1 /* 2 * linux/fs/inode.c 3 * 4 * (C) 1997 Linus Torvalds 5 */ 6 7 #include <linux/fs.h> 8 #include <linux/mm.h> 9 #include <linux/dcache.h> 10 #include <linux/init.h> 11 #include <linux/quotaops.h> 12 #include <linux/slab.h> 13 #include <linux/writeback.h> 14 #include <linux/module.h> 15 #include <linux/backing-dev.h> 16 #include <linux/wait.h> 17 #include <linux/hash.h> 18 #include <linux/swap.h> 19 #include <linux/security.h> 20 #include <linux/ima.h> 21 #include <linux/pagemap.h> 22 #include <linux/cdev.h> 23 #include <linux/bootmem.h> 24 #include <linux/inotify.h> 25 #include <linux/fsnotify.h> 26 #include <linux/mount.h> 27 #include <linux/async.h> 28 #include <linux/posix_acl.h> 29 30 /* 31 * This is needed for the following functions: 32 * - inode_has_buffers 33 * - invalidate_inode_buffers 34 * - invalidate_bdev 35 * 36 * FIXME: remove all knowledge of the buffer layer from this file 37 */ 38 #include <linux/buffer_head.h> 39 40 /* 41 * New inode.c implementation. 42 * 43 * This implementation has the basic premise of trying 44 * to be extremely low-overhead and SMP-safe, yet be 45 * simple enough to be "obviously correct". 46 * 47 * Famous last words. 48 */ 49 50 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */ 51 52 /* #define INODE_PARANOIA 1 */ 53 /* #define INODE_DEBUG 1 */ 54 55 /* 56 * Inode lookup is no longer as critical as it used to be: 57 * most of the lookups are going to be through the dcache. 58 */ 59 #define I_HASHBITS i_hash_shift 60 #define I_HASHMASK i_hash_mask 61 62 static unsigned int i_hash_mask __read_mostly; 63 static unsigned int i_hash_shift __read_mostly; 64 65 /* 66 * Each inode can be on two separate lists. One is 67 * the hash list of the inode, used for lookups. The 68 * other linked list is the "type" list: 69 * "in_use" - valid inode, i_count > 0, i_nlink > 0 70 * "dirty" - as "in_use" but also dirty 71 * "unused" - valid inode, i_count = 0 72 * 73 * A "dirty" list is maintained for each super block, 74 * allowing for low-overhead inode sync() operations. 75 */ 76 77 LIST_HEAD(inode_in_use); 78 LIST_HEAD(inode_unused); 79 static struct hlist_head *inode_hashtable __read_mostly; 80 81 /* 82 * A simple spinlock to protect the list manipulations. 83 * 84 * NOTE! You also have to own the lock if you change 85 * the i_state of an inode while it is in use.. 86 */ 87 DEFINE_SPINLOCK(inode_lock); 88 89 /* 90 * iprune_mutex provides exclusion between the kswapd or try_to_free_pages 91 * icache shrinking path, and the umount path. Without this exclusion, 92 * by the time prune_icache calls iput for the inode whose pages it has 93 * been invalidating, or by the time it calls clear_inode & destroy_inode 94 * from its final dispose_list, the struct super_block they refer to 95 * (for inode->i_sb->s_op) may already have been freed and reused. 96 */ 97 static DEFINE_MUTEX(iprune_mutex); 98 99 /* 100 * Statistics gathering.. 101 */ 102 struct inodes_stat_t inodes_stat; 103 104 static struct kmem_cache *inode_cachep __read_mostly; 105 106 static void wake_up_inode(struct inode *inode) 107 { 108 /* 109 * Prevent speculative execution through spin_unlock(&inode_lock); 110 */ 111 smp_mb(); 112 wake_up_bit(&inode->i_state, __I_LOCK); 113 } 114 115 /** 116 * inode_init_always - perform inode structure intialisation 117 * @sb: superblock inode belongs to 118 * @inode: inode to initialise 119 * 120 * These are initializations that need to be done on every inode 121 * allocation as the fields are not initialised by slab allocation. 122 */ 123 int inode_init_always(struct super_block *sb, struct inode *inode) 124 { 125 static const struct address_space_operations empty_aops; 126 static struct inode_operations empty_iops; 127 static const struct file_operations empty_fops; 128 struct address_space *const mapping = &inode->i_data; 129 130 inode->i_sb = sb; 131 inode->i_blkbits = sb->s_blocksize_bits; 132 inode->i_flags = 0; 133 atomic_set(&inode->i_count, 1); 134 inode->i_op = &empty_iops; 135 inode->i_fop = &empty_fops; 136 inode->i_nlink = 1; 137 inode->i_uid = 0; 138 inode->i_gid = 0; 139 atomic_set(&inode->i_writecount, 0); 140 inode->i_size = 0; 141 inode->i_blocks = 0; 142 inode->i_bytes = 0; 143 inode->i_generation = 0; 144 #ifdef CONFIG_QUOTA 145 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); 146 #endif 147 inode->i_pipe = NULL; 148 inode->i_bdev = NULL; 149 inode->i_cdev = NULL; 150 inode->i_rdev = 0; 151 inode->dirtied_when = 0; 152 153 if (security_inode_alloc(inode)) 154 goto out; 155 156 /* allocate and initialize an i_integrity */ 157 if (ima_inode_alloc(inode)) 158 goto out_free_security; 159 160 spin_lock_init(&inode->i_lock); 161 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 162 163 mutex_init(&inode->i_mutex); 164 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key); 165 166 init_rwsem(&inode->i_alloc_sem); 167 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key); 168 169 mapping->a_ops = &empty_aops; 170 mapping->host = inode; 171 mapping->flags = 0; 172 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 173 mapping->assoc_mapping = NULL; 174 mapping->backing_dev_info = &default_backing_dev_info; 175 mapping->writeback_index = 0; 176 177 /* 178 * If the block_device provides a backing_dev_info for client 179 * inodes then use that. Otherwise the inode share the bdev's 180 * backing_dev_info. 181 */ 182 if (sb->s_bdev) { 183 struct backing_dev_info *bdi; 184 185 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 186 mapping->backing_dev_info = bdi; 187 } 188 inode->i_private = NULL; 189 inode->i_mapping = mapping; 190 #ifdef CONFIG_FS_POSIX_ACL 191 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 192 #endif 193 194 #ifdef CONFIG_FSNOTIFY 195 inode->i_fsnotify_mask = 0; 196 #endif 197 198 return 0; 199 200 out_free_security: 201 security_inode_free(inode); 202 out: 203 return -ENOMEM; 204 } 205 EXPORT_SYMBOL(inode_init_always); 206 207 static struct inode *alloc_inode(struct super_block *sb) 208 { 209 struct inode *inode; 210 211 if (sb->s_op->alloc_inode) 212 inode = sb->s_op->alloc_inode(sb); 213 else 214 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 215 216 if (!inode) 217 return NULL; 218 219 if (unlikely(inode_init_always(sb, inode))) { 220 if (inode->i_sb->s_op->destroy_inode) 221 inode->i_sb->s_op->destroy_inode(inode); 222 else 223 kmem_cache_free(inode_cachep, inode); 224 return NULL; 225 } 226 227 return inode; 228 } 229 230 void __destroy_inode(struct inode *inode) 231 { 232 BUG_ON(inode_has_buffers(inode)); 233 ima_inode_free(inode); 234 security_inode_free(inode); 235 fsnotify_inode_delete(inode); 236 #ifdef CONFIG_FS_POSIX_ACL 237 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED) 238 posix_acl_release(inode->i_acl); 239 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED) 240 posix_acl_release(inode->i_default_acl); 241 #endif 242 } 243 EXPORT_SYMBOL(__destroy_inode); 244 245 void destroy_inode(struct inode *inode) 246 { 247 __destroy_inode(inode); 248 if (inode->i_sb->s_op->destroy_inode) 249 inode->i_sb->s_op->destroy_inode(inode); 250 else 251 kmem_cache_free(inode_cachep, (inode)); 252 } 253 254 /* 255 * These are initializations that only need to be done 256 * once, because the fields are idempotent across use 257 * of the inode, so let the slab aware of that. 258 */ 259 void inode_init_once(struct inode *inode) 260 { 261 memset(inode, 0, sizeof(*inode)); 262 INIT_HLIST_NODE(&inode->i_hash); 263 INIT_LIST_HEAD(&inode->i_dentry); 264 INIT_LIST_HEAD(&inode->i_devices); 265 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC); 266 spin_lock_init(&inode->i_data.tree_lock); 267 spin_lock_init(&inode->i_data.i_mmap_lock); 268 INIT_LIST_HEAD(&inode->i_data.private_list); 269 spin_lock_init(&inode->i_data.private_lock); 270 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap); 271 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear); 272 i_size_ordered_init(inode); 273 #ifdef CONFIG_INOTIFY 274 INIT_LIST_HEAD(&inode->inotify_watches); 275 mutex_init(&inode->inotify_mutex); 276 #endif 277 #ifdef CONFIG_FSNOTIFY 278 INIT_HLIST_HEAD(&inode->i_fsnotify_mark_entries); 279 #endif 280 } 281 EXPORT_SYMBOL(inode_init_once); 282 283 static void init_once(void *foo) 284 { 285 struct inode *inode = (struct inode *) foo; 286 287 inode_init_once(inode); 288 } 289 290 /* 291 * inode_lock must be held 292 */ 293 void __iget(struct inode *inode) 294 { 295 if (atomic_read(&inode->i_count)) { 296 atomic_inc(&inode->i_count); 297 return; 298 } 299 atomic_inc(&inode->i_count); 300 if (!(inode->i_state & (I_DIRTY|I_SYNC))) 301 list_move(&inode->i_list, &inode_in_use); 302 inodes_stat.nr_unused--; 303 } 304 305 /** 306 * clear_inode - clear an inode 307 * @inode: inode to clear 308 * 309 * This is called by the filesystem to tell us 310 * that the inode is no longer useful. We just 311 * terminate it with extreme prejudice. 312 */ 313 void clear_inode(struct inode *inode) 314 { 315 might_sleep(); 316 invalidate_inode_buffers(inode); 317 318 BUG_ON(inode->i_data.nrpages); 319 BUG_ON(!(inode->i_state & I_FREEING)); 320 BUG_ON(inode->i_state & I_CLEAR); 321 inode_sync_wait(inode); 322 vfs_dq_drop(inode); 323 if (inode->i_sb->s_op->clear_inode) 324 inode->i_sb->s_op->clear_inode(inode); 325 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 326 bd_forget(inode); 327 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 328 cd_forget(inode); 329 inode->i_state = I_CLEAR; 330 } 331 EXPORT_SYMBOL(clear_inode); 332 333 /* 334 * dispose_list - dispose of the contents of a local list 335 * @head: the head of the list to free 336 * 337 * Dispose-list gets a local list with local inodes in it, so it doesn't 338 * need to worry about list corruption and SMP locks. 339 */ 340 static void dispose_list(struct list_head *head) 341 { 342 int nr_disposed = 0; 343 344 while (!list_empty(head)) { 345 struct inode *inode; 346 347 inode = list_first_entry(head, struct inode, i_list); 348 list_del(&inode->i_list); 349 350 if (inode->i_data.nrpages) 351 truncate_inode_pages(&inode->i_data, 0); 352 clear_inode(inode); 353 354 spin_lock(&inode_lock); 355 hlist_del_init(&inode->i_hash); 356 list_del_init(&inode->i_sb_list); 357 spin_unlock(&inode_lock); 358 359 wake_up_inode(inode); 360 destroy_inode(inode); 361 nr_disposed++; 362 } 363 spin_lock(&inode_lock); 364 inodes_stat.nr_inodes -= nr_disposed; 365 spin_unlock(&inode_lock); 366 } 367 368 /* 369 * Invalidate all inodes for a device. 370 */ 371 static int invalidate_list(struct list_head *head, struct list_head *dispose) 372 { 373 struct list_head *next; 374 int busy = 0, count = 0; 375 376 next = head->next; 377 for (;;) { 378 struct list_head *tmp = next; 379 struct inode *inode; 380 381 /* 382 * We can reschedule here without worrying about the list's 383 * consistency because the per-sb list of inodes must not 384 * change during umount anymore, and because iprune_mutex keeps 385 * shrink_icache_memory() away. 386 */ 387 cond_resched_lock(&inode_lock); 388 389 next = next->next; 390 if (tmp == head) 391 break; 392 inode = list_entry(tmp, struct inode, i_sb_list); 393 if (inode->i_state & I_NEW) 394 continue; 395 invalidate_inode_buffers(inode); 396 if (!atomic_read(&inode->i_count)) { 397 list_move(&inode->i_list, dispose); 398 WARN_ON(inode->i_state & I_NEW); 399 inode->i_state |= I_FREEING; 400 count++; 401 continue; 402 } 403 busy = 1; 404 } 405 /* only unused inodes may be cached with i_count zero */ 406 inodes_stat.nr_unused -= count; 407 return busy; 408 } 409 410 /** 411 * invalidate_inodes - discard the inodes on a device 412 * @sb: superblock 413 * 414 * Discard all of the inodes for a given superblock. If the discard 415 * fails because there are busy inodes then a non zero value is returned. 