1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Red Hat, Inc. 4 * Copyright (C) 2016-2019 Christoph Hellwig. 5 */ 6 #include <linux/module.h> 7 #include <linux/compiler.h> 8 #include <linux/fs.h> 9 #include <linux/iomap.h> 10 #include <linux/pagemap.h> 11 #include <linux/uio.h> 12 #include <linux/buffer_head.h> 13 #include <linux/dax.h> 14 #include <linux/writeback.h> 15 #include <linux/list_sort.h> 16 #include <linux/swap.h> 17 #include <linux/bio.h> 18 #include <linux/sched/signal.h> 19 #include <linux/migrate.h> 20 #include "trace.h" 21 22 #include "../internal.h" 23 24 #define IOEND_BATCH_SIZE 4096 25 26 typedef int (*iomap_punch_t)(struct inode *inode, loff_t offset, loff_t length); 27 /* 28 * Structure allocated for each folio to track per-block uptodate, dirty state 29 * and I/O completions. 30 */ 31 struct iomap_folio_state { 32 atomic_t read_bytes_pending; 33 atomic_t write_bytes_pending; 34 spinlock_t state_lock; 35 36 /* 37 * Each block has two bits in this bitmap: 38 * Bits [0..blocks_per_folio) has the uptodate status. 39 * Bits [b_p_f...(2*b_p_f)) has the dirty status. 40 */ 41 unsigned long state[]; 42 }; 43 44 static struct bio_set iomap_ioend_bioset; 45 46 static inline bool ifs_is_fully_uptodate(struct folio *folio, 47 struct iomap_folio_state *ifs) 48 { 49 struct inode *inode = folio->mapping->host; 50 51 return bitmap_full(ifs->state, i_blocks_per_folio(inode, folio)); 52 } 53 54 static inline bool ifs_block_is_uptodate(struct iomap_folio_state *ifs, 55 unsigned int block) 56 { 57 return test_bit(block, ifs->state); 58 } 59 60 static void ifs_set_range_uptodate(struct folio *folio, 61 struct iomap_folio_state *ifs, size_t off, size_t len) 62 { 63 struct inode *inode = folio->mapping->host; 64 unsigned int first_blk = off >> inode->i_blkbits; 65 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits; 66 unsigned int nr_blks = last_blk - first_blk + 1; 67 unsigned long flags; 68 69 spin_lock_irqsave(&ifs->state_lock, flags); 70 bitmap_set(ifs->state, first_blk, nr_blks); 71 if (ifs_is_fully_uptodate(folio, ifs)) 72 folio_mark_uptodate(folio); 73 spin_unlock_irqrestore(&ifs->state_lock, flags); 74 } 75 76 static void iomap_set_range_uptodate(struct folio *folio, size_t off, 77 size_t len) 78 { 79 struct iomap_folio_state *ifs = folio->private; 80 81 if (ifs) 82 ifs_set_range_uptodate(folio, ifs, off, len); 83 else 84 folio_mark_uptodate(folio); 85 } 86 87 static inline bool ifs_block_is_dirty(struct folio *folio, 88 struct iomap_folio_state *ifs, int block) 89 { 90 struct inode *inode = folio->mapping->host; 91 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio); 92 93 return test_bit(block + blks_per_folio, ifs->state); 94 } 95 96 static void ifs_clear_range_dirty(struct folio *folio, 97 struct iomap_folio_state *ifs, size_t off, size_t len) 98 { 99 struct inode *inode = folio->mapping->host; 100 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio); 101 unsigned int first_blk = (off >> inode->i_blkbits); 102 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits; 103 unsigned int nr_blks = last_blk - first_blk + 1; 104 unsigned long flags; 105 106 spin_lock_irqsave(&ifs->state_lock, flags); 107 bitmap_clear(ifs->state, first_blk + blks_per_folio, nr_blks); 108 spin_unlock_irqrestore(&ifs->state_lock, flags); 109 } 110 111 static void iomap_clear_range_dirty(struct folio *folio, size_t off, size_t len) 112 { 113 struct iomap_folio_state *ifs = folio->private; 114 115 if (ifs) 116 ifs_clear_range_dirty(folio, ifs, off, len); 117 } 118 119 static void ifs_set_range_dirty(struct folio *folio, 120 struct iomap_folio_state *ifs, size_t off, size_t len) 121 { 122 struct inode *inode = folio->mapping->host; 123 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio); 124 unsigned int first_blk = (off >> inode->i_blkbits); 125 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits; 126 unsigned int nr_blks = last_blk - first_blk + 1; 127 unsigned long flags; 128 129 spin_lock_irqsave(&ifs->state_lock, flags); 130 bitmap_set(ifs->state, first_blk + blks_per_folio, nr_blks); 131 spin_unlock_irqrestore(&ifs->state_lock, flags); 132 } 133 134 static void iomap_set_range_dirty(struct folio *folio, size_t off, size_t len) 135 { 136 struct iomap_folio_state *ifs = folio->private; 137 138 if (ifs) 139 ifs_set_range_dirty(folio, ifs, off, len); 140 } 141 142 static struct iomap_folio_state *ifs_alloc(struct inode *inode, 143 struct folio *folio, unsigned int flags) 144 { 145 struct iomap_folio_state *ifs = folio->private; 146 unsigned int nr_blocks = i_blocks_per_folio(inode, folio); 147 gfp_t gfp; 148 149 if (ifs || nr_blocks <= 1) 150 return ifs; 151 152 if (flags & IOMAP_NOWAIT) 153 gfp = GFP_NOWAIT; 154 else 155 gfp = GFP_NOFS | __GFP_NOFAIL; 156 157 /* 158 * ifs->state tracks two sets of state flags when the 159 * filesystem block size is smaller than the folio size. 160 * The first state tracks per-block uptodate and the 161 * second tracks per-block dirty state. 162 */ 163 ifs = kzalloc(struct_size(ifs, state, 164 BITS_TO_LONGS(2 * nr_blocks)), gfp); 165 if (!ifs) 166 return ifs; 167 168 spin_lock_init(&ifs->state_lock); 169 if (folio_test_uptodate(folio)) 170 bitmap_set(ifs->state, 0, nr_blocks); 171 if (folio_test_dirty(folio)) 172 bitmap_set(ifs->state, nr_blocks, nr_blocks); 173 folio_attach_private(folio, ifs); 174 175 return ifs; 176 } 177 178 static void ifs_free(struct folio *folio) 179 { 180 struct iomap_folio_state *ifs = folio_detach_private(folio); 181 182 if (!ifs) 183 return; 184 WARN_ON_ONCE(atomic_read(&ifs->read_bytes_pending)); 185 WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending)); 186 WARN_ON_ONCE(ifs_is_fully_uptodate(folio, ifs) != 187 folio_test_uptodate(folio)); 188 kfree(ifs); 189 } 190 191 /* 192 * Calculate the range inside the folio that we actually need to read. 193 */ 194 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio, 195 loff_t *pos, loff_t length, size_t *offp, size_t *lenp) 196 { 197 struct iomap_folio_state *ifs = folio->private; 198 loff_t orig_pos = *pos; 199 loff_t isize = i_size_read(inode); 200 unsigned block_bits = inode->i_blkbits; 201 unsigned block_size = (1 << block_bits); 202 size_t poff = offset_in_folio(folio, *pos); 203 size_t plen = min_t(loff_t, folio_size(folio) - poff, length); 204 size_t orig_plen = plen; 205 unsigned first = poff >> block_bits; 206 unsigned last = (poff + plen - 1) >> block_bits; 207 208 /* 209 * If the block size is smaller than the page size, we need to check the 210 * per-block uptodate status and adjust the offset and length if needed 211 * to avoid reading in already uptodate ranges. 212 */ 213 if (ifs) { 214 unsigned int i; 215 216 /* move forward for each leading block marked uptodate */ 217 for (i = first; i <= last; i++) { 218 if (!ifs_block_is_uptodate(ifs, i)) 219 break; 220 *pos += block_size; 221 poff += block_size; 222 plen -= block_size; 223 first++; 224 } 225 226 /* truncate len if we find any trailing uptodate block(s) */ 227 for ( ; i <= last; i++) { 228 if (ifs_block_is_uptodate(ifs, i)) { 229 plen -= (last - i + 1) * block_size; 230 last = i - 1; 231 break; 232 } 233 } 234 } 235 236 /* 237 * If the extent spans the block that contains the i_size, we need to 238 * handle both halves separately so that we properly zero data in the 239 * page cache for blocks that are entirely outside of i_size. 240 */ 241 if (orig_pos <= isize && orig_pos + orig_plen > isize) { 242 unsigned end = offset_in_folio(folio, isize - 1) >> block_bits; 243 244 if (first <= end && last > end) 245 plen -= (last - end) * block_size; 246 } 247 248 *offp = poff; 249 *lenp = plen; 250 } 251 252 static void iomap_finish_folio_read(struct folio *folio, size_t offset, 253 size_t len, int error) 254 { 255 struct iomap_folio_state *ifs = folio->private; 256 257 if (unlikely(error)) { 258 folio_clear_uptodate(folio); 259 folio_set_error(folio); 260 } else { 261 iomap_set_range_uptodate(folio, offset, len); 262 } 263 264 if (!ifs || atomic_sub_and_test(len, &ifs->read_bytes_pending)) 265 folio_unlock(folio); 266 } 267 268 static void iomap_read_end_io(struct bio *bio) 269 { 270 int error = blk_status_to_errno(bio->bi_status); 271 struct folio_iter fi; 272 273 bio_for_each_folio_all(fi, bio) 274 iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error); 275 bio_put(bio); 276 } 277 278 struct iomap_readpage_ctx { 279 struct folio *cur_folio; 280 bool cur_folio_in_bio; 281 struct bio *bio; 282 struct readahead_control *rac; 283 }; 284 285 /** 286 * iomap_read_inline_data - copy inline data into the page cache 287 * @iter: iteration structure 288 * @folio: folio to copy to 289 * 290 * Copy the inline data in @iter into @folio and zero out the rest of the folio. 