xref: /openbmc/linux/fs/inode.c (revision fe7498ef)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * (C) 1997 Linus Torvalds
4  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5  */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/backing-dev.h>
10 #include <linux/hash.h>
11 #include <linux/swap.h>
12 #include <linux/security.h>
13 #include <linux/cdev.h>
14 #include <linux/memblock.h>
15 #include <linux/fsnotify.h>
16 #include <linux/mount.h>
17 #include <linux/posix_acl.h>
18 #include <linux/prefetch.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <trace/events/writeback.h>
24 #include "internal.h"
25 
26 /*
27  * Inode locking rules:
28  *
29  * inode->i_lock protects:
30  *   inode->i_state, inode->i_hash, __iget()
31  * Inode LRU list locks protect:
32  *   inode->i_sb->s_inode_lru, inode->i_lru
33  * inode->i_sb->s_inode_list_lock protects:
34  *   inode->i_sb->s_inodes, inode->i_sb_list
35  * bdi->wb.list_lock protects:
36  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
37  * inode_hash_lock protects:
38  *   inode_hashtable, inode->i_hash
39  *
40  * Lock ordering:
41  *
42  * inode->i_sb->s_inode_list_lock
43  *   inode->i_lock
44  *     Inode LRU list locks
45  *
46  * bdi->wb.list_lock
47  *   inode->i_lock
48  *
49  * inode_hash_lock
50  *   inode->i_sb->s_inode_list_lock
51  *   inode->i_lock
52  *
53  * iunique_lock
54  *   inode_hash_lock
55  */
56 
57 static unsigned int i_hash_mask __read_mostly;
58 static unsigned int i_hash_shift __read_mostly;
59 static struct hlist_head *inode_hashtable __read_mostly;
60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
61 
62 /*
63  * Empty aops. Can be used for the cases where the user does not
64  * define any of the address_space operations.
65  */
66 const struct address_space_operations empty_aops = {
67 };
68 EXPORT_SYMBOL(empty_aops);
69 
70 /*
71  * Statistics gathering..
72  */
73 struct inodes_stat_t inodes_stat;
74 
75 static DEFINE_PER_CPU(unsigned long, nr_inodes);
76 static DEFINE_PER_CPU(unsigned long, nr_unused);
77 
78 static struct kmem_cache *inode_cachep __read_mostly;
79 
80 static long get_nr_inodes(void)
81 {
82 	int i;
83 	long sum = 0;
84 	for_each_possible_cpu(i)
85 		sum += per_cpu(nr_inodes, i);
86 	return sum < 0 ? 0 : sum;
87 }
88 
89 static inline long get_nr_inodes_unused(void)
90 {
91 	int i;
92 	long sum = 0;
93 	for_each_possible_cpu(i)
94 		sum += per_cpu(nr_unused, i);
95 	return sum < 0 ? 0 : sum;
96 }
97 
98 long get_nr_dirty_inodes(void)
99 {
100 	/* not actually dirty inodes, but a wild approximation */
101 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
102 	return nr_dirty > 0 ? nr_dirty : 0;
103 }
104 
105 /*
106  * Handle nr_inode sysctl
107  */
108 #ifdef CONFIG_SYSCTL
109 int proc_nr_inodes(struct ctl_table *table, int write,
110 		   void *buffer, size_t *lenp, loff_t *ppos)
111 {
112 	inodes_stat.nr_inodes = get_nr_inodes();
113 	inodes_stat.nr_unused = get_nr_inodes_unused();
114 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115 }
116 #endif
117 
118 static int no_open(struct inode *inode, struct file *file)
119 {
120 	return -ENXIO;
121 }
122 
123 /**
124  * inode_init_always - perform inode structure initialisation
125  * @sb: superblock inode belongs to
126  * @inode: inode to initialise
127  *
128  * These are initializations that need to be done on every inode
129  * allocation as the fields are not initialised by slab allocation.
130  */
131 int inode_init_always(struct super_block *sb, struct inode *inode)
132 {
133 	static const struct inode_operations empty_iops;
134 	static const struct file_operations no_open_fops = {.open = no_open};
135 	struct address_space *const mapping = &inode->i_data;
136 
137 	inode->i_sb = sb;
138 	inode->i_blkbits = sb->s_blocksize_bits;
139 	inode->i_flags = 0;
140 	atomic64_set(&inode->i_sequence, 0);
141 	atomic_set(&inode->i_count, 1);
142 	inode->i_op = &empty_iops;
143 	inode->i_fop = &no_open_fops;
144 	inode->i_ino = 0;
145 	inode->__i_nlink = 1;
146 	inode->i_opflags = 0;
147 	if (sb->s_xattr)
148 		inode->i_opflags |= IOP_XATTR;
149 	i_uid_write(inode, 0);
150 	i_gid_write(inode, 0);
151 	atomic_set(&inode->i_writecount, 0);
152 	inode->i_size = 0;
153 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
154 	inode->i_blocks = 0;
155 	inode->i_bytes = 0;
156 	inode->i_generation = 0;
157 	inode->i_pipe = NULL;
158 	inode->i_cdev = NULL;
159 	inode->i_link = NULL;
160 	inode->i_dir_seq = 0;
161 	inode->i_rdev = 0;
162 	inode->dirtied_when = 0;
163 
164 #ifdef CONFIG_CGROUP_WRITEBACK
165 	inode->i_wb_frn_winner = 0;
166 	inode->i_wb_frn_avg_time = 0;
167 	inode->i_wb_frn_history = 0;
168 #endif
169 
170 	if (security_inode_alloc(inode))
171 		goto out;
172 	spin_lock_init(&inode->i_lock);
173 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
174 
175 	init_rwsem(&inode->i_rwsem);
176 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
177 
178 	atomic_set(&inode->i_dio_count, 0);
179 
180 	mapping->a_ops = &empty_aops;
181 	mapping->host = inode;
182 	mapping->flags = 0;
183 	if (sb->s_type->fs_flags & FS_THP_SUPPORT)
184 		__set_bit(AS_THP_SUPPORT, &mapping->flags);
185 	mapping->wb_err = 0;
186 	atomic_set(&mapping->i_mmap_writable, 0);
187 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
188 	atomic_set(&mapping->nr_thps, 0);
189 #endif
190 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
191 	mapping->private_data = NULL;
192 	mapping->writeback_index = 0;
193 	init_rwsem(&mapping->invalidate_lock);
194 	lockdep_set_class_and_name(&mapping->invalidate_lock,
195 				   &sb->s_type->invalidate_lock_key,
196 				   "mapping.invalidate_lock");
197 	inode->i_private = NULL;
198 	inode->i_mapping = mapping;
199 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
200 #ifdef CONFIG_FS_POSIX_ACL
201 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
202 #endif
203 
204 #ifdef CONFIG_FSNOTIFY
205 	inode->i_fsnotify_mask = 0;
206 #endif
207 	inode->i_flctx = NULL;
208 	this_cpu_inc(nr_inodes);
209 
210 	return 0;
211 out:
212 	return -ENOMEM;
213 }
214 EXPORT_SYMBOL(inode_init_always);
215 
216 void free_inode_nonrcu(struct inode *inode)
217 {
218 	kmem_cache_free(inode_cachep, inode);
219 }
220 EXPORT_SYMBOL(free_inode_nonrcu);
221 
222 static void i_callback(struct rcu_head *head)
223 {
224 	struct inode *inode = container_of(head, struct inode, i_rcu);
225 	if (inode->free_inode)
226 		inode->free_inode(inode);
227 	else
228 		free_inode_nonrcu(inode);
229 }
230 
231 static struct inode *alloc_inode(struct super_block *sb)
232 {
233 	const struct super_operations *ops = sb->s_op;
234 	struct inode *inode;
235 
236 	if (ops->alloc_inode)
237 		inode = ops->alloc_inode(sb);
238 	else
239 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
240 
241 	if (!inode)
242 		return NULL;
243 
244 	if (unlikely(inode_init_always(sb, inode))) {
245 		if (ops->destroy_inode) {
246 			ops->destroy_inode(inode);
247 			if (!ops->free_inode)
248 				return NULL;
249 		}
250 		inode->free_inode = ops->free_inode;
251 		i_callback(&inode->i_rcu);
252 		return NULL;
253 	}
254 
255 	return inode;
256 }
257 
258 void __destroy_inode(struct inode *inode)
259 {
260 	BUG_ON(inode_has_buffers(inode));
261 	inode_detach_wb(inode);
262 	security_inode_free(inode);
263 	fsnotify_inode_delete(inode);
264 	locks_free_lock_context(inode);
265 	if (!inode->i_nlink) {
266 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
267 		atomic_long_dec(&inode->i_sb->s_remove_count);
268 	}
269 
270 #ifdef CONFIG_FS_POSIX_ACL
271 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
272 		posix_acl_release(inode->i_acl);
273 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
274 		posix_acl_release(inode->i_default_acl);
275 #endif
276 	this_cpu_dec(nr_inodes);
277 }
278 EXPORT_SYMBOL(__destroy_inode);
279 
280 static void destroy_inode(struct inode *inode)
281 {
282 	const struct super_operations *ops = inode->i_sb->s_op;
283 
284 	BUG_ON(!list_empty(&inode->i_lru));
285 	__destroy_inode(inode);
286 	if (ops->destroy_inode) {
287 		ops->destroy_inode(inode);
288 		if (!ops->free_inode)
289 			return;
290 	}
291 	inode->free_inode = ops->free_inode;
292 	call_rcu(&inode->i_rcu, i_callback);
293 }
294 
295 /**
296  * drop_nlink - directly drop an inode's link count
297  * @inode: inode
298  *
299  * This is a low-level filesystem helper to replace any
300  * direct filesystem manipulation of i_nlink.  In cases
301  * where we are attempting to track writes to the
302  * filesystem, a decrement to zero means an imminent
303  * write when the file is truncated and actually unlinked
304  * on the filesystem.
