inode = file_inode(vmf->vma->vm_file);
1064 	unsigned long length;
1065 	loff_t offset, size;
1066 	ssize_t ret;
1067 
1068 	lock_page(page);
1069 	size = i_size_read(inode);
1070 	offset = page_offset(page);
1071 	if (page->mapping != inode->i_mapping || offset > size) {
1072 		/* We overload EFAULT to mean page got truncated */
1073 		ret = -EFAULT;
1074 		goto out_unlock;
1075 	}
1076 
1077 	/* page is wholly or partially inside EOF */
1078 	if (offset > size - PAGE_SIZE)
1079 		length = offset_in_page(size);
1080 	else
1081 		length = PAGE_SIZE;
1082 
1083 	while (length > 0) {
1084 		ret = iomap_apply(inode, offset, length,
1085 				IOMAP_WRITE | IOMAP_FAULT, ops, page,
1086 				iomap_page_mkwrite_actor);
1087 		if (unlikely(ret <= 0))
1088 			goto out_unlock;
1089 		offset += ret;
1090 		length -= ret;
1091 	}
1092 
1093 	wait_for_stable_page(page);
1094 	return VM_FAULT_LOCKED;
1095 out_unlock:
1096 	unlock_page(page);
1097 	return block_page_mkwrite_return(ret);
1098 }
1099 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1100 
1101 static void
1102 iomap_finish_page_writeback(struct inode *inode, struct page *page,
1103 		int error)
1104 {
1105 	struct iomap_page *iop = to_iomap_page(page);
1106 
1107 	if (error) {
1108 		SetPageError(page);
1109 		mapping_set_error(inode->i_mapping, -EIO);
1110 	}
1111 
1112 	WARN_ON_ONCE(i_blocksize(inode) < PAGE_SIZE && !iop);
1113 	WARN_ON_ONCE(iop && atomic_read(&iop->write_count) <= 0);
1114 
1115 	if (!iop || atomic_dec_and_test(&iop->write_count))
1116 		end_page_writeback(page);
1117 }
1118 
1119 /*
1120  * We're now finished for good with this ioend structure.  Update the page
1121  * state, release holds on bios, and finally free up memory.  Do not use the
1122  * ioend after this.
1123  */
1124 static void
1125 iomap_finish_ioend(struct iomap_ioend *ioend, int error)
1126 {
1127 	struct inode *inode = ioend->io_inode;
1128 	struct bio *bio = &ioend->io_inline_bio;
1129 	struct bio *last = ioend->io_bio, *next;
1130 	u64 start = bio->bi_iter.bi_sector;
1131 	bool quiet = bio_flagged(bio, BIO_QUIET);
1132 
1133 	for (bio = &ioend->io_inline_bio; bio; bio = next) {
1134 		struct bio_vec *bv;
1135 		struct bvec_iter_all iter_all;
1136 
1137 		/*
1138 		 * For the last bio, bi_private points to the ioend, so we
1139 		 * need to explicitly end the iteration here.
1140 		 */
1141 		if (bio == last)
1142 			next = NULL;
1143 		else
1144 			next = bio->bi_private;
1145 
1146 		/* walk each page on bio, ending page IO on them */
1147 		bio_for_each_segment_all(bv, bio, iter_all)
1148 			iomap_finish_page_writeback(inode, bv->bv_page, error);
1149 		bio_put(bio);
1150 	}
1151 
1152 	if (unlikely(error && !quiet)) {
1153 		printk_ratelimited(KERN_ERR
1154 "%s: writeback error on inode %lu, offset %lld, sector %llu",
1155 			inode->i_sb->s_id, inode->i_ino, ioend->io_offset,
1156 			start);
1157 	}
1158 }
1159 
1160 void
1161 iomap_finish_ioends(struct iomap_ioend *ioend, int error)
1162 {
1163 	struct list_head tmp;
1164 
1165 	list_replace_init(&ioend->io_list, &tmp);
1166 	iomap_finish_ioend(ioend, error);
1167 
1168 	while (!list_empty(&tmp)) {
1169 		ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
1170 		list_del_init(&ioend->io_list);
1171 		iomap_finish_ioend(ioend, error);
1172 	}
1173 }
1174 EXPORT_SYMBOL_GPL(iomap_finish_ioends);
1175 
1176 /*
1177  * We can merge two adjacent ioends if they have the same set of work to do.