291 * Only a single IOMAP_INLINE extent is allowed at the end of each file. 292 * Returns zero for success to complete the read, or the usual negative errno. 293 */ 294 static int iomap_read_inline_data(const struct iomap_iter *iter, 295 struct folio *folio) 296 { 297 const struct iomap *iomap = iomap_iter_srcmap(iter); 298 size_t size = i_size_read(iter->inode) - iomap->offset; 299 size_t poff = offset_in_page(iomap->offset); 300 size_t offset = offset_in_folio(folio, iomap->offset); 301 void *addr; 302 303 if (folio_test_uptodate(folio)) 304 return 0; 305 306 if (WARN_ON_ONCE(size > PAGE_SIZE - poff)) 307 return -EIO; 308 if (WARN_ON_ONCE(size > PAGE_SIZE - 309 offset_in_page(iomap->inline_data))) 310 return -EIO; 311 if (WARN_ON_ONCE(size > iomap->length)) 312 return -EIO; 313 if (offset > 0) 314 ifs_alloc(iter->inode, folio, iter->flags); 315 316 addr = kmap_local_folio(folio, offset); 317 memcpy(addr, iomap->inline_data, size); 318 memset(addr + size, 0, PAGE_SIZE - poff - size); 319 kunmap_local(addr); 320 iomap_set_range_uptodate(folio, offset, PAGE_SIZE - poff); 321 return 0; 322 } 323 324 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter, 325 loff_t pos) 326 { 327 const struct iomap *srcmap = iomap_iter_srcmap(iter); 328 329 return srcmap->type != IOMAP_MAPPED || 330 (srcmap->flags & IOMAP_F_NEW) || 331 pos >= i_size_read(iter->inode); 332 } 333 334 static loff_t iomap_readpage_iter(const struct iomap_iter *iter, 335 struct iomap_readpage_ctx *ctx, loff_t offset) 336 { 337 const struct iomap *iomap = &iter->iomap; 338 loff_t pos = iter->pos + offset; 339 loff_t length = iomap_length(iter) - offset; 340 struct folio *folio = ctx->cur_folio; 341 struct iomap_folio_state *ifs; 342 loff_t orig_pos = pos; 343 size_t poff, plen; 344 sector_t sector; 345 346 if (iomap->type == IOMAP_INLINE) 347 return iomap_read_inline_data(iter, folio); 348 349 /* zero post-eof blocks as the page may be mapped */ 350 ifs = ifs_alloc(iter->inode, folio, iter->flags); 351 iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen); 352 if (plen == 0) 353 goto done; 354 355 if (iomap_block_needs_zeroing(iter, pos)) { 356 folio_zero_range(folio, poff, plen); 357 iomap_set_range_uptodate(folio, poff, plen); 358 goto done; 359 } 360 361 ctx->cur_folio_in_bio = true; 362 if (ifs) 363 atomic_add(plen, &ifs->read_bytes_pending); 364 365 sector = iomap_sector(iomap, pos); 366 if (!ctx->bio || 367 bio_end_sector(ctx->bio) != sector || 368 !bio_add_folio(ctx->bio, folio, plen, poff)) { 369 gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL); 370 gfp_t orig_gfp = gfp; 371 unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE); 372 373 if (ctx->bio) 374 submit_bio(ctx->bio); 375 376 if (ctx->rac) /* same as readahead_gfp_mask */ 377 gfp |= __GFP_NORETRY | __GFP_NOWARN; 378 ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs), 379 REQ_OP_READ, gfp); 380 /* 381 * If the bio_alloc fails, try it again for a single page to 382 * avoid having to deal with partial page reads. This emulates 383 * what do_mpage_read_folio does. 384 */ 385 if (!ctx->bio) { 386 ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ, 387 orig_gfp); 388 } 389 if (ctx->rac) 390 ctx->bio->bi_opf |= REQ_RAHEAD; 391 ctx->bio->bi_iter.bi_sector = sector; 392 ctx->bio->bi_end_io = iomap_read_end_io; 393 bio_add_folio_nofail(ctx->bio, folio, plen, poff); 394 } 395 396 done: 397 /* 398 * Move the caller beyond our range so that it keeps making progress. 399 * For that, we have to include any leading non-uptodate ranges, but 400 * we can skip trailing ones as they will be handled in the next 401 * iteration. 402 */ 403 return pos - orig_pos + plen; 404 } 405 406 int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops) 407 { 408 struct iomap_iter iter = { 409 .inode = folio->mapping->host, 410 .pos = folio_pos(folio), 411 .len = folio_size(folio), 412 }; 413 struct iomap_readpage_ctx ctx = { 414 .cur_folio = folio, 415 }; 416 int ret; 417 418 trace_iomap_readpage(iter.inode, 1); 419 420 while ((ret = iomap_iter(&iter, ops)) > 0) 421 iter.processed = iomap_readpage_iter(&iter, &ctx, 0); 422 423 if (ret < 0) 424 folio_set_error(folio); 425 426 if (ctx.bio) { 427 submit_bio(ctx.bio); 428 WARN_ON_ONCE(!ctx.cur_folio_in_bio); 429 } else { 430 WARN_ON_ONCE(ctx.cur_folio_in_bio); 431 folio_unlock(folio); 432 } 433 434 /* 435 * Just like mpage_readahead and block_read_full_folio, we always 436 * return 0 and just set the folio error flag on errors. This 437 * should be cleaned up throughout the stack eventually. 438 */ 439 return 0; 440 } 441 EXPORT_SYMBOL_GPL(iomap_read_folio); 442 443 static loff_t iomap_readahead_iter(const struct iomap_iter *iter, 444 struct iomap_readpage_ctx *ctx) 445 { 446 loff_t length = iomap_length(iter); 447 loff_t done, ret; 448 449 for (done = 0; done < length; done += ret) { 450 if (ctx->cur_folio && 451 offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) { 452 if (!ctx->cur_folio_in_bio) 453 folio_unlock(ctx->cur_folio); 454 ctx->cur_folio = NULL; 455 } 456 if (!ctx->cur_folio) { 457 ctx->cur_folio = readahead_folio(ctx->rac); 458 ctx->cur_folio_in_bio = false; 459 } 460 ret = iomap_readpage_iter(iter, ctx, done); 461 if (ret <= 0) 462 return ret; 463 } 464 465 return done; 466 } 467 468 /** 469 * iomap_readahead - Attempt to read pages from a file. 470 * @rac: Describes the pages to be read. 471 * @ops: The operations vector for the filesystem. 472 * 473 * This function is for filesystems to call to implement their readahead 474 * address_space operation. 475 * 476 * Context: The @ops callbacks may submit I/O (eg to read the addresses of 477 * blocks from disc), and may wait for it. The caller may be trying to 478 * access a different page, and so sleeping excessively should be avoided. 479 * It may allocate memory, but should avoid costly allocations. This 480 * function is called with memalloc_nofs set, so allocations will not cause 481 * the filesystem to be reentered. 482 */ 483 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops) 484 { 485 struct iomap_iter iter = { 486 .inode = rac->mapping->host, 487 .pos = readahead_pos(rac), 488 .len = readahead_length(rac), 489 }; 490 struct iomap_readpage_ctx ctx = { 491 .rac = rac, 492 }; 493 494 trace_iomap_readahead(rac->mapping->host, readahead_count(rac)); 495 496 while (iomap_iter(&iter, ops) > 0) 497 iter.processed = iomap_readahead_iter(&iter, &ctx); 498 499 if (ctx.bio) 500 submit_bio(ctx.bio); 501 if (ctx.cur_folio) { 502 if (!ctx.cur_folio_in_bio) 503 folio_unlock(ctx.cur_folio); 504 } 505 } 506 EXPORT_SYMBOL_GPL(iomap_readahead); 507 508 /* 509 * iomap_is_partially_uptodate checks whether blocks within a folio are 510 * uptodate or not. 511 * 512 * Returns true if all blocks which correspond to the specified part 513 * of the folio are uptodate. 514 */ 515 bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count) 516 { 517 struct iomap_folio_state *ifs = folio->private; 518 struct inode *inode = folio->mapping->host; 519 unsigned first, last, i; 520 521 if (!ifs) 522 return false; 523 524 /* Caller's range may extend past the end of this folio */ 525 count = min(folio_size(folio) - from, count); 526 527 /* First and last blocks in range within folio */ 528 first = from >> inode->i_blkbits; 529 last = (from + count - 1) >> inode->i_blkbits; 530 531 for (i = first; i <= last; i++) 532 if (!ifs_block_is_uptodate(ifs, i)) 533 return false; 534 return true; 535 } 536 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate); 537 538 /** 539 * iomap_get_folio - get a folio reference for writing 540 * @iter: iteration structure 541 * @pos: start offset of write 542 * @len: Suggested size of folio to create. 