xref: /openbmc/linux/fs/inode.c (revision fa538f7cf05aab61cd91e01c160d4a09c81b8ffe)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * (C) 1997 Linus Torvalds
4  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5  */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/backing-dev.h>
10 #include <linux/hash.h>
11 #include <linux/swap.h>
12 #include <linux/security.h>
13 #include <linux/cdev.h>
14 #include <linux/memblock.h>
15 #include <linux/fscrypt.h>
16 #include <linux/fsnotify.h>
17 #include <linux/mount.h>
18 #include <linux/posix_acl.h>
19 #include <linux/prefetch.h>
20 #include <linux/buffer_head.h> /* for inode_has_buffers */
21 #include <linux/ratelimit.h>
22 #include <linux/list_lru.h>
23 #include <linux/iversion.h>
24 #include <trace/events/writeback.h>
25 #include "internal.h"
26 
27 /*
28  * Inode locking rules:
29  *
30  * inode->i_lock protects:
31  *   inode->i_state, inode->i_hash, __iget()
32  * Inode LRU list locks protect:
33  *   inode->i_sb->s_inode_lru, inode->i_lru
34  * inode->i_sb->s_inode_list_lock protects:
35  *   inode->i_sb->s_inodes, inode->i_sb_list
36  * bdi->wb.list_lock protects:
37  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
38  * inode_hash_lock protects:
39  *   inode_hashtable, inode->i_hash
40  *
41  * Lock ordering:
42  *
43  * inode->i_sb->s_inode_list_lock
44  *   inode->i_lock
45  *     Inode LRU list locks
46  *
47  * bdi->wb.list_lock
48  *   inode->i_lock
49  *
50  * inode_hash_lock
51  *   inode->i_sb->s_inode_list_lock
52  *   inode->i_lock
53  *
54  * iunique_lock
55  *   inode_hash_lock
56  */
57 
58 static unsigned int i_hash_mask __read_mostly;
59 static unsigned int i_hash_shift __read_mostly;
60 static struct hlist_head *inode_hashtable __read_mostly;
61 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
62 
63 /*
64  * Empty aops. Can be used for the cases where the user does not
65  * define any of the address_space operations.
66  */
67 const struct address_space_operations empty_aops = {
68 };
69 EXPORT_SYMBOL(empty_aops);
70 
71 /*
72  * Statistics gathering..
73  */
74 struct inodes_stat_t inodes_stat;
75 
76 static DEFINE_PER_CPU(unsigned long, nr_inodes);
77 static DEFINE_PER_CPU(unsigned long, nr_unused);
78 
79 static struct kmem_cache *inode_cachep __read_mostly;
80 
81 static long get_nr_inodes(void)
82 {
83 	int i;
84 	long sum = 0;
85 	for_each_possible_cpu(i)
86 		sum += per_cpu(nr_inodes, i);
87 	return sum < 0 ? 0 : sum;
88 }
89 
90 static inline long get_nr_inodes_unused(void)
91 {
92 	int i;
93 	long sum = 0;
94 	for_each_possible_cpu(i)
95 		sum += per_cpu(nr_unused, i);
96 	return sum < 0 ? 0 : sum;
97 }
98 
99 long get_nr_dirty_inodes(void)
100 {
101 	/* not actually dirty inodes, but a wild approximation */
102 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
103 	return nr_dirty > 0 ? nr_dirty : 0;
104 }
105 
106 /*
107  * Handle nr_inode sysctl
108  */
109 #ifdef CONFIG_SYSCTL
110 int proc_nr_inodes(struct ctl_table *table, int write,
111 		   void *buffer, size_t *lenp, loff_t *ppos)
112 {
113 	inodes_stat.nr_inodes = get_nr_inodes();
114 	inodes_stat.nr_unused = get_nr_inodes_unused();
115 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
116 }
117 #endif
118 
119 static int no_open(struct inode *inode, struct file *file)
120 {
121 	return -ENXIO;
122 }
123 
124 /**
125  * inode_init_always - perform inode structure initialisation
126  * @sb: superblock inode belongs to
127  * @inode: inode to initialise
128  *
129  * These are initializations that need to be done on every inode
130  * allocation as the fields are not initialised by slab allocation.
131  */
132 int inode_init_always(struct super_block *sb, struct inode *inode)
133 {
134 	static const struct inode_operations empty_iops;
135 	static const struct file_operations no_open_fops = {.open = no_open};
136 	struct address_space *const mapping = &inode->i_data;
137 
138 	inode->i_sb = sb;
139 	inode->i_blkbits = sb->s_blocksize_bits;
140 	inode->i_flags = 0;
141 	atomic64_set(&inode->i_sequence, 0);
142 	atomic_set(&inode->i_count, 1);
143 	inode->i_op = &empty_iops;
144 	inode->i_fop = &no_open_fops;
145 	inode->__i_nlink = 1;
146 	inode->i_opflags = 0;
147 	if (sb->s_xattr)
148 		inode->i_opflags |= IOP_XATTR;
149 	i_uid_write(inode, 0);
150 	i_gid_write(inode, 0);
151 	atomic_set(&inode->i_writecount, 0);
152 	inode->i_size = 0;
153 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
154 	inode->i_blocks = 0;
155 	inode->i_bytes = 0;
156 	inode->i_generation = 0;
157 	inode->i_pipe = NULL;
158 	inode->i_bdev = NULL;
159 	inode->i_cdev = NULL;
160 	inode->i_link = NULL;
161 	inode->i_dir_seq = 0;
162 	inode->i_rdev = 0;
163 	inode->dirtied_when = 0;
164 
165 #ifdef CONFIG_CGROUP_WRITEBACK
166 	inode->i_wb_frn_winner = 0;
167 	inode->i_wb_frn_avg_time = 0;
168 	inode->i_wb_frn_history = 0;
169 #endif
170 
171 	if (security_inode_alloc(inode))
172 		goto out;
173 	spin_lock_init(&inode->i_lock);
174 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
175 
176 	init_rwsem(&inode->i_rwsem);
177 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
178 
179 	atomic_set(&inode->i_dio_count, 0);
180 
181 	mapping->a_ops = &empty_aops;
182 	mapping->host = inode;
183 	mapping->flags = 0;
184 	if (sb->s_type->fs_flags & FS_THP_SUPPORT)
185 		__set_bit(AS_THP_SUPPORT, &mapping->flags);
186 	mapping->wb_err = 0;
187 	atomic_set(&mapping->i_mmap_writable, 0);
188 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
189 	atomic_set(&mapping->nr_thps, 0);
190 #endif
191 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
192 	mapping->private_data = NULL;
193 	mapping->writeback_index = 0;
194 	inode->i_private = NULL;
195 	inode->i_mapping = mapping;
196 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
197 #ifdef CONFIG_FS_POSIX_ACL
198 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
199 #endif
200 
201 #ifdef CONFIG_FSNOTIFY
202 	inode->i_fsnotify_mask = 0;
203 #endif
204 	inode->i_flctx = NULL;
205 	this_cpu_inc(nr_inodes);
206 
207 	return 0;
208 out:
209 	return -ENOMEM;
210 }
211 EXPORT_SYMBOL(inode_init_always);
212 
213 void free_inode_nonrcu(struct inode *inode)
214 {
215 	kmem_cache_free(inode_cachep, inode);
216 }
217 EXPORT_SYMBOL(free_inode_nonrcu);
218 
219 static void i_callback(struct rcu_head *head)
220 {
221 	struct inode *inode = container_of(head, struct inode, i_rcu);
222 	if (inode->free_inode)
223 		inode->free_inode(inode);
224 	else
225 		free_inode_nonrcu(inode);
226 }
227 
228 static struct inode *alloc_inode(struct super_block *sb)
229 {
230 	const struct super_operations *ops = sb->s_op;
231 	struct inode *inode;
232 
233 	if (ops->alloc_inode)
234 		inode = ops->alloc_inode(sb);
235 	else
236 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
237 
238 	if (!inode)
239 		return NULL;
240 
241 	if (unlikely(inode_init_always(sb, inode))) {
242 		if (ops->destroy_inode) {
243 			ops->destroy_inode(inode);
244 			if (!ops->free_inode)
245 				return NULL;
246 		}
247 		inode->free_inode = ops->free_inode;
248 		i_callback(&inode->i_rcu);
249 		return NULL;
250 	}
251 
252 	return inode;
253 }
254 
255 void __destroy_inode(struct inode *inode)
256 {
257 	BUG_ON(inode_has_buffers(inode));
258 	inode_detach_wb(inode);
259 	security_inode_free(inode);
260 	fsnotify_inode_delete(inode);
261 	locks_free_lock_context(inode);
262 	if (!inode->i_nlink) {
263 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
264 		atomic_long_dec(&inode->i_sb->s_remove_count);
265 	}
266 
267 #ifdef CONFIG_FS_POSIX_ACL
268 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
269 		posix_acl_release(inode->i_acl);
270 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
271 		posix_acl_release(inode->i_default_acl);
272 #endif
273 	this_cpu_dec(nr_inodes);
274 }
275 EXPORT_SYMBOL(__destroy_inode);
276 
277 static void destroy_inode(struct inode *inode)
278 {
279 	const struct super_operations *ops = inode->i_sb->s_op;
280 
281 	BUG_ON(!list_empty(&inode->i_lru));
282 	__destroy_inode(inode);
283 	if (ops->destroy_inode) {
284 		ops->destroy_inode(inode);
285 		if (!ops->free_inode)
286 			return;
287 	}
288 	inode->free_inode = ops->free_inode;
289 	call_rcu(&inode->i_rcu, i_callback);
290 }
291 
292 /**
293  * drop_nlink - directly drop an inode's link count
294  * @inode: inode
295  *
296  * This is a low-level filesystem helper to replace any
297  * direct filesystem manipulation of i_nlink.  In cases
298  * where we are attempting to track writes to the
299  * filesystem, a decrement to zero means an imminent
300  * write when the file is truncated and actually unlinked
301  * on the filesystem.