305  */
306 void drop_nlink(struct inode *inode)
307 {
308 	WARN_ON(inode->i_nlink == 0);
309 	inode->__i_nlink--;
310 	if (!inode->i_nlink)
311 		atomic_long_inc(&inode->i_sb->s_remove_count);
312 }
313 EXPORT_SYMBOL(drop_nlink);
314 
315 /**
316  * clear_nlink - directly zero an inode's link count
317  * @inode: inode
318  *
319  * This is a low-level filesystem helper to replace any
320  * direct filesystem manipulation of i_nlink.  See
321  * drop_nlink() for why we care about i_nlink hitting zero.
322  */
323 void clear_nlink(struct inode *inode)
324 {
325 	if (inode->i_nlink) {
326 		inode->__i_nlink = 0;
327 		atomic_long_inc(&inode->i_sb->s_remove_count);
328 	}
329 }
330 EXPORT_SYMBOL(clear_nlink);
331 
332 /**
333  * set_nlink - directly set an inode's link count
334  * @inode: inode
335  * @nlink: new nlink (should be non-zero)
336  *
337  * This is a low-level filesystem helper to replace any
338  * direct filesystem manipulation of i_nlink.
339  */
340 void set_nlink(struct inode *inode, unsigned int nlink)
341 {
342 	if (!nlink) {
343 		clear_nlink(inode);
344 	} else {
345 		/* Yes, some filesystems do change nlink from zero to one */
346 		if (inode->i_nlink == 0)
347 			atomic_long_dec(&inode->i_sb->s_remove_count);
348 
349 		inode->__i_nlink = nlink;
350 	}
351 }
352 EXPORT_SYMBOL(set_nlink);
353 
354 /**
355  * inc_nlink - directly increment an inode's link count
356  * @inode: inode
357  *
358  * This is a low-level filesystem helper to replace any
359  * direct filesystem manipulation of i_nlink.  Currently,
360  * it is only here for parity with dec_nlink().
361  */
362 void inc_nlink(struct inode *inode)
363 {
364 	if (unlikely(inode->i_nlink == 0)) {
365 		WARN_ON(!(inode->i_state & I_LINKABLE));
366 		atomic_long_dec(&inode->i_sb->s_remove_count);
367 	}
368 
369 	inode->__i_nlink++;
370 }
371 EXPORT_SYMBOL(inc_nlink);
372 
373 static void __address_space_init_once(struct address_space *mapping)
374 {
375 	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
376 	init_rwsem(&mapping->i_mmap_rwsem);
377 	INIT_LIST_HEAD(&mapping->private_list);
378 	spin_lock_init(&mapping->private_lock);
379 	mapping->i_mmap = RB_ROOT_CACHED;
380 }
381 
382 void address_space_init_once(struct address_space *mapping)
383 {
384 	memset(mapping, 0, sizeof(*mapping));
385 	__address_space_init_once(mapping);
386 }
387 EXPORT_SYMBOL(address_space_init_once);
388 
389 /*
390  * These are initializations that only need to be done
391  * once, because the fields are idempotent across use
392  * of the inode, so let the slab aware of that.
393  */
394 void inode_init_once(struct inode *inode)
395 {
396 	memset(inode, 0, sizeof(*inode));
397 	INIT_HLIST_NODE(&inode->i_hash);
398 	INIT_LIST_HEAD(&inode->i_devices);
399 	INIT_LIST_HEAD(&inode->i_io_list);
400 	INIT_LIST_HEAD(&inode->i_wb_list);
401 	INIT_LIST_HEAD(&inode->i_lru);
402 	__address_space_init_once(&inode->i_data);
403 	i_size_ordered_init(inode);
404 }
405 EXPORT_SYMBOL(inode_init_once);
406 
407 static void init_once(void *foo)
408 {
409 	struct inode *inode = (struct inode *) foo;
410 
411 	inode_init_once(inode);
412 }
413 
414 /*
415  * inode->i_lock must be held
416  */
417 void __iget(struct inode *inode)
418 {
419 	atomic_inc(&inode->i_count);
420 }
421 
422 /*
423  * get additional reference to inode; caller must already hold one.
424  */
425 void ihold(struct inode *inode)
426 {
427 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
428 }
429 EXPORT_SYMBOL(ihold);
430 
431 static void __inode_add_lru(struct inode *inode, bool rotate)
432 {
433 	if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
434 		return;
435 	if (atomic_read(&inode->i_count))
436 		return;
437 	if (!(inode->i_sb->s_flags & SB_ACTIVE))
438 		return;
439 	if (!mapping_shrinkable(&inode->i_data))
440 		return;
441 
442 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
443 		this_cpu_inc(nr_unused);
444 	else if (rotate)
445 		inode->i_state |= I_REFERENCED;
446 }
447 
448 /*
449  * Add inode to LRU if needed (inode is unused and clean).
450  *
451  * Needs inode->i_lock held.
452  */
453 void inode_add_lru(struct inode *inode)
454 {
455 	__inode_add_lru(inode, false);
456 }
457 
458 static void inode_lru_list_del(struct inode *inode)
459 {
460 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
461 		this_cpu_dec(nr_unused);
462 }
463 
464 /**
465  * inode_sb_list_add - add inode to the superblock list of inodes
466  * @inode: inode to add
467  */
468 void inode_sb_list_add(struct inode *inode)
469 {
470 	spin_lock(&inode->i_sb->s_inode_list_lock);
471 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
472 	spin_unlock(&inode->i_sb->s_inode_list_lock);
473 }
474 EXPORT_SYMBOL_GPL(inode_sb_list_add);
475 
476 static inline void inode_sb_list_del(struct inode *inode)
477 {
478 	if (!list_empty(&inode->i_sb_list)) {
479 		spin_lock(&inode->i_sb->s_inode_list_lock);
480 		list_del_init(&inode->i_sb_list);
481 		spin_unlock(&inode->i_sb->s_inode_list_lock);
482 	}
483 }
484 
485 static unsigned long hash(struct super_block *sb, unsigned long hashval)
486 {
487 	unsigned long tmp;
488 
489 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
490 			L1_CACHE_BYTES;
491 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
492 	return tmp & i_hash_mask;
493 }
494 
495 /**
496  *	__insert_inode_hash - hash an inode
497  *	@inode: unhashed inode
498  *	@hashval: unsigned long value used to locate this object in the
499  *		inode_hashtable.
500  *
501  *	Add an inode to the inode hash for this superblock.
502  */
503 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
504 {
505 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
506 
507 	spin_lock(&inode_hash_lock);
508 	spin_lock(&inode->i_lock);
509 	hlist_add_head_rcu(&inode->i_hash, b);
510 	spin_unlock(&inode->i_lock);
511 	spin_unlock(&inode_hash_lock);
512 }
513 EXPORT_SYMBOL(__insert_inode_hash);
514 
515 /**
516  *	__remove_inode_hash - remove an inode from the hash
517  *	@inode: inode to unhash
518  *
519  *	Remove an inode from the superblock.
520  */
521 void __remove_inode_hash(struct inode *inode)
522 {
523 	spin_lock(&inode_hash_lock);
524 	spin_lock(&inode->i_lock);
525 	hlist_del_init_rcu(&inode->i_hash);
526 	spin_unlock(&inode->i_lock);
527 	spin_unlock(&inode_hash_lock);
528 }
529 EXPORT_SYMBOL(__remove_inode_hash);
530 
531 void clear_inode(struct inode *inode)
532 {
533 	/*
534 	 * We have to cycle the i_pages lock here because reclaim can be in the
535 	 * process of removing the last page (in __delete_from_page_cache())
536 	 * and we must not free the mapping under it.
537 	 */
538 	xa_lock_irq(&inode->i_data.i_pages);
539 	BUG_ON(inode->i_data.nrpages);
540 	/*
541 	 * Almost always, mapping_empty(&inode->i_data) here; but there are
542 	 * two known and long-standing ways in which nodes may get left behind
543 	 * (when deep radix-tree node allocation failed partway; or when THP
544 	 * collapse_file() failed). Until those two known cases are cleaned up,
545 	 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
546 	 * nor even WARN_ON(!mapping_empty).
547 	 */
548 	xa_unlock_irq(&inode->i_data.i_pages);
549 	BUG_ON(!list_empty(&inode->i_data.private_list));
550 	BUG_ON(!(inode->i_state & I_FREEING));
551 	BUG_ON(inode->i_state & I_CLEAR);
552 	BUG_ON(!list_empty(&inode->i_wb_list));
553 	/* don't need i_lock here, no concurrent mods to i_state */
554 	inode->i_state = I_FREEING | I_CLEAR;
555 }
556 EXPORT_SYMBOL(clear_inode);
557 
558 /*
559  * Free the inode passed in, removing it from the lists it is still connected
560  * to. We remove any pages still attached to the inode and wait for any IO that
561  * is still in progress before finally destroying the inode.
562  *
563  * An inode must already be marked I_FREEING so that we avoid the inode being
564  * moved back onto lists if we race with other code that manipulates the lists
565  * (e.g. writeback_single_inode). The caller is responsible for setting this.
566  *
567  * An inode must already be removed from the LRU list before being evicted from
568  * the cache. This should occur atomically with setting the I_FREEING state
569  * flag, so no inodes here should ever be on the LRU when being evicted.
570  */
571 static void evict(struct inode *inode)
572 {
573 	const struct super_operations *op = inode->i_sb->s_op;
574 
575 	BUG_ON(!(inode->i_state & I_FREEING));
576 	BUG_ON(!list_empty(&inode->i_lru));
577 
578 	if (!list_empty(&inode->i_io_list))
579 		inode_io_list_del(inode);
580 
581 	inode_sb_list_del(inode);
582 
583 	/*
584 	 * Wait for flusher thread to be done with the inode so that filesystem
585 	 * does not start destroying it while writeback is still running. Since
586 	 * the inode has I_FREEING set, flusher thread won't start new work on
587 	 * the inode.  We just have to wait for running writeback to finish.