543 * 544 * Returns a locked reference to the folio at @pos, or an error pointer if the 545 * folio could not be obtained. 546 */ 547 struct folio *iomap_get_folio(struct iomap_iter *iter, loff_t pos, size_t len) 548 { 549 fgf_t fgp = FGP_WRITEBEGIN | FGP_NOFS; 550 551 if (iter->flags & IOMAP_NOWAIT) 552 fgp |= FGP_NOWAIT; 553 fgp |= fgf_set_order(len); 554 555 return __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT, 556 fgp, mapping_gfp_mask(iter->inode->i_mapping)); 557 } 558 EXPORT_SYMBOL_GPL(iomap_get_folio); 559 560 bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags) 561 { 562 trace_iomap_release_folio(folio->mapping->host, folio_pos(folio), 563 folio_size(folio)); 564 565 /* 566 * If the folio is dirty, we refuse to release our metadata because 567 * it may be partially dirty. Once we track per-block dirty state, 568 * we can release the metadata if every block is dirty. 569 */ 570 if (folio_test_dirty(folio)) 571 return false; 572 ifs_free(folio); 573 return true; 574 } 575 EXPORT_SYMBOL_GPL(iomap_release_folio); 576 577 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len) 578 { 579 trace_iomap_invalidate_folio(folio->mapping->host, 580 folio_pos(folio) + offset, len); 581 582 /* 583 * If we're invalidating the entire folio, clear the dirty state 584 * from it and release it to avoid unnecessary buildup of the LRU. 585 */ 586 if (offset == 0 && len == folio_size(folio)) { 587 WARN_ON_ONCE(folio_test_writeback(folio)); 588 folio_cancel_dirty(folio); 589 ifs_free(folio); 590 } 591 } 592 EXPORT_SYMBOL_GPL(iomap_invalidate_folio); 593 594 bool iomap_dirty_folio(struct address_space *mapping, struct folio *folio) 595 { 596 struct inode *inode = mapping->host; 597 size_t len = folio_size(folio); 598 599 ifs_alloc(inode, folio, 0); 600 iomap_set_range_dirty(folio, 0, len); 601 return filemap_dirty_folio(mapping, folio); 602 } 603 EXPORT_SYMBOL_GPL(iomap_dirty_folio); 604 605 static void 606 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len) 607 { 608 loff_t i_size = i_size_read(inode); 609 610 /* 611 * Only truncate newly allocated pages beyoned EOF, even if the 612 * write started inside the existing inode size. 613 */ 614 if (pos + len > i_size) 615 truncate_pagecache_range(inode, max(pos, i_size), 616 pos + len - 1); 617 } 618 619 static int iomap_read_folio_sync(loff_t block_start, struct folio *folio, 620 size_t poff, size_t plen, const struct iomap *iomap) 621 { 622 struct bio_vec bvec; 623 struct bio bio; 624 625 bio_init(&bio, iomap->bdev, &bvec, 1, REQ_OP_READ); 626 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start); 627 bio_add_folio_nofail(&bio, folio, plen, poff); 628 return submit_bio_wait(&bio); 629 } 630 631 static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos, 632 size_t len, struct folio *folio) 633 { 634 const struct iomap *srcmap = iomap_iter_srcmap(iter); 635 struct iomap_folio_state *ifs; 636 loff_t block_size = i_blocksize(iter->inode); 637 loff_t block_start = round_down(pos, block_size); 638 loff_t block_end = round_up(pos + len, block_size); 639 unsigned int nr_blocks = i_blocks_per_folio(iter->inode, folio); 640 size_t from = offset_in_folio(folio, pos), to = from + len; 641 size_t poff, plen; 642 643 /* 644 * If the write or zeroing completely overlaps the current folio, then 645 * entire folio will be dirtied so there is no need for 646 * per-block state tracking structures to be attached to this folio. 647 * For the unshare case, we must read in the ondisk contents because we 648 * are not changing pagecache contents. 649 */ 650 if (!(iter->flags & IOMAP_UNSHARE) && pos <= folio_pos(folio) && 651 pos + len >= folio_pos(folio) + folio_size(folio)) 652 return 0; 653 654 ifs = ifs_alloc(iter->inode, folio, iter->flags); 655 if ((iter->flags & IOMAP_NOWAIT) && !ifs && nr_blocks > 1) 656 return -EAGAIN; 657 658 if (folio_test_uptodate(folio)) 659 return 0; 660 folio_clear_error(folio); 661 662 do { 663 iomap_adjust_read_range(iter->inode, folio, &block_start, 664 block_end - block_start, &poff, &plen); 665 if (plen == 0) 666 break; 667 668 if (!(iter->flags & IOMAP_UNSHARE) && 669 (from <= poff || from >= poff + plen) && 670 (to <= poff || to >= poff + plen)) 671 continue; 672 673 if (iomap_block_needs_zeroing(iter, block_start)) { 674 if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE)) 675 return -EIO; 676 folio_zero_segments(folio, poff, from, to, poff + plen); 677 } else { 678 int status; 679 680 if (iter->flags & IOMAP_NOWAIT) 681 return -EAGAIN; 682 683 status = iomap_read_folio_sync(block_start, folio, 684 poff, plen, srcmap); 685 if (status) 686 return status; 687 } 688 iomap_set_range_uptodate(folio, poff, plen); 689 } while ((block_start += plen) < block_end); 690 691 return 0; 692 } 693 694 static struct folio *__iomap_get_folio(struct iomap_iter *iter, loff_t pos, 695 size_t len) 696 { 697 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops; 698 699 if (folio_ops && folio_ops->get_folio) 700 return folio_ops->get_folio(iter, pos, len); 701 else 702 return iomap_get_folio(iter, pos, len); 703 } 704 705 static void __iomap_put_folio(struct iomap_iter *iter, loff_t pos, size_t ret, 706 struct folio *folio) 707 { 708 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops; 709 710 if (folio_ops && folio_ops->put_folio) { 711 folio_ops->put_folio(iter->inode, pos, ret, folio); 712 } else { 713 folio_unlock(folio); 714 folio_put(folio); 715 } 716 } 717 718 static int iomap_write_begin_inline(const struct iomap_iter *iter, 719 struct folio *folio) 720 { 721 /* needs more work for the tailpacking case; disable for now */ 722 if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0)) 723 return -EIO; 724 return iomap_read_inline_data(iter, folio); 725 } 726 727 static int iomap_write_begin(struct iomap_iter *iter, loff_t pos, 728 size_t len, struct folio **foliop) 729 { 730 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops; 731 const struct iomap *srcmap = iomap_iter_srcmap(iter); 732 struct folio *folio; 733 int status = 0; 734 735 BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length); 736 if (srcmap != &iter->iomap) 737 BUG_ON(pos + len > srcmap->offset + srcmap->length); 738 739 if (fatal_signal_pending(current)) 740 return -EINTR; 741 742 if (!mapping_large_folio_support(iter->inode->i_mapping)) 743 len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos)); 744 745 folio = __iomap_get_folio(iter, pos, len); 746 if (IS_ERR(folio)) 747 return PTR_ERR(folio); 748 749 /* 750 * Now we have a locked folio, before we do anything with it we need to 751 * check that the iomap we have cached is not stale. The inode extent 752 * mapping can change due to concurrent IO in flight (e.g. 753 * IOMAP_UNWRITTEN state can change and memory reclaim could have 754 * reclaimed a previously partially written page at this index after IO 755 * completion before this write reaches this file offset) and hence we 756 * could do the wrong thing here (zero a page range incorrectly or fail 757 * to zero) and corrupt data. 758 */ 759 if (folio_ops && folio_ops->iomap_valid) { 760 bool iomap_valid = folio_ops->iomap_valid(iter->inode, 761 &iter->iomap); 762 if (!iomap_valid) { 763 iter->iomap.flags |= IOMAP_F_STALE; 764 status = 0; 765 goto out_unlock; 766 } 767 } 768 769 if (pos + len > folio_pos(folio) + folio_size(folio)) 770 len = folio_pos(folio) + folio_size(folio) - pos; 771 772 if (srcmap->type == IOMAP_INLINE) 773 status = iomap_write_begin_inline(iter, folio); 774 else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) 775 status = __block_write_begin_int(folio, pos, len, NULL, srcmap); 776 else 777 status = __iomap_write_begin(iter, pos, len, folio); 778 779 if (unlikely(status)) 780 goto out_unlock; 781 782 *foliop = folio; 783 return 0; 784 785 out_unlock: 786 __iomap_put_folio(iter, pos, 0, folio); 787 iomap_write_failed(iter->inode, pos, len); 788 789 return status; 790 } 791 792 static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len, 793 size_t copied, struct folio *folio) 794 { 795 flush_dcache_folio(folio); 796 797 /* 798 * The blocks that were entirely written will now be uptodate, so we 799 * don't have to worry about a read_folio reading them and overwriting a 800 * partial write. However, if we've encountered a short write and only 801 * partially written into a block, it will not be marked uptodate, so a 802 * read_folio might come in and destroy our partial write. 