1178  */
1179 static bool
1180 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
1181 {
1182 	if (ioend->io_bio->bi_status != next->io_bio->bi_status)
1183 		return false;
1184 	if ((ioend->io_flags & IOMAP_F_SHARED) ^
1185 	    (next->io_flags & IOMAP_F_SHARED))
1186 		return false;
1187 	if ((ioend->io_type == IOMAP_UNWRITTEN) ^
1188 	    (next->io_type == IOMAP_UNWRITTEN))
1189 		return false;
1190 	if (ioend->io_offset + ioend->io_size != next->io_offset)
1191 		return false;
1192 	return true;
1193 }
1194 
1195 void
1196 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends,
1197 		void (*merge_private)(struct iomap_ioend *ioend,
1198 				struct iomap_ioend *next))
1199 {
1200 	struct iomap_ioend *next;
1201 
1202 	INIT_LIST_HEAD(&ioend->io_list);
1203 
1204 	while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
1205 			io_list))) {
1206 		if (!iomap_ioend_can_merge(ioend, next))
1207 			break;
1208 		list_move_tail(&next->io_list, &ioend->io_list);
1209 		ioend->io_size += next->io_size;
1210 		if (next->io_private && merge_private)
1211 			merge_private(ioend, next);
1212 	}
1213 }
1214 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
1215 
1216 static int
1217 iomap_ioend_compare(void *priv, struct list_head *a, struct list_head *b)
1218 {
1219 	struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
1220 	struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
1221 
1222 	if (ia->io_offset < ib->io_offset)
1223 		return -1;
1224 	if (ia->io_offset > ib->io_offset)
1225 		return 1;
1226 	return 0;
1227 }
1228 
1229 void
1230 iomap_sort_ioends(struct list_head *ioend_list)
1231 {
1232 	list_sort(NULL, ioend_list, iomap_ioend_compare);
1233 }
1234 EXPORT_SYMBOL_GPL(iomap_sort_ioends);
1235 
1236 static void iomap_writepage_end_bio(struct bio *bio)
1237 {
1238 	struct iomap_ioend *ioend = bio->bi_private;
1239 
1240 	iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status));
1241 }
1242 
1243 /*
1244  * Submit the final bio for an ioend.
1245  *
1246  * If @error is non-zero, it means that we have a situation where some part of
1247  * the submission process has failed after we have marked paged for writeback
1248  * and unlocked them.  In this situation, we need to fail the bio instead of
1249  * submitting it.  This typically only happens on a filesystem shutdown.
1250  */
1251 static int
1252 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend,
1253 		int error)
1254 {
1255 	ioend->io_bio->bi_private = ioend;
1256 	ioend->io_bio->bi_end_io = iomap_writepage_end_bio;
1257 
1258 	if (wpc->ops->prepare_ioend)
1259 		error = wpc->ops->prepare_ioend(ioend, error);
1260 	if (error) {
1261 		/*
1262 		 * If we are failing the IO now, just mark the ioend with an
1263 		 * error and finish it.  This will run IO completion immediately
1264 		 * as there is only one reference to the ioend at this point in
1265 		 * time.
1266 		 */
1267 		ioend->io_bio->bi_status = errno_to_blk_status(error);
1268 		bio_endio(ioend->io_bio);
1269 		return error;
1270 	}
1271 
1272 	submit_bio(ioend->io_bio);
1273 	return 0;
1274 }
1275 
1276 static struct iomap_ioend *
1277 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc,
1278 		loff_t offset, sector_t sector, struct writeback_control *wbc)
1279 {
1280 	struct iomap_ioend *ioend;
1281 	struct bio *bio;
1282 
1283 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &iomap_ioend_bioset);
1284 	bio_set_dev(bio, wpc->iomap.bdev);
1285 	bio->bi_iter.bi_sector = sector;
1286 	bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
1287 	bio->bi_write_hint = inode->i_write_hint;
1288 	wbc_init_bio(wbc, bio);
1289 
1290 	ioend = container_of(bio, struct iomap_ioend, io_inline_bio);
1291 	INIT_LIST_HEAD(&ioend->io_list);
1292 	ioend->io_type = wpc->iomap.type;
1293 	ioend->io_flags = wpc->iomap.flags;
1294 	ioend->io_inode = inode;
1295 	ioend->io_size = 0;
1296 	ioend->io_offset = offset;
1297 	ioend->io_private = NULL;
1298 	ioend->io_bio = bio;
1299 	return ioend;
1300 }
1301 
1302 /*
1303  * Allocate a new bio, and chain the old bio to the new one.
