1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Red Hat, Inc. 4 * Copyright (C) 2016-2019 Christoph Hellwig. 5 */ 6 #include <linux/module.h> 7 #include <linux/compiler.h> 8 #include <linux/fs.h> 9 #include <linux/iomap.h> 10 #include <linux/pagemap.h> 11 #include <linux/uio.h> 12 #include <linux/buffer_head.h> 13 #include <linux/dax.h> 14 #include <linux/writeback.h> 15 #include <linux/list_sort.h> 16 #include <linux/swap.h> 17 #include <linux/bio.h> 18 #include <linux/sched/signal.h> 19 #include <linux/migrate.h> 20 #include "trace.h" 21 22 #include "../internal.h" 23 24 #define IOEND_BATCH_SIZE 4096 25 26 /* 27 * Structure allocated for each folio when block size < folio size 28 * to track sub-folio uptodate status and I/O completions. 29 */ 30 struct iomap_page { 31 atomic_t read_bytes_pending; 32 atomic_t write_bytes_pending; 33 spinlock_t uptodate_lock; 34 unsigned long uptodate[]; 35 }; 36 37 static inline struct iomap_page *to_iomap_page(struct folio *folio) 38 { 39 if (folio_test_private(folio)) 40 return folio_get_private(folio); 41 return NULL; 42 } 43 44 static struct bio_set iomap_ioend_bioset; 45 46 static struct iomap_page * 47 iomap_page_create(struct inode *inode, struct folio *folio) 48 { 49 struct iomap_page *iop = to_iomap_page(folio); 50 unsigned int nr_blocks = i_blocks_per_folio(inode, folio); 51 52 if (iop || nr_blocks <= 1) 53 return iop; 54 55 iop = kzalloc(struct_size(iop, uptodate, BITS_TO_LONGS(nr_blocks)), 56 GFP_NOFS | __GFP_NOFAIL); 57 spin_lock_init(&iop->uptodate_lock); 58 if (folio_test_uptodate(folio)) 59 bitmap_fill(iop->uptodate, nr_blocks); 60 folio_attach_private(folio, iop); 61 return iop; 62 } 63 64 static void iomap_page_release(struct folio *folio) 65 { 66 struct iomap_page *iop = folio_detach_private(folio); 67 struct inode *inode = folio->mapping->host; 68 unsigned int nr_blocks = i_blocks_per_folio(inode, folio); 69 70 if (!iop) 71 return; 72 WARN_ON_ONCE(atomic_read(&iop->read_bytes_pending)); 73 WARN_ON_ONCE(atomic_read(&iop->write_bytes_pending)); 74 WARN_ON_ONCE(bitmap_full(iop->uptodate, nr_blocks) != 75 folio_test_uptodate(folio)); 76 kfree(iop); 77 } 78 79 /* 80 * Calculate the range inside the folio that we actually need to read. 81 */ 82 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio, 83 loff_t *pos, loff_t length, size_t *offp, size_t *lenp) 84 { 85 struct iomap_page *iop = to_iomap_page(folio); 86 loff_t orig_pos = *pos; 87 loff_t isize = i_size_read(inode); 88 unsigned block_bits = inode->i_blkbits; 89 unsigned block_size = (1 << block_bits); 90 size_t poff = offset_in_folio(folio, *pos); 91 size_t plen = min_t(loff_t, folio_size(folio) - poff, length); 92 unsigned first = poff >> block_bits; 93 unsigned last = (poff + plen - 1) >> block_bits; 94 95 /* 96 * If the block size is smaller than the page size, we need to check the 97 * per-block uptodate status and adjust the offset and length if needed 98 * to avoid reading in already uptodate ranges. 99 */ 100 if (iop) { 101 unsigned int i; 102 103 /* move forward for each leading block marked uptodate */ 104 for (i = first; i <= last; i++) { 105 if (!test_bit(i, iop->uptodate)) 106 break; 107 *pos += block_size; 108 poff += block_size; 109 plen -= block_size; 110 first++; 111 } 112 113 /* truncate len if we find any trailing uptodate block(s) */ 114 for ( ; i <= last; i++) { 115 if (test_bit(i, iop->uptodate)) { 116 plen -= (last - i + 1) * block_size; 117 last = i - 1; 118 break; 119 } 120 } 121 } 122 123 /* 124 * If the extent spans the block that contains the i_size, we need to 125 * handle both halves separately so that we properly zero data in the 126 * page cache for blocks that are entirely outside of i_size. 127 */ 128 if (orig_pos <= isize && orig_pos + length > isize) { 129 unsigned end = offset_in_folio(folio, isize - 1) >> block_bits; 130 131 if (first <= end && last > end) 132 plen -= (last - end) * block_size; 133 } 134 135 *offp = poff; 136 *lenp = plen; 137 } 138 139 static void iomap_iop_set_range_uptodate(struct folio *folio, 140 struct iomap_page *iop, size_t off, size_t len) 141 { 142 struct inode *inode = folio->mapping->host; 143 unsigned first = off >> inode->i_blkbits; 144 unsigned last = (off + len - 1) >> inode->i_blkbits; 145 unsigned long flags; 146 147 spin_lock_irqsave(&iop->uptodate_lock, flags); 148 bitmap_set(iop->uptodate, first, last - first + 1); 149 if (bitmap_full(iop->uptodate, i_blocks_per_folio(inode, folio))) 150 folio_mark_uptodate(folio); 151 spin_unlock_irqrestore(&iop->uptodate_lock, flags); 152 } 153 154 static void iomap_set_range_uptodate(struct folio *folio, 155 struct iomap_page *iop, size_t off, size_t len) 156 { 157 if (folio_test_error(folio)) 158 return; 159 160 if (iop) 161 iomap_iop_set_range_uptodate(folio, iop, off, len); 162 else 163 folio_mark_uptodate(folio); 164 } 165 166 static void iomap_finish_folio_read(struct folio *folio, size_t offset, 167 size_t len, int error) 168 { 169 struct iomap_page *iop = to_iomap_page(folio); 170 171 if (unlikely(error)) { 172 folio_clear_uptodate(folio); 173 folio_set_error(folio); 174 } else { 175 iomap_set_range_uptodate(folio, iop, offset, len); 176 } 177 178 if (!iop || atomic_sub_and_test(len, &iop->read_bytes_pending)) 179 folio_unlock(folio); 180 } 181 182 static void iomap_read_end_io(struct bio *bio) 183 { 184 int error = blk_status_to_errno(bio->bi_status); 185 struct folio_iter fi; 186 187 bio_for_each_folio_all(fi, bio) 188 iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error); 189 bio_put(bio); 190 } 191 192 struct iomap_readpage_ctx { 193 struct folio *cur_folio; 194 bool cur_folio_in_bio; 195 struct bio *bio; 196 struct readahead_control *rac; 197 }; 198 199 /** 200 * iomap_read_inline_data - copy inline data into the page cache 201 * @iter: iteration structure 202 * @folio: folio to copy to 203 * 204 * Copy the inline data in @iter into @folio and zero out the rest of the folio. 205 * Only a single IOMAP_INLINE extent is allowed at the end of each file. 206 * Returns zero for success to complete the read, or the usual negative errno. 