416 * If the discard is successful all the inodes have been discarded. 417 */ 418 int invalidate_inodes(struct super_block *sb) 419 { 420 int busy; 421 LIST_HEAD(throw_away); 422 423 mutex_lock(&iprune_mutex); 424 spin_lock(&inode_lock); 425 inotify_unmount_inodes(&sb->s_inodes); 426 fsnotify_unmount_inodes(&sb->s_inodes); 427 busy = invalidate_list(&sb->s_inodes, &throw_away); 428 spin_unlock(&inode_lock); 429 430 dispose_list(&throw_away); 431 mutex_unlock(&iprune_mutex); 432 433 return busy; 434 } 435 EXPORT_SYMBOL(invalidate_inodes); 436 437 static int can_unuse(struct inode *inode) 438 { 439 if (inode->i_state) 440 return 0; 441 if (inode_has_buffers(inode)) 442 return 0; 443 if (atomic_read(&inode->i_count)) 444 return 0; 445 if (inode->i_data.nrpages) 446 return 0; 447 return 1; 448 } 449 450 /* 451 * Scan `goal' inodes on the unused list for freeable ones. They are moved to 452 * a temporary list and then are freed outside inode_lock by dispose_list(). 453 * 454 * Any inodes which are pinned purely because of attached pagecache have their 455 * pagecache removed. We expect the final iput() on that inode to add it to 456 * the front of the inode_unused list. So look for it there and if the 457 * inode is still freeable, proceed. The right inode is found 99.9% of the 458 * time in testing on a 4-way. 459 * 460 * If the inode has metadata buffers attached to mapping->private_list then 461 * try to remove them. 462 */ 463 static void prune_icache(int nr_to_scan) 464 { 465 LIST_HEAD(freeable); 466 int nr_pruned = 0; 467 int nr_scanned; 468 unsigned long reap = 0; 469 470 mutex_lock(&iprune_mutex); 471 spin_lock(&inode_lock); 472 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) { 473 struct inode *inode; 474 475 if (list_empty(&inode_unused)) 476 break; 477 478 inode = list_entry(inode_unused.prev, struct inode, i_list); 479 480 if (inode->i_state || atomic_read(&inode->i_count)) { 481 list_move(&inode->i_list, &inode_unused); 482 continue; 483 } 484 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 485 __iget(inode); 486 spin_unlock(&inode_lock); 487 if (remove_inode_buffers(inode)) 488 reap += invalidate_mapping_pages(&inode->i_data, 489 0, -1); 490 iput(inode); 491 spin_lock(&inode_lock); 492 493 if (inode != list_entry(inode_unused.next, 494 struct inode, i_list)) 495 continue; /* wrong inode or list_empty */ 496 if (!can_unuse(inode)) 497 continue; 498 } 499 list_move(&inode->i_list, &freeable); 500 WARN_ON(inode->i_state & I_NEW); 501 inode->i_state |= I_FREEING; 502 nr_pruned++; 503 } 504 inodes_stat.nr_unused -= nr_pruned; 505 if (current_is_kswapd()) 506 __count_vm_events(KSWAPD_INODESTEAL, reap); 507 else 508 __count_vm_events(PGINODESTEAL, reap); 509 spin_unlock(&inode_lock); 510 511 dispose_list(&freeable); 512 mutex_unlock(&iprune_mutex); 513 } 514 515 /* 516 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here, 517 * "unused" means that no dentries are referring to the inodes: the files are 518 * not open and the dcache references to those inodes have already been 519 * reclaimed. 520 * 521 * This function is passed the number of inodes to scan, and it returns the 522 * total number of remaining possibly-reclaimable inodes. 523 */ 524 static int shrink_icache_memory(int nr, gfp_t gfp_mask) 525 { 526 if (nr) { 527 /* 528 * Nasty deadlock avoidance. We may hold various FS locks, 529 * and we don't want to recurse into the FS that called us 530 * in clear_inode() and friends.. 531 */ 532 if (!(gfp_mask & __GFP_FS)) 533 return -1; 534 prune_icache(nr); 535 } 536 return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure; 537 } 538 539 static struct shrinker icache_shrinker = { 540 .shrink = shrink_icache_memory, 541 .seeks = DEFAULT_SEEKS, 542 }; 543 544 static void __wait_on_freeing_inode(struct inode *inode); 545 /* 546 * Called with the inode lock held. 547 * NOTE: we are not increasing the inode-refcount, you must call __iget() 548 * by hand after calling find_inode now! This simplifies iunique and won't 549 * add any additional branch in the common code. 550 */ 551 static struct inode *find_inode(struct super_block *sb, 552 struct hlist_head *head, 553 int (*test)(struct inode *, void *), 554 void *data) 555 { 556 struct hlist_node *node; 557 struct inode *inode = NULL; 558 559 repeat: 560 hlist_for_each_entry(inode, node, head, i_hash) { 561 if (inode->i_sb != sb) 562 continue; 563 if (!test(inode, data)) 564 continue; 565 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 566 __wait_on_freeing_inode(inode); 567 goto repeat; 568 } 569 break; 570 } 571 return node ? inode : NULL; 572 } 573 574 /* 575 * find_inode_fast is the fast path version of find_inode, see the comment at 576 * iget_locked for details. 577 */ 578 static struct inode *find_inode_fast(struct super_block *sb, 579 struct hlist_head *head, unsigned long ino) 580 { 581 struct hlist_node *node; 582 struct inode *inode = NULL; 583 584 repeat: 585 hlist_for_each_entry(inode, node, head, i_hash) { 586 if (inode->i_ino != ino) 587 continue; 588 if (inode->i_sb != sb) 589 continue; 590 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 591 __wait_on_freeing_inode(inode); 592 goto repeat; 593 } 594 break; 595 } 596 return node ? inode : NULL; 597 } 598 599 static unsigned long hash(struct super_block *sb, unsigned long hashval) 600 { 601 unsigned long tmp; 602 603 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 604 L1_CACHE_BYTES; 605 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS); 606 return tmp & I_HASHMASK; 607 } 608 609 static inline void 610 __inode_add_to_lists(struct super_block *sb, struct hlist_head *head, 611 struct inode *inode) 612 { 613 inodes_stat.nr_inodes++; 614 list_add(&inode->i_list, &inode_in_use); 615 list_add(&inode->i_sb_list, &sb->s_inodes); 616 if (head) 617 hlist_add_head(&inode->i_hash, head); 