588 	 */
589 	inode_wait_for_writeback(inode);
590 
591 	if (op->evict_inode) {
592 		op->evict_inode(inode);
593 	} else {
594 		truncate_inode_pages_final(&inode->i_data);
595 		clear_inode(inode);
596 	}
597 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
598 		cd_forget(inode);
599 
600 	remove_inode_hash(inode);
601 
602 	spin_lock(&inode->i_lock);
603 	wake_up_bit(&inode->i_state, __I_NEW);
604 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
605 	spin_unlock(&inode->i_lock);
606 
607 	destroy_inode(inode);
608 }
609 
610 /*
611  * dispose_list - dispose of the contents of a local list
612  * @head: the head of the list to free
613  *
614  * Dispose-list gets a local list with local inodes in it, so it doesn't
615  * need to worry about list corruption and SMP locks.
616  */
617 static void dispose_list(struct list_head *head)
618 {
619 	while (!list_empty(head)) {
620 		struct inode *inode;
621 
622 		inode = list_first_entry(head, struct inode, i_lru);
623 		list_del_init(&inode->i_lru);
624 
625 		evict(inode);
626 		cond_resched();
627 	}
628 }
629 
630 /**
631  * evict_inodes	- evict all evictable inodes for a superblock
632  * @sb:		superblock to operate on
633  *
634  * Make sure that no inodes with zero refcount are retained.  This is
635  * called by superblock shutdown after having SB_ACTIVE flag removed,
636  * so any inode reaching zero refcount during or after that call will
637  * be immediately evicted.
638  */
639 void evict_inodes(struct super_block *sb)
640 {
641 	struct inode *inode, *next;
642 	LIST_HEAD(dispose);
643 
644 again:
645 	spin_lock(&sb->s_inode_list_lock);
646 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
647 		if (atomic_read(&inode->i_count))
648 			continue;
649 
650 		spin_lock(&inode->i_lock);
651 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
652 			spin_unlock(&inode->i_lock);
653 			continue;
654 		}
655 
656 		inode->i_state |= I_FREEING;
657 		inode_lru_list_del(inode);
658 		spin_unlock(&inode->i_lock);
659 		list_add(&inode->i_lru, &dispose);
660 
661 		/*
662 		 * We can have a ton of inodes to evict at unmount time given
663 		 * enough memory, check to see if we need to go to sleep for a
664 		 * bit so we don't livelock.
665 		 */
666 		if (need_resched()) {
667 			spin_unlock(&sb->s_inode_list_lock);
668 			cond_resched();
669 			dispose_list(&dispose);
670 			goto again;
671 		}
672 	}
673 	spin_unlock(&sb->s_inode_list_lock);
674 
675 	dispose_list(&dispose);
676 }
677 EXPORT_SYMBOL_GPL(evict_inodes);
678 
679 /**
680  * invalidate_inodes	- attempt to free all inodes on a superblock
681  * @sb:		superblock to operate on
682  * @kill_dirty: flag to guide handling of dirty inodes
683  *
684  * Attempts to free all inodes for a given superblock.  If there were any
685  * busy inodes return a non-zero value, else zero.
686  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
687  * them as busy.
688  */
689 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
690 {
691 	int busy = 0;
692 	struct inode *inode, *next;
693 	LIST_HEAD(dispose);
694 
695 again:
696 	spin_lock(&sb->s_inode_list_lock);
697 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
698 		spin_lock(&inode->i_lock);
699 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
700 			spin_unlock(&inode->i_lock);
701 			continue;
702 		}
703 		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
704 			spin_unlock(&inode->i_lock);
705 			busy = 1;
706 			continue;
707 		}
708 		if (atomic_read(&inode->i_count)) {
709 			spin_unlock(&inode->i_lock);
710 			busy = 1;
711 			continue;
712 		}
713 
714 		inode->i_state |= I_FREEING;
715 		inode_lru_list_del(inode);
716 		spin_unlock(&inode->i_lock);
717 		list_add(&inode->i_lru, &dispose);
718 		if (need_resched()) {
719 			spin_unlock(&sb->s_inode_list_lock);
720 			cond_resched();
721 			dispose_list(&dispose);
722 			goto again;
723 		}
724 	}
725 	spin_unlock(&sb->s_inode_list_lock);
726 
727 	dispose_list(&dispose);
728 
729 	return busy;
730 }
731 
732 /*
733  * Isolate the inode from the LRU in preparation for freeing it.
734  *
735  * If the inode has the I_REFERENCED flag set, then it means that it has been
736  * used recently - the flag is set in iput_final(). When we encounter such an
737  * inode, clear the flag and move it to the back of the LRU so it gets another
738  * pass through the LRU before it gets reclaimed. This is necessary because of
739  * the fact we are doing lazy LRU updates to minimise lock contention so the
740  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
741  * with this flag set because they are the inodes that are out of order.
742  */
743 static enum lru_status inode_lru_isolate(struct list_head *item,
744 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
745 {
746 	struct list_head *freeable = arg;
747 	struct inode	*inode = container_of(item, struct inode, i_lru);
748 
749 	/*
750 	 * We are inverting the lru lock/inode->i_lock here, so use a
751 	 * trylock. If we fail to get the lock, just skip it.
752 	 */
753 	if (!spin_trylock(&inode->i_lock))
754 		return LRU_SKIP;
755 
756 	/*
757 	 * Inodes can get referenced, redirtied, or repopulated while
758 	 * they're already on the LRU, and this can make them
759 	 * unreclaimable for a while. Remove them lazily here; iput,
760 	 * sync, or the last page cache deletion will requeue them.
761 	 */
762 	if (atomic_read(&inode->i_count) ||
763 	    (inode->i_state & ~I_REFERENCED) ||
764 	    !mapping_shrinkable(&inode->i_data)) {
765 		list_lru_isolate(lru, &inode->i_lru);
766 		spin_unlock(&inode->i_lock);
767 		this_cpu_dec(nr_unused);
768 		return LRU_REMOVED;
769 	}
770 
771 	/* Recently referenced inodes get one more pass */
772 	if (inode->i_state & I_REFERENCED) {
773 		inode->i_state &= ~I_REFERENCED;
774 		spin_unlock(&inode->i_lock);
775 		return LRU_ROTATE;
776 	}
777 
778 	/*
779 	 * On highmem systems, mapping_shrinkable() permits dropping
780 	 * page cache in order to free up struct inodes: lowmem might
781 	 * be under pressure before the cache inside the highmem zone.
782 	 */
783 	if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
784 		__iget(inode);
785 		spin_unlock(&inode->i_lock);
786 		spin_unlock(lru_lock);
787 		if (remove_inode_buffers(inode)) {
788 			unsigned long reap;
789 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
790 			if (current_is_kswapd())
791 				__count_vm_events(KSWAPD_INODESTEAL, reap);
792 			else
793 				__count_vm_events(PGINODESTEAL, reap);
794 			if (current->reclaim_state)
795 				current->reclaim_state->reclaimed_slab += reap;
796 		}
797 		iput(inode);
798 		spin_lock(lru_lock);
799 		return LRU_RETRY;
800 	}
801 
802 	WARN_ON(inode->i_state & I_NEW);
803 	inode->i_state |= I_FREEING;
804 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
805 	spin_unlock(&inode->i_lock);
806 
807 	this_cpu_dec(nr_unused);
808 	return LRU_REMOVED;
809 }
810 
811 /*
812  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
813  * This is called from the superblock shrinker function with a number of inodes
814  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
815  * then are freed outside inode_lock by dispose_list().
816  */
817 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
818 {
819 	LIST_HEAD(freeable);
820 	long freed;
821 
822 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
823 				     inode_lru_isolate, &freeable);
824 	dispose_list(&freeable);
825 	return freed;
826 }
827 
828 static void __wait_on_freeing_inode(struct inode *inode);
829 /*
830  * Called with the inode lock held.
831  */
832 static struct inode *find_inode(struct super_block *sb,
833 				struct hlist_head *head,
834 				int (*test)(struct inode *, void *),
835 				void *data)
836 {
837 	struct inode *inode = NULL;
838 
839 repeat:
840 	hlist_for_each_entry(inode, head, i_hash) {
841 		if (inode->i_sb != sb)
842 			continue;
843 		if (!test(inode, data))
844 			continue;
845 		spin_lock(&inode->i_lock);
846 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
847 			__wait_on_freeing_inode(inode);
848 			goto repeat;
849 		}
850 		if (unlikely(inode->i_state & I_CREATING)) {
851 			spin_unlock(&inode->i_lock);
852 			return ERR_PTR(-ESTALE);
853 		}
854 		__iget(inode);
855 		spin_unlock(&inode->i_lock);
856 		return inode;
857 	}
858 	return NULL;
859 }
860 
861 /*
862  * find_inode_fast is the fast path version of find_inode, see the comment at
863  * iget_locked for details.
864  */
865 static struct inode *find_inode_fast(struct super_block *sb,
866 				struct hlist_head *head, unsigned long ino)
867 {
868 	struct inode *inode = NULL;
869 
870 repeat:
871 	hlist_for_each_entry(inode, head, i_hash) {
872 		if (inode->i_ino != ino)
873 			continue;
874 		if (inode->i_sb != sb)
875 			continue;
876 		spin_lock(&inode->i_lock);
877 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
878 			__wait_on_freeing_inode(inode);
879 			goto repeat;
880 		}
881 		if (unlikely(inode->i_state & I_CREATING)) {
882 			spin_unlock(&inode->i_lock);
883 			return ERR_PTR(-ESTALE);
884 		}
885 		__iget(inode);
886 		spin_unlock(&inode->i_lock);
887 		return inode;
888 	}
889 	return NULL;
890 }
891 
892 /*
893  * Each cpu owns a range of LAST_INO_BATCH numbers.
