1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Red Hat, Inc. 4 * Copyright (C) 2016-2019 Christoph Hellwig. 5 */ 6 #include <linux/module.h> 7 #include <linux/compiler.h> 8 #include <linux/fs.h> 9 #include <linux/iomap.h> 10 #include <linux/pagemap.h> 11 #include <linux/uio.h> 12 #include <linux/buffer_head.h> 13 #include <linux/dax.h> 14 #include <linux/writeback.h> 15 #include <linux/list_sort.h> 16 #include <linux/swap.h> 17 #include <linux/bio.h> 18 #include <linux/sched/signal.h> 19 #include <linux/migrate.h> 20 #include "trace.h" 21 22 #include "../internal.h" 23 24 /* 25 * Structure allocated for each page when block size < PAGE_SIZE to track 26 * sub-page uptodate status and I/O completions. 27 */ 28 struct iomap_page { 29 atomic_t read_count; 30 atomic_t write_count; 31 spinlock_t uptodate_lock; 32 DECLARE_BITMAP(uptodate, PAGE_SIZE / 512); 33 }; 34 35 static inline struct iomap_page *to_iomap_page(struct page *page) 36 { 37 if (page_has_private(page)) 38 return (struct iomap_page *)page_private(page); 39 return NULL; 40 } 41 42 static struct bio_set iomap_ioend_bioset; 43 44 static struct iomap_page * 45 iomap_page_create(struct inode *inode, struct page *page) 46 { 47 struct iomap_page *iop = to_iomap_page(page); 48 49 if (iop || i_blocksize(inode) == PAGE_SIZE) 50 return iop; 51 52 iop = kmalloc(sizeof(*iop), GFP_NOFS | __GFP_NOFAIL); 53 atomic_set(&iop->read_count, 0); 54 atomic_set(&iop->write_count, 0); 55 spin_lock_init(&iop->uptodate_lock); 56 bitmap_zero(iop->uptodate, PAGE_SIZE / SECTOR_SIZE); 57 58 /* 59 * migrate_page_move_mapping() assumes that pages with private data have 60 * their count elevated by 1. 61 */ 62 get_page(page); 63 set_page_private(page, (unsigned long)iop); 64 SetPagePrivate(page); 65 return iop; 66 } 67 68 static void 69 iomap_page_release(struct page *page) 70 { 71 struct iomap_page *iop = to_iomap_page(page); 72 73 if (!iop) 74 return; 75 WARN_ON_ONCE(atomic_read(&iop->read_count)); 76 WARN_ON_ONCE(atomic_read(&iop->write_count)); 77 ClearPagePrivate(page); 78 set_page_private(page, 0); 79 put_page(page); 80 kfree(iop); 81 } 82 83 /* 84 * Calculate the range inside the page that we actually need to read. 85 */ 86 static void 87 iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop, 88 loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp) 89 { 90 loff_t orig_pos = *pos; 91 loff_t isize = i_size_read(inode); 92 unsigned block_bits = inode->i_blkbits; 93 unsigned block_size = (1 << block_bits); 94 unsigned poff = offset_in_page(*pos); 95 unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length); 96 unsigned first = poff >> block_bits; 97 unsigned last = (poff + plen - 1) >> block_bits; 98 99 /* 100 * If the block size is smaller than the page size we need to check the 101 * per-block uptodate status and adjust the offset and length if needed 102 * to avoid reading in already uptodate ranges. 103 */ 104 if (iop) { 105 unsigned int i; 106 107 /* move forward for each leading block marked uptodate */ 108 for (i = first; i <= last; i++) { 109 if (!test_bit(i, iop->uptodate)) 110 break; 111 *pos += block_size; 112 poff += block_size; 113 plen -= block_size; 114 first++; 115 } 116 117 /* truncate len if we find any trailing uptodate block(s) */ 118 for ( ; i <= last; i++) { 119 if (test_bit(i, iop->uptodate)) { 120 plen -= (last - i + 1) * block_size; 121 last = i - 1; 122 break; 123 } 124 } 125 } 126 127 /* 128 * If the extent spans the block that contains the i_size we need to 129 * handle both halves separately so that we properly zero data in the 130 * page cache for blocks that are entirely outside of i_size. 131 */ 132 if (orig_pos <= isize && orig_pos + length > isize) { 133 unsigned end = offset_in_page(isize - 1) >> block_bits; 134 135 if (first <= end && last > end) 136 plen -= (last - end) * block_size; 137 } 138 139 *offp = poff; 140 *lenp = plen; 141 } 142 143 static void 144 iomap_iop_set_range_uptodate(struct page *page, unsigned off, unsigned len) 145 { 146 struct iomap_page *iop = to_iomap_page(page); 147 struct inode *inode = page->mapping->host; 148 unsigned first = off >> inode->i_blkbits; 149 unsigned last = (off + len - 1) >> inode->i_blkbits; 150 bool uptodate = true; 151 unsigned long flags; 152 unsigned int i; 153 154 spin_lock_irqsave(&iop->uptodate_lock, flags); 155 for (i = 0; i < PAGE_SIZE / i_blocksize(inode); i++) { 156 if (i >= first && i <= last) 157 set_bit(i, iop->uptodate); 158 else if (!test_bit(i, iop->uptodate)) 159 uptodate = false; 160 } 161 162 if (uptodate) 163 SetPageUptodate(page); 164 spin_unlock_irqrestore(&iop->uptodate_lock, flags); 165 } 166 167 static void 168 iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len) 169 { 170 if (PageError(page)) 171 return; 172 173 if (page_has_private(page)) 174 iomap_iop_set_range_uptodate(page, off, len); 175 else 176 SetPageUptodate(page); 177 } 178 179 static void 180 iomap_read_finish(struct iomap_page *iop, struct page *page) 181 { 182 if (!iop || atomic_dec_and_test(&iop->read_count)) 183 unlock_page(page); 184 } 185 186 static void 187 iomap_read_page_end_io(struct bio_vec *bvec, int error) 188 { 189 struct page *page = bvec->bv_page; 190 struct iomap_page *iop = to_iomap_page(page); 191 192 if (unlikely(error)) { 193 ClearPageUptodate(page); 194 SetPageError(page); 195 } else { 196 iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len); 197 } 198 199 iomap_read_finish(iop, page); 200 } 201 202 static void 203 iomap_read_end_io(struct bio *bio) 204 { 205 int error = blk_status_to_errno(bio->bi_status); 206 struct bio_vec *bvec; 207 struct bvec_iter_all iter_all; 208 209 bio_for_each_segment_all(bvec, bio, iter_all) 210 iomap_read_page_end_io(bvec, error); 211 bio_put(bio); 212 } 213 214 struct iomap_readpage_ctx { 215 struct page *cur_page; 216 bool cur_page_in_bio; 217 bool is_readahead; 218 struct bio *bio; 219 struct list_head *pages; 220 }; 221 222 static void 223 iomap_read_inline_data(struct inode *inode, struct page *page, 224 struct iomap *iomap) 225 { 226 size_t size = i_size_read(inode); 227 void *addr; 228 229 if (PageUptodate(page)) 