302  */
303 void drop_nlink(struct inode *inode)
304 {
305 	WARN_ON(inode->i_nlink == 0);
306 	inode->__i_nlink--;
307 	if (!inode->i_nlink)
308 		atomic_long_inc(&inode->i_sb->s_remove_count);
309 }
310 EXPORT_SYMBOL(drop_nlink);
311 
312 /**
313  * clear_nlink - directly zero an inode's link count
314  * @inode: inode
315  *
316  * This is a low-level filesystem helper to replace any
317  * direct filesystem manipulation of i_nlink.  See
318  * drop_nlink() for why we care about i_nlink hitting zero.
319  */
320 void clear_nlink(struct inode *inode)
321 {
322 	if (inode->i_nlink) {
323 		inode->__i_nlink = 0;
324 		atomic_long_inc(&inode->i_sb->s_remove_count);
325 	}
326 }
327 EXPORT_SYMBOL(clear_nlink);
328 
329 /**
330  * set_nlink - directly set an inode's link count
331  * @inode: inode
332  * @nlink: new nlink (should be non-zero)
333  *
334  * This is a low-level filesystem helper to replace any
335  * direct filesystem manipulation of i_nlink.
336  */
337 void set_nlink(struct inode *inode, unsigned int nlink)
338 {
339 	if (!nlink) {
340 		clear_nlink(inode);
341 	} else {
342 		/* Yes, some filesystems do change nlink from zero to one */
343 		if (inode->i_nlink == 0)
344 			atomic_long_dec(&inode->i_sb->s_remove_count);
345 
346 		inode->__i_nlink = nlink;
347 	}
348 }
349 EXPORT_SYMBOL(set_nlink);
350 
351 /**
352  * inc_nlink - directly increment an inode's link count
353  * @inode: inode
354  *
355  * This is a low-level filesystem helper to replace any
356  * direct filesystem manipulation of i_nlink.  Currently,
357  * it is only here for parity with dec_nlink().
358  */
359 void inc_nlink(struct inode *inode)
360 {
361 	if (unlikely(inode->i_nlink == 0)) {
362 		WARN_ON(!(inode->i_state & I_LINKABLE));
363 		atomic_long_dec(&inode->i_sb->s_remove_count);
364 	}
365 
366 	inode->__i_nlink++;
367 }
368 EXPORT_SYMBOL(inc_nlink);
369 
370 static void __address_space_init_once(struct address_space *mapping)
371 {
372 	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
373 	init_rwsem(&mapping->i_mmap_rwsem);
374 	INIT_LIST_HEAD(&mapping->private_list);
375 	spin_lock_init(&mapping->private_lock);
376 	mapping->i_mmap = RB_ROOT_CACHED;
377 }
378 
379 void address_space_init_once(struct address_space *mapping)
380 {
381 	memset(mapping, 0, sizeof(*mapping));
382 	__address_space_init_once(mapping);
383 }
384 EXPORT_SYMBOL(address_space_init_once);
385 
386 /*
387  * These are initializations that only need to be done
388  * once, because the fields are idempotent across use
389  * of the inode, so let the slab aware of that.
390  */
391 void inode_init_once(struct inode *inode)
392 {
393 	memset(inode, 0, sizeof(*inode));
394 	INIT_HLIST_NODE(&inode->i_hash);
395 	INIT_LIST_HEAD(&inode->i_devices);
396 	INIT_LIST_HEAD(&inode->i_io_list);
397 	INIT_LIST_HEAD(&inode->i_wb_list);
398 	INIT_LIST_HEAD(&inode->i_lru);
399 	__address_space_init_once(&inode->i_data);
400 	i_size_ordered_init(inode);
401 }
402 EXPORT_SYMBOL(inode_init_once);
403 
404 static void init_once(void *foo)
405 {
406 	struct inode *inode = (struct inode *) foo;
407 
408 	inode_init_once(inode);
409 }
410 
411 /*
412  * inode->i_lock must be held
413  */
414 void __iget(struct inode *inode)
415 {
416 	atomic_inc(&inode->i_count);
417 }
418 
419 /*
420  * get additional reference to inode; caller must already hold one.
421  */
422 void ihold(struct inode *inode)
423 {
424 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
425 }
426 EXPORT_SYMBOL(ihold);
427 
428 static void inode_lru_list_add(struct inode *inode)
429 {
430 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
431 		this_cpu_inc(nr_unused);
432 	else
433 		inode->i_state |= I_REFERENCED;
434 }
435 
436 /*
437  * Add inode to LRU if needed (inode is unused and clean).
438  *
439  * Needs inode->i_lock held.
440  */
441 void inode_add_lru(struct inode *inode)
442 {
443 	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
444 				I_FREEING | I_WILL_FREE)) &&
445 	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
446 		inode_lru_list_add(inode);
447 }
448 
449 
450 static void inode_lru_list_del(struct inode *inode)
451 {
452 
453 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
454 		this_cpu_dec(nr_unused);
455 }
456 
457 /**
458  * inode_sb_list_add - add inode to the superblock list of inodes
459  * @inode: inode to add
460  */
461 void inode_sb_list_add(struct inode *inode)
462 {
463 	spin_lock(&inode->i_sb->s_inode_list_lock);
464 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
465 	spin_unlock(&inode->i_sb->s_inode_list_lock);
466 }
467 EXPORT_SYMBOL_GPL(inode_sb_list_add);
468 
469 static inline void inode_sb_list_del(struct inode *inode)
470 {
471 	if (!list_empty(&inode->i_sb_list)) {
472 		spin_lock(&inode->i_sb->s_inode_list_lock);
473 		list_del_init(&inode->i_sb_list);
474 		spin_unlock(&inode->i_sb->s_inode_list_lock);
475 	}
476 }
477 
478 static unsigned long hash(struct super_block *sb, unsigned long hashval)
479 {
480 	unsigned long tmp;
481 
482 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
483 			L1_CACHE_BYTES;
484 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
485 	return tmp & i_hash_mask;
486 }
487 
488 /**
489  *	__insert_inode_hash - hash an inode
490  *	@inode: unhashed inode
491  *	@hashval: unsigned long value used to locate this object in the
492  *		inode_hashtable.
493  *
494  *	Add an inode to the inode hash for this superblock.
495  */
496 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
497 {
498 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
499 
500 	spin_lock(&inode_hash_lock);
501 	spin_lock(&inode->i_lock);
502 	hlist_add_head_rcu(&inode->i_hash, b);
503 	spin_unlock(&inode->i_lock);
504 	spin_unlock(&inode_hash_lock);
505 }
506 EXPORT_SYMBOL(__insert_inode_hash);
507 
508 /**
509  *	__remove_inode_hash - remove an inode from the hash
510  *	@inode: inode to unhash
511  *
512  *	Remove an inode from the superblock.
513  */
514 void __remove_inode_hash(struct inode *inode)
515 {
516 	spin_lock(&inode_hash_lock);
517 	spin_lock(&inode->i_lock);
518 	hlist_del_init_rcu(&inode->i_hash);
519 	spin_unlock(&inode->i_lock);
520 	spin_unlock(&inode_hash_lock);
521 }
522 EXPORT_SYMBOL(__remove_inode_hash);
523 
524 void clear_inode(struct inode *inode)
525 {
526 	/*
527 	 * We have to cycle the i_pages lock here because reclaim can be in the
528 	 * process of removing the last page (in __delete_from_page_cache())
529 	 * and we must not free the mapping under it.
530 	 */
531 	xa_lock_irq(&inode->i_data.i_pages);
532 	BUG_ON(inode->i_data.nrpages);
533 	BUG_ON(inode->i_data.nrexceptional);
534 	xa_unlock_irq(&inode->i_data.i_pages);
535 	BUG_ON(!list_empty(&inode->i_data.private_list));
536 	BUG_ON(!(inode->i_state & I_FREEING));
537 	BUG_ON(inode->i_state & I_CLEAR);
538 	BUG_ON(!list_empty(&inode->i_wb_list));
539 	/* don't need i_lock here, no concurrent mods to i_state */
540 	inode->i_state = I_FREEING | I_CLEAR;
541 }
542 EXPORT_SYMBOL(clear_inode);
543 
544 /*
545  * Free the inode passed in, removing it from the lists it is still connected
546  * to. We remove any pages still attached to the inode and wait for any IO that
547  * is still in progress before finally destroying the inode.
548  *
549  * An inode must already be marked I_FREEING so that we avoid the inode being
550  * moved back onto lists if we race with other code that manipulates the lists
551  * (e.g. writeback_single_inode). The caller is responsible for setting this.
552  *
553  * An inode must already be removed from the LRU list before being evicted from
554  * the cache. This should occur atomically with setting the I_FREEING state
555  * flag, so no inodes here should ever be on the LRU when being evicted.
556  */
557 static void evict(struct inode *inode)
558 {
559 	const struct super_operations *op = inode->i_sb->s_op;
560 
561 	BUG_ON(!(inode->i_state & I_FREEING));
562 	BUG_ON(!list_empty(&inode->i_lru));
563 
564 	if (!list_empty(&inode->i_io_list))
565 		inode_io_list_del(inode);
566 
567 	inode_sb_list_del(inode);
568 
569 	/*
570 	 * Wait for flusher thread to be done with the inode so that filesystem
571 	 * does not start destroying it while writeback is still running. Since
572 	 * the inode has I_FREEING set, flusher thread won't start new work on
573 	 * the inode.  We just have to wait for running writeback to finish.
574 	 */
575 	inode_wait_for_writeback(inode);
576 
577 	if (op->evict_inode) {
578 		op->evict_inode(inode);
579 	} else {
580 		truncate_inode_pages_final(&inode->i_data);
581 		clear_inode(inode);
582 	}
583 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
584 		bd_forget(inode);
585 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
586 		cd_forget(inode);
587 
588 	remove_inode_hash(inode);
589 
590 	spin_lock(&inode->i_lock);
591 	wake_up_bit(&inode->i_state, __I_NEW);
592 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
593 	spin_unlock(&inode->i_lock);
594 
595 	destroy_inode(inode);
596 }
597 
598 /*
599  * dispose_list - dispose of the contents of a local list
600  * @head: the head of the list to free
601  *
602  * Dispose-list gets a local list with local inodes in it, so it doesn't
603  * need to worry about list corruption and SMP locks.