894  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
895  * to renew the exhausted range.
896  *
897  * This does not significantly increase overflow rate because every CPU can
898  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
899  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
900  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
901  * overflow rate by 2x, which does not seem too significant.
902  *
903  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
904  * error if st_ino won't fit in target struct field. Use 32bit counter
905  * here to attempt to avoid that.
906  */
907 #define LAST_INO_BATCH 1024
908 static DEFINE_PER_CPU(unsigned int, last_ino);
909 
910 unsigned int get_next_ino(void)
911 {
912 	unsigned int *p = &get_cpu_var(last_ino);
913 	unsigned int res = *p;
914 
915 #ifdef CONFIG_SMP
916 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
917 		static atomic_t shared_last_ino;
918 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
919 
920 		res = next - LAST_INO_BATCH;
921 	}
922 #endif
923 
924 	res++;
925 	/* get_next_ino should not provide a 0 inode number */
926 	if (unlikely(!res))
927 		res++;
928 	*p = res;
929 	put_cpu_var(last_ino);
930 	return res;
931 }
932 EXPORT_SYMBOL(get_next_ino);
933 
934 /**
935  *	new_inode_pseudo 	- obtain an inode
936  *	@sb: superblock
937  *
938  *	Allocates a new inode for given superblock.
939  *	Inode wont be chained in superblock s_inodes list
940  *	This means :
941  *	- fs can't be unmount
942  *	- quotas, fsnotify, writeback can't work
943  */
944 struct inode *new_inode_pseudo(struct super_block *sb)
945 {
946 	struct inode *inode = alloc_inode(sb);
947 
948 	if (inode) {
949 		spin_lock(&inode->i_lock);
950 		inode->i_state = 0;
951 		spin_unlock(&inode->i_lock);
952 		INIT_LIST_HEAD(&inode->i_sb_list);
953 	}
954 	return inode;
955 }
956 
957 /**
958  *	new_inode 	- obtain an inode
959  *	@sb: superblock
960  *
961  *	Allocates a new inode for given superblock. The default gfp_mask
962  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
963  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
964  *	for the page cache are not reclaimable or migratable,
965  *	mapping_set_gfp_mask() must be called with suitable flags on the
966  *	newly created inode's mapping
967  *
968  */
969 struct inode *new_inode(struct super_block *sb)
970 {
971 	struct inode *inode;
972 
973 	spin_lock_prefetch(&sb->s_inode_list_lock);
974 
975 	inode = new_inode_pseudo(sb);
976 	if (inode)
977 		inode_sb_list_add(inode);
978 	return inode;
979 }
980 EXPORT_SYMBOL(new_inode);
981 
982 #ifdef CONFIG_DEBUG_LOCK_ALLOC
983 void lockdep_annotate_inode_mutex_key(struct inode *inode)
984 {
985 	if (S_ISDIR(inode->i_mode)) {
986 		struct file_system_type *type = inode->i_sb->s_type;
987 
988 		/* Set new key only if filesystem hasn't already changed it */
989 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
990 			/*
991 			 * ensure nobody is actually holding i_mutex
992 			 */
993 			// mutex_destroy(&inode->i_mutex);
994 			init_rwsem(&inode->i_rwsem);
995 			lockdep_set_class(&inode->i_rwsem,
996 					  &type->i_mutex_dir_key);
997 		}
998 	}
999 }
1000 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1001 #endif
1002 
1003 /**
1004  * unlock_new_inode - clear the I_NEW state and wake up any waiters
1005  * @inode:	new inode to unlock
1006  *
1007  * Called when the inode is fully initialised to clear the new state of the
1008  * inode and wake up anyone waiting for the inode to finish initialisation.
1009  */
1010 void unlock_new_inode(struct inode *inode)
1011 {
1012 	lockdep_annotate_inode_mutex_key(inode);
1013 	spin_lock(&inode->i_lock);
1014 	WARN_ON(!(inode->i_state & I_NEW));
1015 	inode->i_state &= ~I_NEW & ~I_CREATING;
1016 	smp_mb();
1017 	wake_up_bit(&inode->i_state, __I_NEW);
1018 	spin_unlock(&inode->i_lock);
1019 }
1020 EXPORT_SYMBOL(unlock_new_inode);
1021 
1022 void discard_new_inode(struct inode *inode)
1023 {
1024 	lockdep_annotate_inode_mutex_key(inode);
1025 	spin_lock(&inode->i_lock);
1026 	WARN_ON(!(inode->i_state & I_NEW));
1027 	inode->i_state &= ~I_NEW;
1028 	smp_mb();
1029 	wake_up_bit(&inode->i_state, __I_NEW);
1030 	spin_unlock(&inode->i_lock);
1031 	iput(inode);
1032 }
1033 EXPORT_SYMBOL(discard_new_inode);
1034 
1035 /**
1036  * lock_two_nondirectories - take two i_mutexes on non-directory objects
1037  *
1038  * Lock any non-NULL argument that is not a directory.
1039  * Zero, one or two objects may be locked by this function.
1040  *
1041  * @inode1: first inode to lock
1042  * @inode2: second inode to lock
1043  */
1044 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1045 {
1046 	if (inode1 > inode2)
1047 		swap(inode1, inode2);
1048 
1049 	if (inode1 && !S_ISDIR(inode1->i_mode))
1050 		inode_lock(inode1);
1051 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1052 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1053 }
1054 EXPORT_SYMBOL(lock_two_nondirectories);
1055 
1056 /**
1057  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1058  * @inode1: first inode to unlock
1059  * @inode2: second inode to unlock
1060  */
1061 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1062 {
1063 	if (inode1 && !S_ISDIR(inode1->i_mode))
1064 		inode_unlock(inode1);
1065 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1066 		inode_unlock(inode2);
1067 }
1068 EXPORT_SYMBOL(unlock_two_nondirectories);
1069 
1070 /**
1071  * inode_insert5 - obtain an inode from a mounted file system
1072  * @inode:	pre-allocated inode to use for insert to cache
1073  * @hashval:	hash value (usually inode number) to get
1074  * @test:	callback used for comparisons between inodes
1075  * @set:	callback used to initialize a new struct inode
1076  * @data:	opaque data pointer to pass to @test and @set
1077  *
1078  * Search for the inode specified by @hashval and @data in the inode cache,
1079  * and if present it is return it with an increased reference count. This is
1080  * a variant of iget5_locked() for callers that don't want to fail on memory
1081  * allocation of inode.
1082  *
1083  * If the inode is not in cache, insert the pre-allocated inode to cache and
1084  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1085  * to fill it in before unlocking it via unlock_new_inode().
1086  *
1087  * Note both @test and @set are called with the inode_hash_lock held, so can't
1088  * sleep.
1089  */
1090 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1091 			    int (*test)(struct inode *, void *),
1092 			    int (*set)(struct inode *, void *), void *data)
1093 {
1094 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1095 	struct inode *old;
1096 	bool creating = inode->i_state & I_CREATING;
1097 
1098 again:
1099 	spin_lock(&inode_hash_lock);
1100 	old = find_inode(inode->i_sb, head, test, data);
1101 	if (unlikely(old)) {
1102 		/*
1103 		 * Uhhuh, somebody else created the same inode under us.
1104 		 * Use the old inode instead of the preallocated one.
1105 		 */
1106 		spin_unlock(&inode_hash_lock);
1107 		if (IS_ERR(old))
1108 			return NULL;
1109 		wait_on_inode(old);
1110 		if (unlikely(inode_unhashed(old))) {
1111 			iput(old);
1112 			goto again;
1113 		}
1114 		return old;
1115 	}
1116 
1117 	if (set && unlikely(set(inode, data))) {
1118 		inode = NULL;
1119 		goto unlock;
1120 	}
1121 
1122 	/*
1123 	 * Return the locked inode with I_NEW set, the
1124 	 * caller is responsible for filling in the contents
1125 	 */
1126 	spin_lock(&inode->i_lock);
1127 	inode->i_state |= I_NEW;
1128 	hlist_add_head_rcu(&inode->i_hash, head);
1129 	spin_unlock(&inode->i_lock);
1130 	if (!creating)
1131 		inode_sb_list_add(inode);
1132 unlock:
1133 	spin_unlock(&inode_hash_lock);
1134 
1135 	return inode;
1136 }
1137 EXPORT_SYMBOL(inode_insert5);
1138 
1139 /**
1140  * iget5_locked - obtain an inode from a mounted file system
1141  * @sb:		super block of file system
1142  * @hashval:	hash value (usually inode number) to get
1143  * @test:	callback used for comparisons between inodes
1144  * @set:	callback used to initialize a new struct inode
1145  * @data:	opaque data pointer to pass to @test and @set
1146  *
1147  * Search for the inode specified by @hashval and @data in the inode cache,
1148  * and if present it is return it with an increased reference count. This is
1149  * a generalized version of iget_locked() for file systems where the inode
1150  * number is not sufficient for unique identification of an inode.
1151  *
1152  * If the inode is not in cache, allocate a new inode and return it locked,
1153  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1154  * before unlocking it via unlock_new_inode().
1155  *
1156  * Note both @test and @set are called with the inode_hash_lock held, so can't
1157  * sleep.
1158  */
1159 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1160 		int (*test)(struct inode *, void *),
1161 		int (*set)(struct inode *, void *), void *data)
1162 {
1163 	struct inode *inode = ilookup5(sb, hashval, test, data);
1164 
1165 	if (!inode) {
1166 		struct inode *new = alloc_inode(sb);
1167 
1168 		if (new) {
1169 			new->i_state = 0;
1170 			inode = inode_insert5(new, hashval, test, set, data);
1171 			if (unlikely(inode != new))
1172 				destroy_inode(new);
1173 		}
1174 	}
1175 	return inode;
1176 }
1177 EXPORT_SYMBOL(iget5_locked);
1178 
1179 /**
1180  * iget_locked - obtain an inode from a mounted file system
1181  * @sb:		super block of file system
1182  * @ino:	inode number to get
1183  *
1184  * Search for the inode specified by @ino in the inode cache and if present
1185  * return it with an increased reference count. This is for file systems
1186  * where the inode number is sufficient for unique identification of an inode.