230 return; 231 232 BUG_ON(page->index); 233 BUG_ON(size > PAGE_SIZE - offset_in_page(iomap->inline_data)); 234 235 addr = kmap_atomic(page); 236 memcpy(addr, iomap->inline_data, size); 237 memset(addr + size, 0, PAGE_SIZE - size); 238 kunmap_atomic(addr); 239 SetPageUptodate(page); 240 } 241 242 static inline bool iomap_block_needs_zeroing(struct inode *inode, 243 struct iomap *iomap, loff_t pos) 244 { 245 return iomap->type != IOMAP_MAPPED || 246 (iomap->flags & IOMAP_F_NEW) || 247 pos >= i_size_read(inode); 248 } 249 250 static loff_t 251 iomap_readpage_actor(struct inode *inode, loff_t pos, loff_t length, void *data, 252 struct iomap *iomap, struct iomap *srcmap) 253 { 254 struct iomap_readpage_ctx *ctx = data; 255 struct page *page = ctx->cur_page; 256 struct iomap_page *iop = iomap_page_create(inode, page); 257 bool same_page = false, is_contig = false; 258 loff_t orig_pos = pos; 259 unsigned poff, plen; 260 sector_t sector; 261 262 if (iomap->type == IOMAP_INLINE) { 263 WARN_ON_ONCE(pos); 264 iomap_read_inline_data(inode, page, iomap); 265 return PAGE_SIZE; 266 } 267 268 /* zero post-eof blocks as the page may be mapped */ 269 iomap_adjust_read_range(inode, iop, &pos, length, &poff, &plen); 270 if (plen == 0) 271 goto done; 272 273 if (iomap_block_needs_zeroing(inode, iomap, pos)) { 274 zero_user(page, poff, plen); 275 iomap_set_range_uptodate(page, poff, plen); 276 goto done; 277 } 278 279 ctx->cur_page_in_bio = true; 280 281 /* 282 * Try to merge into a previous segment if we can. 283 */ 284 sector = iomap_sector(iomap, pos); 285 if (ctx->bio && bio_end_sector(ctx->bio) == sector) 286 is_contig = true; 287 288 if (is_contig && 289 __bio_try_merge_page(ctx->bio, page, plen, poff, &same_page)) { 290 if (!same_page && iop) 291 atomic_inc(&iop->read_count); 292 goto done; 293 } 294 295 /* 296 * If we start a new segment we need to increase the read count, and we 297 * need to do so before submitting any previous full bio to make sure 298 * that we don't prematurely unlock the page. 299 */ 300 if (iop) 301 atomic_inc(&iop->read_count); 302 303 if (!ctx->bio || !is_contig || bio_full(ctx->bio, plen)) { 304 gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL); 305 gfp_t orig_gfp = gfp; 306 int nr_vecs = (length + PAGE_SIZE - 1) >> PAGE_SHIFT; 307 308 if (ctx->bio) 309 submit_bio(ctx->bio); 310 311 if (ctx->is_readahead) /* same as readahead_gfp_mask */ 312 gfp |= __GFP_NORETRY | __GFP_NOWARN; 313 ctx->bio = bio_alloc(gfp, min(BIO_MAX_PAGES, nr_vecs)); 314 /* 315 * If the bio_alloc fails, try it again for a single page to 316 * avoid having to deal with partial page reads. This emulates 317 * what do_mpage_readpage does. 318 */ 319 if (!ctx->bio) 320 ctx->bio = bio_alloc(orig_gfp, 1); 321 ctx->bio->bi_opf = REQ_OP_READ; 322 if (ctx->is_readahead) 323 ctx->bio->bi_opf |= REQ_RAHEAD; 324 ctx->bio->bi_iter.bi_sector = sector; 325 bio_set_dev(ctx->bio, iomap->bdev); 326 ctx->bio->bi_end_io = iomap_read_end_io; 327 } 328 329 bio_add_page(ctx->bio, page, plen, poff); 330 done: 331 /* 332 * Move the caller beyond our range so that it keeps making progress. 333 * For that we have to include any leading non-uptodate ranges, but 334 * we can skip trailing ones as they will be handled in the next 335 * iteration. 336 */ 337 return pos - orig_pos + plen; 338 } 339 340 int 341 iomap_readpage(struct page *page, const struct iomap_ops *ops) 342 { 343 struct iomap_readpage_ctx ctx = { .cur_page = page }; 344 struct inode *inode = page->mapping->host; 345 unsigned poff; 346 loff_t ret; 347 348 trace_iomap_readpage(page->mapping->host, 1); 349 350 for (poff = 0; poff < PAGE_SIZE; poff += ret) { 351 ret = iomap_apply(inode, page_offset(page) + poff, 352 PAGE_SIZE - poff, 0, ops, &ctx, 353 iomap_readpage_actor); 354 if (ret <= 0) { 355 WARN_ON_ONCE(ret == 0); 356 SetPageError(page); 357 break; 358 } 359 } 360 361 if (ctx.bio) { 362 submit_bio(ctx.bio); 363 WARN_ON_ONCE(!ctx.cur_page_in_bio); 364 } else { 365 WARN_ON_ONCE(ctx.cur_page_in_bio); 366 unlock_page(page); 367 } 368 369 /* 370 * Just like mpage_readpages and block_read_full_page we always 371 * return 0 and just mark the page as PageError on errors. This 372 * should be cleaned up all through the stack eventually. 373 */ 374 return 0; 375 } 376 EXPORT_SYMBOL_GPL(iomap_readpage); 377 378 static struct page * 379 iomap_next_page(struct inode *inode, struct list_head *pages, loff_t pos, 380 loff_t length, loff_t *done) 381 { 382 while (!list_empty(pages)) { 383 struct page *page = lru_to_page(pages); 384 385 if (page_offset(page) >= (u64)pos + length) 386 break; 387 388 list_del(&page->lru); 389 if (!add_to_page_cache_lru(page, inode->i_mapping, page->index, 390 GFP_NOFS)) 391 return page; 392 393 /* 394 * If we already have a page in the page cache at index we are 395 * done. Upper layers don't care if it is uptodate after the 396 * readpages call itself as every page gets checked again once 397 * actually needed. 398 */ 399 *done += PAGE_SIZE; 400 put_page(page); 401 } 402 403 return NULL; 404 } 405 406 static loff_t 407 iomap_readpages_actor(struct inode *inode, loff_t pos, loff_t length, 408 void *data, struct iomap *iomap, struct iomap *srcmap) 409 { 410 struct iomap_readpage_ctx *ctx = data; 411 loff_t done, ret; 412 413 for (done = 0; done < length; done += ret) { 414 if (ctx->cur_page && offset_in_page(pos + done) == 0) { 415 if (!ctx->cur_page_in_bio) 416 unlock_page(ctx->cur_page); 417 put_page(ctx->cur_page); 418 ctx->cur_page = NULL; 419 } 420 if (!ctx->cur_page) { 421 ctx->cur_page = iomap_next_page(inode, ctx->pages, 422 pos, length, &done); 423 if (!ctx->cur_page) 424 break; 425 ctx->cur_page_in_bio = false; 426 } 427 ret = iomap_readpage_actor(inode, pos + done, length - done, 428 ctx, iomap, srcmap); 429 } 430 431 return done; 432 } 433 434 int 435 iomap_readpages(struct address_space *mapping, struct list_head *pages, 436 unsigned nr_pages, const struct iomap_ops *ops) 437 { 438 struct iomap_readpage_ctx ctx = { 439 .pages = pages, 440 .is_readahead = true, 441 }; 442 loff_t pos = page_offset(list_entry(pages->prev, struct page, lru)); 443 loff_t last = page_offset(list_entry(pages->next, struct page, lru)); 444 loff_t length = last - pos + PAGE_SIZE, ret = 0; 445 446 trace_iomap_readpages(mapping->host, nr_pages); 447 448 while (length > 0) { 449 ret = iomap_apply(mapping->host, pos, length, 0, ops, 450 &ctx, iomap_readpages_actor); 451 if (ret <= 0) { 452 WARN_ON_ONCE(ret == 0); 453 goto done; 454 } 455 pos += ret; 456 length -= ret; 457 } 458 ret = 0; 459 done: 460 if (ctx.bio) 461 submit_bio(ctx.bio); 462 if (ctx.cur_page) { 463 if (!ctx.cur_page_in_bio) 464 unlock_page(ctx.cur_page); 465 put_page(ctx.cur_page); 466 } 467 468 /* 469 * Check that we didn't lose a page due to the arcance calling 470 * conventions.. 