803 * 804 * Do the simplest thing and just treat any short write to a 805 * non-uptodate page as a zero-length write, and force the caller to 806 * redo the whole thing. 807 */ 808 if (unlikely(copied < len && !folio_test_uptodate(folio))) 809 return 0; 810 iomap_set_range_uptodate(folio, offset_in_folio(folio, pos), len); 811 iomap_set_range_dirty(folio, offset_in_folio(folio, pos), copied); 812 filemap_dirty_folio(inode->i_mapping, folio); 813 return copied; 814 } 815 816 static size_t iomap_write_end_inline(const struct iomap_iter *iter, 817 struct folio *folio, loff_t pos, size_t copied) 818 { 819 const struct iomap *iomap = &iter->iomap; 820 void *addr; 821 822 WARN_ON_ONCE(!folio_test_uptodate(folio)); 823 BUG_ON(!iomap_inline_data_valid(iomap)); 824 825 flush_dcache_folio(folio); 826 addr = kmap_local_folio(folio, pos); 827 memcpy(iomap_inline_data(iomap, pos), addr, copied); 828 kunmap_local(addr); 829 830 mark_inode_dirty(iter->inode); 831 return copied; 832 } 833 834 /* Returns the number of bytes copied. May be 0. Cannot be an errno. */ 835 static size_t iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len, 836 size_t copied, struct folio *folio) 837 { 838 const struct iomap *srcmap = iomap_iter_srcmap(iter); 839 loff_t old_size = iter->inode->i_size; 840 size_t ret; 841 842 if (srcmap->type == IOMAP_INLINE) { 843 ret = iomap_write_end_inline(iter, folio, pos, copied); 844 } else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) { 845 ret = block_write_end(NULL, iter->inode->i_mapping, pos, len, 846 copied, &folio->page, NULL); 847 } else { 848 ret = __iomap_write_end(iter->inode, pos, len, copied, folio); 849 } 850 851 /* 852 * Update the in-memory inode size after copying the data into the page 853 * cache. It's up to the file system to write the updated size to disk, 854 * preferably after I/O completion so that no stale data is exposed. 855 */ 856 if (pos + ret > old_size) { 857 i_size_write(iter->inode, pos + ret); 858 iter->iomap.flags |= IOMAP_F_SIZE_CHANGED; 859 } 860 __iomap_put_folio(iter, pos, ret, folio); 861 862 if (old_size < pos) 863 pagecache_isize_extended(iter->inode, old_size, pos); 864 if (ret < len) 865 iomap_write_failed(iter->inode, pos + ret, len - ret); 866 return ret; 867 } 868 869 static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i) 870 { 871 loff_t length = iomap_length(iter); 872 loff_t pos = iter->pos; 873 ssize_t written = 0; 874 long status = 0; 875 struct address_space *mapping = iter->inode->i_mapping; 876 size_t chunk = mapping_max_folio_size(mapping); 877 unsigned int bdp_flags = (iter->flags & IOMAP_NOWAIT) ? BDP_ASYNC : 0; 878 879 do { 880 struct folio *folio; 881 size_t offset; /* Offset into folio */ 882 size_t bytes; /* Bytes to write to folio */ 883 size_t copied; /* Bytes copied from user */ 884 885 bytes = iov_iter_count(i); 886 retry: 887 offset = pos & (chunk - 1); 888 bytes = min(chunk - offset, bytes); 889 status = balance_dirty_pages_ratelimited_flags(mapping, 890 bdp_flags); 891 if (unlikely(status)) 892 break; 893 894 if (bytes > length) 895 bytes = length; 896 897 /* 898 * Bring in the user page that we'll copy from _first_. 899 * Otherwise there's a nasty deadlock on copying from the 900 * same page as we're writing to, without it being marked 901 * up-to-date. 902 * 903 * For async buffered writes the assumption is that the user 904 * page has already been faulted in. This can be optimized by 905 * faulting the user page. 906 */ 907 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 908 status = -EFAULT; 909 break; 910 } 911 912 status = iomap_write_begin(iter, pos, bytes, &folio); 913 if (unlikely(status)) 914 break; 915 if (iter->iomap.flags & IOMAP_F_STALE) 916 break; 917 918 offset = offset_in_folio(folio, pos); 919 if (bytes > folio_size(folio) - offset) 920 bytes = folio_size(folio) - offset; 921 922 if (mapping_writably_mapped(mapping)) 923 flush_dcache_folio(folio); 924 925 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i); 926 status = iomap_write_end(iter, pos, bytes, copied, folio); 927 928 if (unlikely(copied != status)) 929 iov_iter_revert(i, copied - status); 930 931 cond_resched(); 932 if (unlikely(status == 0)) { 933 /* 934 * A short copy made iomap_write_end() reject the 935 * thing entirely. Might be memory poisoning 936 * halfway through, might be a race with munmap, 937 * might be severe memory pressure. 938 */ 939 if (chunk > PAGE_SIZE) 940 chunk /= 2; 941 if (copied) { 942 bytes = copied; 943 goto retry; 944 } 945 } else { 946 pos += status; 947 written += status; 948 length -= status; 949 } 950 } while (iov_iter_count(i) && length); 951 952 if (status == -EAGAIN) { 953 iov_iter_revert(i, written); 954 return -EAGAIN; 955 } 956 return written ? written : status; 957 } 958 959 ssize_t 960 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i, 961 const struct iomap_ops *ops) 962 { 963 struct iomap_iter iter = { 964 .inode = iocb->ki_filp->f_mapping->host, 965 .pos = iocb->ki_pos, 966 .len = iov_iter_count(i), 967 .flags = IOMAP_WRITE, 968 }; 969 ssize_t ret; 970 971 if (iocb->ki_flags & IOCB_NOWAIT) 972 iter.flags |= IOMAP_NOWAIT; 973 974 while ((ret = iomap_iter(&iter, ops)) > 0) 975 iter.processed = iomap_write_iter(&iter, i); 976 977 if (unlikely(iter.pos == iocb->ki_pos)) 978 return ret; 979 ret = iter.pos - iocb->ki_pos; 980 iocb->ki_pos = iter.pos; 981 return ret; 982 } 983 EXPORT_SYMBOL_GPL(iomap_file_buffered_write); 984 985 static int iomap_write_delalloc_ifs_punch(struct inode *inode, 986 struct folio *folio, loff_t start_byte, loff_t end_byte, 987 iomap_punch_t punch) 988 { 989 unsigned int first_blk, last_blk, i; 990 loff_t last_byte; 991 u8 blkbits = inode->i_blkbits; 992 struct iomap_folio_state *ifs; 993 int ret = 0; 994 995 /* 996 * When we have per-block dirty tracking, there can be 997 * blocks within a folio which are marked uptodate 998 * but not dirty. In that case it is necessary to punch 999 * out such blocks to avoid leaking any delalloc blocks. 1000 */ 1001 ifs = folio->private; 1002 if (!ifs) 1003 return ret; 1004 1005 last_byte = min_t(loff_t, end_byte - 1, 1006 folio_pos(folio) + folio_size(folio) - 1); 1007 first_blk = offset_in_folio(folio, start_byte) >> blkbits; 1008 last_blk = offset_in_folio(folio, last_byte) >> blkbits; 1009 for (i = first_blk; i <= last_blk; i++) { 1010 if (!ifs_block_is_dirty(folio, ifs, i)) { 1011 ret = punch(inode, folio_pos(folio) + (i << blkbits), 1012 1 << blkbits); 1013 if (ret) 1014 return ret; 1015 } 1016 } 1017 1018 return ret; 1019 } 1020 1021 1022 static int iomap_write_delalloc_punch(struct inode *inode, struct folio *folio, 1023 loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte, 1024 iomap_punch_t punch) 1025 { 1026 int ret = 0; 1027 1028 if (!folio_test_dirty(folio)) 1029 return ret; 1030 1031 /* if dirty, punch up to offset */ 1032 if (start_byte > *punch_start_byte) { 1033 ret = punch(inode, *punch_start_byte, 1034 start_byte - *punch_start_byte); 1035 if (ret) 1036 return ret; 1037 } 1038 1039 /* Punch non-dirty blocks within folio */ 1040 ret = iomap_write_delalloc_ifs_punch(inode, folio, start_byte, 1041 end_byte, punch); 1042 if (ret) 1043 return ret; 1044 1045 /* 1046 * Make sure the next punch start is correctly bound to 1047 * the end of this data range, not the end of the folio. 