1187  *
1188  * If the inode is not in cache, allocate a new inode and return it locked,
1189  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1190  * before unlocking it via unlock_new_inode().
1191  */
1192 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1193 {
1194 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1195 	struct inode *inode;
1196 again:
1197 	spin_lock(&inode_hash_lock);
1198 	inode = find_inode_fast(sb, head, ino);
1199 	spin_unlock(&inode_hash_lock);
1200 	if (inode) {
1201 		if (IS_ERR(inode))
1202 			return NULL;
1203 		wait_on_inode(inode);
1204 		if (unlikely(inode_unhashed(inode))) {
1205 			iput(inode);
1206 			goto again;
1207 		}
1208 		return inode;
1209 	}
1210 
1211 	inode = alloc_inode(sb);
1212 	if (inode) {
1213 		struct inode *old;
1214 
1215 		spin_lock(&inode_hash_lock);
1216 		/* We released the lock, so.. */
1217 		old = find_inode_fast(sb, head, ino);
1218 		if (!old) {
1219 			inode->i_ino = ino;
1220 			spin_lock(&inode->i_lock);
1221 			inode->i_state = I_NEW;
1222 			hlist_add_head_rcu(&inode->i_hash, head);
1223 			spin_unlock(&inode->i_lock);
1224 			inode_sb_list_add(inode);
1225 			spin_unlock(&inode_hash_lock);
1226 
1227 			/* Return the locked inode with I_NEW set, the
1228 			 * caller is responsible for filling in the contents
1229 			 */
1230 			return inode;
1231 		}
1232 
1233 		/*
1234 		 * Uhhuh, somebody else created the same inode under
1235 		 * us. Use the old inode instead of the one we just
1236 		 * allocated.
1237 		 */
1238 		spin_unlock(&inode_hash_lock);
1239 		destroy_inode(inode);
1240 		if (IS_ERR(old))
1241 			return NULL;
1242 		inode = old;
1243 		wait_on_inode(inode);
1244 		if (unlikely(inode_unhashed(inode))) {
1245 			iput(inode);
1246 			goto again;
1247 		}
1248 	}
1249 	return inode;
1250 }
1251 EXPORT_SYMBOL(iget_locked);
1252 
1253 /*
1254  * search the inode cache for a matching inode number.
1255  * If we find one, then the inode number we are trying to
1256  * allocate is not unique and so we should not use it.
1257  *
1258  * Returns 1 if the inode number is unique, 0 if it is not.
1259  */
1260 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1261 {
1262 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1263 	struct inode *inode;
1264 
1265 	hlist_for_each_entry_rcu(inode, b, i_hash) {
1266 		if (inode->i_ino == ino && inode->i_sb == sb)
1267 			return 0;
1268 	}
1269 	return 1;
1270 }
1271 
1272 /**
1273  *	iunique - get a unique inode number
1274  *	@sb: superblock
1275  *	@max_reserved: highest reserved inode number
1276  *
1277  *	Obtain an inode number that is unique on the system for a given
1278  *	superblock. This is used by file systems that have no natural
1279  *	permanent inode numbering system. An inode number is returned that
1280  *	is higher than the reserved limit but unique.
1281  *
1282  *	BUGS:
1283  *	With a large number of inodes live on the file system this function
1284  *	currently becomes quite slow.
1285  */
1286 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1287 {
1288 	/*
1289 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1290 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1291 	 * here to attempt to avoid that.
1292 	 */
1293 	static DEFINE_SPINLOCK(iunique_lock);
1294 	static unsigned int counter;
1295 	ino_t res;
1296 
1297 	rcu_read_lock();
1298 	spin_lock(&iunique_lock);
1299 	do {
1300 		if (counter <= max_reserved)
1301 			counter = max_reserved + 1;
1302 		res = counter++;
1303 	} while (!test_inode_iunique(sb, res));
1304 	spin_unlock(&iunique_lock);
1305 	rcu_read_unlock();
1306 
1307 	return res;
1308 }
1309 EXPORT_SYMBOL(iunique);
1310 
1311 struct inode *igrab(struct inode *inode)
1312 {
1313 	spin_lock(&inode->i_lock);
1314 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1315 		__iget(inode);
1316 		spin_unlock(&inode->i_lock);
1317 	} else {
1318 		spin_unlock(&inode->i_lock);
1319 		/*
1320 		 * Handle the case where s_op->clear_inode is not been
1321 		 * called yet, and somebody is calling igrab
1322 		 * while the inode is getting freed.
1323 		 */
1324 		inode = NULL;
1325 	}
1326 	return inode;
1327 }
1328 EXPORT_SYMBOL(igrab);
1329 
1330 /**
1331  * ilookup5_nowait - search for an inode in the inode cache
1332  * @sb:		super block of file system to search
1333  * @hashval:	hash value (usually inode number) to search for
1334  * @test:	callback used for comparisons between inodes
1335  * @data:	opaque data pointer to pass to @test
1336  *
1337  * Search for the inode specified by @hashval and @data in the inode cache.
1338  * If the inode is in the cache, the inode is returned with an incremented
1339  * reference count.
1340  *
1341  * Note: I_NEW is not waited upon so you have to be very careful what you do
1342  * with the returned inode.  You probably should be using ilookup5() instead.
1343  *
1344  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1345  */
1346 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1347 		int (*test)(struct inode *, void *), void *data)
1348 {
1349 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1350 	struct inode *inode;
1351 
1352 	spin_lock(&inode_hash_lock);
1353 	inode = find_inode(sb, head, test, data);
1354 	spin_unlock(&inode_hash_lock);
1355 
1356 	return IS_ERR(inode) ? NULL : inode;
1357 }
1358 EXPORT_SYMBOL(ilookup5_nowait);
1359 
1360 /**
1361  * ilookup5 - search for an inode in the inode cache
1362  * @sb:		super block of file system to search
1363  * @hashval:	hash value (usually inode number) to search for
1364  * @test:	callback used for comparisons between inodes
1365  * @data:	opaque data pointer to pass to @test
1366  *
1367  * Search for the inode specified by @hashval and @data in the inode cache,
1368  * and if the inode is in the cache, return the inode with an incremented
1369  * reference count.  Waits on I_NEW before returning the inode.
1370  * returned with an incremented reference count.
1371  *
1372  * This is a generalized version of ilookup() for file systems where the
1373  * inode number is not sufficient for unique identification of an inode.
1374  *
1375  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1376  */
1377 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1378 		int (*test)(struct inode *, void *), void *data)
1379 {
1380 	struct inode *inode;
1381 again:
1382 	inode = ilookup5_nowait(sb, hashval, test, data);
1383 	if (inode) {
1384 		wait_on_inode(inode);
1385 		if (unlikely(inode_unhashed(inode))) {
1386 			iput(inode);
1387 			goto again;
1388 		}
1389 	}
1390 	return inode;
1391 }
1392 EXPORT_SYMBOL(ilookup5);
1393 
1394 /**
1395  * ilookup - search for an inode in the inode cache
1396  * @sb:		super block of file system to search
1397  * @ino:	inode number to search for
1398  *
1399  * Search for the inode @ino in the inode cache, and if the inode is in the
1400  * cache, the inode is returned with an incremented reference count.
1401  */
1402 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1403 {
1404 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1405 	struct inode *inode;
1406 again:
1407 	spin_lock(&inode_hash_lock);
1408 	inode = find_inode_fast(sb, head, ino);
1409 	spin_unlock(&inode_hash_lock);
1410 
1411 	if (inode) {
1412 		if (IS_ERR(inode))
1413 			return NULL;
1414 		wait_on_inode(inode);
1415 		if (unlikely(inode_unhashed(inode))) {
1416 			iput(inode);
1417 			goto again;
1418 		}
1419 	}
1420 	return inode;
1421 }
1422 EXPORT_SYMBOL(ilookup);
1423 
1424 /**
1425  * find_inode_nowait - find an inode in the inode cache
1426  * @sb:		super block of file system to search
1427  * @hashval:	hash value (usually inode number) to search for
1428  * @match:	callback used for comparisons between inodes
1429  * @data:	opaque data pointer to pass to @match
1430  *
1431  * Search for the inode specified by @hashval and @data in the inode
1432  * cache, where the helper function @match will return 0 if the inode
1433  * does not match, 1 if the inode does match, and -1 if the search
1434  * should be stopped.  The @match function must be responsible for
1435  * taking the i_lock spin_lock and checking i_state for an inode being
1436  * freed or being initialized, and incrementing the reference count
1437  * before returning 1.  It also must not sleep, since it is called with
1438  * the inode_hash_lock spinlock held.
1439  *
1440  * This is a even more generalized version of ilookup5() when the
1441  * function must never block --- find_inode() can block in
1442  * __wait_on_freeing_inode() --- or when the caller can not increment
1443  * the reference count because the resulting iput() might cause an
1444  * inode eviction.  The tradeoff is that the @match funtion must be
1445  * very carefully implemented.