471 */ 472 WARN_ON_ONCE(!ret && !list_empty(ctx.pages)); 473 return ret; 474 } 475 EXPORT_SYMBOL_GPL(iomap_readpages); 476 477 /* 478 * iomap_is_partially_uptodate checks whether blocks within a page are 479 * uptodate or not. 480 * 481 * Returns true if all blocks which correspond to a file portion 482 * we want to read within the page are uptodate. 483 */ 484 int 485 iomap_is_partially_uptodate(struct page *page, unsigned long from, 486 unsigned long count) 487 { 488 struct iomap_page *iop = to_iomap_page(page); 489 struct inode *inode = page->mapping->host; 490 unsigned len, first, last; 491 unsigned i; 492 493 /* Limit range to one page */ 494 len = min_t(unsigned, PAGE_SIZE - from, count); 495 496 /* First and last blocks in range within page */ 497 first = from >> inode->i_blkbits; 498 last = (from + len - 1) >> inode->i_blkbits; 499 500 if (iop) { 501 for (i = first; i <= last; i++) 502 if (!test_bit(i, iop->uptodate)) 503 return 0; 504 return 1; 505 } 506 507 return 0; 508 } 509 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate); 510 511 int 512 iomap_releasepage(struct page *page, gfp_t gfp_mask) 513 { 514 trace_iomap_releasepage(page->mapping->host, page_offset(page), 515 PAGE_SIZE); 516 517 /* 518 * mm accommodates an old ext3 case where clean pages might not have had 519 * the dirty bit cleared. Thus, it can send actual dirty pages to 520 * ->releasepage() via shrink_active_list(), skip those here. 521 */ 522 if (PageDirty(page) || PageWriteback(page)) 523 return 0; 524 iomap_page_release(page); 525 return 1; 526 } 527 EXPORT_SYMBOL_GPL(iomap_releasepage); 528 529 void 530 iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len) 531 { 532 trace_iomap_invalidatepage(page->mapping->host, offset, len); 533 534 /* 535 * If we are invalidating the entire page, clear the dirty state from it 536 * and release it to avoid unnecessary buildup of the LRU. 537 */ 538 if (offset == 0 && len == PAGE_SIZE) { 539 WARN_ON_ONCE(PageWriteback(page)); 540 cancel_dirty_page(page); 541 iomap_page_release(page); 542 } 543 } 544 EXPORT_SYMBOL_GPL(iomap_invalidatepage); 545 546 #ifdef CONFIG_MIGRATION 547 int 548 iomap_migrate_page(struct address_space *mapping, struct page *newpage, 549 struct page *page, enum migrate_mode mode) 550 { 551 int ret; 552 553 ret = migrate_page_move_mapping(mapping, newpage, page, 0); 554 if (ret != MIGRATEPAGE_SUCCESS) 555 return ret; 556 557 if (page_has_private(page)) { 558 ClearPagePrivate(page); 559 get_page(newpage); 560 set_page_private(newpage, page_private(page)); 561 set_page_private(page, 0); 562 put_page(page); 563 SetPagePrivate(newpage); 564 } 565 566 if (mode != MIGRATE_SYNC_NO_COPY) 567 migrate_page_copy(newpage, page); 568 else 569 migrate_page_states(newpage, page); 570 return MIGRATEPAGE_SUCCESS; 571 } 572 EXPORT_SYMBOL_GPL(iomap_migrate_page); 573 #endif /* CONFIG_MIGRATION */ 574 575 enum { 576 IOMAP_WRITE_F_UNSHARE = (1 << 0), 577 }; 578 579 static void 580 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len) 581 { 582 loff_t i_size = i_size_read(inode); 583 584 /* 585 * Only truncate newly allocated pages beyoned EOF, even if the 586 * write started inside the existing inode size. 587 */ 588 if (pos + len > i_size) 589 truncate_pagecache_range(inode, max(pos, i_size), pos + len); 590 } 591 592 static int 593 iomap_read_page_sync(loff_t block_start, struct page *page, unsigned poff, 594 unsigned plen, struct iomap *iomap) 595 { 596 struct bio_vec bvec; 597 struct bio bio; 598 599 bio_init(&bio, &bvec, 1); 600 bio.bi_opf = REQ_OP_READ; 601 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start); 602 bio_set_dev(&bio, iomap->bdev); 603 __bio_add_page(&bio, page, plen, poff); 604 return submit_bio_wait(&bio); 605 } 606 607 static int 608 __iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, int flags, 609 struct page *page, struct iomap *srcmap) 610 { 611 struct iomap_page *iop = iomap_page_create(inode, page); 612 loff_t block_size = i_blocksize(inode); 613 loff_t block_start = pos & ~(block_size - 1); 614 loff_t block_end = (pos + len + block_size - 1) & ~(block_size - 1); 615 unsigned from = offset_in_page(pos), to = from + len, poff, plen; 616 int status; 617 618 if (PageUptodate(page)) 619 return 0; 620 621 do { 622 iomap_adjust_read_range(inode, iop, &block_start, 623 block_end - block_start, &poff, &plen); 624 if (plen == 0) 625 break; 626 627 if (!(flags & IOMAP_WRITE_F_UNSHARE) && 628 (from <= poff || from >= poff + plen) && 629 (to <= poff || to >= poff + plen)) 630 continue; 631 632 if (iomap_block_needs_zeroing(inode, srcmap, block_start)) { 633 if (WARN_ON_ONCE(flags & IOMAP_WRITE_F_UNSHARE)) 634 return -EIO; 635 zero_user_segments(page, poff, from, to, poff + plen); 636 iomap_set_range_uptodate(page, poff, plen); 637 continue; 638 } 639 640 status = iomap_read_page_sync(block_start, page, poff, plen, 641 srcmap); 642 if (status) 643 return status; 644 } while ((block_start += plen) < block_end); 645 646 return 0; 647 } 648 649 static int 650 iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags, 651 struct page **pagep, struct iomap *iomap, struct iomap *srcmap) 652 { 653 const struct iomap_page_ops *page_ops = iomap->page_ops; 654 struct page *page; 655 int status = 0; 656 657 BUG_ON(pos + len > iomap->offset + iomap->length); 658 if (srcmap != iomap) 659 BUG_ON(pos + len > srcmap->offset + srcmap->length); 660 661 if (fatal_signal_pending(current)) 