604  */
605 static void dispose_list(struct list_head *head)
606 {
607 	while (!list_empty(head)) {
608 		struct inode *inode;
609 
610 		inode = list_first_entry(head, struct inode, i_lru);
611 		list_del_init(&inode->i_lru);
612 
613 		evict(inode);
614 		cond_resched();
615 	}
616 }
617 
618 /**
619  * evict_inodes	- evict all evictable inodes for a superblock
620  * @sb:		superblock to operate on
621  *
622  * Make sure that no inodes with zero refcount are retained.  This is
623  * called by superblock shutdown after having SB_ACTIVE flag removed,
624  * so any inode reaching zero refcount during or after that call will
625  * be immediately evicted.
626  */
627 void evict_inodes(struct super_block *sb)
628 {
629 	struct inode *inode, *next;
630 	LIST_HEAD(dispose);
631 
632 again:
633 	spin_lock(&sb->s_inode_list_lock);
634 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
635 		if (atomic_read(&inode->i_count))
636 			continue;
637 
638 		spin_lock(&inode->i_lock);
639 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
640 			spin_unlock(&inode->i_lock);
641 			continue;
642 		}
643 
644 		inode->i_state |= I_FREEING;
645 		inode_lru_list_del(inode);
646 		spin_unlock(&inode->i_lock);
647 		list_add(&inode->i_lru, &dispose);
648 
649 		/*
650 		 * We can have a ton of inodes to evict at unmount time given
651 		 * enough memory, check to see if we need to go to sleep for a
652 		 * bit so we don't livelock.
653 		 */
654 		if (need_resched()) {
655 			spin_unlock(&sb->s_inode_list_lock);
656 			cond_resched();
657 			dispose_list(&dispose);
658 			goto again;
659 		}
660 	}
661 	spin_unlock(&sb->s_inode_list_lock);
662 
663 	dispose_list(&dispose);
664 }
665 EXPORT_SYMBOL_GPL(evict_inodes);
666 
667 /**
668  * invalidate_inodes	- attempt to free all inodes on a superblock
669  * @sb:		superblock to operate on
670  * @kill_dirty: flag to guide handling of dirty inodes
671  *
672  * Attempts to free all inodes for a given superblock.  If there were any
673  * busy inodes return a non-zero value, else zero.
674  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
675  * them as busy.
676  */
677 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
678 {
679 	int busy = 0;
680 	struct inode *inode, *next;
681 	LIST_HEAD(dispose);
682 
683 again:
684 	spin_lock(&sb->s_inode_list_lock);
685 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
686 		spin_lock(&inode->i_lock);
687 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
688 			spin_unlock(&inode->i_lock);
689 			continue;
690 		}
691 		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
692 			spin_unlock(&inode->i_lock);
693 			busy = 1;
694 			continue;
695 		}
696 		if (atomic_read(&inode->i_count)) {
697 			spin_unlock(&inode->i_lock);
698 			busy = 1;
699 			continue;
700 		}
701 
702 		inode->i_state |= I_FREEING;
703 		inode_lru_list_del(inode);
704 		spin_unlock(&inode->i_lock);
705 		list_add(&inode->i_lru, &dispose);
706 		if (need_resched()) {
707 			spin_unlock(&sb->s_inode_list_lock);
708 			cond_resched();
709 			dispose_list(&dispose);
710 			goto again;
711 		}
712 	}
713 	spin_unlock(&sb->s_inode_list_lock);
714 
715 	dispose_list(&dispose);
716 
717 	return busy;
718 }
719 
720 /*
721  * Isolate the inode from the LRU in preparation for freeing it.
722  *
723  * Any inodes which are pinned purely because of attached pagecache have their
724  * pagecache removed.  If the inode has metadata buffers attached to
725  * mapping->private_list then try to remove them.
726  *
727  * If the inode has the I_REFERENCED flag set, then it means that it has been
728  * used recently - the flag is set in iput_final(). When we encounter such an
729  * inode, clear the flag and move it to the back of the LRU so it gets another
730  * pass through the LRU before it gets reclaimed. This is necessary because of
731  * the fact we are doing lazy LRU updates to minimise lock contention so the
732  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
733  * with this flag set because they are the inodes that are out of order.
734  */
735 static enum lru_status inode_lru_isolate(struct list_head *item,
736 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
737 {
738 	struct list_head *freeable = arg;
739 	struct inode	*inode = container_of(item, struct inode, i_lru);
740 
741 	/*
742 	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
743 	 * If we fail to get the lock, just skip it.
744 	 */
745 	if (!spin_trylock(&inode->i_lock))
746 		return LRU_SKIP;
747 
748 	/*
749 	 * Referenced or dirty inodes are still in use. Give them another pass
750 	 * through the LRU as we canot reclaim them now.
751 	 */
752 	if (atomic_read(&inode->i_count) ||
753 	    (inode->i_state & ~I_REFERENCED)) {
754 		list_lru_isolate(lru, &inode->i_lru);
755 		spin_unlock(&inode->i_lock);
756 		this_cpu_dec(nr_unused);
757 		return LRU_REMOVED;
758 	}
759 
760 	/* recently referenced inodes get one more pass */
761 	if (inode->i_state & I_REFERENCED) {
762 		inode->i_state &= ~I_REFERENCED;
763 		spin_unlock(&inode->i_lock);
764 		return LRU_ROTATE;
765 	}
766 
767 	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
768 		__iget(inode);
769 		spin_unlock(&inode->i_lock);
770 		spin_unlock(lru_lock);
771 		if (remove_inode_buffers(inode)) {
772 			unsigned long reap;
773 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
774 			if (current_is_kswapd())
775 				__count_vm_events(KSWAPD_INODESTEAL, reap);
776 			else
777 				__count_vm_events(PGINODESTEAL, reap);
778 			if (current->reclaim_state)
779 				current->reclaim_state->reclaimed_slab += reap;
780 		}
781 		iput(inode);
782 		spin_lock(lru_lock);
783 		return LRU_RETRY;
784 	}
785 
786 	WARN_ON(inode->i_state & I_NEW);
787 	inode->i_state |= I_FREEING;
788 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
789 	spin_unlock(&inode->i_lock);
790 
791 	this_cpu_dec(nr_unused);
792 	return LRU_REMOVED;
793 }
794 
795 /*
796  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
797  * This is called from the superblock shrinker function with a number of inodes
798  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
799  * then are freed outside inode_lock by dispose_list().
800  */
801 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
802 {
803 	LIST_HEAD(freeable);
804 	long freed;
805 
806 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
807 				     inode_lru_isolate, &freeable);
808 	dispose_list(&freeable);
809 	return freed;
810 }
811 
812 static void __wait_on_freeing_inode(struct inode *inode);
813 /*
814  * Called with the inode lock held.
815  */
816 static struct inode *find_inode(struct super_block *sb,
817 				struct hlist_head *head,
818 				int (*test)(struct inode *, void *),
819 				void *data)
820 {
821 	struct inode *inode = NULL;
822 
823 repeat:
824 	hlist_for_each_entry(inode, head, i_hash) {
825 		if (inode->i_sb != sb)
826 			continue;
827 		if (!test(inode, data))
828 			continue;
829 		spin_lock(&inode->i_lock);
830 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
831 			__wait_on_freeing_inode(inode);
832 			goto repeat;
833 		}
834 		if (unlikely(inode->i_state & I_CREATING)) {
835 			spin_unlock(&inode->i_lock);
836 			return ERR_PTR(-ESTALE);
837 		}
838 		__iget(inode);
839 		spin_unlock(&inode->i_lock);
840 		return inode;
841 	}
842 	return NULL;
843 }
844 
845 /*
846  * find_inode_fast is the fast path version of find_inode, see the comment at
847  * iget_locked for details.
848  */
849 static struct inode *find_inode_fast(struct super_block *sb,
850 				struct hlist_head *head, unsigned long ino)
851 {
852 	struct inode *inode = NULL;
853 
854 repeat:
855 	hlist_for_each_entry(inode, head, i_hash) {
856 		if (inode->i_ino != ino)
857 			continue;
858 		if (inode->i_sb != sb)
859 			continue;
860 		spin_lock(&inode->i_lock);
861 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
862 			__wait_on_freeing_inode(inode);
863 			goto repeat;
864 		}
865 		if (unlikely(inode->i_state & I_CREATING)) {
866 			spin_unlock(&inode->i_lock);
867 			return ERR_PTR(-ESTALE);
868 		}
869 		__iget(inode);
870 		spin_unlock(&inode->i_lock);
871 		return inode;
872 	}
873 	return NULL;
874 }
875 
876 /*
877  * Each cpu owns a range of LAST_INO_BATCH numbers.
878  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
879  * to renew the exhausted range.
880  *
881  * This does not significantly increase overflow rate because every CPU can
882  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
883  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
884  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
885  * overflow rate by 2x, which does not seem too significant.
886  *
887  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
888  * error if st_ino won't fit in target struct field. Use 32bit counter
889  * here to attempt to avoid that.
890  */
891 #define LAST_INO_BATCH 1024
892 static DEFINE_PER_CPU(unsigned int, last_ino);
893 
894 unsigned int get_next_ino(void)
895 {
896 	unsigned int *p = &get_cpu_var(last_ino);
897 	unsigned int res = *p;
898 
899 #ifdef CONFIG_SMP
900 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
901 		static atomic_t shared_last_ino;
902 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
903 
904 		res = next - LAST_INO_BATCH;
905 	}
906 #endif
907 
908 	res++;
909 	/* get_next_ino should not provide a 0 inode number */
910 	if (unlikely(!res))
911 		res++;
912 	*p = res;
913 	put_cpu_var(last_ino);
914 	return res;
915 }
916 EXPORT_SYMBOL(get_next_ino);
917 
918 /**
919  *	new_inode_pseudo 	- obtain an inode
920  *	@sb: superblock
921  *
922  *	Allocates a new inode for given superblock.