207 */ 208 static int iomap_read_inline_data(const struct iomap_iter *iter, 209 struct folio *folio) 210 { 211 struct iomap_page *iop; 212 const struct iomap *iomap = iomap_iter_srcmap(iter); 213 size_t size = i_size_read(iter->inode) - iomap->offset; 214 size_t poff = offset_in_page(iomap->offset); 215 size_t offset = offset_in_folio(folio, iomap->offset); 216 void *addr; 217 218 if (folio_test_uptodate(folio)) 219 return 0; 220 221 if (WARN_ON_ONCE(size > PAGE_SIZE - poff)) 222 return -EIO; 223 if (WARN_ON_ONCE(size > PAGE_SIZE - 224 offset_in_page(iomap->inline_data))) 225 return -EIO; 226 if (WARN_ON_ONCE(size > iomap->length)) 227 return -EIO; 228 if (offset > 0) 229 iop = iomap_page_create(iter->inode, folio); 230 else 231 iop = to_iomap_page(folio); 232 233 addr = kmap_local_folio(folio, offset); 234 memcpy(addr, iomap->inline_data, size); 235 memset(addr + size, 0, PAGE_SIZE - poff - size); 236 kunmap_local(addr); 237 iomap_set_range_uptodate(folio, iop, offset, PAGE_SIZE - poff); 238 return 0; 239 } 240 241 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter, 242 loff_t pos) 243 { 244 const struct iomap *srcmap = iomap_iter_srcmap(iter); 245 246 return srcmap->type != IOMAP_MAPPED || 247 (srcmap->flags & IOMAP_F_NEW) || 248 pos >= i_size_read(iter->inode); 249 } 250 251 static loff_t iomap_readpage_iter(const struct iomap_iter *iter, 252 struct iomap_readpage_ctx *ctx, loff_t offset) 253 { 254 const struct iomap *iomap = &iter->iomap; 255 loff_t pos = iter->pos + offset; 256 loff_t length = iomap_length(iter) - offset; 257 struct folio *folio = ctx->cur_folio; 258 struct iomap_page *iop; 259 loff_t orig_pos = pos; 260 size_t poff, plen; 261 sector_t sector; 262 263 if (iomap->type == IOMAP_INLINE) 264 return iomap_read_inline_data(iter, folio); 265 266 /* zero post-eof blocks as the page may be mapped */ 267 iop = iomap_page_create(iter->inode, folio); 268 iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen); 269 if (plen == 0) 270 goto done; 271 272 if (iomap_block_needs_zeroing(iter, pos)) { 273 folio_zero_range(folio, poff, plen); 274 iomap_set_range_uptodate(folio, iop, poff, plen); 275 goto done; 276 } 277 278 ctx->cur_folio_in_bio = true; 279 if (iop) 280 atomic_add(plen, &iop->read_bytes_pending); 281 282 sector = iomap_sector(iomap, pos); 283 if (!ctx->bio || 284 bio_end_sector(ctx->bio) != sector || 285 !bio_add_folio(ctx->bio, folio, plen, poff)) { 286 gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL); 287 gfp_t orig_gfp = gfp; 288 unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE); 289 290 if (ctx->bio) 291 submit_bio(ctx->bio); 292 293 if (ctx->rac) /* same as readahead_gfp_mask */ 294 gfp |= __GFP_NORETRY | __GFP_NOWARN; 295 ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs), 296 REQ_OP_READ, gfp); 297 /* 298 * If the bio_alloc fails, try it again for a single page to 299 * avoid having to deal with partial page reads. This emulates 300 * what do_mpage_readpage does. 301 */ 302 if (!ctx->bio) { 303 ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ, 304 orig_gfp); 305 } 306 if (ctx->rac) 307 ctx->bio->bi_opf |= REQ_RAHEAD; 308 ctx->bio->bi_iter.bi_sector = sector; 309 ctx->bio->bi_end_io = iomap_read_end_io; 310 bio_add_folio(ctx->bio, folio, plen, poff); 311 } 312 313 done: 314 /* 315 * Move the caller beyond our range so that it keeps making progress. 316 * For that, we have to include any leading non-uptodate ranges, but 317 * we can skip trailing ones as they will be handled in the next 318 * iteration. 319 */ 320 return pos - orig_pos + plen; 321 } 322 323 int 324 iomap_readpage(struct page *page, const struct iomap_ops *ops) 325 { 326 struct folio *folio = page_folio(page); 327 struct iomap_iter iter = { 328 .inode = folio->mapping->host, 329 .pos = folio_pos(folio), 330 .len = folio_size(folio), 331 }; 332 struct iomap_readpage_ctx ctx = { 333 .cur_folio = folio, 334 }; 335 int ret; 336 337 trace_iomap_readpage(iter.inode, 1); 338 339 while ((ret = iomap_iter(&iter, ops)) > 0) 340 iter.processed = iomap_readpage_iter(&iter, &ctx, 0); 341 342 if (ret < 0) 343 folio_set_error(folio); 344 345 if (ctx.bio) { 346 submit_bio(ctx.bio); 347 WARN_ON_ONCE(!ctx.cur_folio_in_bio); 348 } else { 349 WARN_ON_ONCE(ctx.cur_folio_in_bio); 350 folio_unlock(folio); 351 } 352 353 /* 354 * Just like mpage_readahead and block_read_full_page, we always 355 * return 0 and just mark the page as PageError on errors. This 356 * should be cleaned up throughout the stack eventually. 357 */ 358 return 0; 359 } 360 EXPORT_SYMBOL_GPL(iomap_readpage); 361 362 static loff_t iomap_readahead_iter(const struct iomap_iter *iter, 363 struct iomap_readpage_ctx *ctx) 364 { 365 loff_t length = iomap_length(iter); 366 loff_t done, ret; 367 368 for (done = 0; done < length; done += ret) { 369 if (ctx->cur_folio && 370 offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) { 371 if (!ctx->cur_folio_in_bio) 372 folio_unlock(ctx->cur_folio); 373 ctx->cur_folio = NULL; 374 } 375 if (!ctx->cur_folio) { 376 ctx->cur_folio = readahead_folio(ctx->rac); 377 ctx->cur_folio_in_bio = false; 378 } 379 ret = iomap_readpage_iter(iter, ctx, done); 380 if (ret <= 0) 381 return ret; 382 } 383 384 return done; 385 } 386 387 /** 388 * iomap_readahead - Attempt to read pages from a file. 389 * @rac: Describes the pages to be read. 390 * @ops: The operations vector for the filesystem. 391 * 392 * This function is for filesystems to call to implement their readahead 393 * address_space operation. 394 * 395 * Context: The @ops callbacks may submit I/O (eg to read the addresses of 396 * blocks from disc), and may wait for it. The caller may be trying to 397 * access a different page, and so sleeping excessively should be avoided. 398 * It may allocate memory, but should avoid costly allocations. This 399 * function is called with memalloc_nofs set, so allocations will not cause 400 * the filesystem to be reentered. 