1048 */ 1049 *punch_start_byte = min_t(loff_t, end_byte, 1050 folio_pos(folio) + folio_size(folio)); 1051 1052 return ret; 1053 } 1054 1055 /* 1056 * Scan the data range passed to us for dirty page cache folios. If we find a 1057 * dirty folio, punch out the preceding range and update the offset from which 1058 * the next punch will start from. 1059 * 1060 * We can punch out storage reservations under clean pages because they either 1061 * contain data that has been written back - in which case the delalloc punch 1062 * over that range is a no-op - or they have been read faults in which case they 1063 * contain zeroes and we can remove the delalloc backing range and any new 1064 * writes to those pages will do the normal hole filling operation... 1065 * 1066 * This makes the logic simple: we only need to keep the delalloc extents only 1067 * over the dirty ranges of the page cache. 1068 * 1069 * This function uses [start_byte, end_byte) intervals (i.e. open ended) to 1070 * simplify range iterations. 1071 */ 1072 static int iomap_write_delalloc_scan(struct inode *inode, 1073 loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte, 1074 iomap_punch_t punch) 1075 { 1076 while (start_byte < end_byte) { 1077 struct folio *folio; 1078 int ret; 1079 1080 /* grab locked page */ 1081 folio = filemap_lock_folio(inode->i_mapping, 1082 start_byte >> PAGE_SHIFT); 1083 if (IS_ERR(folio)) { 1084 start_byte = ALIGN_DOWN(start_byte, PAGE_SIZE) + 1085 PAGE_SIZE; 1086 continue; 1087 } 1088 1089 ret = iomap_write_delalloc_punch(inode, folio, punch_start_byte, 1090 start_byte, end_byte, punch); 1091 if (ret) { 1092 folio_unlock(folio); 1093 folio_put(folio); 1094 return ret; 1095 } 1096 1097 /* move offset to start of next folio in range */ 1098 start_byte = folio_next_index(folio) << PAGE_SHIFT; 1099 folio_unlock(folio); 1100 folio_put(folio); 1101 } 1102 return 0; 1103 } 1104 1105 /* 1106 * Punch out all the delalloc blocks in the range given except for those that 1107 * have dirty data still pending in the page cache - those are going to be 1108 * written and so must still retain the delalloc backing for writeback. 1109 * 1110 * As we are scanning the page cache for data, we don't need to reimplement the 1111 * wheel - mapping_seek_hole_data() does exactly what we need to identify the 1112 * start and end of data ranges correctly even for sub-folio block sizes. This 1113 * byte range based iteration is especially convenient because it means we 1114 * don't have to care about variable size folios, nor where the start or end of 1115 * the data range lies within a folio, if they lie within the same folio or even 1116 * if there are multiple discontiguous data ranges within the folio. 1117 * 1118 * It should be noted that mapping_seek_hole_data() is not aware of EOF, and so 1119 * can return data ranges that exist in the cache beyond EOF. e.g. a page fault 1120 * spanning EOF will initialise the post-EOF data to zeroes and mark it up to 1121 * date. A write page fault can then mark it dirty. If we then fail a write() 1122 * beyond EOF into that up to date cached range, we allocate a delalloc block 1123 * beyond EOF and then have to punch it out. Because the range is up to date, 1124 * mapping_seek_hole_data() will return it, and we will skip the punch because 1125 * the folio is dirty. THis is incorrect - we always need to punch out delalloc 1126 * beyond EOF in this case as writeback will never write back and covert that 1127 * delalloc block beyond EOF. Hence we limit the cached data scan range to EOF, 1128 * resulting in always punching out the range from the EOF to the end of the 1129 * range the iomap spans. 1130 * 1131 * Intervals are of the form [start_byte, end_byte) (i.e. open ended) because it 1132 * matches the intervals returned by mapping_seek_hole_data(). i.e. SEEK_DATA 1133 * returns the start of a data range (start_byte), and SEEK_HOLE(start_byte) 1134 * returns the end of the data range (data_end). Using closed intervals would 1135 * require sprinkling this code with magic "+ 1" and "- 1" arithmetic and expose 1136 * the code to subtle off-by-one bugs.... 1137 */ 1138 static int iomap_write_delalloc_release(struct inode *inode, 1139 loff_t start_byte, loff_t end_byte, iomap_punch_t punch) 1140 { 1141 loff_t punch_start_byte = start_byte; 1142 loff_t scan_end_byte = min(i_size_read(inode), end_byte); 1143 int error = 0; 1144 1145 /* 1146 * Lock the mapping to avoid races with page faults re-instantiating 1147 * folios and dirtying them via ->page_mkwrite whilst we walk the 1148 * cache and perform delalloc extent removal. Failing to do this can 1149 * leave dirty pages with no space reservation in the cache. 1150 */ 1151 filemap_invalidate_lock(inode->i_mapping); 1152 while (start_byte < scan_end_byte) { 1153 loff_t data_end; 1154 1155 start_byte = mapping_seek_hole_data(inode->i_mapping, 1156 start_byte, scan_end_byte, SEEK_DATA); 1157 /* 1158 * If there is no more data to scan, all that is left is to 1159 * punch out the remaining range. 1160 */ 1161 if (start_byte == -ENXIO || start_byte == scan_end_byte) 1162 break; 1163 if (start_byte < 0) { 1164 error = start_byte; 1165 goto out_unlock; 1166 } 1167 WARN_ON_ONCE(start_byte < punch_start_byte); 1168 WARN_ON_ONCE(start_byte > scan_end_byte); 1169 1170 /* 1171 * We find the end of this contiguous cached data range by 1172 * seeking from start_byte to the beginning of the next hole. 1173 */ 1174 data_end = mapping_seek_hole_data(inode->i_mapping, start_byte, 1175 scan_end_byte, SEEK_HOLE); 1176 if (data_end < 0) { 1177 error = data_end; 1178 goto out_unlock; 1179 } 1180 1181 /* 1182 * If we race with post-direct I/O invalidation of the page cache, 1183 * there might be no data left at start_byte. 1184 */ 1185 if (data_end == start_byte) 1186 continue; 1187 1188 WARN_ON_ONCE(data_end < start_byte); 1189 WARN_ON_ONCE(data_end > scan_end_byte); 1190 1191 error = iomap_write_delalloc_scan(inode, &punch_start_byte, 1192 start_byte, data_end, punch); 1193 if (error) 1194 goto out_unlock; 1195 1196 /* The next data search starts at the end of this one. */ 1197 start_byte = data_end; 1198 } 1199 1200 if (punch_start_byte < end_byte) 1201 error = punch(inode, punch_start_byte, 1202 end_byte - punch_start_byte); 1203 out_unlock: 1204 filemap_invalidate_unlock(inode->i_mapping); 1205 return error; 1206 } 1207 1208 /* 1209 * When a short write occurs, the filesystem may need to remove reserved space 1210 * that was allocated in ->iomap_begin from it's ->iomap_end method. For 1211 * filesystems that use delayed allocation, we need to punch out delalloc 1212 * extents from the range that are not dirty in the page cache. As the write can 1213 * race with page faults, there can be dirty pages over the delalloc extent 1214 * outside the range of a short write but still within the delalloc extent 1215 * allocated for this iomap. 1216 * 1217 * This function uses [start_byte, end_byte) intervals (i.e. open ended) to 1218 * simplify range iterations. 1219 * 1220 * The punch() callback *must* only punch delalloc extents in the range passed 1221 * to it. It must skip over all other types of extents in the range and leave 1222 * them completely unchanged. It must do this punch atomically with respect to 1223 * other extent modifications. 1224 * 1225 * The punch() callback may be called with a folio locked to prevent writeback 1226 * extent allocation racing at the edge of the range we are currently punching. 1227 * The locked folio may or may not cover the range being punched, so it is not 1228 * safe for the punch() callback to lock folios itself. 1229 * 1230 * Lock order is: 1231 * 1232 * inode->i_rwsem (shared or exclusive) 1233 * inode->i_mapping->invalidate_lock (exclusive) 1234 * folio_lock() 1235 * ->punch 1236 * internal filesystem allocation lock 1237 */ 1238 int iomap_file_buffered_write_punch_delalloc(struct inode *inode, 1239 struct iomap *iomap, loff_t pos, loff_t length, 1240 ssize_t written, iomap_punch_t punch) 1241 { 1242 loff_t start_byte; 1243 loff_t end_byte; 1244 unsigned int blocksize = i_blocksize(inode); 1245 1246 if (iomap->type != IOMAP_DELALLOC) 1247 return 0; 1248 1249 /* If we didn't reserve the blocks, we're not allowed to punch them. */ 1250 if (!