923  *	Inode wont be chained in superblock s_inodes list
924  *	This means :
925  *	- fs can't be unmount
926  *	- quotas, fsnotify, writeback can't work
927  */
928 struct inode *new_inode_pseudo(struct super_block *sb)
929 {
930 	struct inode *inode = alloc_inode(sb);
931 
932 	if (inode) {
933 		spin_lock(&inode->i_lock);
934 		inode->i_state = 0;
935 		spin_unlock(&inode->i_lock);
936 		INIT_LIST_HEAD(&inode->i_sb_list);
937 	}
938 	return inode;
939 }
940 
941 /**
942  *	new_inode 	- obtain an inode
943  *	@sb: superblock
944  *
945  *	Allocates a new inode for given superblock. The default gfp_mask
946  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
947  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
948  *	for the page cache are not reclaimable or migratable,
949  *	mapping_set_gfp_mask() must be called with suitable flags on the
950  *	newly created inode's mapping
951  *
952  */
953 struct inode *new_inode(struct super_block *sb)
954 {
955 	struct inode *inode;
956 
957 	spin_lock_prefetch(&sb->s_inode_list_lock);
958 
959 	inode = new_inode_pseudo(sb);
960 	if (inode)
961 		inode_sb_list_add(inode);
962 	return inode;
963 }
964 EXPORT_SYMBOL(new_inode);
965 
966 #ifdef CONFIG_DEBUG_LOCK_ALLOC
967 void lockdep_annotate_inode_mutex_key(struct inode *inode)
968 {
969 	if (S_ISDIR(inode->i_mode)) {
970 		struct file_system_type *type = inode->i_sb->s_type;
971 
972 		/* Set new key only if filesystem hasn't already changed it */
973 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
974 			/*
975 			 * ensure nobody is actually holding i_mutex
976 			 */
977 			// mutex_destroy(&inode->i_mutex);
978 			init_rwsem(&inode->i_rwsem);
979 			lockdep_set_class(&inode->i_rwsem,
980 					  &type->i_mutex_dir_key);
981 		}
982 	}
983 }
984 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
985 #endif
986 
987 /**
988  * unlock_new_inode - clear the I_NEW state and wake up any waiters
989  * @inode:	new inode to unlock
990  *
991  * Called when the inode is fully initialised to clear the new state of the
992  * inode and wake up anyone waiting for the inode to finish initialisation.
993  */
994 void unlock_new_inode(struct inode *inode)
995 {
996 	lockdep_annotate_inode_mutex_key(inode);
997 	spin_lock(&inode->i_lock);
998 	WARN_ON(!(inode->i_state & I_NEW));
999 	inode->i_state &= ~I_NEW & ~I_CREATING;
1000 	smp_mb();
1001 	wake_up_bit(&inode->i_state, __I_NEW);
1002 	spin_unlock(&inode->i_lock);
1003 }
1004 EXPORT_SYMBOL(unlock_new_inode);
1005 
1006 void discard_new_inode(struct inode *inode)
1007 {
1008 	lockdep_annotate_inode_mutex_key(inode);
1009 	spin_lock(&inode->i_lock);
1010 	WARN_ON(!(inode->i_state & I_NEW));
1011 	inode->i_state &= ~I_NEW;
1012 	smp_mb();
1013 	wake_up_bit(&inode->i_state, __I_NEW);
1014 	spin_unlock(&inode->i_lock);
1015 	iput(inode);
1016 }
1017 EXPORT_SYMBOL(discard_new_inode);
1018 
1019 /**
1020  * lock_two_nondirectories - take two i_mutexes on non-directory objects
1021  *
1022  * Lock any non-NULL argument that is not a directory.
1023  * Zero, one or two objects may be locked by this function.
1024  *
1025  * @inode1: first inode to lock
1026  * @inode2: second inode to lock
1027  */
1028 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1029 {
1030 	if (inode1 > inode2)
1031 		swap(inode1, inode2);
1032 
1033 	if (inode1 && !S_ISDIR(inode1->i_mode))
1034 		inode_lock(inode1);
1035 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1036 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1037 }
1038 EXPORT_SYMBOL(lock_two_nondirectories);
1039 
1040 /**
1041  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1042  * @inode1: first inode to unlock
1043  * @inode2: second inode to unlock
1044  */
1045 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1046 {
1047 	if (inode1 && !S_ISDIR(inode1->i_mode))
1048 		inode_unlock(inode1);
1049 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1050 		inode_unlock(inode2);
1051 }
1052 EXPORT_SYMBOL(unlock_two_nondirectories);
1053 
1054 /**
1055  * inode_insert5 - obtain an inode from a mounted file system
1056  * @inode:	pre-allocated inode to use for insert to cache
1057  * @hashval:	hash value (usually inode number) to get
1058  * @test:	callback used for comparisons between inodes
1059  * @set:	callback used to initialize a new struct inode
1060  * @data:	opaque data pointer to pass to @test and @set
1061  *
1062  * Search for the inode specified by @hashval and @data in the inode cache,
1063  * and if present it is return it with an increased reference count. This is
1064  * a variant of iget5_locked() for callers that don't want to fail on memory
1065  * allocation of inode.
1066  *
1067  * If the inode is not in cache, insert the pre-allocated inode to cache and
1068  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1069  * to fill it in before unlocking it via unlock_new_inode().
1070  *
1071  * Note both @test and @set are called with the inode_hash_lock held, so can't
1072  * sleep.
1073  */
1074 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1075 			    int (*test)(struct inode *, void *),
1076 			    int (*set)(struct inode *, void *), void *data)
1077 {
1078 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1079 	struct inode *old;
1080 	bool creating = inode->i_state & I_CREATING;
1081 
1082 again:
1083 	spin_lock(&inode_hash_lock);
1084 	old = find_inode(inode->i_sb, head, test, data);
1085 	if (unlikely(old)) {
1086 		/*
1087 		 * Uhhuh, somebody else created the same inode under us.
1088 		 * Use the old inode instead of the preallocated one.
1089 		 */
1090 		spin_unlock(&inode_hash_lock);
1091 		if (IS_ERR(old))
1092 			return NULL;
1093 		wait_on_inode(old);
1094 		if (unlikely(inode_unhashed(old))) {
1095 			iput(old);
1096 			goto again;
1097 		}
1098 		return old;
1099 	}
1100 
1101 	if (set && unlikely(set(inode, data))) {
1102 		inode = NULL;
1103 		goto unlock;
1104 	}
1105 
1106 	/*
1107 	 * Return the locked inode with I_NEW set, the
1108 	 * caller is responsible for filling in the contents
1109 	 */
1110 	spin_lock(&inode->i_lock);
1111 	inode->i_state |= I_NEW;
1112 	hlist_add_head_rcu(&inode->i_hash, head);
1113 	spin_unlock(&inode->i_lock);
1114 	if (!creating)
1115 		inode_sb_list_add(inode);
1116 unlock:
1117 	spin_unlock(&inode_hash_lock);
1118 
1119 	return inode;
1120 }
1121 EXPORT_SYMBOL(inode_insert5);
1122 
1123 /**
1124  * iget5_locked - obtain an inode from a mounted file system
1125  * @sb:		super block of file system
1126  * @hashval:	hash value (usually inode number) to get
1127  * @test:	callback used for comparisons between inodes
1128  * @set:	callback used to initialize a new struct inode
1129  * @data:	opaque data pointer to pass to @test and @set
1130  *
1131  * Search for the inode specified by @hashval and @data in the inode cache,
1132  * and if present it is return it with an increased reference count. This is
1133  * a generalized version of iget_locked() for file systems where the inode
1134  * number is not sufficient for unique identification of an inode.
1135  *
1136  * If the inode is not in cache, allocate a new inode and return it locked,
1137  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1138  * before unlocking it via unlock_new_inode().
1139  *
1140  * Note both @test and @set are called with the inode_hash_lock held, so can't
1141  * sleep.
1142  */
1143 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1144 		int (*test)(struct inode *, void *),
1145 		int (*set)(struct inode *, void *), void *data)
1146 {
1147 	struct inode *inode = ilookup5(sb, hashval, test, data);
1148 
1149 	if (!inode) {
1150 		struct inode *new = alloc_inode(sb);
1151 
1152 		if (new) {
1153 			new->i_state = 0;
1154 			inode = inode_insert5(new, hashval, test, set, data);
1155 			if (unlikely(inode != new))
1156 				destroy_inode(new);
1157 		}
1158 	}
1159 	return inode;
1160 }
1161 EXPORT_SYMBOL(iget5_locked);
1162 
1163 /**
1164  * iget_locked - obtain an inode from a mounted file system
1165  * @sb:		super block of file system
1166  * @ino:	inode number to get
1167  *
1168  * Search for the inode specified by @ino in the inode cache and if present
1169  * return it with an increased reference count. This is for file systems
1170  * where the inode number is sufficient for unique identification of an inode.
1171  *
1172  * If the inode is not in cache, allocate a new inode and return it locked,
1173  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1174  * before unlocking it via unlock_new_inode().
1175  */
1176 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1177 {
1178 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1179 	struct inode *inode;
1180 again:
1181 	spin_lock(&inode_hash_lock);
1182 	inode = find_inode_fast(sb, head, ino);
1183 	spin_unlock(&inode_hash_lock);
1184 	if (inode) {
1185 		if (IS_ERR(inode))
1186 			return NULL;
1187 		wait_on_inode(inode);
1188 		if (unlikely(inode_unhashed(inode))) {
1189 			iput(inode);
1190 			goto again;
1191 		}
1192 		return inode;
1193 	}
1194 
1195 	inode = alloc_inode(sb);
1196 	if (inode) {
1197 		struct inode *old;
1198 
1199 		spin_lock(&inode_hash_lock);
1200 		/* We released the lock, so.. */
1201 		old = find_inode_fast(sb, head, ino);
1202 		if (!old) {
1203 			inode->i_ino = ino;
1204 			spin_lock(&inode->i_lock);
1205 			inode->i_state = I_NEW;
1206 			hlist_add_head_rcu(&inode->i_hash, head);
1207 			spin_unlock(&inode->i_lock);
1208 			inode_sb_list_add(inode);
1209 			spin_unlock(&inode_hash_lock);
1210 
1211 			/* Return the locked inode with I_NEW set, the
1212 			 * caller is responsible for filling in the contents
1213 			 */
1214 			return inode;
1215 		}
1216 
1217 		/*
1218 		 * Uhhuh, somebody else created the same inode under
1219 		 * us. Use the old inode instead of the one we just
1220 		 * allocated.