401 */ 402 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops) 403 { 404 struct iomap_iter iter = { 405 .inode = rac->mapping->host, 406 .pos = readahead_pos(rac), 407 .len = readahead_length(rac), 408 }; 409 struct iomap_readpage_ctx ctx = { 410 .rac = rac, 411 }; 412 413 trace_iomap_readahead(rac->mapping->host, readahead_count(rac)); 414 415 while (iomap_iter(&iter, ops) > 0) 416 iter.processed = iomap_readahead_iter(&iter, &ctx); 417 418 if (ctx.bio) 419 submit_bio(ctx.bio); 420 if (ctx.cur_folio) { 421 if (!ctx.cur_folio_in_bio) 422 folio_unlock(ctx.cur_folio); 423 } 424 } 425 EXPORT_SYMBOL_GPL(iomap_readahead); 426 427 /* 428 * iomap_is_partially_uptodate checks whether blocks within a folio are 429 * uptodate or not. 430 * 431 * Returns true if all blocks which correspond to the specified part 432 * of the folio are uptodate. 433 */ 434 bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count) 435 { 436 struct iomap_page *iop = to_iomap_page(folio); 437 struct inode *inode = folio->mapping->host; 438 size_t len; 439 unsigned first, last, i; 440 441 if (!iop) 442 return false; 443 444 /* Limit range to this folio */ 445 len = min(folio_size(folio) - from, count); 446 447 /* First and last blocks in range within page */ 448 first = from >> inode->i_blkbits; 449 last = (from + len - 1) >> inode->i_blkbits; 450 451 for (i = first; i <= last; i++) 452 if (!test_bit(i, iop->uptodate)) 453 return false; 454 return true; 455 } 456 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate); 457 458 int 459 iomap_releasepage(struct page *page, gfp_t gfp_mask) 460 { 461 struct folio *folio = page_folio(page); 462 463 trace_iomap_releasepage(folio->mapping->host, folio_pos(folio), 464 folio_size(folio)); 465 466 /* 467 * mm accommodates an old ext3 case where clean pages might not have had 468 * the dirty bit cleared. Thus, it can send actual dirty pages to 469 * ->releasepage() via shrink_active_list(); skip those here. 470 */ 471 if (folio_test_dirty(folio) || folio_test_writeback(folio)) 472 return 0; 473 iomap_page_release(folio); 474 return 1; 475 } 476 EXPORT_SYMBOL_GPL(iomap_releasepage); 477 478 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len) 479 { 480 trace_iomap_invalidate_folio(folio->mapping->host, 481 folio_pos(folio) + offset, len); 482 483 /* 484 * If we're invalidating the entire folio, clear the dirty state 485 * from it and release it to avoid unnecessary buildup of the LRU. 486 */ 487 if (offset == 0 && len == folio_size(folio)) { 488 WARN_ON_ONCE(folio_test_writeback(folio)); 489 folio_cancel_dirty(folio); 490 iomap_page_release(folio); 491 } else if (folio_test_large(folio)) { 492 /* Must release the iop so the page can be split */ 493 WARN_ON_ONCE(!folio_test_uptodate(folio) && 494 folio_test_dirty(folio)); 495 iomap_page_release(folio); 496 } 497 } 498 EXPORT_SYMBOL_GPL(iomap_invalidate_folio); 499 500 #ifdef CONFIG_MIGRATION 501 int 502 iomap_migrate_page(struct address_space *mapping, struct page *newpage, 503 struct page *page, enum migrate_mode mode) 504 { 505 struct folio *folio = page_folio(page); 506 struct folio *newfolio = page_folio(newpage); 507 int ret; 508 509 ret = folio_migrate_mapping(mapping, newfolio, folio, 0); 510 if (ret != MIGRATEPAGE_SUCCESS) 511 return ret; 512 513 if (folio_test_private(folio)) 514 folio_attach_private(newfolio, folio_detach_private(folio)); 515 516 if (mode != MIGRATE_SYNC_NO_COPY) 517 folio_migrate_copy(newfolio, folio); 518 else 519 folio_migrate_flags(newfolio, folio); 520 return MIGRATEPAGE_SUCCESS; 521 } 522 EXPORT_SYMBOL_GPL(iomap_migrate_page); 523 #endif /* CONFIG_MIGRATION */ 524 525 static void 526 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len) 527 { 528 loff_t i_size = i_size_read(inode); 529 530 /* 531 * Only truncate newly allocated pages beyoned EOF, even if the 532 * write started inside the existing inode size. 533 */ 534 if (pos + len > i_size) 535 truncate_pagecache_range(inode, max(pos, i_size), pos + len); 536 } 537 538 static int iomap_read_folio_sync(loff_t block_start, struct folio *folio, 539 size_t poff, size_t plen, const struct iomap *iomap) 540 { 541 struct bio_vec bvec; 542 struct bio bio; 543 544 bio_init(&bio, iomap->bdev, &bvec, 1, REQ_OP_READ); 545 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start); 546 bio_add_folio(&bio, folio, plen, poff); 547 return submit_bio_wait(&bio); 548 } 549 550 static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos, 551 size_t len, struct folio *folio) 552 { 553 const struct iomap *srcmap = iomap_iter_srcmap(iter); 554 struct iomap_page *iop = iomap_page_create(iter->inode, folio); 555 loff_t block_size = i_blocksize(iter->inode); 556 loff_t block_start = round_down(pos, block_size); 557 loff_t block_end = round_up(pos + len, block_size); 558 size_t from = offset_in_folio(folio, pos), to = from + len; 559 size_t poff, plen; 560 561 if (folio_test_uptodate(folio)) 562 return 0; 563 folio_clear_error(folio); 564 565 do { 566 iomap_adjust_read_range(iter->inode, folio, &block_start, 567 block_end - block_start, &poff, &plen); 568 if (plen == 0) 569 break; 570 571 if (!(iter->flags & IOMAP_UNSHARE) && 572 (from <= poff || from >= poff + plen) && 573 (to <= poff || to >= poff + plen)) 574 continue; 575 576 if (iomap_block_needs_zeroing(iter, block_start)) { 577 if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE)) 578 return -EIO; 579 folio_zero_segments(folio, poff, from, to, poff + plen); 580 } else { 581 int status = iomap_read_folio_sync(block_start, folio, 582 poff, plen, srcmap); 583 if (status) 584 return status; 585 } 586 iomap_set_range_uptodate(folio, iop, poff, plen); 587 } while ((block_start += plen) < block_end); 588 589 return 0; 590 } 591 592 static int iomap_write_begin_inline(const struct iomap_iter *iter, 593 struct folio *folio) 594 { 595 /* needs more work for the tailpacking case; disable for now */ 596 if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0)) 597 return -EIO; 598 return iomap_read_inline_data(iter, folio); 599 } 600 601 static int iomap_write_begin(const struct iomap_iter *iter, loff_t pos, 602 size_t len, struct folio **foliop) 603 { 604 const struct iomap_page_ops *page_ops = iter->iomap.page_ops; 605 const struct iomap *srcmap = iomap_iter_srcmap(iter); 606 struct folio *folio; 607 unsigned fgp = FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE | FGP_NOFS; 608 int status = 0; 609 610 BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length); 611 if (srcmap != &iter->iomap) 612 BUG_ON(pos + len > srcmap->offset + srcmap->length); 613 614 if (fatal_signal_pending(current)) 615 return -EINTR; 616 617 if (!mapping_large_folio_support(iter->inode->i_mapping)) 618 len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos)); 619 620 if (page_ops && page_ops->page_prepare) { 621 status = page_ops->page_prepare(iter->inode, pos, len); 622 if (status) 623 return status; 624 } 625 626 folio = __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT, 627 fgp, mapping_gfp_mask(iter->inode->i_mapping)); 628 if (!folio) { 629 status = -ENOMEM; 630 goto out_no_page; 631 } 632 if (pos + len > folio_pos(folio) + folio_size(folio)) 633 len = folio_pos(folio) + folio_size(folio) - pos; 634 635 if (srcmap->type == IOMAP_INLINE) 636 status = iomap_write_begin_inline(iter, folio); 637 else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) 638 status = __block_write_begin_int(folio, pos, len, NULL, srcmap); 639 else 640 status = __iomap_write_begin(iter, pos, len, folio); 641 642 if (unlikely(status)) 643 goto out_unlock; 644 645 *foliop = folio; 646 return 0; 647 648 out_unlock: 649 folio_unlock(folio); 650 folio_put(folio); 651 iomap_write_failed(iter->inode, pos, len); 652 653 out_no_page: 654 if (page_ops && page_ops->page_done) 655 page_ops->page_done(iter->inode, pos, 0, NULL); 656 return status; 657 } 658 659 static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len, 660 size_t copied, struct folio *folio) 661 { 662 struct iomap_page *iop = to_iomap_page(folio); 663 flush_dcache_folio(folio); 664 665 /* 666 * The blocks that were entirely written will now be uptodate, so we 667 * don't have to worry about a readpage reading them and overwriting a 668 * partial write. However, if we've encountered a short write and only 669 * partially written into a block, it will not be marked uptodate, so a 670 * readpage might come in and destroy our partial write. 671 * 672 * Do the simplest thing and just treat any short write to a 673 * non-uptodate page as a zero-length write, and force the caller to 674 * redo the whole thing. 675 */ 676 if (unlikely(copied < len && !folio_test_uptodate(folio))) 677 return 0; 678 iomap_set_range_uptodate(folio, iop, offset_in_folio(folio, pos), len); 679 filemap_dirty_folio(inode->i_mapping, folio); 680 return copied; 681 } 682 683 static size_t iomap_write_end_inline(const struct iomap_iter *iter, 684 struct folio *folio, loff_t pos, size_t copied) 685 { 686 const struct iomap *iomap = &iter->iomap; 687 void *addr; 688 689 WARN_ON_ONCE(!folio_test_uptodate(folio)); 690 BUG_ON(!iomap_inline_data_valid(iomap)); 691 692 flush_dcache_folio(folio); 693 addr = kmap_local_folio(folio, pos); 694 memcpy(iomap_inline_data(iomap, pos), addr, copied); 695 kunmap_local(addr); 696 697 mark_inode_dirty(iter->inode); 698 return copied; 699 } 700 701 /* Returns the number of bytes copied. May be 0. Cannot be an errno. */ 702 static size_t iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len, 703 size_t copied, struct folio *folio) 704 { 705 const struct iomap_page_ops *page_ops = iter->iomap.page_ops; 706 const struct iomap *srcmap = iomap_iter_srcmap(iter); 707 loff_t old_size = iter->inode->i_size; 708 size_t ret; 709 710 if (srcmap->type == IOMAP_INLINE) { 711 ret = iomap_write_end_inline(iter, folio, pos, copied); 712 } else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) { 713 ret = block_write_end(NULL, iter->inode->i_mapping, pos, len, 714 copied, &folio->page, NULL); 715 } else { 716 ret = __iomap_write_end(iter->inode, pos, len, copied, folio); 717 } 718 719 /* 720 * Update the in-memory inode size after copying the data into the page 721 * cache. It's up to the file system to write the updated size to disk, 722 * preferably after I/O completion so that no stale data is exposed. 723 */ 724 if (pos + ret > old_size) { 725 i_size_write(iter->inode, pos + ret); 726 iter->iomap.flags |= IOMAP_F_SIZE_CHANGED; 727 } 728 folio_unlock(folio); 729 730 if (old_size < pos) 731 pagecache_isize_extended(iter->inode, old_size, pos); 732 if (page_ops && page_ops->page_done) 733 page_ops->page_done(iter->inode, pos, ret, &folio->page); 734 folio_put(folio); 735 736 if (ret < len) 737 iomap_write_failed(iter->inode, pos, len); 738 return ret; 739 } 740 741 static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i) 742 { 743 loff_t length = iomap_length(iter); 744 loff_t pos = iter->pos; 745 ssize_t written = 0; 746 long status = 0; 747 748 do { 749 struct folio *folio; 750 struct page *page; 751 unsigned long offset; /* Offset into pagecache page */ 752 unsigned long bytes; /* Bytes to write to page */ 753 size_t copied; /* Bytes copied from user */ 754 755 offset = offset_in_page(pos); 756 bytes = min_t(unsigned long, PAGE_SIZE - offset, 757 iov_iter_count(i)); 758 again: 759 if (bytes > length) 760 bytes = length; 761 762 /* 763 * Bring in the user page that we'll copy from _first_. 764 * Otherwise there's a nasty deadlock on copying from the 765 * same page as we're writing to, without it being marked 766 * up-to-date. 767 */ 768 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 769 status = -EFAULT; 770 break; 771 } 772 773 status = iomap_write_begin(iter, pos, bytes, &folio); 774 if (unlikely(status)) 775 break; 776 777 page = folio_file_page(folio, pos >> PAGE_SHIFT); 778 if (mapping_writably_mapped(iter->inode->i_mapping)) 779 flush_dcache_page(page); 780 781 copied = copy_page_from_iter_atomic(page, offset, bytes, i); 782 783 status = iomap_write_end(iter, pos, bytes, copied, folio); 784 785 if (unlikely(copied != status)) 786 iov_iter_revert(i, copied - status); 787 788 cond_resched(); 789 if (unlikely(status == 0)) { 790 /* 791 * A short copy made iomap_write_end() reject the 792 * thing entirely. Might be memory poisoning 793 * halfway through, might be a race with munmap, 794 * might be severe memory pressure. 