(iomap->flags & IOMAP_F_NEW)) 1251 return 0; 1252 1253 /* 1254 * start_byte refers to the first unused block after a short write. If 1255 * nothing was written, round offset down to point at the first block in 1256 * the range. 1257 */ 1258 if (unlikely(!written)) 1259 start_byte = round_down(pos, blocksize); 1260 else 1261 start_byte = round_up(pos + written, blocksize); 1262 end_byte = round_up(pos + length, blocksize); 1263 1264 /* Nothing to do if we've written the entire delalloc extent */ 1265 if (start_byte >= end_byte) 1266 return 0; 1267 1268 return iomap_write_delalloc_release(inode, start_byte, end_byte, 1269 punch); 1270 } 1271 EXPORT_SYMBOL_GPL(iomap_file_buffered_write_punch_delalloc); 1272 1273 static loff_t iomap_unshare_iter(struct iomap_iter *iter) 1274 { 1275 struct iomap *iomap = &iter->iomap; 1276 loff_t pos = iter->pos; 1277 loff_t length = iomap_length(iter); 1278 loff_t written = 0; 1279 1280 if (!iomap_want_unshare_iter(iter)) 1281 return length; 1282 1283 do { 1284 struct folio *folio; 1285 int status; 1286 size_t offset; 1287 size_t bytes = min_t(u64, SIZE_MAX, length); 1288 1289 status = iomap_write_begin(iter, pos, bytes, &folio); 1290 if (unlikely(status)) 1291 return status; 1292 if (iomap->flags & IOMAP_F_STALE) 1293 break; 1294 1295 offset = offset_in_folio(folio, pos); 1296 if (bytes > folio_size(folio) - offset) 1297 bytes = folio_size(folio) - offset; 1298 1299 bytes = iomap_write_end(iter, pos, bytes, bytes, folio); 1300 if (WARN_ON_ONCE(bytes == 0)) 1301 return -EIO; 1302 1303 cond_resched(); 1304 1305 pos += bytes; 1306 written += bytes; 1307 length -= bytes; 1308 1309 balance_dirty_pages_ratelimited(iter->inode->i_mapping); 1310 } while (length > 0); 1311 1312 return written; 1313 } 1314 1315 int 1316 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len, 1317 const struct iomap_ops *ops) 1318 { 1319 struct iomap_iter iter = { 1320 .inode = inode, 1321 .pos = pos, 1322 .flags = IOMAP_WRITE | IOMAP_UNSHARE, 1323 }; 1324 loff_t size = i_size_read(inode); 1325 int ret; 1326 1327 if (pos < 0 || pos >= size) 1328 return 0; 1329 1330 iter.len = min(len, size - pos); 1331 while ((ret = iomap_iter(&iter, ops)) > 0) 1332 iter.processed = iomap_unshare_iter(&iter); 1333 return ret; 1334 } 1335 EXPORT_SYMBOL_GPL(iomap_file_unshare); 1336 1337 static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero) 1338 { 1339 const struct iomap *srcmap = iomap_iter_srcmap(iter); 1340 loff_t pos = iter->pos; 1341 loff_t length = iomap_length(iter); 1342 loff_t written = 0; 1343 1344 /* already zeroed? we're done. */ 1345 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 1346 return length; 1347 1348 do { 1349 struct folio *folio; 1350 int status; 1351 size_t offset; 1352 size_t bytes = min_t(u64, SIZE_MAX, length); 1353 1354 status = iomap_write_begin(iter, pos, bytes, &folio); 1355 if (status) 1356 return status; 1357 if (iter->iomap.flags & IOMAP_F_STALE) 1358 break; 1359 1360 offset = offset_in_folio(folio, pos); 1361 if (bytes > folio_size(folio) - offset) 1362 bytes = folio_size(folio) - offset; 1363 1364 folio_zero_range(folio, offset, bytes); 1365 folio_mark_accessed(folio); 1366 1367 bytes = iomap_write_end(iter, pos, bytes, bytes, folio); 1368 if (WARN_ON_ONCE(bytes == 0)) 1369 return -EIO; 1370 1371 pos += bytes; 1372 length -= bytes; 1373 written += bytes; 1374 } while (length > 0); 1375 1376 if (did_zero) 1377 *did_zero = true; 1378 return written; 1379 } 1380 1381 int 1382 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero, 1383 const struct iomap_ops *ops) 1384 { 1385 struct iomap_iter iter = { 1386 .inode = inode, 1387 .pos = pos, 1388 .len = len, 1389 .flags = IOMAP_ZERO, 1390 }; 1391 int ret; 1392 1393 while ((ret = iomap_iter(&iter, ops)) > 0) 1394 iter.processed = iomap_zero_iter(&iter, did_zero); 1395 return ret; 1396 } 1397 EXPORT_SYMBOL_GPL(iomap_zero_range); 1398 1399 int 1400 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero, 1401 const struct iomap_ops *ops) 1402 { 1403 unsigned int blocksize = i_blocksize(inode); 1404 unsigned int off = pos & (blocksize - 1); 1405 1406 /* Block boundary? Nothing to do */ 1407 if (!off) 1408 return 0; 1409 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops); 1410 } 1411 EXPORT_SYMBOL_GPL(iomap_truncate_page); 1412 1413 static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter, 1414 struct folio *folio) 1415 { 1416 loff_t length = iomap_length(iter); 1417 int ret; 1418 1419 if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) { 1420 ret = __block_write_begin_int(folio, iter->pos, length, NULL, 1421 &iter->iomap); 1422 if (ret) 1423 return ret; 1424 block_commit_write(&folio->page, 0, length); 1425 } else { 1426 WARN_ON_ONCE(!folio_test_uptodate(folio)); 1427 folio_mark_dirty(folio); 1428 } 1429 1430 return length; 1431 } 1432 1433 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops) 1434 { 1435 struct iomap_iter iter = { 1436 .inode = file_inode(vmf->vma->vm_file), 1437 .flags = IOMAP_WRITE | IOMAP_FAULT, 1438 }; 1439 struct folio *folio = page_folio(vmf->page); 1440 ssize_t ret; 1441 1442 folio_lock(folio); 1443 ret = folio_mkwrite_check_truncate(folio, iter.inode); 1444 if (ret < 0) 1445 goto out_unlock; 1446 iter.pos = folio_pos(folio); 1447 iter.len = ret; 1448 while ((ret = iomap_iter(&iter, ops)) > 0) 1449 iter.processed = iomap_folio_mkwrite_iter(&iter, folio); 1450 1451 if (ret < 0) 1452 goto out_unlock; 1453 folio_wait_stable(folio); 1454 return VM_FAULT_LOCKED; 1455 out_unlock: 1456 folio_unlock(folio); 1457 return vmf_fs_error(ret); 1458 } 1459 EXPORT_SYMBOL_GPL(iomap_page_mkwrite); 1460 1461 static void iomap_finish_folio_write(struct inode *inode, struct folio *folio, 1462 size_t len, int error) 1463 { 1464 struct iomap_folio_state *ifs = folio->private; 1465 1466 if (error) { 1467 folio_set_error(folio); 1468 mapping_set_error(inode->i_mapping, error); 1469 } 1470 1471 WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !ifs); 1472 WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) <= 0); 1473 1474 if (!ifs || atomic_sub_and_test(len, &ifs->write_bytes_pending)) 1475 folio_end_writeback(folio); 1476 } 1477 1478 /* 1479 * We're now finished for good with this ioend structure. Update the page 1480 * state, release holds on bios, and finally free up memory. Do not use the 1481 * ioend after this. 1482 */ 1483 static u32 1484 iomap_finish_ioend(struct iomap_ioend *ioend, int error) 1485 { 1486 struct inode *inode = ioend->io_inode; 1487 struct bio *bio = &ioend->io_inline_bio; 1488 struct bio *last = ioend->io_bio, *next; 1489 u64 start = bio->bi_iter.bi_sector; 1490 loff_t offset = ioend->io_offset; 1491 bool quiet = bio_flagged(bio, BIO_QUIET); 1492 u32 folio_count = 0; 1493 1494 for (bio = &ioend->io_inline_bio; bio; bio = next) { 1495 struct folio_iter fi; 1496 1497 /* 1498 * For the last bio, bi_private points to the ioend, so we 1499 * need to explicitly end the iteration here. 1500 */ 1501 if (bio == last) 1502 next = NULL; 1503 else 1504 next = bio->bi_private; 1505 1506 /* walk all folios in bio, ending page IO on them */ 1507 bio_for_each_folio_all(fi, bio) { 1508 iomap_finish_folio_write(inode, fi.folio, fi.length, 1509 error); 1510 folio_count++; 1511 } 1512 bio_put(bio); 1513 } 1514 /* The ioend has been freed by bio_put() */ 1515 1516 if (unlikely(error && !quiet)) { 1517 printk_ratelimited(KERN_ERR 1518 "%s: writeback error on inode %lu, offset %lld, sector %llu", 1519 inode->i_sb->s_id, inode->i_ino, offset, start); 1520 } 1521 return folio_count; 1522 } 1523 1524 /* 1525 * Ioend completion routine for merged bios. This can only be called from task 1526 * contexts as merged ioends can be of unbound length. Hence we have to break up 1527 * the writeback completions into manageable chunks to avoid long scheduler 1528 * holdoffs. We aim to keep scheduler holdoffs down below 10ms so that we get 1529 * good batch processing throughput without creating adverse scheduler latency 1530 * conditions. 