1446  */
1447 struct inode *find_inode_nowait(struct super_block *sb,
1448 				unsigned long hashval,
1449 				int (*match)(struct inode *, unsigned long,
1450 					     void *),
1451 				void *data)
1452 {
1453 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1454 	struct inode *inode, *ret_inode = NULL;
1455 	int mval;
1456 
1457 	spin_lock(&inode_hash_lock);
1458 	hlist_for_each_entry(inode, head, i_hash) {
1459 		if (inode->i_sb != sb)
1460 			continue;
1461 		mval = match(inode, hashval, data);
1462 		if (mval == 0)
1463 			continue;
1464 		if (mval == 1)
1465 			ret_inode = inode;
1466 		goto out;
1467 	}
1468 out:
1469 	spin_unlock(&inode_hash_lock);
1470 	return ret_inode;
1471 }
1472 EXPORT_SYMBOL(find_inode_nowait);
1473 
1474 /**
1475  * find_inode_rcu - find an inode in the inode cache
1476  * @sb:		Super block of file system to search
1477  * @hashval:	Key to hash
1478  * @test:	Function to test match on an inode
1479  * @data:	Data for test function
1480  *
1481  * Search for the inode specified by @hashval and @data in the inode cache,
1482  * where the helper function @test will return 0 if the inode does not match
1483  * and 1 if it does.  The @test function must be responsible for taking the
1484  * i_lock spin_lock and checking i_state for an inode being freed or being
1485  * initialized.
1486  *
1487  * If successful, this will return the inode for which the @test function
1488  * returned 1 and NULL otherwise.
1489  *
1490  * The @test function is not permitted to take a ref on any inode presented.
1491  * It is also not permitted to sleep.
1492  *
1493  * The caller must hold the RCU read lock.
1494  */
1495 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1496 			     int (*test)(struct inode *, void *), void *data)
1497 {
1498 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1499 	struct inode *inode;
1500 
1501 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1502 			 "suspicious find_inode_rcu() usage");
1503 
1504 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1505 		if (inode->i_sb == sb &&
1506 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1507 		    test(inode, data))
1508 			return inode;
1509 	}
1510 	return NULL;
1511 }
1512 EXPORT_SYMBOL(find_inode_rcu);
1513 
1514 /**
1515  * find_inode_by_ino_rcu - Find an inode in the inode cache
1516  * @sb:		Super block of file system to search
1517  * @ino:	The inode number to match
1518  *
1519  * Search for the inode specified by @hashval and @data in the inode cache,
1520  * where the helper function @test will return 0 if the inode does not match
1521  * and 1 if it does.  The @test function must be responsible for taking the
1522  * i_lock spin_lock and checking i_state for an inode being freed or being
1523  * initialized.
1524  *
1525  * If successful, this will return the inode for which the @test function
1526  * returned 1 and NULL otherwise.
1527  *
1528  * The @test function is not permitted to take a ref on any inode presented.
1529  * It is also not permitted to sleep.
1530  *
1531  * The caller must hold the RCU read lock.
1532  */
1533 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1534 				    unsigned long ino)
1535 {
1536 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1537 	struct inode *inode;
1538 
1539 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1540 			 "suspicious find_inode_by_ino_rcu() usage");
1541 
1542 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1543 		if (inode->i_ino == ino &&
1544 		    inode->i_sb == sb &&
1545 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1546 		    return inode;
1547 	}
1548 	return NULL;
1549 }
1550 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1551 
1552 int insert_inode_locked(struct inode *inode)
1553 {
1554 	struct super_block *sb = inode->i_sb;
1555 	ino_t ino = inode->i_ino;
1556 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1557 
1558 	while (1) {
1559 		struct inode *old = NULL;
1560 		spin_lock(&inode_hash_lock);
1561 		hlist_for_each_entry(old, head, i_hash) {
1562 			if (old->i_ino != ino)
1563 				continue;
1564 			if (old->i_sb != sb)
1565 				continue;
1566 			spin_lock(&old->i_lock);
1567 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1568 				spin_unlock(&old->i_lock);
1569 				continue;
1570 			}
1571 			break;
1572 		}
1573 		if (likely(!old)) {
1574 			spin_lock(&inode->i_lock);
1575 			inode->i_state |= I_NEW | I_CREATING;
1576 			hlist_add_head_rcu(&inode->i_hash, head);
1577 			spin_unlock(&inode->i_lock);
1578 			spin_unlock(&inode_hash_lock);
1579 			return 0;
1580 		}
1581 		if (unlikely(old->i_state & I_CREATING)) {
1582 			spin_unlock(&old->i_lock);
1583 			spin_unlock(&inode_hash_lock);
1584 			return -EBUSY;
1585 		}
1586 		__iget(old);
1587 		spin_unlock(&old->i_lock);
1588 		spin_unlock(&inode_hash_lock);
1589 		wait_on_inode(old);
1590 		if (unlikely(!inode_unhashed(old))) {
1591 			iput(old);
1592 			return -EBUSY;
1593 		}
1594 		iput(old);
1595 	}
1596 }
1597 EXPORT_SYMBOL(insert_inode_locked);
1598 
1599 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1600 		int (*test)(struct inode *, void *), void *data)
1601 {
1602 	struct inode *old;
1603 
1604 	inode->i_state |= I_CREATING;
1605 	old = inode_insert5(inode, hashval, test, NULL, data);
1606 
1607 	if (old != inode) {
1608 		iput(old);
1609 		return -EBUSY;
1610 	}
1611 	return 0;
1612 }
1613 EXPORT_SYMBOL(insert_inode_locked4);
1614 
1615 
1616 int generic_delete_inode(struct inode *inode)
1617 {
1618 	return 1;
1619 }
1620 EXPORT_SYMBOL(generic_delete_inode);
1621 
1622 /*
1623  * Called when we're dropping the last reference
1624  * to an inode.
1625  *
1626  * Call the FS "drop_inode()" function, defaulting to
1627  * the legacy UNIX filesystem behaviour.  If it tells
1628  * us to evict inode, do so.  Otherwise, retain inode
1629  * in cache if fs is alive, sync and evict if fs is
1630  * shutting down.
1631  */
1632 static void iput_final(struct inode *inode)
1633 {
1634 	struct super_block *sb = inode->i_sb;
1635 	const struct super_operations *op = inode->i_sb->s_op;
1636 	unsigned long state;
1637 	int drop;
1638 
1639 	WARN_ON(inode->i_state & I_NEW);
1640 
1641 	if (op->drop_inode)
1642 		drop = op->drop_inode(inode);
1643 	else
1644 		drop = generic_drop_inode(inode);
1645 
1646 	if (!drop &&
1647 	    !(inode->i_state & I_DONTCACHE) &&
1648 	    (sb->s_flags & SB_ACTIVE)) {
1649 		__inode_add_lru(inode, true);
1650 		spin_unlock(&inode->i_lock);
1651 		return;
1652 	}
1653 
1654 	state = inode->i_state;
1655 	if (!drop) {
1656 		WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1657 		spin_unlock(&inode->i_lock);
1658 
1659 		write_inode_now(inode, 1);
1660 
1661 		spin_lock(&inode->i_lock);
1662 		state = inode->i_state;
1663 		WARN_ON(state & I_NEW);
1664 		state &= ~I_WILL_FREE;
1665 	}
1666 
1667 	WRITE_ONCE(inode->i_state, state | I_FREEING);
1668 	if (!list_empty(&inode->i_lru))
1669 		inode_lru_list_del(inode);
1670 	spin_unlock(&inode->i_lock);
1671 
1672 	evict(inode);
1673 }
1674 
1675 /**
1676  *	iput	- put an inode
1677  *	@inode: inode to put
1678  *
1679  *	Puts an inode, dropping its usage count. If the inode use count hits
1680  *	zero, the inode is then freed and may also be destroyed.
1681  *
1682  *	Consequently, iput() can sleep.
1683  */
1684 void iput(struct inode *inode)
1685 {
1686 	if (!inode)
1687 		return;
1688 	BUG_ON(inode->i_state & I_CLEAR);
1689 retry:
1690 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1691 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1692 			atomic_inc(&inode->i_count);
1693 			spin_unlock(&inode->i_lock);
1694 			trace_writeback_lazytime_iput(inode);
1695 			mark_inode_dirty_sync(inode);
1696 			goto retry;
1697 		}
1698 		iput_final(inode);
1699 	}
1700 }
1701 EXPORT_SYMBOL(iput);
1702 
1703 #ifdef CONFIG_BLOCK
1704 /**
1705  *	bmap	- find a block number in a file
1706  *	@inode:  inode owning the block number being requested
1707  *	@block: pointer containing the block to find
1708  *
1709  *	Replaces the value in ``*block`` with the block number on the device holding
1710  *	corresponding to the requested block number in the file.
1711  *	That is, asked for block 4 of inode 1 the function will replace the
1712  *	4 in ``*block``, with disk block relative to the disk start that holds that
1713  *	block of the file.
1714  *
1715  *	Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1716  *	hole, returns 0 and ``*block`` is also set to 0.
1717  */
1718 int bmap(struct inode *inode, sector_t *block)
1719 {
1720 	if (!inode->i_mapping->a_ops->bmap)
1721 		return -EINVAL;
1722 
1723 	*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1724 	return 0;
1725 }
1726 EXPORT_SYMBOL(bmap);
1727 #endif
1728 
1729 /*
1730  * With relative atime, only update atime if the previous atime is
1731  * earlier than either the ctime or mtime or if at least a day has
1732  * passed since the last atime update.
1733  */
1734 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1735 			     struct timespec64 now)
1736 {
1737 
1738 	if (!(mnt->mnt_flags & MNT_RELATIME))
1739 		return 1;
1740 	/*
1741 	 * Is mtime younger than atime? If yes, update atime:
1742 	 */
1743 	if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1744 		return 1;
1745 	/*
1746 	 * Is ctime younger than atime? If yes, update atime:
1747 	 */
1748 	if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1749 		return 1;
1750 
1751 	/*
1752 	 * Is the previous atime value older than a day? If yes,
1753 	 * update atime:
1754 	 */
1755 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1756 		return 1;
1757 	/*
1758 	 * Good, we can skip the atime update:
1759 	 */
1760 	return 0;
1761 }
1762 
1763 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1764 {
1765 	int dirty_flags = 0;
1766 
1767 	if (flags & (S_ATIME | S_CTIME | S_MTIME)) {
1768 		if (flags & S_ATIME)
1769 			inode->i_atime = *time;
1770 		if (flags & S_CTIME)
1771 			inode->i_ctime = *time;
1772 		if (flags & S_MTIME)
1773 			inode->i_mtime = *time;
1774 
1775 		if (inode->i_sb->s_flags & SB_LAZYTIME)
1776 			dirty_flags |= I_DIRTY_TIME;
1777 		else
1778 			dirty_flags |= I_DIRTY_SYNC;
1779 	}
1780 
1781 	if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false))
1782 		dirty_flags |= I_DIRTY_SYNC;
1783 
1784 	__mark_inode_dirty(inode, dirty_flags);
1785 	return 0;
1786 }
1787 EXPORT_SYMBOL(generic_update_time);
1788 
1789 /*
1790  * This does the actual work of updating an inodes time or version.  Must have
1791  * had called mnt_want_write() before calling this.