795 */ 796 if (copied) 797 bytes = copied; 798 goto again; 799 } 800 pos += status; 801 written += status; 802 length -= status; 803 804 balance_dirty_pages_ratelimited(iter->inode->i_mapping); 805 } while (iov_iter_count(i) && length); 806 807 return written ? written : status; 808 } 809 810 ssize_t 811 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i, 812 const struct iomap_ops *ops) 813 { 814 struct iomap_iter iter = { 815 .inode = iocb->ki_filp->f_mapping->host, 816 .pos = iocb->ki_pos, 817 .len = iov_iter_count(i), 818 .flags = IOMAP_WRITE, 819 }; 820 int ret; 821 822 while ((ret = iomap_iter(&iter, ops)) > 0) 823 iter.processed = iomap_write_iter(&iter, i); 824 if (iter.pos == iocb->ki_pos) 825 return ret; 826 return iter.pos - iocb->ki_pos; 827 } 828 EXPORT_SYMBOL_GPL(iomap_file_buffered_write); 829 830 static loff_t iomap_unshare_iter(struct iomap_iter *iter) 831 { 832 struct iomap *iomap = &iter->iomap; 833 const struct iomap *srcmap = iomap_iter_srcmap(iter); 834 loff_t pos = iter->pos; 835 loff_t length = iomap_length(iter); 836 long status = 0; 837 loff_t written = 0; 838 839 /* don't bother with blocks that are not shared to start with */ 840 if (!(iomap->flags & IOMAP_F_SHARED)) 841 return length; 842 /* don't bother with holes or unwritten extents */ 843 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 844 return length; 845 846 do { 847 unsigned long offset = offset_in_page(pos); 848 unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length); 849 struct folio *folio; 850 851 status = iomap_write_begin(iter, pos, bytes, &folio); 852 if (unlikely(status)) 853 return status; 854 855 status = iomap_write_end(iter, pos, bytes, bytes, folio); 856 if (WARN_ON_ONCE(status == 0)) 857 return -EIO; 858 859 cond_resched(); 860 861 pos += status; 862 written += status; 863 length -= status; 864 865 balance_dirty_pages_ratelimited(iter->inode->i_mapping); 866 } while (length); 867 868 return written; 869 } 870 871 int 872 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len, 873 const struct iomap_ops *ops) 874 { 875 struct iomap_iter iter = { 876 .inode = inode, 877 .pos = pos, 878 .len = len, 879 .flags = IOMAP_WRITE | IOMAP_UNSHARE, 880 }; 881 int ret; 882 883 while ((ret = iomap_iter(&iter, ops)) > 0) 884 iter.processed = iomap_unshare_iter(&iter); 885 return ret; 886 } 887 EXPORT_SYMBOL_GPL(iomap_file_unshare); 888 889 static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero) 890 { 891 const struct iomap *srcmap = iomap_iter_srcmap(iter); 892 loff_t pos = iter->pos; 893 loff_t length = iomap_length(iter); 894 loff_t written = 0; 895 896 /* already zeroed? we're done. */ 897 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 898 return length; 899 900 do { 901 struct folio *folio; 902 int status; 903 size_t offset; 904 size_t bytes = min_t(u64, SIZE_MAX, length); 905 906 status = iomap_write_begin(iter, pos, bytes, &folio); 907 if (status) 908 return status; 909 910 offset = offset_in_folio(folio, pos); 911 if (bytes > folio_size(folio) - offset) 912 bytes = folio_size(folio) - offset; 913 914 folio_zero_range(folio, offset, bytes); 915 folio_mark_accessed(folio); 916 917 bytes = iomap_write_end(iter, pos, bytes, bytes, folio); 918 if (WARN_ON_ONCE(bytes == 0)) 919 return -EIO; 920 921 pos += bytes; 922 length -= bytes; 923 written += bytes; 924 if (did_zero) 925 *did_zero = true; 926 } while (length > 0); 927 928 return written; 929 } 930 931 int 932 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero, 933 const struct iomap_ops *ops) 934 { 935 struct iomap_iter iter = { 936 .inode = inode, 937 .pos = pos, 938 .len = len, 939 .flags = IOMAP_ZERO, 940 }; 941 int ret; 942 943 while ((ret = iomap_iter(&iter, ops)) > 0) 944 iter.processed = iomap_zero_iter(&iter, did_zero); 945 return ret; 946 } 947 EXPORT_SYMBOL_GPL(iomap_zero_range); 948 949 int 950 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero, 951 const struct iomap_ops *ops) 952 { 953 unsigned int blocksize = i_blocksize(inode); 954 unsigned int off = pos & (blocksize - 1); 955 956 /* Block boundary? Nothing to do */ 957 if (!off) 958 return 0; 959 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops); 960 } 961 EXPORT_SYMBOL_GPL(iomap_truncate_page); 962 963 static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter, 964 struct folio *folio) 965 { 966 loff_t length = iomap_length(iter); 967 int ret; 968 969 if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) { 970 ret = __block_write_begin_int(folio, iter->pos, length, NULL, 971 &iter->iomap); 972 if (ret) 973 return ret; 974 block_commit_write(&folio->page, 0, length); 975 } else { 976 WARN_ON_ONCE(!folio_test_uptodate(folio)); 977 folio_mark_dirty(folio); 978 } 979 980 return length; 981 } 982 983 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops) 984 { 985 struct iomap_iter iter = { 986 .inode = file_inode(vmf->vma->vm_file), 987 .flags = IOMAP_WRITE | IOMAP_FAULT, 988 }; 989 struct folio *folio = page_folio(vmf->page); 990 ssize_t ret; 991 992 folio_lock(folio); 993 ret = folio_mkwrite_check_truncate(folio, iter.inode); 994 if (ret < 0) 995 goto out_unlock; 996 iter.pos = folio_pos(folio); 997 iter.len = ret; 998 while ((ret = iomap_iter(&iter, ops)) > 0) 999 iter.processed = iomap_folio_mkwrite_iter(&iter, folio); 1000 1001 if (ret < 0) 1002 goto out_unlock; 1003 folio_wait_stable(folio); 1004 return VM_FAULT_LOCKED; 1005 out_unlock: 1006 folio_unlock(folio); 1007 return block_page_mkwrite_return(ret); 1008 } 1009 EXPORT_SYMBOL_GPL(iomap_page_mkwrite); 1010 1011 static void iomap_finish_folio_write(struct inode *inode, struct folio *folio, 1012 size_t len, int error) 1013 { 1014 struct iomap_page *iop = to_iomap_page(folio); 1015 1016 if (error) { 1017 folio_set_error(folio); 1018 mapping_set_error(inode->i_mapping, error); 1019 } 1020 1021 WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !iop); 1022 WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) <= 0); 1023 1024 if (!iop || atomic_sub_and_test(len, &iop->write_bytes_pending)) 1025 