662 return -EINTR; 663 664 if (page_ops && page_ops->page_prepare) { 665 status = page_ops->page_prepare(inode, pos, len, iomap); 666 if (status) 667 return status; 668 } 669 670 page = grab_cache_page_write_begin(inode->i_mapping, pos >> PAGE_SHIFT, 671 AOP_FLAG_NOFS); 672 if (!page) { 673 status = -ENOMEM; 674 goto out_no_page; 675 } 676 677 if (srcmap->type == IOMAP_INLINE) 678 iomap_read_inline_data(inode, page, srcmap); 679 else if (iomap->flags & IOMAP_F_BUFFER_HEAD) 680 status = __block_write_begin_int(page, pos, len, NULL, srcmap); 681 else 682 status = __iomap_write_begin(inode, pos, len, flags, page, 683 srcmap); 684 685 if (unlikely(status)) 686 goto out_unlock; 687 688 *pagep = page; 689 return 0; 690 691 out_unlock: 692 unlock_page(page); 693 put_page(page); 694 iomap_write_failed(inode, pos, len); 695 696 out_no_page: 697 if (page_ops && page_ops->page_done) 698 page_ops->page_done(inode, pos, 0, NULL, iomap); 699 return status; 700 } 701 702 int 703 iomap_set_page_dirty(struct page *page) 704 { 705 struct address_space *mapping = page_mapping(page); 706 int newly_dirty; 707 708 if (unlikely(!mapping)) 709 return !TestSetPageDirty(page); 710 711 /* 712 * Lock out page->mem_cgroup migration to keep PageDirty 713 * synchronized with per-memcg dirty page counters. 714 */ 715 lock_page_memcg(page); 716 newly_dirty = !TestSetPageDirty(page); 717 if (newly_dirty) 718 __set_page_dirty(page, mapping, 0); 719 unlock_page_memcg(page); 720 721 if (newly_dirty) 722 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 723 return newly_dirty; 724 } 725 EXPORT_SYMBOL_GPL(iomap_set_page_dirty); 726 727 static int 728 __iomap_write_end(struct inode *inode, loff_t pos, unsigned len, 729 unsigned copied, struct page *page) 730 { 731 flush_dcache_page(page); 732 733 /* 734 * The blocks that were entirely written will now be uptodate, so we 735 * don't have to worry about a readpage reading them and overwriting a 736 * partial write. However if we have encountered a short write and only 737 * partially written into a block, it will not be marked uptodate, so a 738 * readpage might come in and destroy our partial write. 739 * 740 * Do the simplest thing, and just treat any short write to a non 741 * uptodate page as a zero-length write, and force the caller to redo 742 * the whole thing. 743 */ 744 if (unlikely(copied < len && !PageUptodate(page))) 745 return 0; 746 iomap_set_range_uptodate(page, offset_in_page(pos), len); 747 iomap_set_page_dirty(page); 748 return copied; 749 } 750 751 static int 752 iomap_write_end_inline(struct inode *inode, struct page *page, 753 struct iomap *iomap, loff_t pos, unsigned copied) 754 { 755 void *addr; 756 757 WARN_ON_ONCE(!PageUptodate(page)); 758 BUG_ON(pos + copied > PAGE_SIZE - offset_in_page(iomap->inline_data)); 759 760 addr = kmap_atomic(page); 761 memcpy(iomap->inline_data + pos, addr + pos, copied); 762 kunmap_atomic(addr); 763 764 mark_inode_dirty(inode); 765 return copied; 766 } 767 768 static int 769 iomap_write_end(struct inode *inode, loff_t pos, unsigned len, unsigned copied, 770 struct page *page, struct iomap *iomap, struct iomap *srcmap) 771 { 772 const struct iomap_page_ops *page_ops = iomap->page_ops; 773 loff_t old_size = inode->i_size; 774 int ret; 775 776 if (srcmap->type == IOMAP_INLINE) { 777 ret = iomap_write_end_inline(inode, page, iomap, pos, copied); 778 } else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) { 779 ret = block_write_end(NULL, inode->i_mapping, pos, len, copied, 780 page, NULL); 781 } else { 782 ret = __iomap_write_end(inode, pos, len, copied, page); 783 } 784 785 /* 786 * Update the in-memory inode size after copying the data into the page 787 * cache. It's up to the file system to write the updated size to disk, 788 * preferably after I/O completion so that no stale data is exposed. 789 */ 790 if (pos + ret > old_size) { 791 i_size_write(inode, pos + ret); 792 iomap->flags |= IOMAP_F_SIZE_CHANGED; 793 } 794 unlock_page(page); 795 796 if (old_size < pos) 797 pagecache_isize_extended(inode, old_size, pos); 798 if (page_ops && page_ops->page_done) 799 page_ops->page_done(inode, pos, ret, page, iomap); 800 put_page(page); 801 802 if (ret < len) 803 iomap_write_failed(inode, pos, len); 804 return ret; 805 } 806 807 static loff_t 808 iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data, 809 struct iomap *iomap, struct iomap *srcmap) 810 { 811 struct iov_iter *i = data; 812 long status = 0; 813 ssize_t written = 0; 814 815 do { 816 struct page *page; 817 unsigned long offset; /* Offset into pagecache page */ 818 unsigned long bytes; /* Bytes to write to page */ 819 size_t copied; /* Bytes copied from user */ 820 821 offset = offset_in_page(pos); 822 bytes = min_t(unsigned long, PAGE_SIZE - offset, 823 iov_iter_count(i)); 824 again: 825 if (bytes > length) 826 bytes = length; 827 828 /* 829 * Bring in the user page that we will copy from _first_. 830 * Otherwise there's a nasty deadlock on copying from the 831 * same page as we're writing to, without it being marked 832 * up-to-date. 833 * 834 * Not only is this an optimisation, but it is also required 835 * to check that the address is actually valid, when atomic 836 * usercopies are used, below. 837 */ 838 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 839 status = -EFAULT; 840 break; 841 } 842 843 status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap, 844 srcmap); 845 if (unlikely(status)) 846 break; 847 848 if (mapping_writably_mapped(inode->i_mapping)) 849 flush_dcache_page(page); 850 851 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 852 853 flush_dcache_page(page); 854 855 status = iomap_write_end(inode, pos, bytes, copied, page, iomap, 856 srcmap); 857 if (unlikely(status < 0)) 858 break; 859 copied = status; 860 861 cond_resched(); 862 863 iov_iter_advance(i, copied); 864 if (unlikely(copied == 0)) { 865 /* 866 * If we were unable to copy any data at all, we must 867 * fall back to a single segment length write. 868 * 869 * If we didn't fallback here, we could livelock 870 * because not all segments in the iov can be copied at 871 * once without a pagefault. 