1304  *
1305  * Note that we have to do perform the chaining in this unintuitive order
1306  * so that the bi_private linkage is set up in the right direction for the
1307  * traversal in iomap_finish_ioend().
1308  */
1309 static struct bio *
1310 iomap_chain_bio(struct bio *prev)
1311 {
1312 	struct bio *new;
1313 
1314 	new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
1315 	bio_copy_dev(new, prev);/* also copies over blkcg information */
1316 	new->bi_iter.bi_sector = bio_end_sector(prev);
1317 	new->bi_opf = prev->bi_opf;
1318 	new->bi_write_hint = prev->bi_write_hint;
1319 
1320 	bio_chain(prev, new);
1321 	bio_get(prev);		/* for iomap_finish_ioend */
1322 	submit_bio(prev);
1323 	return new;
1324 }
1325 
1326 static bool
1327 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset,
1328 		sector_t sector)
1329 {
1330 	if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
1331 	    (wpc->ioend->io_flags & IOMAP_F_SHARED))
1332 		return false;
1333 	if (wpc->iomap.type != wpc->ioend->io_type)
1334 		return false;
1335 	if (offset != wpc->ioend->io_offset + wpc->ioend->io_size)
1336 		return false;
1337 	if (sector != bio_end_sector(wpc->ioend->io_bio))
1338 		return false;
1339 	return true;
1340 }
1341 
1342 /*
1343  * Test to see if we have an existing ioend structure that we could append to
1344  * first, otherwise finish off the current ioend and start another.
1345  */
1346 static void
1347 iomap_add_to_ioend(struct inode *inode, loff_t offset, struct page *page,
1348 		struct iomap_page *iop, struct iomap_writepage_ctx *wpc,
1349 		struct writeback_control *wbc, struct list_head *iolist)
1350 {
1351 	sector_t sector = iomap_sector(&wpc->iomap, offset);
1352 	unsigned len = i_blocksize(inode);
1353 	unsigned poff = offset & (PAGE_SIZE - 1);
1354 	bool merged, same_page = false;
1355 
1356 	if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, offset, sector)) {
1357 		if (wpc->ioend)
1358 			list_add(&wpc->ioend->io_list, iolist);
1359 		wpc->ioend = iomap_alloc_ioend(inode, wpc, offset, sector, wbc);
1360 	}
1361 
1362 	merged = __bio_try_merge_page(wpc->ioend->io_bio, page, len, poff,
1363 			&same_page);
1364 	if (iop && !same_page)
1365 		atomic_inc(&iop->write_count);
1366 
1367 	if (!merged) {
1368 		if (bio_full(wpc->ioend->io_bio, len)) {
1369 			wpc->ioend->io_bio =
1370 				iomap_chain_bio(wpc->ioend->io_bio);
1371 		}
1372 		bio_add_page(wpc->ioend->io_bio, page, len, poff);
1373 	}
1374 
1375 	wpc->ioend->io_size += len;
1376 	wbc_account_cgroup_owner(wbc, page, len);
1377 }
1378 
1379 /*
1380  * We implement an immediate ioend submission policy here to avoid needing to
1381  * chain multiple ioends and hence nest mempool allocations which can violate
1382  * forward progress guarantees we need to provide. The current ioend we are
1383  * adding blocks to is cached on the writepage context, and if the new block
1384  * does not append to the cached ioend it will create a new ioend and cache that
1385  * instead.
1386  *
1387  * If a new ioend is created and cached, the old ioend is returned and queued
1388  * locally for submission once the entire page is processed or an error has been
1389  * detected.  While ioends are submitted immediately after they are completed,
1390  * batching optimisations are provided by higher level block plugging.
1391  *
1392  * At the end of a writeback pass, there will be a cached ioend remaining on the
1393  * writepage context that the caller will need to submit.
1394  */
1395 static int
1396 iomap_writepage_map(struct iomap_writepage_ctx *wpc,
1397 		struct writeback_control *wbc, struct inode *inode,
1398 		struct page *page, u64 end_offset)
1399 {
1400 	struct iomap_page *iop = to_iomap_page(page);
1401 	struct iomap_ioend *ioend, *next;
1402 	unsigned len = i_blocksize(inode);
1403 	u64 file_offset; /* file offset of page */
1404 	int error = 0, count = 0, i;
1405 	LIST_HEAD(submit_list);
1406 
1407 	WARN_ON_ONCE(i_blocksize(inode) < PAGE_SIZE && !iop);
1408 	WARN_ON_ONCE(iop && atomic_read(&iop->write_count) != 0);
1409 
1410 	/*
1411 	 * Walk through the page to find areas to write back. If we run off the
1412 	 * end of the current map or find the current map invalid, grab a new
1413 	 * one.