618 } 619 620 /** 621 * inode_add_to_lists - add a new inode to relevant lists 622 * @sb: superblock inode belongs to 623 * @inode: inode to mark in use 624 * 625 * When an inode is allocated it needs to be accounted for, added to the in use 626 * list, the owning superblock and the inode hash. This needs to be done under 627 * the inode_lock, so export a function to do this rather than the inode lock 628 * itself. We calculate the hash list to add to here so it is all internal 629 * which requires the caller to have already set up the inode number in the 630 * inode to add. 631 */ 632 void inode_add_to_lists(struct super_block *sb, struct inode *inode) 633 { 634 struct hlist_head *head = inode_hashtable + hash(sb, inode->i_ino); 635 636 spin_lock(&inode_lock); 637 __inode_add_to_lists(sb, head, inode); 638 spin_unlock(&inode_lock); 639 } 640 EXPORT_SYMBOL_GPL(inode_add_to_lists); 641 642 /** 643 * new_inode - obtain an inode 644 * @sb: superblock 645 * 646 * Allocates a new inode for given superblock. The default gfp_mask 647 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 648 * If HIGHMEM pages are unsuitable or it is known that pages allocated 649 * for the page cache are not reclaimable or migratable, 650 * mapping_set_gfp_mask() must be called with suitable flags on the 651 * newly created inode's mapping 652 * 653 */ 654 struct inode *new_inode(struct super_block *sb) 655 { 656 /* 657 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 658 * error if st_ino won't fit in target struct field. Use 32bit counter 659 * here to attempt to avoid that. 660 */ 661 static unsigned int last_ino; 662 struct inode *inode; 663 664 spin_lock_prefetch(&inode_lock); 665 666 inode = alloc_inode(sb); 667 if (inode) { 668 spin_lock(&inode_lock); 669 __inode_add_to_lists(sb, NULL, inode); 670 inode->i_ino = ++last_ino; 671 inode->i_state = 0; 672 spin_unlock(&inode_lock); 673 } 674 return inode; 675 } 676 EXPORT_SYMBOL(new_inode); 677 678 void unlock_new_inode(struct inode *inode) 679 { 680 #ifdef CONFIG_DEBUG_LOCK_ALLOC 681 if (inode->i_mode & S_IFDIR) { 682 struct file_system_type *type = inode->i_sb->s_type; 683 684 /* Set new key only if filesystem hasn't already changed it */ 685 if (!lockdep_match_class(&inode->i_mutex, 686 &type->i_mutex_key)) { 687 /* 688 * ensure nobody is actually holding i_mutex 689 */ 690 mutex_destroy(&inode->i_mutex); 691 mutex_init(&inode->i_mutex); 692 lockdep_set_class(&inode->i_mutex, 693 &type->i_mutex_dir_key); 694 } 695 } 696 #endif 697 /* 698 * This is special! We do not need the spinlock 699 * when clearing I_LOCK, because we're guaranteed 700 * that nobody else tries to do anything about the 701 * state of the inode when it is locked, as we 702 * just created it (so there can be no old holders 703 * that haven't tested I_LOCK). 704 */ 705 WARN_ON((inode->i_state & (I_LOCK|I_NEW)) != (I_LOCK|I_NEW)); 706 inode->i_state &= ~(I_LOCK|I_NEW); 707 wake_up_inode(inode); 708 } 709 EXPORT_SYMBOL(unlock_new_inode); 710 711 /* 712 * This is called without the inode lock held.. Be careful. 713 * 714 * We no longer cache the sb_flags in i_flags - see fs.h 715 * -- rmk@arm.uk.linux.org 716 */ 717 static struct inode *get_new_inode(struct super_block *sb, 718 struct hlist_head *head, 719 int (*test)(struct inode *, void *), 720 int (*set)(struct inode *, void *), 721 void *data) 722 { 723 struct inode *inode; 724 725 inode = alloc_inode(sb); 726 if (inode) { 727 struct inode *old; 728 729 spin_lock(&inode_lock); 730 /* We released the lock, so.. */ 731 old = find_inode(sb, head, test, data); 732 if (!old) { 733 if (set(inode, data)) 734 goto set_failed; 735 736 __inode_add_to_lists(sb, head, inode); 737 inode->i_state = I_LOCK|I_NEW; 738 spin_unlock(&inode_lock); 739 740 /* Return the locked inode with I_NEW set, the 741 * caller is responsible for filling in the contents 742 */ 743 return inode; 744 } 745 746 /* 747 * Uhhuh, somebody else created the same inode under 748 * us. Use the old inode instead of the one we just 749 * allocated. 750 */ 751 __iget(old); 752 spin_unlock(&inode_lock); 753 destroy_inode(inode); 754 inode = old; 755 wait_on_inode(inode); 756 } 757 return inode; 758 759 set_failed: 760 spin_unlock(&inode_lock); 761 destroy_inode(inode); 762 return NULL; 763 } 764 765 /* 766 * get_new_inode_fast is the fast path version of get_new_inode, see the 767 * comment at iget_locked for details. 768 */ 769 static struct inode *get_new_inode_fast(struct super_block *sb, 770 struct hlist_head *head, unsigned long ino) 771 { 772 struct inode *inode; 773 774 inode = alloc_inode(sb); 775 if (inode) { 776 struct inode *old; 777 778 spin_lock(&inode_lock); 779 /* We released the lock, so.. */ 780 old = find_inode_fast(sb, head, ino); 781 if (!old) { 782 inode->i_ino = ino; 783 __inode_add_to_lists(sb, head, inode); 784 inode->i_state = I_LOCK|I_NEW; 785 spin_unlock(&inode_lock); 786 787 /* Return the locked inode with I_NEW set, the 788 * caller is responsible for filling in the contents 789 */ 790 return inode; 791 } 792 793 /* 794 * Uhhuh, somebody else created the same inode under 795 * us. Use the old inode instead of the one we just 796 * allocated. 797 */ 798 __iget(old); 799 spin_unlock(&inode_lock); 800 destroy_inode(inode); 801 inode = old; 802 wait_on_inode(inode); 803 } 804 return inode; 805 } 806 807 /** 808 * iunique - get a unique inode number 809 * @sb: superblock 810 * @max_reserved: highest reserved inode number 811 * 812 * Obtain an inode number that is unique on the system for a given 813 * superblock. This is used by file systems that have no natural 814 * permanent inode numbering system. An inode number is returned that 815 * is higher than the reserved limit but unique. 