872 */ 873 bytes = min_t(unsigned long, PAGE_SIZE - offset, 874 iov_iter_single_seg_count(i)); 875 goto again; 876 } 877 pos += copied; 878 written += copied; 879 length -= copied; 880 881 balance_dirty_pages_ratelimited(inode->i_mapping); 882 } while (iov_iter_count(i) && length); 883 884 return written ? written : status; 885 } 886 887 ssize_t 888 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter, 889 const struct iomap_ops *ops) 890 { 891 struct inode *inode = iocb->ki_filp->f_mapping->host; 892 loff_t pos = iocb->ki_pos, ret = 0, written = 0; 893 894 while (iov_iter_count(iter)) { 895 ret = iomap_apply(inode, pos, iov_iter_count(iter), 896 IOMAP_WRITE, ops, iter, iomap_write_actor); 897 if (ret <= 0) 898 break; 899 pos += ret; 900 written += ret; 901 } 902 903 return written ? written : ret; 904 } 905 EXPORT_SYMBOL_GPL(iomap_file_buffered_write); 906 907 static loff_t 908 iomap_unshare_actor(struct inode *inode, loff_t pos, loff_t length, void *data, 909 struct iomap *iomap, struct iomap *srcmap) 910 { 911 long status = 0; 912 ssize_t written = 0; 913 914 /* don't bother with blocks that are not shared to start with */ 915 if (!(iomap->flags & IOMAP_F_SHARED)) 916 return length; 917 /* don't bother with holes or unwritten extents */ 918 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 919 return length; 920 921 do { 922 unsigned long offset = offset_in_page(pos); 923 unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length); 924 struct page *page; 925 926 status = iomap_write_begin(inode, pos, bytes, 927 IOMAP_WRITE_F_UNSHARE, &page, iomap, srcmap); 928 if (unlikely(status)) 929 return status; 930 931 status = iomap_write_end(inode, pos, bytes, bytes, page, iomap, 932 srcmap); 933 if (unlikely(status <= 0)) { 934 if (WARN_ON_ONCE(status == 0)) 935 return -EIO; 936 return status; 937 } 938 939 cond_resched(); 940 941 pos += status; 942 written += status; 943 length -= status; 944 945 balance_dirty_pages_ratelimited(inode->i_mapping); 946 } while (length); 947 948 return written; 949 } 950 951 int 952 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len, 953 const struct iomap_ops *ops) 954 { 955 loff_t ret; 956 957 while (len) { 958 ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL, 959 iomap_unshare_actor); 960 if (ret <= 0) 961 return ret; 962 pos += ret; 963 len -= ret; 964 } 965 966 return 0; 967 } 968 EXPORT_SYMBOL_GPL(iomap_file_unshare); 969 970 static int iomap_zero(struct inode *inode, loff_t pos, unsigned offset, 971 unsigned bytes, struct iomap *iomap, struct iomap *srcmap) 972 { 973 struct page *page; 974 int status; 975 976 status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap, srcmap); 977 if (status) 978 return status; 979 980 zero_user(page, offset, bytes); 981 mark_page_accessed(page); 982 983 return iomap_write_end(inode, pos, bytes, bytes, page, iomap, srcmap); 984 } 985 986 static loff_t 987 iomap_zero_range_actor(struct inode *inode, loff_t pos, loff_t count, 988 void *data, struct iomap *iomap, struct iomap *srcmap) 989 { 990 bool *did_zero = data; 991 loff_t written = 0; 992 int status; 993 994 /* already zeroed? we're done. */ 995 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 996 return count; 997 998 do { 999 unsigned offset, bytes; 1000 1001 offset = offset_in_page(pos); 1002 bytes = min_t(loff_t, PAGE_SIZE - offset, count); 1003 1004 if (IS_DAX(inode)) 1005 status = dax_iomap_zero(pos, offset, bytes, iomap); 1006 else 1007 status = iomap_zero(inode, pos, offset, bytes, iomap, 1008 srcmap); 1009 if (status < 0) 1010 return status; 1011 1012 pos += bytes; 1013 count -= bytes; 1014 written += bytes; 1015 if (did_zero) 1016 *did_zero = true; 1017 } while (count > 0); 1018 1019 return written; 1020 } 1021 1022 int 1023 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero, 1024 const struct iomap_ops *ops) 1025 { 1026 loff_t ret; 1027 1028 while (len > 0) { 1029 ret = iomap_apply(inode, pos, len, IOMAP_ZERO, 1030 ops, did_zero, iomap_zero_range_actor); 1031 if (ret <= 0) 1032 return ret; 1033 1034 pos += ret; 1035 len -= ret; 1036 } 1037 1038 return 0; 1039 } 1040 EXPORT_SYMBOL_GPL(iomap_zero_range); 1041 1042 int 1043 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero, 1044 const struct iomap_ops *ops) 1045 { 1046 unsigned int blocksize = i_blocksize(inode); 1047 unsigned int off = pos & (blocksize - 1); 1048 1049 /* Block boundary? Nothing to do */ 1050 if (!off) 1051 return 0; 1052 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops); 1053 } 1054 EXPORT_SYMBOL_GPL(iomap_truncate_page); 1055 1056 static loff_t 1057 iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length, 1058 void *data, struct iomap *iomap, struct iomap *srcmap) 1059 { 1060 struct page *page = data; 1061 int ret; 1062 1063 if (iomap->flags & IOMAP_F_BUFFER_HEAD) { 1064 ret = __block_write_begin_int(page, pos, length, NULL, iomap); 1065 if (ret) 1066 return ret; 1067 block_commit_write(page, 0, length); 1068 } else { 1069 WARN_ON_ONCE(!PageUptodate(page)); 1070 iomap_page_create(inode, page); 1071 set_page_dirty(page); 1072 } 1073 1074 return length; 1075 } 1076 1077 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops) 1078 { 1079 struct page *page = vmf->page; 1080 struct inode *inode = file_inode(vmf->vma->vm_file); 1081 unsigned long length; 1082 loff_t offset; 1083 ssize_t ret; 1084 1085 lock_page(page); 1086 ret = page_mkwrite_check_truncate(page, inode); 1087 if (ret < 0) 1088 goto out_unlock; 1089 length = ret; 1090 1091 offset = page_offset(page); 1092 while (length > 0) { 1093 ret = iomap_apply(inode, offset, length, 1094 IOMAP_WRITE | IOMAP_FAULT, ops, page, 1095 iomap_page_mkwrite_actor); 1096 if (unlikely(ret <= 0)) 1097 goto out_unlock; 1098 offset += ret; 1099 length -= ret; 1100 } 1101 1102 wait_for_stable_page(page); 1103 return VM_FAULT_LOCKED; 1104 out_unlock: 1105 unlock_page(page); 1106 return block_page_mkwrite_return(ret); 1107 } 1108 EXPORT_SYMBOL_GPL(iomap_page_mkwrite); 1109 1110 static void 1111 iomap_finish_page_writeback(struct inode *inode, struct page *page, 1112 int error) 1113 { 