1414 	 */
1415 	for (i = 0, file_offset = page_offset(page);
1416 	     i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset;
1417 	     i++, file_offset += len) {
1418 		if (iop && !test_bit(i, iop->uptodate))
1419 			continue;
1420 
1421 		error = wpc->ops->map_blocks(wpc, inode, file_offset);
1422 		if (error)
1423 			break;
1424 		if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE))
1425 			continue;
1426 		if (wpc->iomap.type == IOMAP_HOLE)
1427 			continue;
1428 		iomap_add_to_ioend(inode, file_offset, page, iop, wpc, wbc,
1429 				 &submit_list);
1430 		count++;
1431 	}
1432 
1433 	WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list));
1434 	WARN_ON_ONCE(!PageLocked(page));
1435 	WARN_ON_ONCE(PageWriteback(page));
1436 
1437 	/*
1438 	 * We cannot cancel the ioend directly here on error.  We may have
1439 	 * already set other pages under writeback and hence we have to run I/O
1440 	 * completion to mark the error state of the pages under writeback
1441 	 * appropriately.
1442 	 */
1443 	if (unlikely(error)) {
1444 		if (!count) {
1445 			/*
1446 			 * If the current page hasn't been added to ioend, it
1447 			 * won't be affected by I/O completions and we must
1448 			 * discard and unlock it right here.
1449 			 */
1450 			if (wpc->ops->discard_page)
1451 				wpc->ops->discard_page(page);
1452 			ClearPageUptodate(page);
1453 			unlock_page(page);
1454 			goto done;
1455 		}
1456 
1457 		/*
1458 		 * If the page was not fully cleaned, we need to ensure that the
1459 		 * higher layers come back to it correctly.  That means we need
1460 		 * to keep the page dirty, and for WB_SYNC_ALL writeback we need
1461 		 * to ensure the PAGECACHE_TAG_TOWRITE index mark is not removed
1462 		 * so another attempt to write this page in this writeback sweep
1463 		 * will be made.
1464 		 */
1465 		set_page_writeback_keepwrite(page);
1466 	} else {
1467 		clear_page_dirty_for_io(page);
1468 		set_page_writeback(page);
1469 	}
1470 
1471 	unlock_page(page);
1472 
1473 	/*
1474 	 * Preserve the original error if there was one, otherwise catch
1475 	 * submission errors here and propagate into subsequent ioend
1476 	 * submissions.
1477 	 */
1478 	list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1479 		int error2;
1480 
1481 		list_del_init(&ioend->io_list);
1482 		error2 = iomap_submit_ioend(wpc, ioend, error);
1483 		if (error2 && !error)
1484 			error = error2;
1485 	}
1486 
1487 	/*
1488 	 * We can end up here with no error and nothing to write only if we race
1489 	 * with a partial page truncate on a sub-page block sized filesystem.
1490 	 */
1491 	if (!count)
1492 		end_page_writeback(page);
1493 done:
1494 	mapping_set_error(page->mapping, error);
1495 	return error;
1496 }
1497 
1498 /*
1499  * Write out a dirty page.
1500  *
1501  * For delalloc space on the page we need to allocate space and flush it.
1502  * For unwritten space on the page we need to start the conversion to
1503  * regular allocated space.
1504  */
1505 static int
1506 iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data)
1507 {
1508 	struct iomap_writepage_ctx *wpc = data;
1509 	struct inode *inode = page->mapping->host;
1510 	pgoff_t end_index;
1511 	u64 end_offset;
1512 	loff_t offset;
1513 
1514 	trace_iomap_writepage(inode, page, 0, 0);
1515 
1516 	/*
1517 	 * Refuse to write the page out if we are called from reclaim context.
1518 	 *
1519 	 * This avoids stack overflows when called from deeply used stacks in
1520 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
1521 	 * allow reclaim from kswapd as the stack usage there is relatively low.
1522 	 *
1523 	 * This should never happen except in the case of a VM regression so
1524 	 * warn about it.
1525 	 */
1526 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1527 			PF_MEMALLOC))
1528 		goto redirty;
1529 
1530 	/*
1531 	 * Given that we do not allow direct reclaim to call us, we should
1532 	 * never be called in a recursive filesystem reclaim context.