folio_end_writeback(folio); 1026 } 1027 1028 /* 1029 * We're now finished for good with this ioend structure. Update the page 1030 * state, release holds on bios, and finally free up memory. Do not use the 1031 * ioend after this. 1032 */ 1033 static u32 1034 iomap_finish_ioend(struct iomap_ioend *ioend, int error) 1035 { 1036 struct inode *inode = ioend->io_inode; 1037 struct bio *bio = &ioend->io_inline_bio; 1038 struct bio *last = ioend->io_bio, *next; 1039 u64 start = bio->bi_iter.bi_sector; 1040 loff_t offset = ioend->io_offset; 1041 bool quiet = bio_flagged(bio, BIO_QUIET); 1042 u32 folio_count = 0; 1043 1044 for (bio = &ioend->io_inline_bio; bio; bio = next) { 1045 struct folio_iter fi; 1046 1047 /* 1048 * For the last bio, bi_private points to the ioend, so we 1049 * need to explicitly end the iteration here. 1050 */ 1051 if (bio == last) 1052 next = NULL; 1053 else 1054 next = bio->bi_private; 1055 1056 /* walk all folios in bio, ending page IO on them */ 1057 bio_for_each_folio_all(fi, bio) { 1058 iomap_finish_folio_write(inode, fi.folio, fi.length, 1059 error); 1060 folio_count++; 1061 } 1062 bio_put(bio); 1063 } 1064 /* The ioend has been freed by bio_put() */ 1065 1066 if (unlikely(error && !quiet)) { 1067 printk_ratelimited(KERN_ERR 1068 "%s: writeback error on inode %lu, offset %lld, sector %llu", 1069 inode->i_sb->s_id, inode->i_ino, offset, start); 1070 } 1071 return folio_count; 1072 } 1073 1074 /* 1075 * Ioend completion routine for merged bios. This can only be called from task 1076 * contexts as merged ioends can be of unbound length. Hence we have to break up 1077 * the writeback completions into manageable chunks to avoid long scheduler 1078 * holdoffs. We aim to keep scheduler holdoffs down below 10ms so that we get 1079 * good batch processing throughput without creating adverse scheduler latency 1080 * conditions. 1081 */ 1082 void 1083 iomap_finish_ioends(struct iomap_ioend *ioend, int error) 1084 { 1085 struct list_head tmp; 1086 u32 completions; 1087 1088 might_sleep(); 1089 1090 list_replace_init(&ioend->io_list, &tmp); 1091 completions = iomap_finish_ioend(ioend, error); 1092 1093 while (!list_empty(&tmp)) { 1094 if (completions > IOEND_BATCH_SIZE * 8) { 1095 cond_resched(); 1096 completions = 0; 1097 } 1098 ioend = list_first_entry(&tmp, struct iomap_ioend, io_list); 1099 list_del_init(&ioend->io_list); 1100 completions += iomap_finish_ioend(ioend, error); 1101 } 1102 } 1103 EXPORT_SYMBOL_GPL(iomap_finish_ioends); 1104 1105 /* 1106 * We can merge two adjacent ioends if they have the same set of work to do. 1107 */ 1108 static bool 1109 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next) 1110 { 1111 if (ioend->io_bio->bi_status != next->io_bio->bi_status) 1112 return false; 1113 if ((ioend->io_flags & IOMAP_F_SHARED) ^ 1114 (next->io_flags & IOMAP_F_SHARED)) 1115 return false; 1116 if ((ioend->io_type == IOMAP_UNWRITTEN) ^ 1117 (next->io_type == IOMAP_UNWRITTEN)) 1118 return false; 1119 if (ioend->io_offset + ioend->io_size != next->io_offset) 1120 return false; 1121 /* 1122 * Do not merge physically discontiguous ioends. The filesystem 1123 * completion functions will have to iterate the physical 1124 * discontiguities even if we merge the ioends at a logical level, so 1125 * we don't gain anything by merging physical discontiguities here. 1126 * 1127 * We cannot use bio->bi_iter.bi_sector here as it is modified during 1128 * submission so does not point to the start sector of the bio at 1129 * completion. 1130 */ 1131 if (ioend->io_sector + (ioend->io_size >> 9) != next->io_sector) 1132 return false; 1133 return true; 1134 } 1135 1136 void 1137 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends) 1138 { 1139 struct iomap_ioend *next; 1140 1141 INIT_LIST_HEAD(&ioend->io_list); 1142 1143 while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend, 1144 io_list))) { 1145 if (!iomap_ioend_can_merge(ioend, next)) 1146 break; 1147 list_move_tail(&next->io_list, &ioend->io_list); 1148 ioend->io_size += next->io_size; 1149 } 1150 } 1151 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge); 1152 1153 static int 1154 iomap_ioend_compare(void *priv, const struct list_head *a, 1155 const struct list_head *b) 1156 { 1157 struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list); 1158 struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list); 1159 1160 if (ia->io_offset < ib->io_offset) 1161 return -1; 1162 if (ia->io_offset > ib->io_offset) 1163 return 1; 1164 return 0; 1165 } 1166 1167 void 1168 iomap_sort_ioends(struct list_head *ioend_list) 1169 { 1170 list_sort(NULL, ioend_list, iomap_ioend_compare); 1171 } 1172 EXPORT_SYMBOL_GPL(iomap_sort_ioends); 1173 1174 static void iomap_writepage_end_bio(struct bio *bio) 1175 { 1176 struct iomap_ioend *ioend = bio->bi_private; 1177 1178 iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status)); 1179 } 1180 1181 /* 1182 * Submit the final bio for an ioend. 1183 * 1184 * If @error is non-zero, it means that we have a situation where some part of 1185 * the submission process has failed after we've marked pages for writeback 1186 * and unlocked them. In this situation, we need to fail the bio instead of 1187 * submitting it. This typically only happens on a filesystem shutdown. 