1114 struct iomap_page *iop = to_iomap_page(page); 1115 1116 if (error) { 1117 SetPageError(page); 1118 mapping_set_error(inode->i_mapping, -EIO); 1119 } 1120 1121 WARN_ON_ONCE(i_blocksize(inode) < PAGE_SIZE && !iop); 1122 WARN_ON_ONCE(iop && atomic_read(&iop->write_count) <= 0); 1123 1124 if (!iop || atomic_dec_and_test(&iop->write_count)) 1125 end_page_writeback(page); 1126 } 1127 1128 /* 1129 * We're now finished for good with this ioend structure. Update the page 1130 * state, release holds on bios, and finally free up memory. Do not use the 1131 * ioend after this. 1132 */ 1133 static void 1134 iomap_finish_ioend(struct iomap_ioend *ioend, int error) 1135 { 1136 struct inode *inode = ioend->io_inode; 1137 struct bio *bio = &ioend->io_inline_bio; 1138 struct bio *last = ioend->io_bio, *next; 1139 u64 start = bio->bi_iter.bi_sector; 1140 loff_t offset = ioend->io_offset; 1141 bool quiet = bio_flagged(bio, BIO_QUIET); 1142 1143 for (bio = &ioend->io_inline_bio; bio; bio = next) { 1144 struct bio_vec *bv; 1145 struct bvec_iter_all iter_all; 1146 1147 /* 1148 * For the last bio, bi_private points to the ioend, so we 1149 * need to explicitly end the iteration here. 1150 */ 1151 if (bio == last) 1152 next = NULL; 1153 else 1154 next = bio->bi_private; 1155 1156 /* walk each page on bio, ending page IO on them */ 1157 bio_for_each_segment_all(bv, bio, iter_all) 1158 iomap_finish_page_writeback(inode, bv->bv_page, error); 1159 bio_put(bio); 1160 } 1161 /* The ioend has been freed by bio_put() */ 1162 1163 if (unlikely(error && !quiet)) { 1164 printk_ratelimited(KERN_ERR 1165 "%s: writeback error on inode %lu, offset %lld, sector %llu", 1166 inode->i_sb->s_id, inode->i_ino, offset, start); 1167 } 1168 } 1169 1170 void 1171 iomap_finish_ioends(struct iomap_ioend *ioend, int error) 1172 { 1173 struct list_head tmp; 1174 1175 list_replace_init(&ioend->io_list, &tmp); 1176 iomap_finish_ioend(ioend, error); 1177 1178 while (!list_empty(&tmp)) { 1179 ioend = list_first_entry(&tmp, struct iomap_ioend, io_list); 1180 list_del_init(&ioend->io_list); 1181 iomap_finish_ioend(ioend, error); 1182 } 1183 } 1184 EXPORT_SYMBOL_GPL(iomap_finish_ioends); 1185 1186 /* 1187 * We can merge two adjacent ioends if they have the same set of work to do. 1188 */ 1189 static bool 1190 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next) 1191 { 1192 if (ioend->io_bio->bi_status != next->io_bio->bi_status) 1193 return false; 1194 if ((ioend->io_flags & IOMAP_F_SHARED) ^ 1195 (next->io_flags & IOMAP_F_SHARED)) 1196 return false; 1197 if ((ioend->io_type == IOMAP_UNWRITTEN) ^ 1198 (next->io_type == IOMAP_UNWRITTEN)) 1199 return false; 1200 if (ioend->io_offset + ioend->io_size != next->io_offset) 1201 return false; 1202 return true; 1203 } 1204 1205 void 1206 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends, 1207 void (*merge_private)(struct iomap_ioend *ioend, 1208 struct iomap_ioend *next)) 1209 { 1210 struct iomap_ioend *next; 1211 1212 INIT_LIST_HEAD(&ioend->io_list); 1213 1214 while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend, 1215 io_list))) { 1216 if (!iomap_ioend_can_merge(ioend, next)) 1217 break; 1218 list_move_tail(&next->io_list, &ioend->io_list); 1219 ioend->io_size += next->io_size; 1220 if (next->io_private && merge_private) 1221 merge_private(ioend, next); 1222 } 1223 } 1224 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge); 1225 1226 static int 1227 iomap_ioend_compare(void *priv, struct list_head *a, struct list_head *b) 1228 { 1229 struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list); 1230 struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list); 1231 1232 if (ia->io_offset < ib->io_offset) 1233 return -1; 1234 if (ia->io_offset > ib->io_offset) 1235 return 1; 1236 return 0; 1237 } 1238 1239 void 1240 iomap_sort_ioends(struct list_head *ioend_list) 1241 { 1242 list_sort(NULL, ioend_list, iomap_ioend_compare); 1243 } 1244 EXPORT_SYMBOL_GPL(iomap_sort_ioends); 1245 1246 static void iomap_writepage_end_bio(struct bio *bio) 1247 { 1248 struct iomap_ioend *ioend = bio->bi_private; 1249 1250 iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status)); 1251 } 1252 1253 /* 1254 * Submit the final bio for an ioend. 1255 * 1256 * If @error is non-zero, it means that we have a situation where some part of 1257 * the submission process has failed after we have marked paged for writeback 1258 * and unlocked them. In this situation, we need to fail the bio instead of 1259 * submitting it. This typically only happens on a filesystem shutdown. 1260 */ 1261 static int 1262 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend, 1263 int error) 1264 { 1265 ioend->io_bio->bi_private = ioend; 1266 ioend->io_bio->bi_end_io = iomap_writepage_end_bio; 1267 1268 if (wpc->ops->prepare_ioend) 1269 error = wpc->ops->prepare_ioend(ioend, error); 1270 if (error) { 1271 /* 1272 * If we are failing the IO now, just mark the ioend with an 1273 * error and finish it. This will run IO completion immediately 1274 * as there is only one reference to the ioend at this point in 1275 * time. 1276 */ 1277 ioend->io_bio->bi_status = errno_to_blk_status(error); 1278 bio_endio(ioend->io_bio); 1279 return error; 1280 } 1281 1282 submit_bio(ioend->io_bio); 1283 return 0; 1284 } 1285 1286 static struct iomap_ioend * 1287 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc, 1288 loff_t offset, sector_t sector, struct writeback_control *wbc) 1289 { 1290 struct iomap_ioend *ioend; 1291 struct bio *bio; 1292 1293 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &iomap_ioend_bioset); 1294 bio_set_dev(bio, wpc->iomap.bdev); 1295 bio->bi_iter.bi_sector = sector; 1296 bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc); 1297 bio->bi_write_hint = inode->i_write_hint; 1298 wbc_init_bio(wbc, bio); 1299 1300 ioend = container_of(bio, struct iomap_ioend, io_inline_bio); 1301 INIT_LIST_HEAD(&ioend->io_list); 1302 ioend->io_type = wpc->iomap.type; 1303 ioend->io_flags = wpc->iomap.flags; 1304 ioend->io_inode = inode; 1305 ioend->io_size = 0; 1306 ioend->io_offset = offset; 1307 ioend->io_private = NULL; 1308 ioend->io_bio = bio; 1309 return ioend; 1310 } 1311 1312 /* 1313 * Allocate a new bio, and chain the old bio to the new one. 1314 * 1315 * Note that we have to do perform the chaining in this unintuitive order 1316 * so that the bi_private linkage is set up in the right direction for the 1317 * traversal in iomap_finish_ioend(). 