1792  */
1793 int inode_update_time(struct inode *inode, struct timespec64 *time, int flags)
1794 {
1795 	if (inode->i_op->update_time)
1796 		return inode->i_op->update_time(inode, time, flags);
1797 	return generic_update_time(inode, time, flags);
1798 }
1799 EXPORT_SYMBOL(inode_update_time);
1800 
1801 /**
1802  *	atime_needs_update	-	update the access time
1803  *	@path: the &struct path to update
1804  *	@inode: inode to update
1805  *
1806  *	Update the accessed time on an inode and mark it for writeback.
1807  *	This function automatically handles read only file systems and media,
1808  *	as well as the "noatime" flag and inode specific "noatime" markers.
1809  */
1810 bool atime_needs_update(const struct path *path, struct inode *inode)
1811 {
1812 	struct vfsmount *mnt = path->mnt;
1813 	struct timespec64 now;
1814 
1815 	if (inode->i_flags & S_NOATIME)
1816 		return false;
1817 
1818 	/* Atime updates will likely cause i_uid and i_gid to be written
1819 	 * back improprely if their true value is unknown to the vfs.
1820 	 */
1821 	if (HAS_UNMAPPED_ID(mnt_user_ns(mnt), inode))
1822 		return false;
1823 
1824 	if (IS_NOATIME(inode))
1825 		return false;
1826 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1827 		return false;
1828 
1829 	if (mnt->mnt_flags & MNT_NOATIME)
1830 		return false;
1831 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1832 		return false;
1833 
1834 	now = current_time(inode);
1835 
1836 	if (!relatime_need_update(mnt, inode, now))
1837 		return false;
1838 
1839 	if (timespec64_equal(&inode->i_atime, &now))
1840 		return false;
1841 
1842 	return true;
1843 }
1844 
1845 void touch_atime(const struct path *path)
1846 {
1847 	struct vfsmount *mnt = path->mnt;
1848 	struct inode *inode = d_inode(path->dentry);
1849 	struct timespec64 now;
1850 
1851 	if (!atime_needs_update(path, inode))
1852 		return;
1853 
1854 	if (!sb_start_write_trylock(inode->i_sb))
1855 		return;
1856 
1857 	if (__mnt_want_write(mnt) != 0)
1858 		goto skip_update;
1859 	/*
1860 	 * File systems can error out when updating inodes if they need to
1861 	 * allocate new space to modify an inode (such is the case for
1862 	 * Btrfs), but since we touch atime while walking down the path we
1863 	 * really don't care if we failed to update the atime of the file,
1864 	 * so just ignore the return value.
1865 	 * We may also fail on filesystems that have the ability to make parts
1866 	 * of the fs read only, e.g. subvolumes in Btrfs.
1867 	 */
1868 	now = current_time(inode);
1869 	inode_update_time(inode, &now, S_ATIME);
1870 	__mnt_drop_write(mnt);
1871 skip_update:
1872 	sb_end_write(inode->i_sb);
1873 }
1874 EXPORT_SYMBOL(touch_atime);
1875 
1876 /*
1877  * The logic we want is
1878  *
1879  *	if suid or (sgid and xgrp)
1880  *		remove privs
1881  */
1882 int should_remove_suid(struct dentry *dentry)
1883 {
1884 	umode_t mode = d_inode(dentry)->i_mode;
1885 	int kill = 0;
1886 
1887 	/* suid always must be killed */
1888 	if (unlikely(mode & S_ISUID))
1889 		kill = ATTR_KILL_SUID;
1890 
1891 	/*
1892 	 * sgid without any exec bits is just a mandatory locking mark; leave
1893 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1894 	 */
1895 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1896 		kill |= ATTR_KILL_SGID;
1897 
1898 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1899 		return kill;
1900 
1901 	return 0;
1902 }
1903 EXPORT_SYMBOL(should_remove_suid);
1904 
1905 /*
1906  * Return mask of changes for notify_change() that need to be done as a
1907  * response to write or truncate. Return 0 if nothing has to be changed.
1908  * Negative value on error (change should be denied).
1909  */
1910 int dentry_needs_remove_privs(struct dentry *dentry)
1911 {
1912 	struct inode *inode = d_inode(dentry);
1913 	int mask = 0;
1914 	int ret;
1915 
1916 	if (IS_NOSEC(inode))
1917 		return 0;
1918 
1919 	mask = should_remove_suid(dentry);
1920 	ret = security_inode_need_killpriv(dentry);
1921 	if (ret < 0)
1922 		return ret;
1923 	if (ret)
1924 		mask |= ATTR_KILL_PRIV;
1925 	return mask;
1926 }
1927 
1928 static int __remove_privs(struct user_namespace *mnt_userns,
1929 			  struct dentry *dentry, int kill)
1930 {
1931 	struct iattr newattrs;
1932 
1933 	newattrs.ia_valid = ATTR_FORCE | kill;
1934 	/*
1935 	 * Note we call this on write, so notify_change will not
1936 	 * encounter any conflicting delegations:
1937 	 */
1938 	return notify_change(mnt_userns, dentry, &newattrs, NULL);
1939 }
1940 
1941 /*
1942  * Remove special file priviledges (suid, capabilities) when file is written
1943  * to or truncated.
1944  */
1945 int file_remove_privs(struct file *file)
1946 {
1947 	struct dentry *dentry = file_dentry(file);
1948 	struct inode *inode = file_inode(file);
1949 	int kill;
1950 	int error = 0;
1951 
1952 	/*
1953 	 * Fast path for nothing security related.
1954 	 * As well for non-regular files, e.g. blkdev inodes.
1955 	 * For example, blkdev_write_iter() might get here
1956 	 * trying to remove privs which it is not allowed to.
1957 	 */
1958 	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1959 		return 0;
1960 
1961 	kill = dentry_needs_remove_privs(dentry);
1962 	if (kill < 0)
1963 		return kill;
1964 	if (kill)
1965 		error = __remove_privs(file_mnt_user_ns(file), dentry, kill);
1966 	if (!error)
1967 		inode_has_no_xattr(inode);
1968 
1969 	return error;
1970 }
1971 EXPORT_SYMBOL(file_remove_privs);
1972 
1973 /**
1974  *	file_update_time	-	update mtime and ctime time
1975  *	@file: file accessed
1976  *
1977  *	Update the mtime and ctime members of an inode and mark the inode
1978  *	for writeback.  Note that this function is meant exclusively for
1979  *	usage in the file write path of filesystems, and filesystems may
1980  *	choose to explicitly ignore update via this function with the
1981  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1982  *	timestamps are handled by the server.  This can return an error for
1983  *	file systems who need to allocate space in order to update an inode.
1984  */
1985 
1986 int file_update_time(struct file *file)
1987 {
1988 	struct inode *inode = file_inode(file);
1989 	struct timespec64 now;
1990 	int sync_it = 0;
1991 	int ret;
1992 
1993 	/* First try to exhaust all avenues to not sync */
1994 	if (IS_NOCMTIME(inode))
1995 		return 0;
1996 
1997 	now = current_time(inode);
1998 	if (!timespec64_equal(&inode->i_mtime, &now))
1999 		sync_it = S_MTIME;
2000 
2001 	if (!timespec64_equal(&inode->i_ctime, &now))
2002 		sync_it |= S_CTIME;
2003 
2004 	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2005 		sync_it |= S_VERSION;
2006 
2007 	if (!sync_it)
2008 		return 0;
2009 
2010 	/* Finally allowed to write? Takes lock. */
2011 	if (__mnt_want_write_file(file))
2012 		return 0;
2013 
2014 	ret = inode_update_time(inode, &now, sync_it);
2015 	__mnt_drop_write_file(file);
2016 
2017 	return ret;
2018 }
2019 EXPORT_SYMBOL(file_update_time);
2020 
2021 /* Caller must hold the file's inode lock */
2022 int file_modified(struct file *file)
2023 {
2024 	int err;
2025 
2026 	/*
2027 	 * Clear the security bits if the process is not being run by root.
2028 	 * This keeps people from modifying setuid and setgid binaries.
2029 	 */
2030 	err = file_remove_privs(file);
2031 	if (err)
2032 		return err;
2033 
2034 	if (unlikely(file->f_mode & FMODE_NOCMTIME))
2035 		return 0;
2036 
2037 	return file_update_time(file);
2038 }
2039 EXPORT_SYMBOL(file_modified);
2040 
2041 int inode_needs_sync(struct inode *inode)
2042 {
2043 	if (IS_SYNC(inode))
2044 		return 1;
2045 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2046 		return 1;
2047 	return 0;
2048 }
2049 EXPORT_SYMBOL(inode_needs_sync);
2050 
2051 /*
2052  * If we try to find an inode in the inode hash while it is being
2053  * deleted, we have to wait until the filesystem completes its
2054  * deletion before reporting that it isn't found.  This function waits
2055  * until the deletion _might_ have completed.  Callers are responsible
2056  * to recheck inode state.
2057  *
2058  * It doesn't matter if I_NEW is not set initially, a call to
2059  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2060  * will DTRT.