816 * 817 * BUGS: 818 * With a large number of inodes live on the file system this function 819 * currently becomes quite slow. 820 */ 821 ino_t iunique(struct super_block *sb, ino_t max_reserved) 822 { 823 /* 824 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 825 * error if st_ino won't fit in target struct field. Use 32bit counter 826 * here to attempt to avoid that. 827 */ 828 static unsigned int counter; 829 struct inode *inode; 830 struct hlist_head *head; 831 ino_t res; 832 833 spin_lock(&inode_lock); 834 do { 835 if (counter <= max_reserved) 836 counter = max_reserved + 1; 837 res = counter++; 838 head = inode_hashtable + hash(sb, res); 839 inode = find_inode_fast(sb, head, res); 840 } while (inode != NULL); 841 spin_unlock(&inode_lock); 842 843 return res; 844 } 845 EXPORT_SYMBOL(iunique); 846 847 struct inode *igrab(struct inode *inode) 848 { 849 spin_lock(&inode_lock); 850 if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE))) 851 __iget(inode); 852 else 853 /* 854 * Handle the case where s_op->clear_inode is not been 855 * called yet, and somebody is calling igrab 856 * while the inode is getting freed. 857 */ 858 inode = NULL; 859 spin_unlock(&inode_lock); 860 return inode; 861 } 862 EXPORT_SYMBOL(igrab); 863 864 /** 865 * ifind - internal function, you want ilookup5() or iget5(). 866 * @sb: super block of file system to search 867 * @head: the head of the list to search 868 * @test: callback used for comparisons between inodes 869 * @data: opaque data pointer to pass to @test 870 * @wait: if true wait for the inode to be unlocked, if false do not 871 * 872 * ifind() searches for the inode specified by @data in the inode 873 * cache. This is a generalized version of ifind_fast() for file systems where 874 * the inode number is not sufficient for unique identification of an inode. 875 * 876 * If the inode is in the cache, the inode is returned with an incremented 877 * reference count. 878 * 879 * Otherwise NULL is returned. 880 * 881 * Note, @test is called with the inode_lock held, so can't sleep. 882 */ 883 static struct inode *ifind(struct super_block *sb, 884 struct hlist_head *head, int (*test)(struct inode *, void *), 885 void *data, const int wait) 886 { 887 struct inode *inode; 888 889 spin_lock(&inode_lock); 890 inode = find_inode(sb, head, test, data); 891 if (inode) { 892 __iget(inode); 893 spin_unlock(&inode_lock); 894 if (likely(wait)) 895 wait_on_inode(inode); 896 return inode; 897 } 898 spin_unlock(&inode_lock); 899 return NULL; 900 } 901 902 /** 903 * ifind_fast - internal function, you want ilookup() or iget(). 904 * @sb: super block of file system to search 905 * @head: head of the list to search 906 * @ino: inode number to search for 907 * 908 * ifind_fast() searches for the inode @ino in the inode cache. This is for 909 * file systems where the inode number is sufficient for unique identification 910 * of an inode. 911 * 912 * If the inode is in the cache, the inode is returned with an incremented 913 * reference count. 914 * 915 * Otherwise NULL is returned. 916 */ 917 static struct inode *ifind_fast(struct super_block *sb, 918 struct hlist_head *head, unsigned long ino) 919 { 920 struct inode *inode; 921 922 spin_lock(&inode_lock); 923 inode = find_inode_fast(sb, head, ino); 924 if (inode) { 925 __iget(inode); 926 spin_unlock(&inode_lock); 927 wait_on_inode(inode); 928 return inode; 929 } 930 spin_unlock(&inode_lock); 931 return NULL; 932 } 933 934 /** 935 * ilookup5_nowait - search for an inode in the inode cache 936 * @sb: super block of file system to search 937 * @hashval: hash value (usually inode number) to search for 938 * @test: callback used for comparisons between inodes 939 * @data: opaque data pointer to pass to @test 940 * 941 * ilookup5() uses ifind() to search for the inode specified by @hashval and 942 * @data in the inode cache. This is a generalized version of ilookup() for 943 * file systems where the inode number is not sufficient for unique 944 * identification of an inode. 945 * 946 * If the inode is in the cache, the inode is returned with an incremented 947 * reference count. Note, the inode lock is not waited upon so you have to be 948 * very careful what you do with the returned inode. You probably should be 949 * using ilookup5() instead. 950 * 951 * Otherwise NULL is returned. 952 * 953 * Note, @test is called with the inode_lock held, so can't sleep. 954 */ 955 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 956 int (*test)(struct inode *, void *), void *data) 957 { 958 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 959 960 return ifind(sb, head, test, data, 0); 961 } 962 EXPORT_SYMBOL(ilookup5_nowait); 963 964 /** 965 * ilookup5 - search for an inode in the inode cache 966 * @sb: super block of file system to search 967 * @hashval: hash value (usually inode number) to search for 968 * @test: callback used for comparisons between inodes 969 * @data: opaque data pointer to pass to @test 970 * 971 * ilookup5() uses ifind() to search for the inode specified by @hashval and 972 * @data in the inode cache. This is a generalized version of ilookup() for 973 * file systems where the inode number is not sufficient for unique 974 * identification of an inode. 975 * 976 * If the inode is in the cache, the inode lock is waited upon and the inode is 977 * returned with an incremented reference count. 978 * 979 * Otherwise NULL is returned. 980 * 981 * Note, @test is called with the inode_lock held, so can't sleep. 982 */ 983 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 984 int (*test)(struct inode *, void *), void *data) 985 { 986 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 987 988 return ifind(sb, head, test, data, 1); 989 } 990 EXPORT_SYMBOL(ilookup5); 991 992 /** 993 * ilookup - search for an inode in the inode cache 994 * @sb: super block of file system to search 995 * @ino: inode number to search for 996 * 997 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache. 998 * This is for file systems where the inode number is sufficient for unique 999 * identification of an inode. 