1221 		 */
1222 		spin_unlock(&inode_hash_lock);
1223 		destroy_inode(inode);
1224 		if (IS_ERR(old))
1225 			return NULL;
1226 		inode = old;
1227 		wait_on_inode(inode);
1228 		if (unlikely(inode_unhashed(inode))) {
1229 			iput(inode);
1230 			goto again;
1231 		}
1232 	}
1233 	return inode;
1234 }
1235 EXPORT_SYMBOL(iget_locked);
1236 
1237 /*
1238  * search the inode cache for a matching inode number.
1239  * If we find one, then the inode number we are trying to
1240  * allocate is not unique and so we should not use it.
1241  *
1242  * Returns 1 if the inode number is unique, 0 if it is not.
1243  */
1244 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1245 {
1246 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1247 	struct inode *inode;
1248 
1249 	hlist_for_each_entry_rcu(inode, b, i_hash) {
1250 		if (inode->i_ino == ino && inode->i_sb == sb)
1251 			return 0;
1252 	}
1253 	return 1;
1254 }
1255 
1256 /**
1257  *	iunique - get a unique inode number
1258  *	@sb: superblock
1259  *	@max_reserved: highest reserved inode number
1260  *
1261  *	Obtain an inode number that is unique on the system for a given
1262  *	superblock. This is used by file systems that have no natural
1263  *	permanent inode numbering system. An inode number is returned that
1264  *	is higher than the reserved limit but unique.
1265  *
1266  *	BUGS:
1267  *	With a large number of inodes live on the file system this function
1268  *	currently becomes quite slow.
1269  */
1270 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1271 {
1272 	/*
1273 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1274 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1275 	 * here to attempt to avoid that.
1276 	 */
1277 	static DEFINE_SPINLOCK(iunique_lock);
1278 	static unsigned int counter;
1279 	ino_t res;
1280 
1281 	rcu_read_lock();
1282 	spin_lock(&iunique_lock);
1283 	do {
1284 		if (counter <= max_reserved)
1285 			counter = max_reserved + 1;
1286 		res = counter++;
1287 	} while (!test_inode_iunique(sb, res));
1288 	spin_unlock(&iunique_lock);
1289 	rcu_read_unlock();
1290 
1291 	return res;
1292 }
1293 EXPORT_SYMBOL(iunique);
1294 
1295 struct inode *igrab(struct inode *inode)
1296 {
1297 	spin_lock(&inode->i_lock);
1298 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1299 		__iget(inode);
1300 		spin_unlock(&inode->i_lock);
1301 	} else {
1302 		spin_unlock(&inode->i_lock);
1303 		/*
1304 		 * Handle the case where s_op->clear_inode is not been
1305 		 * called yet, and somebody is calling igrab
1306 		 * while the inode is getting freed.
1307 		 */
1308 		inode = NULL;
1309 	}
1310 	return inode;
1311 }
1312 EXPORT_SYMBOL(igrab);
1313 
1314 /**
1315  * ilookup5_nowait - search for an inode in the inode cache
1316  * @sb:		super block of file system to search
1317  * @hashval:	hash value (usually inode number) to search for
1318  * @test:	callback used for comparisons between inodes
1319  * @data:	opaque data pointer to pass to @test
1320  *
1321  * Search for the inode specified by @hashval and @data in the inode cache.
1322  * If the inode is in the cache, the inode is returned with an incremented
1323  * reference count.
1324  *
1325  * Note: I_NEW is not waited upon so you have to be very careful what you do
1326  * with the returned inode.  You probably should be using ilookup5() instead.
1327  *
1328  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1329  */
1330 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1331 		int (*test)(struct inode *, void *), void *data)
1332 {
1333 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1334 	struct inode *inode;
1335 
1336 	spin_lock(&inode_hash_lock);
1337 	inode = find_inode(sb, head, test, data);
1338 	spin_unlock(&inode_hash_lock);
1339 
1340 	return IS_ERR(inode) ? NULL : inode;
1341 }
1342 EXPORT_SYMBOL(ilookup5_nowait);
1343 
1344 /**
1345  * ilookup5 - search for an inode in the inode cache
1346  * @sb:		super block of file system to search
1347  * @hashval:	hash value (usually inode number) to search for
1348  * @test:	callback used for comparisons between inodes
1349  * @data:	opaque data pointer to pass to @test
1350  *
1351  * Search for the inode specified by @hashval and @data in the inode cache,
1352  * and if the inode is in the cache, return the inode with an incremented
1353  * reference count.  Waits on I_NEW before returning the inode.
1354  * returned with an incremented reference count.
1355  *
1356  * This is a generalized version of ilookup() for file systems where the
1357  * inode number is not sufficient for unique identification of an inode.
1358  *
1359  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1360  */
1361 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1362 		int (*test)(struct inode *, void *), void *data)
1363 {
1364 	struct inode *inode;
1365 again:
1366 	inode = ilookup5_nowait(sb, hashval, test, data);
1367 	if (inode) {
1368 		wait_on_inode(inode);
1369 		if (unlikely(inode_unhashed(inode))) {
1370 			iput(inode);
1371 			goto again;
1372 		}
1373 	}
1374 	return inode;
1375 }
1376 EXPORT_SYMBOL(ilookup5);
1377 
1378 /**
1379  * ilookup - search for an inode in the inode cache
1380  * @sb:		super block of file system to search
1381  * @ino:	inode number to search for
1382  *
1383  * Search for the inode @ino in the inode cache, and if the inode is in the
1384  * cache, the inode is returned with an incremented reference count.
1385  */
1386 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1387 {
1388 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1389 	struct inode *inode;
1390 again:
1391 	spin_lock(&inode_hash_lock);
1392 	inode = find_inode_fast(sb, head, ino);
1393 	spin_unlock(&inode_hash_lock);
1394 
1395 	if (inode) {
1396 		if (IS_ERR(inode))
1397 			return NULL;
1398 		wait_on_inode(inode);
1399 		if (unlikely(inode_unhashed(inode))) {
1400 			iput(inode);
1401 			goto again;
1402 		}
1403 	}
1404 	return inode;
1405 }
1406 EXPORT_SYMBOL(ilookup);
1407 
1408 /**
1409  * find_inode_nowait - find an inode in the inode cache
1410  * @sb:		super block of file system to search
1411  * @hashval:	hash value (usually inode number) to search for
1412  * @match:	callback used for comparisons between inodes
1413  * @data:	opaque data pointer to pass to @match
1414  *
1415  * Search for the inode specified by @hashval and @data in the inode
1416  * cache, where the helper function @match will return 0 if the inode
1417  * does not match, 1 if the inode does match, and -1 if the search
1418  * should be stopped.  The @match function must be responsible for
1419  * taking the i_lock spin_lock and checking i_state for an inode being
1420  * freed or being initialized, and incrementing the reference count
1421  * before returning 1.  It also must not sleep, since it is called with
1422  * the inode_hash_lock spinlock held.
1423  *
1424  * This is a even more generalized version of ilookup5() when the
1425  * function must never block --- find_inode() can block in
1426  * __wait_on_freeing_inode() --- or when the caller can not increment
1427  * the reference count because the resulting iput() might cause an
1428  * inode eviction.  The tradeoff is that the @match funtion must be
1429  * very carefully implemented.
1430  */
1431 struct inode *find_inode_nowait(struct super_block *sb,
1432 				unsigned long hashval,
1433 				int (*match)(struct inode *, unsigned long,
1434 					     void *),
1435 				void *data)
1436 {
1437 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1438 	struct inode *inode, *ret_inode = NULL;
1439 	int mval;
1440 
1441 	spin_lock(&inode_hash_lock);
1442 	hlist_for_each_entry(inode, head, i_hash) {
1443 		if (inode->i_sb != sb)
1444 			continue;
1445 		mval = match(inode, hashval, data);
1446 		if (mval == 0)
1447 			continue;
1448 		if (mval == 1)
1449 			ret_inode = inode;
1450 		goto out;
1451 	}
1452 out:
1453 	spin_unlock(&inode_hash_lock);
1454 	return ret_inode;
1455 }
1456 EXPORT_SYMBOL(find_inode_nowait);
1457 
1458 /**
1459  * find_inode_rcu - find an inode in the inode cache
1460  * @sb:		Super block of file system to search
1461  * @hashval:	Key to hash
1462  * @test:	Function to test match on an inode
1463  * @data:	Data for test function
1464  *
1465  * Search for the inode specified by @hashval and @data in the inode cache,
1466  * where the helper function @test will return 0 if the inode does not match
1467  * and 1 if it does.  The @test function must be responsible for taking the
1468  * i_lock spin_lock and checking i_state for an inode being freed or being
1469  * initialized.
1470  *
1471  * If successful, this will return the inode for which the @test function
1472  * returned 1 and NULL otherwise.
1473  *
1474  * The @test function is not permitted to take a ref on any inode presented.
1475  * It is also not permitted to sleep.
1476  *
1477  * The caller must hold the RCU read lock.
1478  */
1479 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1480 			     int (*test)(struct inode *, void *), void *data)
1481 {
1482 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1483 	struct inode *inode;
1484 
1485 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1486 			 "suspicious find_inode_rcu() usage");
1487 
1488 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1489 		if (inode->i_sb == sb &&
1490 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1491 		    test(inode, data))
1492 			return inode;
1493 	}
1494 	return NULL;
1495 }
1496 EXPORT_SYMBOL(find_inode_rcu);
1497 
1498 /**
1499  * find_inode_by_rcu - Find an inode in the inode cache
1500  * @sb:		Super block of file system to search
1501  * @ino:	The inode number to match
1502  *
1503  * Search for the inode specified by @hashval and @data in the inode cache,
1504  * where the helper function @test will return 0 if the inode does not match
1505  * and 1 if it does.  The @test function must be responsible for taking the
1506  * i_lock spin_lock and checking i_state for an inode being freed or being
1507  * initialized.