2061  */
2062 static void __wait_on_freeing_inode(struct inode *inode)
2063 {
2064 	wait_queue_head_t *wq;
2065 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2066 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
2067 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2068 	spin_unlock(&inode->i_lock);
2069 	spin_unlock(&inode_hash_lock);
2070 	schedule();
2071 	finish_wait(wq, &wait.wq_entry);
2072 	spin_lock(&inode_hash_lock);
2073 }
2074 
2075 static __initdata unsigned long ihash_entries;
2076 static int __init set_ihash_entries(char *str)
2077 {
2078 	if (!str)
2079 		return 0;
2080 	ihash_entries = simple_strtoul(str, &str, 0);
2081 	return 1;
2082 }
2083 __setup("ihash_entries=", set_ihash_entries);
2084 
2085 /*
2086  * Initialize the waitqueues and inode hash table.
2087  */
2088 void __init inode_init_early(void)
2089 {
2090 	/* If hashes are distributed across NUMA nodes, defer
2091 	 * hash allocation until vmalloc space is available.
2092 	 */
2093 	if (hashdist)
2094 		return;
2095 
2096 	inode_hashtable =
2097 		alloc_large_system_hash("Inode-cache",
2098 					sizeof(struct hlist_head),
2099 					ihash_entries,
2100 					14,
2101 					HASH_EARLY | HASH_ZERO,
2102 					&i_hash_shift,
2103 					&i_hash_mask,
2104 					0,
2105 					0);
2106 }
2107 
2108 void __init inode_init(void)
2109 {
2110 	/* inode slab cache */
2111 	inode_cachep = kmem_cache_create("inode_cache",
2112 					 sizeof(struct inode),
2113 					 0,
2114 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2115 					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2116 					 init_once);
2117 
2118 	/* Hash may have been set up in inode_init_early */
2119 	if (!hashdist)
2120 		return;
2121 
2122 	inode_hashtable =
2123 		alloc_large_system_hash("Inode-cache",
2124 					sizeof(struct hlist_head),
2125 					ihash_entries,
2126 					14,
2127 					HASH_ZERO,
2128 					&i_hash_shift,
2129 					&i_hash_mask,
2130 					0,
2131 					0);
2132 }
2133 
2134 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2135 {
2136 	inode->i_mode = mode;
2137 	if (S_ISCHR(mode)) {
2138 		inode->i_fop = &def_chr_fops;
2139 		inode->i_rdev = rdev;
2140 	} else if (S_ISBLK(mode)) {
2141 		inode->i_fop = &def_blk_fops;
2142 		inode->i_rdev = rdev;
2143 	} else if (S_ISFIFO(mode))
2144 		inode->i_fop = &pipefifo_fops;
2145 	else if (S_ISSOCK(mode))
2146 		;	/* leave it no_open_fops */
2147 	else
2148 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2149 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2150 				  inode->i_ino);
2151 }
2152 EXPORT_SYMBOL(init_special_inode);
2153 
2154 /**
2155  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2156  * @mnt_userns:	User namespace of the mount the inode was created from
2157  * @inode: New inode
2158  * @dir: Directory inode
2159  * @mode: mode of the new inode
2160  *
2161  * If the inode has been created through an idmapped mount the user namespace of
2162  * the vfsmount must be passed through @mnt_userns. This function will then take
2163  * care to map the inode according to @mnt_userns before checking permissions
2164  * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2165  * checking is to be performed on the raw inode simply passs init_user_ns.
2166  */
2167 void inode_init_owner(struct user_namespace *mnt_userns, struct inode *inode,
2168 		      const struct inode *dir, umode_t mode)
2169 {
2170 	inode_fsuid_set(inode, mnt_userns);
2171 	if (dir && dir->i_mode & S_ISGID) {
2172 		inode->i_gid = dir->i_gid;
2173 
2174 		/* Directories are special, and always inherit S_ISGID */
2175 		if (S_ISDIR(mode))
2176 			mode |= S_ISGID;
2177 		else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2178 			 !in_group_p(i_gid_into_mnt(mnt_userns, dir)) &&
2179 			 !capable_wrt_inode_uidgid(mnt_userns, dir, CAP_FSETID))
2180 			mode &= ~S_ISGID;
2181 	} else
2182 		inode_fsgid_set(inode, mnt_userns);
2183 	inode->i_mode = mode;
2184 }
2185 EXPORT_SYMBOL(inode_init_owner);
2186 
2187 /**
2188  * inode_owner_or_capable - check current task permissions to inode
2189  * @mnt_userns:	user namespace of the mount the inode was found from
2190  * @inode: inode being checked
2191  *
2192  * Return true if current either has CAP_FOWNER in a namespace with the
2193  * inode owner uid mapped, or owns the file.
2194  *
2195  * If the inode has been found through an idmapped mount the user namespace of
2196  * the vfsmount must be passed through @mnt_userns. This function will then take
2197  * care to map the inode according to @mnt_userns before checking permissions.
2198  * On non-idmapped mounts or if permission checking is to be performed on the
2199  * raw inode simply passs init_user_ns.
2200  */
2201 bool inode_owner_or_capable(struct user_namespace *mnt_userns,
2202 			    const struct inode *inode)
2203 {
2204 	kuid_t i_uid;
2205 	struct user_namespace *ns;
2206 
2207 	i_uid = i_uid_into_mnt(mnt_userns, inode);
2208 	if (uid_eq(current_fsuid(), i_uid))
2209 		return true;
2210 
2211 	ns = current_user_ns();
2212 	if (kuid_has_mapping(ns, i_uid) && ns_capable(ns, CAP_FOWNER))
2213 		return true;
2214 	return false;
2215 }
2216 EXPORT_SYMBOL(inode_owner_or_capable);
2217 
2218 /*
2219  * Direct i/o helper functions
2220  */
2221 static void __inode_dio_wait(struct inode *inode)
2222 {
2223 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2224 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2225 
2226 	do {
2227 		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2228 		if (atomic_read(&inode->i_dio_count))
2229 			schedule();
2230 	} while (atomic_read(&inode->i_dio_count));
2231 	finish_wait(wq, &q.wq_entry);
2232 }
2233 
2234 /**
2235  * inode_dio_wait - wait for outstanding DIO requests to finish
2236  * @inode: inode to wait for
2237  *
2238  * Waits for all pending direct I/O requests to finish so that we can
2239  * proceed with a truncate or equivalent operation.
2240  *
2241  * Must be called under a lock that serializes taking new references
2242  * to i_dio_count, usually by inode->i_mutex.
2243  */
2244 void inode_dio_wait(struct inode *inode)
2245 {
2246 	if (atomic_read(&inode->i_dio_count))
2247 		__inode_dio_wait(inode);
2248 }
2249 EXPORT_SYMBOL(inode_dio_wait);
2250 
2251 /*
2252  * inode_set_flags - atomically set some inode flags
2253  *
2254  * Note: the caller should be holding i_mutex, or else be sure that
2255  * they have exclusive access to the inode structure (i.e., while the
2256  * inode is being instantiated).  The reason for the cmpxchg() loop
2257  * --- which wouldn't be necessary if all code paths which modify
2258  * i_flags actually followed this rule, is that there is at least one
2259  * code path which doesn't today so we use cmpxchg() out of an abundance
2260  * of caution.
2261  *
2262  * In the long run, i_mutex is overkill, and we should probably look
2263  * at using the i_lock spinlock to protect i_flags, and then make sure
2264  * it is so documented in include/linux/fs.h and that all code follows
2265  * the locking convention!!
2266  */
2267 void inode_set_flags(struct inode *inode, unsigned int flags,
2268 		     unsigned int mask)
2269 {
2270 	WARN_ON_ONCE(flags & ~mask);
2271 	set_mask_bits(&inode->i_flags, mask, flags);
2272 }
2273 EXPORT_SYMBOL(inode_set_flags);
2274 
2275 void inode_nohighmem(struct inode *inode)
2276 {
2277 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2278 }
2279 EXPORT_SYMBOL(inode_nohighmem);
2280 
2281 /**
2282  * timestamp_truncate - Truncate timespec to a granularity
2283  * @t: Timespec
2284  * @inode: inode being updated
2285  *
2286  * Truncate a timespec to the granularity supported by the fs
2287  * containing the inode. Always rounds down. gran must
2288  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2289  */
2290 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2291 {
2292 	struct super_block *sb = inode->i_sb;
2293 	unsigned int gran = sb->s_time_gran;
2294 
2295 	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2296 	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2297 		t.tv_nsec = 0;
2298 
2299 	/* Avoid division in the common cases 1 ns and 1 s. */
2300 	if (gran == 1)
2301 		; /* nothing */
2302 	else if (gran == NSEC_PER_SEC)
2303 		t.tv_nsec = 0;
2304 	else if (gran > 1 && gran < NSEC_PER_SEC)
2305 		t.tv_nsec -= t.tv_nsec % gran;
2306 	else
2307 		WARN(1, "invalid file time granularity: %u", gran);
2308 	return t;
2309 }
2310 EXPORT_SYMBOL(timestamp_truncate);
2311 
2312 /**
2313  * current_time - Return FS time
2314  * @inode: inode.
2315  *
2316  * Return the current time truncated to the time granularity supported by
2317  * the fs.
2318  *
2319  * Note that inode and inode->sb cannot be NULL.
2320  * Otherwise, the function warns and returns time without truncation.
2321  */
2322 struct timespec64 current_time(struct inode *inode)
2323 {
2324 	struct timespec64 now;
2325 
2326 	ktime_get_coarse_real_ts64(&now);
2327 
2328 	if (unlikely(!inode->i_sb)) {
2329 		WARN(1, "current_time() called with uninitialized super_block in the inode");
2330 		return now;
2331 	}
2332 
2333 	return timestamp_truncate(now, inode);
2334 }
2335 EXPORT_SYMBOL(current_time);
2336