1318 */ 1319 static struct bio * 1320 iomap_chain_bio(struct bio *prev) 1321 { 1322 struct bio *new; 1323 1324 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES); 1325 bio_copy_dev(new, prev);/* also copies over blkcg information */ 1326 new->bi_iter.bi_sector = bio_end_sector(prev); 1327 new->bi_opf = prev->bi_opf; 1328 new->bi_write_hint = prev->bi_write_hint; 1329 1330 bio_chain(prev, new); 1331 bio_get(prev); /* for iomap_finish_ioend */ 1332 submit_bio(prev); 1333 return new; 1334 } 1335 1336 static bool 1337 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset, 1338 sector_t sector) 1339 { 1340 if ((wpc->iomap.flags & IOMAP_F_SHARED) != 1341 (wpc->ioend->io_flags & IOMAP_F_SHARED)) 1342 return false; 1343 if (wpc->iomap.type != wpc->ioend->io_type) 1344 return false; 1345 if (offset != wpc->ioend->io_offset + wpc->ioend->io_size) 1346 return false; 1347 if (sector != bio_end_sector(wpc->ioend->io_bio)) 1348 return false; 1349 return true; 1350 } 1351 1352 /* 1353 * Test to see if we have an existing ioend structure that we could append to 1354 * first, otherwise finish off the current ioend and start another. 1355 */ 1356 static void 1357 iomap_add_to_ioend(struct inode *inode, loff_t offset, struct page *page, 1358 struct iomap_page *iop, struct iomap_writepage_ctx *wpc, 1359 struct writeback_control *wbc, struct list_head *iolist) 1360 { 1361 sector_t sector = iomap_sector(&wpc->iomap, offset); 1362 unsigned len = i_blocksize(inode); 1363 unsigned poff = offset & (PAGE_SIZE - 1); 1364 bool merged, same_page = false; 1365 1366 if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, offset, sector)) { 1367 if (wpc->ioend) 1368 list_add(&wpc->ioend->io_list, iolist); 1369 wpc->ioend = iomap_alloc_ioend(inode, wpc, offset, sector, wbc); 1370 } 1371 1372 merged = __bio_try_merge_page(wpc->ioend->io_bio, page, len, poff, 1373 &same_page); 1374 if (iop && !same_page) 1375 atomic_inc(&iop->write_count); 1376 1377 if (!merged) { 1378 if (bio_full(wpc->ioend->io_bio, len)) { 1379 wpc->ioend->io_bio = 1380 iomap_chain_bio(wpc->ioend->io_bio); 1381 } 1382 bio_add_page(wpc->ioend->io_bio, page, len, poff); 1383 } 1384 1385 wpc->ioend->io_size += len; 1386 wbc_account_cgroup_owner(wbc, page, len); 1387 } 1388 1389 /* 1390 * We implement an immediate ioend submission policy here to avoid needing to 1391 * chain multiple ioends and hence nest mempool allocations which can violate 1392 * forward progress guarantees we need to provide. The current ioend we are 1393 * adding blocks to is cached on the writepage context, and if the new block 1394 * does not append to the cached ioend it will create a new ioend and cache that 1395 * instead. 1396 * 1397 * If a new ioend is created and cached, the old ioend is returned and queued 1398 * locally for submission once the entire page is processed or an error has been 1399 * detected. While ioends are submitted immediately after they are completed, 1400 * batching optimisations are provided by higher level block plugging. 1401 * 1402 * At the end of a writeback pass, there will be a cached ioend remaining on the 1403 * writepage context that the caller will need to submit. 1404 */ 1405 static int 1406 iomap_writepage_map(struct iomap_writepage_ctx *wpc, 1407 struct writeback_control *wbc, struct inode *inode, 1408 struct page *page, u64 end_offset) 1409 { 1410 struct iomap_page *iop = to_iomap_page(page); 1411 struct iomap_ioend *ioend, *next; 1412 unsigned len = i_blocksize(inode); 1413 u64 file_offset; /* file offset of page */ 1414 int error = 0, count = 0, i; 1415 LIST_HEAD(submit_list); 1416 1417 WARN_ON_ONCE(i_blocksize(inode) < PAGE_SIZE && !iop); 1418 WARN_ON_ONCE(iop && atomic_read(&iop->write_count) != 0); 1419 1420 /* 1421 * Walk through the page to find areas to write back. If we run off the 1422 * end of the current map or find the current map invalid, grab a new 1423 * one. 1424 */ 1425 for (i = 0, file_offset = page_offset(page); 1426 i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset; 1427 i++, file_offset += len) { 1428 if (iop && !test_bit(i, iop->uptodate)) 1429 continue; 1430 1431 error = wpc->ops->map_blocks(wpc, inode, file_offset); 1432 if (error) 1433 break; 1434 if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE)) 1435 continue; 1436 if (wpc->iomap.type == IOMAP_HOLE) 1437 continue; 1438 iomap_add_to_ioend(inode, file_offset, page, iop, wpc, wbc, 1439 &submit_list); 1440 count++; 1441 } 1442 1443 WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list)); 1444 WARN_ON_ONCE(!PageLocked(page)); 1445 WARN_ON_ONCE(PageWriteback(page)); 1446 1447 /* 1448 * We cannot cancel the ioend directly here on error. We may have 1449 * already set other pages under writeback and hence we have to run I/O 1450 * completion to mark the error state of the pages under writeback 1451 * appropriately. 1452 */ 1453 if (unlikely(error)) { 1454 if (!count) { 1455 /* 1456 * If the current page hasn't been added to ioend, it 1457 * won't be affected by I/O completions and we must 1458 * discard and unlock it right here. 1459 */ 1460 if (wpc->ops->discard_page) 1461 wpc->ops->discard_page(page); 1462 ClearPageUptodate(page); 1463 unlock_page(page); 1464 goto done; 1465 } 1466 1467 /* 1468 * If the page was not fully cleaned, we need to ensure that the 1469 * higher layers come back to it correctly. That means we need 1470 * to keep the page dirty, and for WB_SYNC_ALL writeback we need 1471 * to ensure the PAGECACHE_TAG_TOWRITE index mark is not removed 1472 * so another attempt to write this page in this writeback sweep 1473 * will be made. 1474 */ 1475 set_page_writeback_keepwrite(page); 1476 } else { 1477 clear_page_dirty_for_io(page); 1478 set_page_writeback(page); 1479 } 1480 1481 unlock_page(page); 1482 1483 /* 1484 * Preserve the original error if there was one, otherwise catch 1485 * submission errors here and propagate into subsequent ioend 1486 * submissions. 