1531 */ 1532 void 1533 iomap_finish_ioends(struct iomap_ioend *ioend, int error) 1534 { 1535 struct list_head tmp; 1536 u32 completions; 1537 1538 might_sleep(); 1539 1540 list_replace_init(&ioend->io_list, &tmp); 1541 completions = iomap_finish_ioend(ioend, error); 1542 1543 while (!list_empty(&tmp)) { 1544 if (completions > IOEND_BATCH_SIZE * 8) { 1545 cond_resched(); 1546 completions = 0; 1547 } 1548 ioend = list_first_entry(&tmp, struct iomap_ioend, io_list); 1549 list_del_init(&ioend->io_list); 1550 completions += iomap_finish_ioend(ioend, error); 1551 } 1552 } 1553 EXPORT_SYMBOL_GPL(iomap_finish_ioends); 1554 1555 /* 1556 * We can merge two adjacent ioends if they have the same set of work to do. 1557 */ 1558 static bool 1559 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next) 1560 { 1561 if (ioend->io_bio->bi_status != next->io_bio->bi_status) 1562 return false; 1563 if ((ioend->io_flags & IOMAP_F_SHARED) ^ 1564 (next->io_flags & IOMAP_F_SHARED)) 1565 return false; 1566 if ((ioend->io_type == IOMAP_UNWRITTEN) ^ 1567 (next->io_type == IOMAP_UNWRITTEN)) 1568 return false; 1569 if (ioend->io_offset + ioend->io_size != next->io_offset) 1570 return false; 1571 /* 1572 * Do not merge physically discontiguous ioends. The filesystem 1573 * completion functions will have to iterate the physical 1574 * discontiguities even if we merge the ioends at a logical level, so 1575 * we don't gain anything by merging physical discontiguities here. 1576 * 1577 * We cannot use bio->bi_iter.bi_sector here as it is modified during 1578 * submission so does not point to the start sector of the bio at 1579 * completion. 1580 */ 1581 if (ioend->io_sector + (ioend->io_size >> 9) != next->io_sector) 1582 return false; 1583 return true; 1584 } 1585 1586 void 1587 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends) 1588 { 1589 struct iomap_ioend *next; 1590 1591 INIT_LIST_HEAD(&ioend->io_list); 1592 1593 while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend, 1594 io_list))) { 1595 if (!iomap_ioend_can_merge(ioend, next)) 1596 break; 1597 list_move_tail(&next->io_list, &ioend->io_list); 1598 ioend->io_size += next->io_size; 1599 } 1600 } 1601 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge); 1602 1603 static int 1604 iomap_ioend_compare(void *priv, const struct list_head *a, 1605 const struct list_head *b) 1606 { 1607 struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list); 1608 struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list); 1609 1610 if (ia->io_offset < ib->io_offset) 1611 return -1; 1612 if (ia->io_offset > ib->io_offset) 1613 return 1; 1614 return 0; 1615 } 1616 1617 void 1618 iomap_sort_ioends(struct list_head *ioend_list) 1619 { 1620 list_sort(NULL, ioend_list, iomap_ioend_compare); 1621 } 1622 EXPORT_SYMBOL_GPL(iomap_sort_ioends); 1623 1624 static void iomap_writepage_end_bio(struct bio *bio) 1625 { 1626 struct iomap_ioend *ioend = bio->bi_private; 1627 1628 iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status)); 1629 } 1630 1631 /* 1632 * Submit the final bio for an ioend. 1633 * 1634 * If @error is non-zero, it means that we have a situation where some part of 1635 * the submission process has failed after we've marked pages for writeback 1636 * and unlocked them. In this situation, we need to fail the bio instead of 1637 * submitting it. This typically only happens on a filesystem shutdown. 1638 */ 1639 static int 1640 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend, 1641 int error) 1642 { 1643 ioend->io_bio->bi_private = ioend; 1644 ioend->io_bio->bi_end_io = iomap_writepage_end_bio; 1645 1646 if (wpc->ops->prepare_ioend) 1647 error = wpc->ops->prepare_ioend(ioend, error); 1648 if (error) { 1649 /* 1650 * If we're failing the IO now, just mark the ioend with an 1651 * error and finish it. This will run IO completion immediately 1652 * as there is only one reference to the ioend at this point in 1653 * time. 1654 */ 1655 ioend->io_bio->bi_status = errno_to_blk_status(error); 1656 bio_endio(ioend->io_bio); 1657 return error; 1658 } 1659 1660 submit_bio(ioend->io_bio); 1661 return 0; 1662 } 1663 1664 static struct iomap_ioend * 1665 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc, 1666 loff_t offset, sector_t sector, struct writeback_control *wbc) 1667 { 1668 struct iomap_ioend *ioend; 1669 struct bio *bio; 1670 1671 bio = bio_alloc_bioset(wpc->iomap.bdev, BIO_MAX_VECS, 1672 REQ_OP_WRITE | wbc_to_write_flags(wbc), 1673 GFP_NOFS, &iomap_ioend_bioset); 1674 bio->bi_iter.bi_sector = sector; 1675 wbc_init_bio(wbc, bio); 1676 1677 ioend = container_of(bio, struct iomap_ioend, io_inline_bio); 1678 INIT_LIST_HEAD(&ioend->io_list); 1679 ioend->io_type = wpc->iomap.type; 1680 ioend->io_flags = wpc->iomap.flags; 1681 ioend->io_inode = inode; 1682 ioend->io_size = 0; 1683 ioend->io_folios = 0; 1684 ioend->io_offset = offset; 1685 ioend->io_bio = bio; 1686 ioend->io_sector = sector; 1687 return ioend; 1688 } 1689 1690 /* 1691 * Allocate a new bio, and chain the old bio to the new one. 1692 * 1693 * Note that we have to perform the chaining in this unintuitive order 1694 * so that the bi_private linkage is set up in the right direction for the 1695 * traversal in iomap_finish_ioend(). 1696 */ 1697 static struct bio * 1698 iomap_chain_bio(struct bio *prev) 1699 { 1700 struct bio *new; 1701 1702 new = bio_alloc(prev->bi_bdev, BIO_MAX_VECS, prev->bi_opf, GFP_NOFS); 1703 bio_clone_blkg_association(new, prev); 1704 new->bi_iter.bi_sector = bio_end_sector(prev); 1705 1706 bio_chain(prev, new); 1707 bio_get(prev); /* for iomap_finish_ioend */ 1708 submit_bio(prev); 1709 return new; 1710 } 1711 1712 static bool 1713 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset, 1714 sector_t sector) 1715 { 1716 if ((wpc->iomap.flags & IOMAP_F_SHARED) != 1717 (wpc->ioend->io_flags & IOMAP_F_SHARED)) 1718 return false; 1719 if (wpc->iomap.type != wpc->ioend->io_type) 1720 return false; 1721 if (offset != wpc->ioend->io_offset + wpc->ioend->io_size) 1722 return false; 1723 if (sector != bio_end_sector(wpc->ioend->io_bio)) 1724 return false; 1725 /* 1726 * Limit ioend bio chain lengths to minimise IO completion latency. This 1727 * also prevents long tight loops ending page writeback on all the 1728 * folios in the ioend. 1729 */ 1730 if (wpc->ioend->io_folios >= IOEND_BATCH_SIZE) 1731 return false; 1732 return true; 1733 } 1734 1735 /* 1736 * Test to see if we have an existing ioend structure that we could append to 1737 * first; otherwise finish off the current ioend and start another. 1738 */ 1739 static void 1740 iomap_add_to_ioend(struct inode *inode, loff_t pos, struct folio *folio, 1741 struct iomap_folio_state *ifs, struct iomap_writepage_ctx *wpc, 1742 struct writeback_control *wbc, struct list_head *iolist) 1743 { 1744 sector_t sector = iomap_sector(&wpc->iomap, pos); 1745 unsigned len = i_blocksize(inode); 1746 size_t poff = offset_in_folio(folio, pos); 1747 1748 if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos, sector)) { 1749 if (wpc->ioend) 1750 list_add(&wpc->ioend->io_list, iolist); 1751 wpc->ioend = iomap_alloc_ioend(inode, wpc, pos, sector, wbc); 1752 } 1753 1754 if (!bio_add_folio(wpc->ioend->io_bio, folio, len, poff)) { 1755 wpc->ioend->io_bio = iomap_chain_bio(wpc->ioend->io_bio); 1756 bio_add_folio_nofail(wpc->ioend->io_bio, folio, len, poff); 1757 } 1758 1759 if (ifs) 1760 atomic_add(len, &ifs->write_bytes_pending); 1761 wpc->ioend->io_size += len; 1762 wbc_account_cgroup_owner(wbc, &folio->page, len); 1763 } 1764 1765 /* 1766 * We implement an immediate ioend submission policy here to avoid needing to 1767 * chain multiple ioends and hence nest mempool allocations which can violate 1768 * the forward progress guarantees we need to provide. The current ioend we're 1769 * adding blocks to is cached in the writepage context, and if the new block 1770 * doesn't append to the cached ioend, it will create a new ioend and cache that 1771 * instead. 1772 * 1773 * If a new ioend is created and cached, the old ioend is returned and queued 1774 * locally for submission once the entire page is processed or an error has been 1775 * detected. While ioends are submitted immediately after they are completed, 1776 * batching optimisations are provided by higher level block plugging. 