1508  *
1509  * If successful, this will return the inode for which the @test function
1510  * returned 1 and NULL otherwise.
1511  *
1512  * The @test function is not permitted to take a ref on any inode presented.
1513  * It is also not permitted to sleep.
1514  *
1515  * The caller must hold the RCU read lock.
1516  */
1517 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1518 				    unsigned long ino)
1519 {
1520 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1521 	struct inode *inode;
1522 
1523 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1524 			 "suspicious find_inode_by_ino_rcu() usage");
1525 
1526 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1527 		if (inode->i_ino == ino &&
1528 		    inode->i_sb == sb &&
1529 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1530 		    return inode;
1531 	}
1532 	return NULL;
1533 }
1534 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1535 
1536 int insert_inode_locked(struct inode *inode)
1537 {
1538 	struct super_block *sb = inode->i_sb;
1539 	ino_t ino = inode->i_ino;
1540 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1541 
1542 	while (1) {
1543 		struct inode *old = NULL;
1544 		spin_lock(&inode_hash_lock);
1545 		hlist_for_each_entry(old, head, i_hash) {
1546 			if (old->i_ino != ino)
1547 				continue;
1548 			if (old->i_sb != sb)
1549 				continue;
1550 			spin_lock(&old->i_lock);
1551 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1552 				spin_unlock(&old->i_lock);
1553 				continue;
1554 			}
1555 			break;
1556 		}
1557 		if (likely(!old)) {
1558 			spin_lock(&inode->i_lock);
1559 			inode->i_state |= I_NEW | I_CREATING;
1560 			hlist_add_head_rcu(&inode->i_hash, head);
1561 			spin_unlock(&inode->i_lock);
1562 			spin_unlock(&inode_hash_lock);
1563 			return 0;
1564 		}
1565 		if (unlikely(old->i_state & I_CREATING)) {
1566 			spin_unlock(&old->i_lock);
1567 			spin_unlock(&inode_hash_lock);
1568 			return -EBUSY;
1569 		}
1570 		__iget(old);
1571 		spin_unlock(&old->i_lock);
1572 		spin_unlock(&inode_hash_lock);
1573 		wait_on_inode(old);
1574 		if (unlikely(!inode_unhashed(old))) {
1575 			iput(old);
1576 			return -EBUSY;
1577 		}
1578 		iput(old);
1579 	}
1580 }
1581 EXPORT_SYMBOL(insert_inode_locked);
1582 
1583 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1584 		int (*test)(struct inode *, void *), void *data)
1585 {
1586 	struct inode *old;
1587 
1588 	inode->i_state |= I_CREATING;
1589 	old = inode_insert5(inode, hashval, test, NULL, data);
1590 
1591 	if (old != inode) {
1592 		iput(old);
1593 		return -EBUSY;
1594 	}
1595 	return 0;
1596 }
1597 EXPORT_SYMBOL(insert_inode_locked4);
1598 
1599 
1600 int generic_delete_inode(struct inode *inode)
1601 {
1602 	return 1;
1603 }
1604 EXPORT_SYMBOL(generic_delete_inode);
1605 
1606 /*
1607  * Called when we're dropping the last reference
1608  * to an inode.
1609  *
1610  * Call the FS "drop_inode()" function, defaulting to
1611  * the legacy UNIX filesystem behaviour.  If it tells
1612  * us to evict inode, do so.  Otherwise, retain inode
1613  * in cache if fs is alive, sync and evict if fs is
1614  * shutting down.
1615  */
1616 static void iput_final(struct inode *inode)
1617 {
1618 	struct super_block *sb = inode->i_sb;
1619 	const struct super_operations *op = inode->i_sb->s_op;
1620 	unsigned long state;
1621 	int drop;
1622 
1623 	WARN_ON(inode->i_state & I_NEW);
1624 
1625 	if (op->drop_inode)
1626 		drop = op->drop_inode(inode);
1627 	else
1628 		drop = generic_drop_inode(inode);
1629 
1630 	if (!drop && (sb->s_flags & SB_ACTIVE)) {
1631 		inode_add_lru(inode);
1632 		spin_unlock(&inode->i_lock);
1633 		return;
1634 	}
1635 
1636 	state = inode->i_state;
1637 	if (!drop) {
1638 		WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1639 		spin_unlock(&inode->i_lock);
1640 
1641 		write_inode_now(inode, 1);
1642 
1643 		spin_lock(&inode->i_lock);
1644 		state = inode->i_state;
1645 		WARN_ON(state & I_NEW);
1646 		state &= ~I_WILL_FREE;
1647 	}
1648 
1649 	WRITE_ONCE(inode->i_state, state | I_FREEING);
1650 	if (!list_empty(&inode->i_lru))
1651 		inode_lru_list_del(inode);
1652 	spin_unlock(&inode->i_lock);
1653 
1654 	evict(inode);
1655 }
1656 
1657 /**
1658  *	iput	- put an inode
1659  *	@inode: inode to put
1660  *
1661  *	Puts an inode, dropping its usage count. If the inode use count hits
1662  *	zero, the inode is then freed and may also be destroyed.
1663  *
1664  *	Consequently, iput() can sleep.
1665  */
1666 void iput(struct inode *inode)
1667 {
1668 	if (!inode)
1669 		return;
1670 	BUG_ON(inode->i_state & I_CLEAR);
1671 retry:
1672 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1673 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1674 			atomic_inc(&inode->i_count);
1675 			spin_unlock(&inode->i_lock);
1676 			trace_writeback_lazytime_iput(inode);
1677 			mark_inode_dirty_sync(inode);
1678 			goto retry;
1679 		}
1680 		iput_final(inode);
1681 	}
1682 }
1683 EXPORT_SYMBOL(iput);
1684 
1685 #ifdef CONFIG_BLOCK
1686 /**
1687  *	bmap	- find a block number in a file
1688  *	@inode:  inode owning the block number being requested
1689  *	@block: pointer containing the block to find
1690  *
1691  *	Replaces the value in ``*block`` with the block number on the device holding
1692  *	corresponding to the requested block number in the file.
1693  *	That is, asked for block 4 of inode 1 the function will replace the
1694  *	4 in ``*block``, with disk block relative to the disk start that holds that
1695  *	block of the file.
1696  *
1697  *	Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1698  *	hole, returns 0 and ``*block`` is also set to 0.
1699  */
1700 int bmap(struct inode *inode, sector_t *block)
1701 {
1702 	if (!inode->i_mapping->a_ops->bmap)
1703 		return -EINVAL;
1704 
1705 	*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1706 	return 0;
1707 }
1708 EXPORT_SYMBOL(bmap);
1709 #endif
1710 
1711 /*
1712  * With relative atime, only update atime if the previous atime is
1713  * earlier than either the ctime or mtime or if at least a day has
1714  * passed since the last atime update.
1715  */
1716 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1717 			     struct timespec64 now)
1718 {
1719 
1720 	if (!(mnt->mnt_flags & MNT_RELATIME))
1721 		return 1;
1722 	/*
1723 	 * Is mtime younger than atime? If yes, update atime:
1724 	 */
1725 	if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1726 		return 1;
1727 	/*
1728 	 * Is ctime younger than atime? If yes, update atime:
1729 	 */
1730 	if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1731 		return 1;
1732 
1733 	/*
1734 	 * Is the previous atime value older than a day? If yes,
1735 	 * update atime:
1736 	 */
1737 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1738 		return 1;
1739 	/*
1740 	 * Good, we can skip the atime update:
1741 	 */
1742 	return 0;
1743 }
1744 
1745 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1746 {
1747 	int iflags = I_DIRTY_TIME;
1748 	bool dirty = false;
1749 
1750 	if (flags & S_ATIME)
1751 		inode->i_atime = *time;
1752 	if (flags & S_VERSION)
1753 		dirty = inode_maybe_inc_iversion(inode, false);
1754 	if (flags & S_CTIME)
1755 		inode->i_ctime = *time;
1756 	if (flags & S_MTIME)
1757 		inode->i_mtime = *time;
1758 	if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1759 	    !(inode->i_sb->s_flags & SB_LAZYTIME))
1760 		dirty = true;
1761 
1762 	if (dirty)
1763 		iflags |= I_DIRTY_SYNC;
1764 	__mark_inode_dirty(inode, iflags);
1765 	return 0;
1766 }
1767 EXPORT_SYMBOL(generic_update_time);
1768 
1769 /*
1770  * This does the actual work of updating an inodes time or version.  Must have
1771  * had called mnt_want_write() before calling this.
1772  */
1773 static int update_time(struct inode *inode, struct timespec64 *time, int flags)
1774 {
1775 	if (inode->i_op->update_time)
1776 		return inode->i_op->update_time(inode, time, flags);
1777 	return generic_update_time(inode, time, flags);
1778 }
1779 
1780 /**
1781  *	touch_atime	-	update the access time
1782  *	@path: the &struct path to update
1783  *	@inode: inode to update
1784  *
1785  *	Update the accessed time on an inode and mark it for writeback.
1786  *	This function automatically handles read only file systems and media,
1787  *	as well as the "noatime" flag and inode specific "noatime" markers.
1788  */
1789 bool atime_needs_update(const struct path *path, struct inode *inode)
1790 {
1791 	struct vfsmount *mnt = path->mnt;
1792 	struct timespec64 now;
1793 
1794 	if (inode->i_flags & S_NOATIME)
1795 		return false;
1796 
1797 	/* Atime updates will likely cause i_uid and i_gid to be written
1798 	 * back improprely if their true value is unknown to the vfs.