1533 	 */
1534 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
1535 		goto redirty;
1536 
1537 	/*
1538 	 * Is this page beyond the end of the file?
1539 	 *
1540 	 * The page index is less than the end_index, adjust the end_offset
1541 	 * to the highest offset that this page should represent.
1542 	 * -----------------------------------------------------
1543 	 * |			file mapping	       | <EOF> |
1544 	 * -----------------------------------------------------
1545 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
1546 	 * ^--------------------------------^----------|--------
1547 	 * |     desired writeback range    |      see else    |
1548 	 * ---------------------------------^------------------|
1549 	 */
1550 	offset = i_size_read(inode);
1551 	end_index = offset >> PAGE_SHIFT;
1552 	if (page->index < end_index)
1553 		end_offset = (loff_t)(page->index + 1) << PAGE_SHIFT;
1554 	else {
1555 		/*
1556 		 * Check whether the page to write out is beyond or straddles
1557 		 * i_size or not.
1558 		 * -------------------------------------------------------
1559 		 * |		file mapping		        | <EOF>  |
1560 		 * -------------------------------------------------------
1561 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1562 		 * ^--------------------------------^-----------|---------
1563 		 * |				    |      Straddles     |
1564 		 * ---------------------------------^-----------|--------|
1565 		 */
1566 		unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1567 
1568 		/*
1569 		 * Skip the page if it is fully outside i_size, e.g. due to a
1570 		 * truncate operation that is in progress. We must redirty the
1571 		 * page so that reclaim stops reclaiming it. Otherwise
1572 		 * iomap_vm_releasepage() is called on it and gets confused.
1573 		 *
1574 		 * Note that the end_index is unsigned long, it would overflow
1575 		 * if the given offset is greater than 16TB on 32-bit system
1576 		 * and if we do check the page is fully outside i_size or not
1577 		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1578 		 * will be evaluated to 0.  Hence this page will be redirtied
1579 		 * and be written out repeatedly which would result in an
1580 		 * infinite loop, the user program that perform this operation
1581 		 * will hang.  Instead, we can verify this situation by checking
1582 		 * if the page to write is totally beyond the i_size or if it's
1583 		 * offset is just equal to the EOF.
1584 		 */
1585 		if (page->index > end_index ||
1586 		    (page->index == end_index && offset_into_page == 0))
1587 			goto redirty;
1588 
1589 		/*
1590 		 * The page straddles i_size.  It must be zeroed out on each
1591 		 * and every writepage invocation because it may be mmapped.
1592 		 * "A file is mapped in multiples of the page size.  For a file
1593 		 * that is not a multiple of the page size, the remaining
1594 		 * memory is zeroed when mapped, and writes to that region are
1595 		 * not written out to the file."
1596 		 */
1597 		zero_user_segment(page, offset_into_page, PAGE_SIZE);
1598 
1599 		/* Adjust the end_offset to the end of file */
1600 		end_offset = offset;
1601 	}
1602 
1603 	return iomap_writepage_map(wpc, wbc, inode, page, end_offset);
1604 
1605 redirty:
1606 	redirty_page_for_writepage(wbc, page);
1607 	unlock_page(page);
1608 	return 0;
1609 }
1610 
1611 int
1612 iomap_writepage(struct page *page, struct writeback_control *wbc,
1613 		struct iomap_writepage_ctx *wpc,
1614 		const struct iomap_writeback_ops *ops)
1615 {
1616 	int ret;
1617 
1618 	wpc->ops = ops;
1619 	ret = iomap_do_writepage(page, wbc, wpc);
1620 	if (!wpc->ioend)
1621 		return ret;
1622 	return iomap_submit_ioend(wpc, wpc->ioend, ret);
1623 }
1624 EXPORT_SYMBOL_GPL(iomap_writepage);
1625 
1626 int
1627 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
1628 		struct iomap_writepage_ctx *wpc,
1629 		const struct iomap_writeback_ops *ops)
1630 {
1631 	int			ret;
1632 
1633 	wpc->ops = ops;
1634 	ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc);
1635 	if (!wpc->ioend)
1636 		return ret;
1637 	return iomap_submit_ioend(wpc, wpc->ioend, ret);
1638 }
1639 EXPORT_SYMBOL_GPL(iomap_writepages);
1640 
1641 static int __init iomap_init(void)
1642 {
1643 	return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
1644 			   offsetof(struct iomap_ioend, io_inline_bio),
1645 			   BIOSET_NEED_BVECS);
1646 }
1647 fs_initcall(iomap_init);
1648