1487 */ 1488 list_for_each_entry_safe(ioend, next, &submit_list, io_list) { 1489 int error2; 1490 1491 list_del_init(&ioend->io_list); 1492 error2 = iomap_submit_ioend(wpc, ioend, error); 1493 if (error2 && !error) 1494 error = error2; 1495 } 1496 1497 /* 1498 * We can end up here with no error and nothing to write only if we race 1499 * with a partial page truncate on a sub-page block sized filesystem. 1500 */ 1501 if (!count) 1502 end_page_writeback(page); 1503 done: 1504 mapping_set_error(page->mapping, error); 1505 return error; 1506 } 1507 1508 /* 1509 * Write out a dirty page. 1510 * 1511 * For delalloc space on the page we need to allocate space and flush it. 1512 * For unwritten space on the page we need to start the conversion to 1513 * regular allocated space. 1514 */ 1515 static int 1516 iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data) 1517 { 1518 struct iomap_writepage_ctx *wpc = data; 1519 struct inode *inode = page->mapping->host; 1520 pgoff_t end_index; 1521 u64 end_offset; 1522 loff_t offset; 1523 1524 trace_iomap_writepage(inode, page_offset(page), PAGE_SIZE); 1525 1526 /* 1527 * Refuse to write the page out if we are called from reclaim context. 1528 * 1529 * This avoids stack overflows when called from deeply used stacks in 1530 * random callers for direct reclaim or memcg reclaim. We explicitly 1531 * allow reclaim from kswapd as the stack usage there is relatively low. 1532 * 1533 * This should never happen except in the case of a VM regression so 1534 * warn about it. 1535 */ 1536 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 1537 PF_MEMALLOC)) 1538 goto redirty; 1539 1540 /* 1541 * Given that we do not allow direct reclaim to call us, we should 1542 * never be called in a recursive filesystem reclaim context. 1543 */ 1544 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS)) 1545 goto redirty; 1546 1547 /* 1548 * Is this page beyond the end of the file? 1549 * 1550 * The page index is less than the end_index, adjust the end_offset 1551 * to the highest offset that this page should represent. 1552 * ----------------------------------------------------- 1553 * | file mapping | <EOF> | 1554 * ----------------------------------------------------- 1555 * | Page ... | Page N-2 | Page N-1 | Page N | | 1556 * ^--------------------------------^----------|-------- 1557 * | desired writeback range | see else | 1558 * ---------------------------------^------------------| 1559 */ 1560 offset = i_size_read(inode); 1561 end_index = offset >> PAGE_SHIFT; 1562 if (page->index < end_index) 1563 end_offset = (loff_t)(page->index + 1) << PAGE_SHIFT; 1564 else { 1565 /* 1566 * Check whether the page to write out is beyond or straddles 1567 * i_size or not. 1568 * ------------------------------------------------------- 1569 * | file mapping | <EOF> | 1570 * ------------------------------------------------------- 1571 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond | 1572 * ^--------------------------------^-----------|--------- 1573 * | | Straddles | 1574 * ---------------------------------^-----------|--------| 1575 */ 1576 unsigned offset_into_page = offset & (PAGE_SIZE - 1); 1577 1578 /* 1579 * Skip the page if it is fully outside i_size, e.g. due to a 1580 * truncate operation that is in progress. We must redirty the 1581 * page so that reclaim stops reclaiming it. Otherwise 1582 * iomap_vm_releasepage() is called on it and gets confused. 1583 * 1584 * Note that the end_index is unsigned long, it would overflow 1585 * if the given offset is greater than 16TB on 32-bit system 1586 * and if we do check the page is fully outside i_size or not 1587 * via "if (page->index >= end_index + 1)" as "end_index + 1" 1588 * will be evaluated to 0. Hence this page will be redirtied 1589 * and be written out repeatedly which would result in an 1590 * infinite loop, the user program that perform this operation 1591 * will hang. Instead, we can verify this situation by checking 1592 * if the page to write is totally beyond the i_size or if it's 1593 * offset is just equal to the EOF. 1594 */ 1595 if (page->index > end_index || 1596 (page->index == end_index && offset_into_page == 0)) 1597 goto redirty; 1598 1599 /* 1600 * The page straddles i_size. It must be zeroed out on each 1601 * and every writepage invocation because it may be mmapped. 1602 * "A file is mapped in multiples of the page size. For a file 1603 * that is not a multiple of the page size, the remaining 1604 * memory is zeroed when mapped, and writes to that region are 1605 * not written out to the file." 1606 */ 1607 zero_user_segment(page, offset_into_page, PAGE_SIZE); 1608 1609 /* Adjust the end_offset to the end of file */ 1610 end_offset = offset; 1611 } 1612 1613 return iomap_writepage_map(wpc, wbc, inode, page, end_offset); 1614 1615 redirty: 1616 redirty_page_for_writepage(wbc, page); 1617 unlock_page(page); 1618 return 0; 1619 } 1620 1621 int 1622 iomap_writepage(struct page *page, struct writeback_control *wbc, 1623 struct iomap_writepage_ctx *wpc, 1624 const struct iomap_writeback_ops *ops) 1625 { 1626 int ret; 1627 1628 wpc->ops = ops; 1629 ret = iomap_do_writepage(page, wbc, wpc); 1630 if (!wpc->ioend) 1631 return ret; 1632 return iomap_submit_ioend(wpc, wpc->ioend, ret); 1633 } 1634 EXPORT_SYMBOL_GPL(iomap_writepage); 1635 1636 int 1637 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc, 1638 struct iomap_writepage_ctx *wpc, 1639 const struct iomap_writeback_ops *ops) 1640 { 1641 int ret; 1642 1643 wpc->ops = ops; 1644 ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc); 1645 if (!wpc->ioend) 1646 return ret; 1647 return iomap_submit_ioend(wpc, wpc->ioend, ret); 1648 } 1649 EXPORT_SYMBOL_GPL(iomap_writepages); 1650 1651 static int __init iomap_init(void) 1652 { 1653 return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE), 1654 offsetof(struct iomap_ioend, io_inline_bio), 1655 BIOSET_NEED_BVECS); 1656 } 1657 fs_initcall(iomap_init); 1658