1000 * 1001 * If the inode is in the cache, the inode is returned with an incremented 1002 * reference count. 1003 * 1004 * Otherwise NULL is returned. 1005 */ 1006 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1007 { 1008 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1009 1010 return ifind_fast(sb, head, ino); 1011 } 1012 EXPORT_SYMBOL(ilookup); 1013 1014 /** 1015 * iget5_locked - obtain an inode from a mounted file system 1016 * @sb: super block of file system 1017 * @hashval: hash value (usually inode number) to get 1018 * @test: callback used for comparisons between inodes 1019 * @set: callback used to initialize a new struct inode 1020 * @data: opaque data pointer to pass to @test and @set 1021 * 1022 * iget5_locked() uses ifind() to search for the inode specified by @hashval 1023 * and @data in the inode cache and if present it is returned with an increased 1024 * reference count. This is a generalized version of iget_locked() for file 1025 * systems where the inode number is not sufficient for unique identification 1026 * of an inode. 1027 * 1028 * If the inode is not in cache, get_new_inode() is called to allocate a new 1029 * inode and this is returned locked, hashed, and with the I_NEW flag set. The 1030 * file system gets to fill it in before unlocking it via unlock_new_inode(). 1031 * 1032 * Note both @test and @set are called with the inode_lock held, so can't sleep. 1033 */ 1034 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1035 int (*test)(struct inode *, void *), 1036 int (*set)(struct inode *, void *), void *data) 1037 { 1038 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1039 struct inode *inode; 1040 1041 inode = ifind(sb, head, test, data, 1); 1042 if (inode) 1043 return inode; 1044 /* 1045 * get_new_inode() will do the right thing, re-trying the search 1046 * in case it had to block at any point. 1047 */ 1048 return get_new_inode(sb, head, test, set, data); 1049 } 1050 EXPORT_SYMBOL(iget5_locked); 1051 1052 /** 1053 * iget_locked - obtain an inode from a mounted file system 1054 * @sb: super block of file system 1055 * @ino: inode number to get 1056 * 1057 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in 1058 * the inode cache and if present it is returned with an increased reference 1059 * count. This is for file systems where the inode number is sufficient for 1060 * unique identification of an inode. 1061 * 1062 * If the inode is not in cache, get_new_inode_fast() is called to allocate a 1063 * new inode and this is returned locked, hashed, and with the I_NEW flag set. 1064 * The file system gets to fill it in before unlocking it via 1065 * unlock_new_inode(). 1066 */ 1067 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1068 { 1069 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1070 struct inode *inode; 1071 1072 inode = ifind_fast(sb, head, ino); 1073 if (inode) 1074 return inode; 1075 /* 1076 * get_new_inode_fast() will do the right thing, re-trying the search 1077 * in case it had to block at any point. 1078 */ 1079 return get_new_inode_fast(sb, head, ino); 1080 } 1081 EXPORT_SYMBOL(iget_locked); 1082 1083 int insert_inode_locked(struct inode *inode) 1084 { 1085 struct super_block *sb = inode->i_sb; 1086 ino_t ino = inode->i_ino; 1087 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1088 1089 inode->i_state |= I_LOCK|I_NEW; 1090 while (1) { 1091 struct hlist_node *node; 1092 struct inode *old = NULL; 1093 spin_lock(&inode_lock); 1094 hlist_for_each_entry(old, node, head, i_hash) { 1095 if (old->i_ino != ino) 1096 continue; 1097 if (old->i_sb != sb) 1098 continue; 1099 if (old->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) 1100 continue; 1101 break; 1102 } 1103 if (likely(!node)) { 1104 hlist_add_head(&inode->i_hash, head); 1105 spin_unlock(&inode_lock); 1106 return 0; 1107 } 1108 __iget(old); 1109 spin_unlock(&inode_lock); 1110 wait_on_inode(old); 1111 if (unlikely(!hlist_unhashed(&old->i_hash))) { 1112 iput(old); 1113 return -EBUSY; 1114 } 1115 iput(old); 1116 } 1117 } 1118 EXPORT_SYMBOL(insert_inode_locked); 1119 1120 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1121 int (*test)(struct inode *, void *), void *data) 1122 { 1123 struct super_block *sb = inode->i_sb; 1124 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1125 1126 inode->i_state |= I_LOCK|I_NEW; 1127 1128 while (1) { 1129 struct hlist_node *node; 1130 struct inode *old = NULL; 1131 1132 spin_lock(&inode_lock); 1133 hlist_for_each_entry(old, node, head, i_hash) { 1134 if (old->i_sb != sb) 1135 continue; 1136 if (!test(old, data)) 1137 continue; 1138 if (old->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) 1139 continue; 1140 break; 1141 } 1142 if (likely(!node)) { 1143 hlist_add_head(&inode->i_hash, head); 1144 spin_unlock(&inode_lock); 1145 return 0; 1146 } 1147 __iget(old); 1148 spin_unlock(&inode_lock); 1149 wait_on_inode(old); 1150 if (unlikely(!hlist_unhashed(&old->i_hash))) { 1151 iput(old); 1152 return -EBUSY; 1153 } 1154 iput(old); 1155 } 1156 } 1157 EXPORT_SYMBOL(insert_inode_locked4); 1158 1159 /** 1160 * __insert_inode_hash - hash an inode 1161 * @inode: unhashed inode 1162 * @hashval: unsigned long value used to locate this object in the 1163 * inode_hashtable. 1164 * 1165 * Add an inode to the inode hash for this superblock. 1166 */ 1167 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 1168 { 1169 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1170 spin_lock(&inode_lock); 1171 hlist_add_head(&inode->i_hash, head); 1172 spin_unlock(&inode_lock); 1173 } 1174 EXPORT_SYMBOL(__insert_inode_hash); 1175 1176 /** 1177 * remove_inode_hash - remove an inode from the hash 1178 * @inode: inode to unhash 1179 * 1180 * Remove an inode from the superblock. 