1188 */ 1189 static int 1190 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend, 1191 int error) 1192 { 1193 ioend->io_bio->bi_private = ioend; 1194 ioend->io_bio->bi_end_io = iomap_writepage_end_bio; 1195 1196 if (wpc->ops->prepare_ioend) 1197 error = wpc->ops->prepare_ioend(ioend, error); 1198 if (error) { 1199 /* 1200 * If we're failing the IO now, just mark the ioend with an 1201 * error and finish it. This will run IO completion immediately 1202 * as there is only one reference to the ioend at this point in 1203 * time. 1204 */ 1205 ioend->io_bio->bi_status = errno_to_blk_status(error); 1206 bio_endio(ioend->io_bio); 1207 return error; 1208 } 1209 1210 submit_bio(ioend->io_bio); 1211 return 0; 1212 } 1213 1214 static struct iomap_ioend * 1215 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc, 1216 loff_t offset, sector_t sector, struct writeback_control *wbc) 1217 { 1218 struct iomap_ioend *ioend; 1219 struct bio *bio; 1220 1221 bio = bio_alloc_bioset(wpc->iomap.bdev, BIO_MAX_VECS, 1222 REQ_OP_WRITE | wbc_to_write_flags(wbc), 1223 GFP_NOFS, &iomap_ioend_bioset); 1224 bio->bi_iter.bi_sector = sector; 1225 wbc_init_bio(wbc, bio); 1226 1227 ioend = container_of(bio, struct iomap_ioend, io_inline_bio); 1228 INIT_LIST_HEAD(&ioend->io_list); 1229 ioend->io_type = wpc->iomap.type; 1230 ioend->io_flags = wpc->iomap.flags; 1231 ioend->io_inode = inode; 1232 ioend->io_size = 0; 1233 ioend->io_folios = 0; 1234 ioend->io_offset = offset; 1235 ioend->io_bio = bio; 1236 ioend->io_sector = sector; 1237 return ioend; 1238 } 1239 1240 /* 1241 * Allocate a new bio, and chain the old bio to the new one. 1242 * 1243 * Note that we have to perform the chaining in this unintuitive order 1244 * so that the bi_private linkage is set up in the right direction for the 1245 * traversal in iomap_finish_ioend(). 1246 */ 1247 static struct bio * 1248 iomap_chain_bio(struct bio *prev) 1249 { 1250 struct bio *new; 1251 1252 new = bio_alloc(prev->bi_bdev, BIO_MAX_VECS, prev->bi_opf, GFP_NOFS); 1253 bio_clone_blkg_association(new, prev); 1254 new->bi_iter.bi_sector = bio_end_sector(prev); 1255 1256 bio_chain(prev, new); 1257 bio_get(prev); /* for iomap_finish_ioend */ 1258 submit_bio(prev); 1259 return new; 1260 } 1261 1262 static bool 1263 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset, 1264 sector_t sector) 1265 { 1266 if ((wpc->iomap.flags & IOMAP_F_SHARED) != 1267 (wpc->ioend->io_flags & IOMAP_F_SHARED)) 1268 return false; 1269 if (wpc->iomap.type != wpc->ioend->io_type) 1270 return false; 1271 if (offset != wpc->ioend->io_offset + wpc->ioend->io_size) 1272 return false; 1273 if (sector != bio_end_sector(wpc->ioend->io_bio)) 1274 return false; 1275 /* 1276 * Limit ioend bio chain lengths to minimise IO completion latency. This 1277 * also prevents long tight loops ending page writeback on all the 1278 * folios in the ioend. 1279 */ 1280 if (wpc->ioend->io_folios >= IOEND_BATCH_SIZE) 1281 return false; 1282 return true; 1283 } 1284 1285 /* 1286 * Test to see if we have an existing ioend structure that we could append to 1287 * first; otherwise finish off the current ioend and start another. 1288 */ 1289 static void 1290 iomap_add_to_ioend(struct inode *inode, loff_t pos, struct folio *folio, 1291 struct iomap_page *iop, struct iomap_writepage_ctx *wpc, 1292 struct writeback_control *wbc, struct list_head *iolist) 1293 { 1294 sector_t sector = iomap_sector(&wpc->iomap, pos); 1295 unsigned len = i_blocksize(inode); 1296 size_t poff = offset_in_folio(folio, pos); 1297 1298 if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos, sector)) { 1299 if (wpc->ioend) 1300 list_add(&wpc->ioend->io_list, iolist); 1301 wpc->ioend = iomap_alloc_ioend(inode, wpc, pos, sector, wbc); 1302 } 1303 1304 if (!bio_add_folio(wpc->ioend->io_bio, folio, len, poff)) { 1305 wpc->ioend->io_bio = iomap_chain_bio(wpc->ioend->io_bio); 1306 bio_add_folio(wpc->ioend->io_bio, folio, len, poff); 1307 } 1308 1309 if (iop) 1310 atomic_add(len, &iop->write_bytes_pending); 1311 wpc->ioend->io_size += len; 1312 wbc_account_cgroup_owner(wbc, &folio->page, len); 1313 } 1314 1315 /* 1316 * We implement an immediate ioend submission policy here to avoid needing to 1317 * chain multiple ioends and hence nest mempool allocations which can violate 1318 * the forward progress guarantees we need to provide. The current ioend we're 1319 * adding blocks to is cached in the writepage context, and if the new block 1320 * doesn't append to the cached ioend, it will create a new ioend and cache that 1321 * instead. 1322 * 1323 * If a new ioend is created and cached, the old ioend is returned and queued 1324 * locally for submission once the entire page is processed or an error has been 1325 * detected. While ioends are submitted immediately after they are completed, 1326 * batching optimisations are provided by higher level block plugging. 1327 * 1328 * At the end of a writeback pass, there will be a cached ioend remaining on the 1329 * writepage context that the caller will need to submit. 1330 */ 1331 static int 1332 iomap_writepage_map(struct iomap_writepage_ctx *wpc, 1333 struct writeback_control *wbc, struct inode *inode, 1334 struct folio *folio, u64 end_pos) 1335 { 1336 struct iomap_page *iop = iomap_page_create(inode, folio); 1337 struct iomap_ioend *ioend, *next; 1338 unsigned len = i_blocksize(inode); 1339 unsigned nblocks = i_blocks_per_folio(inode, folio); 1340 u64 pos = folio_pos(folio); 1341 int error = 0, count = 0, i; 1342 LIST_HEAD(submit_list); 1343 1344 WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) != 0); 1345 1346 /* 1347 * Walk through the folio to find areas to write back. If we 1348 * run off the end of the current map or find the current map 1349 * invalid, grab a new one. 1350 */ 1351 for (i = 0; i < nblocks && pos < end_pos; i++, pos += len) { 1352 if (iop && !test_bit(i, iop->uptodate)) 1353 continue; 1354 1355 error = wpc->ops->map_blocks(wpc, inode, pos); 1356 if (error) 1357 break; 1358 if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE)) 1359 continue; 1360 if (wpc->iomap.type == IOMAP_HOLE) 1361 continue; 1362 iomap_add_to_ioend(inode, pos, folio, iop, wpc, wbc, 1363 &submit_list); 1364 count++; 1365 } 1366 if (count) 1367 wpc->ioend->io_folios++; 1368 1369 WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list)); 1370 WARN_ON_ONCE(!folio_test_locked(folio)); 1371 WARN_ON_ONCE(folio_test_writeback(folio)); 1372 WARN_ON_ONCE(folio_test_dirty(folio)); 1373 1374 /* 1375 * We cannot cancel the ioend directly here on error. We may have 1376 * already set other pages under writeback and hence we have to run I/O 1377 * completion to mark the error state of the pages under writeback 1378 * appropriately. 