1799 	 */
1800 	if (HAS_UNMAPPED_ID(inode))
1801 		return false;
1802 
1803 	if (IS_NOATIME(inode))
1804 		return false;
1805 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1806 		return false;
1807 
1808 	if (mnt->mnt_flags & MNT_NOATIME)
1809 		return false;
1810 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1811 		return false;
1812 
1813 	now = current_time(inode);
1814 
1815 	if (!relatime_need_update(mnt, inode, now))
1816 		return false;
1817 
1818 	if (timespec64_equal(&inode->i_atime, &now))
1819 		return false;
1820 
1821 	return true;
1822 }
1823 
1824 void touch_atime(const struct path *path)
1825 {
1826 	struct vfsmount *mnt = path->mnt;
1827 	struct inode *inode = d_inode(path->dentry);
1828 	struct timespec64 now;
1829 
1830 	if (!atime_needs_update(path, inode))
1831 		return;
1832 
1833 	if (!sb_start_write_trylock(inode->i_sb))
1834 		return;
1835 
1836 	if (__mnt_want_write(mnt) != 0)
1837 		goto skip_update;
1838 	/*
1839 	 * File systems can error out when updating inodes if they need to
1840 	 * allocate new space to modify an inode (such is the case for
1841 	 * Btrfs), but since we touch atime while walking down the path we
1842 	 * really don't care if we failed to update the atime of the file,
1843 	 * so just ignore the return value.
1844 	 * We may also fail on filesystems that have the ability to make parts
1845 	 * of the fs read only, e.g. subvolumes in Btrfs.
1846 	 */
1847 	now = current_time(inode);
1848 	update_time(inode, &now, S_ATIME);
1849 	__mnt_drop_write(mnt);
1850 skip_update:
1851 	sb_end_write(inode->i_sb);
1852 }
1853 EXPORT_SYMBOL(touch_atime);
1854 
1855 /*
1856  * The logic we want is
1857  *
1858  *	if suid or (sgid and xgrp)
1859  *		remove privs
1860  */
1861 int should_remove_suid(struct dentry *dentry)
1862 {
1863 	umode_t mode = d_inode(dentry)->i_mode;
1864 	int kill = 0;
1865 
1866 	/* suid always must be killed */
1867 	if (unlikely(mode & S_ISUID))
1868 		kill = ATTR_KILL_SUID;
1869 
1870 	/*
1871 	 * sgid without any exec bits is just a mandatory locking mark; leave
1872 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1873 	 */
1874 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1875 		kill |= ATTR_KILL_SGID;
1876 
1877 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1878 		return kill;
1879 
1880 	return 0;
1881 }
1882 EXPORT_SYMBOL(should_remove_suid);
1883 
1884 /*
1885  * Return mask of changes for notify_change() that need to be done as a
1886  * response to write or truncate. Return 0 if nothing has to be changed.
1887  * Negative value on error (change should be denied).
1888  */
1889 int dentry_needs_remove_privs(struct dentry *dentry)
1890 {
1891 	struct inode *inode = d_inode(dentry);
1892 	int mask = 0;
1893 	int ret;
1894 
1895 	if (IS_NOSEC(inode))
1896 		return 0;
1897 
1898 	mask = should_remove_suid(dentry);
1899 	ret = security_inode_need_killpriv(dentry);
1900 	if (ret < 0)
1901 		return ret;
1902 	if (ret)
1903 		mask |= ATTR_KILL_PRIV;
1904 	return mask;
1905 }
1906 
1907 static int __remove_privs(struct dentry *dentry, int kill)
1908 {
1909 	struct iattr newattrs;
1910 
1911 	newattrs.ia_valid = ATTR_FORCE | kill;
1912 	/*
1913 	 * Note we call this on write, so notify_change will not
1914 	 * encounter any conflicting delegations:
1915 	 */
1916 	return notify_change(dentry, &newattrs, NULL);
1917 }
1918 
1919 /*
1920  * Remove special file priviledges (suid, capabilities) when file is written
1921  * to or truncated.
1922  */
1923 int file_remove_privs(struct file *file)
1924 {
1925 	struct dentry *dentry = file_dentry(file);
1926 	struct inode *inode = file_inode(file);
1927 	int kill;
1928 	int error = 0;
1929 
1930 	/*
1931 	 * Fast path for nothing security related.
1932 	 * As well for non-regular files, e.g. blkdev inodes.
1933 	 * For example, blkdev_write_iter() might get here
1934 	 * trying to remove privs which it is not allowed to.
1935 	 */
1936 	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1937 		return 0;
1938 
1939 	kill = dentry_needs_remove_privs(dentry);
1940 	if (kill < 0)
1941 		return kill;
1942 	if (kill)
1943 		error = __remove_privs(dentry, kill);
1944 	if (!error)
1945 		inode_has_no_xattr(inode);
1946 
1947 	return error;
1948 }
1949 EXPORT_SYMBOL(file_remove_privs);
1950 
1951 /**
1952  *	file_update_time	-	update mtime and ctime time
1953  *	@file: file accessed
1954  *
1955  *	Update the mtime and ctime members of an inode and mark the inode
1956  *	for writeback.  Note that this function is meant exclusively for
1957  *	usage in the file write path of filesystems, and filesystems may
1958  *	choose to explicitly ignore update via this function with the
1959  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1960  *	timestamps are handled by the server.  This can return an error for
1961  *	file systems who need to allocate space in order to update an inode.
1962  */
1963 
1964 int file_update_time(struct file *file)
1965 {
1966 	struct inode *inode = file_inode(file);
1967 	struct timespec64 now;
1968 	int sync_it = 0;
1969 	int ret;
1970 
1971 	/* First try to exhaust all avenues to not sync */
1972 	if (IS_NOCMTIME(inode))
1973 		return 0;
1974 
1975 	now = current_time(inode);
1976 	if (!timespec64_equal(&inode->i_mtime, &now))
1977 		sync_it = S_MTIME;
1978 
1979 	if (!timespec64_equal(&inode->i_ctime, &now))
1980 		sync_it |= S_CTIME;
1981 
1982 	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1983 		sync_it |= S_VERSION;
1984 
1985 	if (!sync_it)
1986 		return 0;
1987 
1988 	/* Finally allowed to write? Takes lock. */
1989 	if (__mnt_want_write_file(file))
1990 		return 0;
1991 
1992 	ret = update_time(inode, &now, sync_it);
1993 	__mnt_drop_write_file(file);
1994 
1995 	return ret;
1996 }
1997 EXPORT_SYMBOL(file_update_time);
1998 
1999 /* Caller must hold the file's inode lock */
2000 int file_modified(struct file *file)
2001 {
2002 	int err;
2003 
2004 	/*
2005 	 * Clear the security bits if the process is not being run by root.
2006 	 * This keeps people from modifying setuid and setgid binaries.
2007 	 */
2008 	err = file_remove_privs(file);
2009 	if (err)
2010 		return err;
2011 
2012 	if (unlikely(file->f_mode & FMODE_NOCMTIME))
2013 		return 0;
2014 
2015 	return file_update_time(file);
2016 }
2017 EXPORT_SYMBOL(file_modified);
2018 
2019 int inode_needs_sync(struct inode *inode)
2020 {
2021 	if (IS_SYNC(inode))
2022 		return 1;
2023 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2024 		return 1;
2025 	return 0;
2026 }
2027 EXPORT_SYMBOL(inode_needs_sync);
2028 
2029 /*
2030  * If we try to find an inode in the inode hash while it is being
2031  * deleted, we have to wait until the filesystem completes its
2032  * deletion before reporting that it isn't found.  This function waits
2033  * until the deletion _might_ have completed.  Callers are responsible
2034  * to recheck inode state.
2035  *
2036  * It doesn't matter if I_NEW is not set initially, a call to
2037  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2038  * will DTRT.
2039  */
2040 static void __wait_on_freeing_inode(struct inode *inode)
2041 {
2042 	wait_queue_head_t *wq;
2043 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2044 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
2045 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2046 	spin_unlock(&inode->i_lock);
2047 	spin_unlock(&inode_hash_lock);
2048 	schedule();
2049 	finish_wait(wq, &wait.wq_entry);
2050 	spin_lock(&inode_hash_lock);
2051 }
2052 
2053 static __initdata unsigned long ihash_entries;
2054 static int __init set_ihash_entries(char *str)
2055 {
2056 	if (!str)
2057 		return 0;
2058 	ihash_entries = simple_strtoul(str, &str, 0);
2059 	return 1;
2060 }
2061 __setup("ihash_entries=", set_ihash_entries);
2062 
2063 /*
2064  * Initialize the waitqueues and inode hash table.
2065  */
2066 void __init inode_init_early(void)
2067 {
2068 	/* If hashes are distributed across NUMA nodes, defer
2069 	 * hash allocation until vmalloc space is available.