1181 */ 1182 void remove_inode_hash(struct inode *inode) 1183 { 1184 spin_lock(&inode_lock); 1185 hlist_del_init(&inode->i_hash); 1186 spin_unlock(&inode_lock); 1187 } 1188 EXPORT_SYMBOL(remove_inode_hash); 1189 1190 /* 1191 * Tell the filesystem that this inode is no longer of any interest and should 1192 * be completely destroyed. 1193 * 1194 * We leave the inode in the inode hash table until *after* the filesystem's 1195 * ->delete_inode completes. This ensures that an iget (such as nfsd might 1196 * instigate) will always find up-to-date information either in the hash or on 1197 * disk. 1198 * 1199 * I_FREEING is set so that no-one will take a new reference to the inode while 1200 * it is being deleted. 1201 */ 1202 void generic_delete_inode(struct inode *inode) 1203 { 1204 const struct super_operations *op = inode->i_sb->s_op; 1205 1206 list_del_init(&inode->i_list); 1207 list_del_init(&inode->i_sb_list); 1208 WARN_ON(inode->i_state & I_NEW); 1209 inode->i_state |= I_FREEING; 1210 inodes_stat.nr_inodes--; 1211 spin_unlock(&inode_lock); 1212 1213 security_inode_delete(inode); 1214 1215 if (op->delete_inode) { 1216 void (*delete)(struct inode *) = op->delete_inode; 1217 if (!is_bad_inode(inode)) 1218 vfs_dq_init(inode); 1219 /* Filesystems implementing their own 1220 * s_op->delete_inode are required to call 1221 * truncate_inode_pages and clear_inode() 1222 * internally */ 1223 delete(inode); 1224 } else { 1225 truncate_inode_pages(&inode->i_data, 0); 1226 clear_inode(inode); 1227 } 1228 spin_lock(&inode_lock); 1229 hlist_del_init(&inode->i_hash); 1230 spin_unlock(&inode_lock); 1231 wake_up_inode(inode); 1232 BUG_ON(inode->i_state != I_CLEAR); 1233 destroy_inode(inode); 1234 } 1235 EXPORT_SYMBOL(generic_delete_inode); 1236 1237 static void generic_forget_inode(struct inode *inode) 1238 { 1239 struct super_block *sb = inode->i_sb; 1240 1241 if (!hlist_unhashed(&inode->i_hash)) { 1242 if (!(inode->i_state & (I_DIRTY|I_SYNC))) 1243 list_move(&inode->i_list, &inode_unused); 1244 inodes_stat.nr_unused++; 1245 if (sb->s_flags & MS_ACTIVE) { 1246 spin_unlock(&inode_lock); 1247 return; 1248 } 1249 WARN_ON(inode->i_state & I_NEW); 1250 inode->i_state |= I_WILL_FREE; 1251 spin_unlock(&inode_lock); 1252 write_inode_now(inode, 1); 1253 spin_lock(&inode_lock); 1254 WARN_ON(inode->i_state & I_NEW); 1255 inode->i_state &= ~I_WILL_FREE; 1256 inodes_stat.nr_unused--; 1257 hlist_del_init(&inode->i_hash); 1258 } 1259 list_del_init(&inode->i_list); 1260 list_del_init(&inode->i_sb_list); 1261 WARN_ON(inode->i_state & I_NEW); 1262 inode->i_state |= I_FREEING; 1263 inodes_stat.nr_inodes--; 1264 spin_unlock(&inode_lock); 1265 if (inode->i_data.nrpages) 1266 truncate_inode_pages(&inode->i_data, 0); 1267 clear_inode(inode); 1268 wake_up_inode(inode); 1269 destroy_inode(inode); 1270 } 1271 1272 /* 1273 * Normal UNIX filesystem behaviour: delete the 1274 * inode when the usage count drops to zero, and 1275 * i_nlink is zero. 1276 */ 1277 void generic_drop_inode(struct inode *inode) 1278 { 1279 if (!inode->i_nlink) 1280 generic_delete_inode(inode); 1281 else 1282 generic_forget_inode(inode); 1283 } 1284 EXPORT_SYMBOL_GPL(generic_drop_inode); 1285 1286 /* 1287 * Called when we're dropping the last reference 1288 * to an inode. 1289 * 1290 * Call the FS "drop()" function, defaulting to 1291 * the legacy UNIX filesystem behaviour.. 1292 * 1293 * NOTE! NOTE! NOTE! We're called with the inode lock 1294 * held, and the drop function is supposed to release 1295 * the lock! 1296 */ 1297 static inline void iput_final(struct inode *inode) 1298 { 1299 const struct super_operations *op = inode->i_sb->s_op; 1300 void (*drop)(struct inode *) = generic_drop_inode; 1301 1302 if (op && op->drop_inode) 1303 drop = op->drop_inode; 1304 drop(inode); 1305 } 1306 1307 /** 1308 * iput - put an inode 1309 * @inode: inode to put 1310 * 1311 * Puts an inode, dropping its usage count. If the inode use count hits 1312 * zero, the inode is then freed and may also be destroyed. 1313 * 1314 * Consequently, iput() can sleep. 1315 */ 1316 void iput(struct inode *inode) 1317 { 1318 if (inode) { 1319 BUG_ON(inode->i_state == I_CLEAR); 1320 1321 if (atomic_dec_and_lock(&inode->i_count, &inode_lock)) 1322 iput_final(inode); 1323 } 1324 } 1325 EXPORT_SYMBOL(iput); 1326 1327 /** 1328 * bmap - find a block number in a file 1329 * @inode: inode of file 1330 * @block: block to find 1331 * 1332 * Returns the block number on the device holding the inode that 1333 * is the disk block number for the block of the file requested. 1334 * That is, asked for block 4 of inode 1 the function will return the 1335 * disk block relative to the disk start that holds that block of the 1336 * file. 1337 */ 1338 sector_t bmap(struct inode *inode, sector_t block) 1339 { 1340 sector_t res = 0; 1341 if (inode->i_mapping->a_ops->bmap) 1342 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1343 return res; 1344 } 1345 EXPORT_SYMBOL(bmap); 1346 1347 /* 1348 * With relative atime, only update atime if the previous atime is 1349 * earlier than either the ctime or mtime or if at least a day has 1350 * passed since the last atime update. 1351 */ 1352 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1353 struct timespec now) 1354 { 1355 1356 if (!(mnt->mnt_flags & MNT_RELATIME)) 1357 return 1; 1358 /* 1359 * Is mtime younger than atime? If yes, update atime: 1360 */ 1361 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1362 return 1; 1363 /* 1364 * Is ctime younger than atime? If yes, update atime: 1365 */ 1366 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1367 return 1; 1368 1369 /* 1370 * Is the previous atime value older than a day? If yes, 1371 * update atime: 1372 */ 1373 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1374 return 1; 1375 /* 1376 * Good, we can skip the atime update: 1377 */ 1378 return 0; 1379 } 1380 1381 /** 1382 * touch_atime - update the access time 1383 * @mnt: mount the inode is accessed on 1384 * @dentry: dentry accessed 1385 * 1386 * Update the accessed time on an inode and mark it for writeback. 