1379 */ 1380 if (unlikely(error)) { 1381 /* 1382 * Let the filesystem know what portion of the current page 1383 * failed to map. If the page hasn't been added to ioend, it 1384 * won't be affected by I/O completion and we must unlock it 1385 * now. 1386 */ 1387 if (wpc->ops->discard_folio) 1388 wpc->ops->discard_folio(folio, pos); 1389 if (!count) { 1390 folio_clear_uptodate(folio); 1391 folio_unlock(folio); 1392 goto done; 1393 } 1394 } 1395 1396 folio_start_writeback(folio); 1397 folio_unlock(folio); 1398 1399 /* 1400 * Preserve the original error if there was one; catch 1401 * submission errors here and propagate into subsequent ioend 1402 * submissions. 1403 */ 1404 list_for_each_entry_safe(ioend, next, &submit_list, io_list) { 1405 int error2; 1406 1407 list_del_init(&ioend->io_list); 1408 error2 = iomap_submit_ioend(wpc, ioend, error); 1409 if (error2 && !error) 1410 error = error2; 1411 } 1412 1413 /* 1414 * We can end up here with no error and nothing to write only if we race 1415 * with a partial page truncate on a sub-page block sized filesystem. 1416 */ 1417 if (!count) 1418 folio_end_writeback(folio); 1419 done: 1420 mapping_set_error(folio->mapping, error); 1421 return error; 1422 } 1423 1424 /* 1425 * Write out a dirty page. 1426 * 1427 * For delalloc space on the page, we need to allocate space and flush it. 1428 * For unwritten space on the page, we need to start the conversion to 1429 * regular allocated space. 1430 */ 1431 static int 1432 iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data) 1433 { 1434 struct folio *folio = page_folio(page); 1435 struct iomap_writepage_ctx *wpc = data; 1436 struct inode *inode = folio->mapping->host; 1437 u64 end_pos, isize; 1438 1439 trace_iomap_writepage(inode, folio_pos(folio), folio_size(folio)); 1440 1441 /* 1442 * Refuse to write the folio out if we're called from reclaim context. 1443 * 1444 * This avoids stack overflows when called from deeply used stacks in 1445 * random callers for direct reclaim or memcg reclaim. We explicitly 1446 * allow reclaim from kswapd as the stack usage there is relatively low. 1447 * 1448 * This should never happen except in the case of a VM regression so 1449 * warn about it. 1450 */ 1451 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 1452 PF_MEMALLOC)) 1453 goto redirty; 1454 1455 /* 1456 * Is this folio beyond the end of the file? 1457 * 1458 * The folio index is less than the end_index, adjust the end_pos 1459 * to the highest offset that this folio should represent. 1460 * ----------------------------------------------------- 1461 * | file mapping | <EOF> | 1462 * ----------------------------------------------------- 1463 * | Page ... | Page N-2 | Page N-1 | Page N | | 1464 * ^--------------------------------^----------|-------- 1465 * | desired writeback range | see else | 1466 * ---------------------------------^------------------| 1467 */ 1468 isize = i_size_read(inode); 1469 end_pos = folio_pos(folio) + folio_size(folio); 1470 if (end_pos > isize) { 1471 /* 1472 * Check whether the page to write out is beyond or straddles 1473 * i_size or not. 1474 * ------------------------------------------------------- 1475 * | file mapping | <EOF> | 1476 * ------------------------------------------------------- 1477 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond | 1478 * ^--------------------------------^-----------|--------- 1479 * | | Straddles | 1480 * ---------------------------------^-----------|--------| 1481 */ 1482 size_t poff = offset_in_folio(folio, isize); 1483 pgoff_t end_index = isize >> PAGE_SHIFT; 1484 1485 /* 1486 * Skip the page if it's fully outside i_size, e.g. due to a 1487 * truncate operation that's in progress. We must redirty the 1488 * page so that reclaim stops reclaiming it. Otherwise 1489 * iomap_vm_releasepage() is called on it and gets confused. 1490 * 1491 * Note that the end_index is unsigned long. If the given 1492 * offset is greater than 16TB on a 32-bit system then if we 1493 * checked if the page is fully outside i_size with 1494 * "if (page->index >= end_index + 1)", "end_index + 1" would 1495 * overflow and evaluate to 0. Hence this page would be 1496 * redirtied and written out repeatedly, which would result in 1497 * an infinite loop; the user program performing this operation 1498 * would hang. Instead, we can detect this situation by 1499 * checking if the page is totally beyond i_size or if its 1500 * offset is just equal to the EOF. 1501 */ 1502 if (folio->index > end_index || 1503 (folio->index == end_index && poff == 0)) 1504 goto redirty; 1505 1506 /* 1507 * The page straddles i_size. It must be zeroed out on each 1508 * and every writepage invocation because it may be mmapped. 1509 * "A file is mapped in multiples of the page size. For a file 1510 * that is not a multiple of the page size, the remaining 1511 * memory is zeroed when mapped, and writes to that region are 1512 * not written out to the file." 1513 */ 1514 folio_zero_segment(folio, poff, folio_size(folio)); 1515 end_pos = isize; 1516 } 1517 1518 return iomap_writepage_map(wpc, wbc, inode, folio, end_pos); 1519 1520 redirty: 1521 folio_redirty_for_writepage(wbc, folio); 1522 folio_unlock(folio); 1523 return 0; 1524 } 1525 1526 int 1527 iomap_writepage(struct page *page, struct writeback_control *wbc, 1528 struct iomap_writepage_ctx *wpc, 1529 const struct iomap_writeback_ops *ops) 1530 { 1531 int ret; 1532 1533 wpc->ops = ops; 1534 ret = iomap_do_writepage(page, wbc, wpc); 1535 if (!wpc->ioend) 1536 return ret; 1537 return iomap_submit_ioend(wpc, wpc->ioend, ret); 1538 } 1539 EXPORT_SYMBOL_GPL(iomap_writepage); 1540 1541 int 1542 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc, 1543 struct iomap_writepage_ctx *wpc, 1544 const struct iomap_writeback_ops *ops) 1545 { 1546 int ret; 1547 1548 wpc->ops = ops; 1549 ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc); 1550 if (!wpc->ioend) 1551 return ret; 1552 return iomap_submit_ioend(wpc, wpc->ioend, ret); 1553 } 1554 EXPORT_SYMBOL_GPL(iomap_writepages); 1555 1556 static int __init iomap_init(void) 1557 { 1558 return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE), 1559 offsetof(struct iomap_ioend, io_inline_bio), 1560 BIOSET_NEED_BVECS); 1561 } 1562 fs_initcall(iomap_init); 1563