1777 * 1778 * At the end of a writeback pass, there will be a cached ioend remaining on the 1779 * writepage context that the caller will need to submit. 1780 */ 1781 static int 1782 iomap_writepage_map(struct iomap_writepage_ctx *wpc, 1783 struct writeback_control *wbc, struct inode *inode, 1784 struct folio *folio, u64 end_pos) 1785 { 1786 struct iomap_folio_state *ifs = folio->private; 1787 struct iomap_ioend *ioend, *next; 1788 unsigned len = i_blocksize(inode); 1789 unsigned nblocks = i_blocks_per_folio(inode, folio); 1790 u64 pos = folio_pos(folio); 1791 int error = 0, count = 0, i; 1792 LIST_HEAD(submit_list); 1793 1794 WARN_ON_ONCE(end_pos <= pos); 1795 1796 if (!ifs && nblocks > 1) { 1797 ifs = ifs_alloc(inode, folio, 0); 1798 iomap_set_range_dirty(folio, 0, end_pos - pos); 1799 } 1800 1801 WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) != 0); 1802 1803 /* 1804 * Walk through the folio to find areas to write back. If we 1805 * run off the end of the current map or find the current map 1806 * invalid, grab a new one. 1807 */ 1808 for (i = 0; i < nblocks && pos < end_pos; i++, pos += len) { 1809 if (ifs && !ifs_block_is_dirty(folio, ifs, i)) 1810 continue; 1811 1812 error = wpc->ops->map_blocks(wpc, inode, pos); 1813 if (error) 1814 break; 1815 trace_iomap_writepage_map(inode, &wpc->iomap); 1816 if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE)) 1817 continue; 1818 if (wpc->iomap.type == IOMAP_HOLE) 1819 continue; 1820 iomap_add_to_ioend(inode, pos, folio, ifs, wpc, wbc, 1821 &submit_list); 1822 count++; 1823 } 1824 if (count) 1825 wpc->ioend->io_folios++; 1826 1827 WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list)); 1828 WARN_ON_ONCE(!folio_test_locked(folio)); 1829 WARN_ON_ONCE(folio_test_writeback(folio)); 1830 WARN_ON_ONCE(folio_test_dirty(folio)); 1831 1832 /* 1833 * We cannot cancel the ioend directly here on error. We may have 1834 * already set other pages under writeback and hence we have to run I/O 1835 * completion to mark the error state of the pages under writeback 1836 * appropriately. 1837 */ 1838 if (unlikely(error)) { 1839 /* 1840 * Let the filesystem know what portion of the current page 1841 * failed to map. 1842 */ 1843 if (wpc->ops->discard_folio) 1844 wpc->ops->discard_folio(folio, pos); 1845 } 1846 1847 /* 1848 * We can have dirty bits set past end of file in page_mkwrite path 1849 * while mapping the last partial folio. Hence it's better to clear 1850 * all the dirty bits in the folio here. 1851 */ 1852 iomap_clear_range_dirty(folio, 0, folio_size(folio)); 1853 1854 /* 1855 * If the page hasn't been added to the ioend, it won't be affected by 1856 * I/O completion and we must unlock it now. 1857 */ 1858 if (error && !count) { 1859 folio_unlock(folio); 1860 goto done; 1861 } 1862 1863 folio_start_writeback(folio); 1864 folio_unlock(folio); 1865 1866 /* 1867 * Preserve the original error if there was one; catch 1868 * submission errors here and propagate into subsequent ioend 1869 * submissions. 1870 */ 1871 list_for_each_entry_safe(ioend, next, &submit_list, io_list) { 1872 int error2; 1873 1874 list_del_init(&ioend->io_list); 1875 error2 = iomap_submit_ioend(wpc, ioend, error); 1876 if (error2 && !error) 1877 error = error2; 1878 } 1879 1880 /* 1881 * We can end up here with no error and nothing to write only if we race 1882 * with a partial page truncate on a sub-page block sized filesystem. 1883 */ 1884 if (!count) 1885 folio_end_writeback(folio); 1886 done: 1887 mapping_set_error(inode->i_mapping, error); 1888 return error; 1889 } 1890 1891 /* 1892 * Write out a dirty page. 1893 * 1894 * For delalloc space on the page, we need to allocate space and flush it. 1895 * For unwritten space on the page, we need to start the conversion to 1896 * regular allocated space. 1897 */ 1898 static int iomap_do_writepage(struct folio *folio, 1899 struct writeback_control *wbc, void *data) 1900 { 1901 struct iomap_writepage_ctx *wpc = data; 1902 struct inode *inode = folio->mapping->host; 1903 u64 end_pos, isize; 1904 1905 trace_iomap_writepage(inode, folio_pos(folio), folio_size(folio)); 1906 1907 /* 1908 * Refuse to write the folio out if we're called from reclaim context. 1909 * 1910 * This avoids stack overflows when called from deeply used stacks in 1911 * random callers for direct reclaim or memcg reclaim. We explicitly 1912 * allow reclaim from kswapd as the stack usage there is relatively low. 1913 * 1914 * This should never happen except in the case of a VM regression so 1915 * warn about it. 1916 */ 1917 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 1918 PF_MEMALLOC)) 1919 goto redirty; 1920 1921 /* 1922 * Is this folio beyond the end of the file? 1923 * 1924 * The folio index is less than the end_index, adjust the end_pos 1925 * to the highest offset that this folio should represent. 1926 * ----------------------------------------------------- 1927 * | file mapping | <EOF> | 1928 * ----------------------------------------------------- 1929 * | Page ... | Page N-2 | Page N-1 | Page N | | 1930 * ^--------------------------------^----------|-------- 1931 * | desired writeback range | see else | 1932 * ---------------------------------^------------------| 1933 */ 1934 isize = i_size_read(inode); 1935 end_pos = folio_pos(folio) + folio_size(folio); 1936 if (end_pos > isize) { 1937 /* 1938 * Check whether the page to write out is beyond or straddles 1939 * i_size or not. 1940 * ------------------------------------------------------- 1941 * | file mapping | <EOF> | 1942 * ------------------------------------------------------- 1943 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond | 1944 * ^--------------------------------^-----------|--------- 1945 * | | Straddles | 1946 * ---------------------------------^-----------|--------| 1947 */ 1948 size_t poff = offset_in_folio(folio, isize); 1949 pgoff_t end_index = isize >> PAGE_SHIFT; 1950 1951 /* 1952 * Skip the page if it's fully outside i_size, e.g. 1953 * due to a truncate operation that's in progress. We've 1954 * cleaned this page and truncate will finish things off for 1955 * us. 1956 * 1957 * Note that the end_index is unsigned long. If the given 1958 * offset is greater than 16TB on a 32-bit system then if we 1959 * checked if the page is fully outside i_size with 1960 * "if (page->index >= end_index + 1)", "end_index + 1" would 1961 * overflow and evaluate to 0. Hence this page would be 1962 * redirtied and written out repeatedly, which would result in 1963 * an infinite loop; the user program performing this operation 1964 * would hang. Instead, we can detect this situation by 1965 * checking if the page is totally beyond i_size or if its 1966 * offset is just equal to the EOF. 1967 */ 1968 if (folio->index > end_index || 1969 (folio->index == end_index && poff == 0)) 1970 goto unlock; 1971 1972 /* 1973 * The page straddles i_size. It must be zeroed out on each 1974 * and every writepage invocation because it may be mmapped. 1975 * "A file is mapped in multiples of the page size. For a file 1976 * that is not a multiple of the page size, the remaining 1977 * memory is zeroed when mapped, and writes to that region are 1978 * not written out to the file." 1979 */ 1980 folio_zero_segment(folio, poff, folio_size(folio)); 1981 end_pos = isize; 1982 } 1983 1984 return iomap_writepage_map(wpc, wbc, inode, folio, end_pos); 1985 1986 redirty: 1987 folio_redirty_for_writepage(wbc, folio); 1988 unlock: 1989 folio_unlock(folio); 1990 return 0; 1991 } 1992 1993 int 1994 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc, 1995 struct iomap_writepage_ctx *wpc, 1996 const struct iomap_writeback_ops *ops) 1997 { 1998 int ret; 1999 2000 wpc->ops = ops; 2001 ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc); 2002 if (!wpc->ioend) 2003 return ret; 2004 return iomap_submit_ioend(wpc, wpc->ioend, ret); 2005 } 2006 EXPORT_SYMBOL_GPL(iomap_writepages); 2007 2008 static int __init iomap_init(void) 2009 { 2010 return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE), 2011 offsetof(struct iomap_ioend, io_inline_bio), 2012 BIOSET_NEED_BVECS); 2013 } 2014 fs_initcall(iomap_init); 2015