1387 * This function automatically handles read only file systems and media, 1388 * as well as the "noatime" flag and inode specific "noatime" markers. 1389 */ 1390 void touch_atime(struct vfsmount *mnt, struct dentry *dentry) 1391 { 1392 struct inode *inode = dentry->d_inode; 1393 struct timespec now; 1394 1395 if (mnt_want_write(mnt)) 1396 return; 1397 if (inode->i_flags & S_NOATIME) 1398 goto out; 1399 if (IS_NOATIME(inode)) 1400 goto out; 1401 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) 1402 goto out; 1403 1404 if (mnt->mnt_flags & MNT_NOATIME) 1405 goto out; 1406 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1407 goto out; 1408 1409 now = current_fs_time(inode->i_sb); 1410 1411 if (!relatime_need_update(mnt, inode, now)) 1412 goto out; 1413 1414 if (timespec_equal(&inode->i_atime, &now)) 1415 goto out; 1416 1417 inode->i_atime = now; 1418 mark_inode_dirty_sync(inode); 1419 out: 1420 mnt_drop_write(mnt); 1421 } 1422 EXPORT_SYMBOL(touch_atime); 1423 1424 /** 1425 * file_update_time - update mtime and ctime time 1426 * @file: file accessed 1427 * 1428 * Update the mtime and ctime members of an inode and mark the inode 1429 * for writeback. Note that this function is meant exclusively for 1430 * usage in the file write path of filesystems, and filesystems may 1431 * choose to explicitly ignore update via this function with the 1432 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1433 * timestamps are handled by the server. 1434 */ 1435 1436 void file_update_time(struct file *file) 1437 { 1438 struct inode *inode = file->f_path.dentry->d_inode; 1439 struct timespec now; 1440 int sync_it = 0; 1441 int err; 1442 1443 if (IS_NOCMTIME(inode)) 1444 return; 1445 1446 err = mnt_want_write_file(file); 1447 if (err) 1448 return; 1449 1450 now = current_fs_time(inode->i_sb); 1451 if (!timespec_equal(&inode->i_mtime, &now)) { 1452 inode->i_mtime = now; 1453 sync_it = 1; 1454 } 1455 1456 if (!timespec_equal(&inode->i_ctime, &now)) { 1457 inode->i_ctime = now; 1458 sync_it = 1; 1459 } 1460 1461 if (IS_I_VERSION(inode)) { 1462 inode_inc_iversion(inode); 1463 sync_it = 1; 1464 } 1465 1466 if (sync_it) 1467 mark_inode_dirty_sync(inode); 1468 mnt_drop_write(file->f_path.mnt); 1469 } 1470 EXPORT_SYMBOL(file_update_time); 1471 1472 int inode_needs_sync(struct inode *inode) 1473 { 1474 if (IS_SYNC(inode)) 1475 return 1; 1476 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1477 return 1; 1478 return 0; 1479 } 1480 EXPORT_SYMBOL(inode_needs_sync); 1481 1482 int inode_wait(void *word) 1483 { 1484 schedule(); 1485 return 0; 1486 } 1487 EXPORT_SYMBOL(inode_wait); 1488 1489 /* 1490 * If we try to find an inode in the inode hash while it is being 1491 * deleted, we have to wait until the filesystem completes its 1492 * deletion before reporting that it isn't found. This function waits 1493 * until the deletion _might_ have completed. Callers are responsible 1494 * to recheck inode state. 1495 * 1496 * It doesn't matter if I_LOCK is not set initially, a call to 1497 * wake_up_inode() after removing from the hash list will DTRT. 1498 * 1499 * This is called with inode_lock held. 1500 */ 1501 static void __wait_on_freeing_inode(struct inode *inode) 1502 { 1503 wait_queue_head_t *wq; 1504 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK); 1505 wq = bit_waitqueue(&inode->i_state, __I_LOCK); 1506 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1507 spin_unlock(&inode_lock); 1508 schedule(); 1509 finish_wait(wq, &wait.wait); 1510 spin_lock(&inode_lock); 1511 } 1512 1513 static __initdata unsigned long ihash_entries; 1514 static int __init set_ihash_entries(char *str) 1515 { 1516 if (!str) 1517 return 0; 1518 ihash_entries = simple_strtoul(str, &str, 0); 1519 return 1; 1520 } 1521 __setup("ihash_entries=", set_ihash_entries); 1522 1523 /* 1524 * Initialize the waitqueues and inode hash table. 1525 */ 1526 void __init inode_init_early(void) 1527 { 1528 int loop; 1529 1530 /* If hashes are distributed across NUMA nodes, defer 1531 * hash allocation until vmalloc space is available. 1532 */ 1533 if (hashdist) 1534 return; 1535 1536 inode_hashtable = 1537 alloc_large_system_hash("Inode-cache", 1538 sizeof(struct hlist_head), 1539 ihash_entries, 1540 14, 1541 HASH_EARLY, 1542 &i_hash_shift, 1543 &i_hash_mask, 1544 0); 1545 1546 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1547 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1548 } 1549 1550 void __init inode_init(void) 1551 { 1552 int loop; 1553 1554 /* inode slab cache */ 1555 inode_cachep = kmem_cache_create("inode_cache", 1556 sizeof(struct inode), 1557 0, 1558 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1559 SLAB_MEM_SPREAD), 1560 init_once); 1561 register_shrinker(&icache_shrinker); 1562 1563 /* Hash may have been set up in inode_init_early */ 1564 if (!hashdist) 1565 return; 1566 1567 inode_hashtable = 1568 alloc_large_system_hash("Inode-cache", 1569 sizeof(struct hlist_head), 1570 ihash_entries, 1571 14, 1572 0, 1573 &i_hash_shift, 1574 &i_hash_mask, 1575 0); 1576 1577 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1578 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1579 } 1580 1581 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1582 { 1583 inode->i_mode = mode; 1584 if (S_ISCHR(mode)) { 1585 inode->i_fop = &def_chr_fops; 1586 inode->i_rdev = rdev; 1587 } else if (S_ISBLK(mode)) { 1588 inode->i_fop = &def_blk_fops; 1589 inode->i_rdev = rdev; 1590 } else if (S_ISFIFO(mode)) 1591 inode->i_fop = &def_fifo_fops; 1592 else if (S_ISSOCK(mode)) 1593 inode->i_fop = &bad_sock_fops; 1594 else 1595 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n", 1596 mode); 1597 } 1598 EXPORT_SYMBOL(init_special_inode); 1599