2070 	 */
2071 	if (hashdist)
2072 		return;
2073 
2074 	inode_hashtable =
2075 		alloc_large_system_hash("Inode-cache",
2076 					sizeof(struct hlist_head),
2077 					ihash_entries,
2078 					14,
2079 					HASH_EARLY | HASH_ZERO,
2080 					&i_hash_shift,
2081 					&i_hash_mask,
2082 					0,
2083 					0);
2084 }
2085 
2086 void __init inode_init(void)
2087 {
2088 	/* inode slab cache */
2089 	inode_cachep = kmem_cache_create("inode_cache",
2090 					 sizeof(struct inode),
2091 					 0,
2092 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2093 					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2094 					 init_once);
2095 
2096 	/* Hash may have been set up in inode_init_early */
2097 	if (!hashdist)
2098 		return;
2099 
2100 	inode_hashtable =
2101 		alloc_large_system_hash("Inode-cache",
2102 					sizeof(struct hlist_head),
2103 					ihash_entries,
2104 					14,
2105 					HASH_ZERO,
2106 					&i_hash_shift,
2107 					&i_hash_mask,
2108 					0,
2109 					0);
2110 }
2111 
2112 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2113 {
2114 	inode->i_mode = mode;
2115 	if (S_ISCHR(mode)) {
2116 		inode->i_fop = &def_chr_fops;
2117 		inode->i_rdev = rdev;
2118 	} else if (S_ISBLK(mode)) {
2119 		inode->i_fop = &def_blk_fops;
2120 		inode->i_rdev = rdev;
2121 	} else if (S_ISFIFO(mode))
2122 		inode->i_fop = &pipefifo_fops;
2123 	else if (S_ISSOCK(mode))
2124 		;	/* leave it no_open_fops */
2125 	else
2126 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2127 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2128 				  inode->i_ino);
2129 }
2130 EXPORT_SYMBOL(init_special_inode);
2131 
2132 /**
2133  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2134  * @inode: New inode
2135  * @dir: Directory inode
2136  * @mode: mode of the new inode
2137  */
2138 void inode_init_owner(struct inode *inode, const struct inode *dir,
2139 			umode_t mode)
2140 {
2141 	inode->i_uid = current_fsuid();
2142 	if (dir && dir->i_mode & S_ISGID) {
2143 		inode->i_gid = dir->i_gid;
2144 
2145 		/* Directories are special, and always inherit S_ISGID */
2146 		if (S_ISDIR(mode))
2147 			mode |= S_ISGID;
2148 		else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2149 			 !in_group_p(inode->i_gid) &&
2150 			 !capable_wrt_inode_uidgid(dir, CAP_FSETID))
2151 			mode &= ~S_ISGID;
2152 	} else
2153 		inode->i_gid = current_fsgid();
2154 	inode->i_mode = mode;
2155 }
2156 EXPORT_SYMBOL(inode_init_owner);
2157 
2158 /**
2159  * inode_owner_or_capable - check current task permissions to inode
2160  * @inode: inode being checked
2161  *
2162  * Return true if current either has CAP_FOWNER in a namespace with the
2163  * inode owner uid mapped, or owns the file.
2164  */
2165 bool inode_owner_or_capable(const struct inode *inode)
2166 {
2167 	struct user_namespace *ns;
2168 
2169 	if (uid_eq(current_fsuid(), inode->i_uid))
2170 		return true;
2171 
2172 	ns = current_user_ns();
2173 	if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2174 		return true;
2175 	return false;
2176 }
2177 EXPORT_SYMBOL(inode_owner_or_capable);
2178 
2179 /*
2180  * Direct i/o helper functions
2181  */
2182 static void __inode_dio_wait(struct inode *inode)
2183 {
2184 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2185 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2186 
2187 	do {
2188 		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2189 		if (atomic_read(&inode->i_dio_count))
2190 			schedule();
2191 	} while (atomic_read(&inode->i_dio_count));
2192 	finish_wait(wq, &q.wq_entry);
2193 }
2194 
2195 /**
2196  * inode_dio_wait - wait for outstanding DIO requests to finish
2197  * @inode: inode to wait for
2198  *
2199  * Waits for all pending direct I/O requests to finish so that we can
2200  * proceed with a truncate or equivalent operation.
2201  *
2202  * Must be called under a lock that serializes taking new references
2203  * to i_dio_count, usually by inode->i_mutex.
2204  */
2205 void inode_dio_wait(struct inode *inode)
2206 {
2207 	if (atomic_read(&inode->i_dio_count))
2208 		__inode_dio_wait(inode);
2209 }
2210 EXPORT_SYMBOL(inode_dio_wait);
2211 
2212 /*
2213  * inode_set_flags - atomically set some inode flags
2214  *
2215  * Note: the caller should be holding i_mutex, or else be sure that
2216  * they have exclusive access to the inode structure (i.e., while the
2217  * inode is being instantiated).  The reason for the cmpxchg() loop
2218  * --- which wouldn't be necessary if all code paths which modify
2219  * i_flags actually followed this rule, is that there is at least one
2220  * code path which doesn't today so we use cmpxchg() out of an abundance
2221  * of caution.
2222  *
2223  * In the long run, i_mutex is overkill, and we should probably look
2224  * at using the i_lock spinlock to protect i_flags, and then make sure
2225  * it is so documented in include/linux/fs.h and that all code follows
2226  * the locking convention!!
2227  */
2228 void inode_set_flags(struct inode *inode, unsigned int flags,
2229 		     unsigned int mask)
2230 {
2231 	WARN_ON_ONCE(flags & ~mask);
2232 	set_mask_bits(&inode->i_flags, mask, flags);
2233 }
2234 EXPORT_SYMBOL(inode_set_flags);
2235 
2236 void inode_nohighmem(struct inode *inode)
2237 {
2238 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2239 }
2240 EXPORT_SYMBOL(inode_nohighmem);
2241 
2242 /**
2243  * timestamp_truncate - Truncate timespec to a granularity
2244  * @t: Timespec
2245  * @inode: inode being updated
2246  *
2247  * Truncate a timespec to the granularity supported by the fs
2248  * containing the inode. Always rounds down. gran must
2249  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2250  */
2251 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2252 {
2253 	struct super_block *sb = inode->i_sb;
2254 	unsigned int gran = sb->s_time_gran;
2255 
2256 	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2257 	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2258 		t.tv_nsec = 0;
2259 
2260 	/* Avoid division in the common cases 1 ns and 1 s. */
2261 	if (gran == 1)
2262 		; /* nothing */
2263 	else if (gran == NSEC_PER_SEC)
2264 		t.tv_nsec = 0;
2265 	else if (gran > 1 && gran < NSEC_PER_SEC)
2266 		t.tv_nsec -= t.tv_nsec % gran;
2267 	else
2268 		WARN(1, "invalid file time granularity: %u", gran);
2269 	return t;
2270 }
2271 EXPORT_SYMBOL(timestamp_truncate);
2272 
2273 /**
2274  * current_time - Return FS time
2275  * @inode: inode.
2276  *
2277  * Return the current time truncated to the time granularity supported by
2278  * the fs.
2279  *
2280  * Note that inode and inode->sb cannot be NULL.
2281  * Otherwise, the function warns and returns time without truncation.
2282  */
2283 struct timespec64 current_time(struct inode *inode)
2284 {
2285 	struct timespec64 now;
2286 
2287 	ktime_get_coarse_real_ts64(&now);
2288 
2289 	if (unlikely(!inode->i_sb)) {
2290 		WARN(1, "current_time() called with uninitialized super_block in the inode");
2291 		return now;
2292 	}
2293 
2294 	return timestamp_truncate(now, inode);
2295 }
2296 EXPORT_SYMBOL(current_time);
2297 
2298 /*
2299  * Generic function to check FS_IOC_SETFLAGS values and reject any invalid
2300  * configurations.
2301  *
2302  * Note: the caller should be holding i_mutex, or else be sure that they have
2303  * exclusive access to the inode structure.
2304  */
2305 int vfs_ioc_setflags_prepare(struct inode *inode, unsigned int oldflags,
2306 			     unsigned int flags)
2307 {
2308 	/*
2309 	 * The IMMUTABLE and APPEND_ONLY flags can only be changed by
2310 	 * the relevant capability.
2311 	 *
2312 	 * This test looks nicer. Thanks to Pauline Middelink
2313 	 */
2314 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL) &&
2315 	    !capable(CAP_LINUX_IMMUTABLE))
2316 		return -EPERM;
2317 
2318 	return fscrypt_prepare_setflags(inode, oldflags, flags);
2319 }
2320 EXPORT_SYMBOL(vfs_ioc_setflags_prepare);
2321 
2322 /*
2323  * Generic function to check FS_IOC_FSSETXATTR values and reject any invalid
2324  * configurations.
2325  *
2326  * Note: the caller should be holding i_mutex, or else be sure that they have
2327  * exclusive access to the inode structure.
2328  */
2329 int vfs_ioc_fssetxattr_check(struct inode *inode, const struct fsxattr *old_fa,
2330 			     struct fsxattr *fa)
2331 {
2332 	/*
2333 	 * Can't modify an immutable/append-only file unless we have
2334 	 * appropriate permission.
2335 	 */
2336 	if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2337 			(FS_XFLAG_IMMUTABLE | FS_XFLAG_APPEND) &&
2338 	    !capable(CAP_LINUX_IMMUTABLE))
2339 		return -EPERM;
2340 
2341 	/*
2342 	 * Project Quota ID state is only allowed to change from within the init
2343 	 * namespace. Enforce that restriction only if we are trying to change
2344 	 * the quota ID state. Everything else is allowed in user namespaces.
2345 	 */
2346 	if (current_user_ns() != &init_user_ns) {
2347 		if (old_fa->fsx_projid != fa->fsx_projid)
2348 			return -EINVAL;
2349 		if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2350 				FS_XFLAG_PROJINHERIT)
2351 			return -EINVAL;
2352 	}
2353 
2354 	/* Check extent size hints. */
2355 	if ((fa->fsx_xflags & FS_XFLAG_EXTSIZE) && !S_ISREG(inode->i_mode))
2356 		return -EINVAL;
2357 
2358 	if ((fa->fsx_xflags & FS_XFLAG_EXTSZINHERIT) &&
2359 			!S_ISDIR(inode->i_mode))
2360 		return -EINVAL;
2361 
2362 	if ((fa->fsx_xflags & FS_XFLAG_COWEXTSIZE) &&
2363 	    !S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode))
2364 		return -EINVAL;
2365 
2366 	/*
2367 	 * It is only valid to set the DAX flag on regular files and
2368 	 * directories on filesystems.
2369 	 */
2370 	if ((fa->fsx_xflags & FS_XFLAG_DAX) &&
2371 	    !(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
2372 		return -EINVAL;
2373 
2374 	/* Extent size hints of zero turn off the flags. */
2375 	if (fa->fsx_extsize == 0)
2376 		fa->fsx_xflags &= ~(FS_XFLAG_EXTSIZE | FS_XFLAG_EXTSZINHERIT);
2377 	if (fa->fsx_cowextsize == 0)
2378 		fa->fsx_xflags &= ~FS_XFLAG_COWEXTSIZE;
2379 
2380 	return 0;
2381 }
2382 EXPORT_SYMBOL(vfs_ioc_fssetxattr_check);
2383