xref: /openbmc/linux/fs/inode.c (revision f5b06569)
1 /*
2  * (C) 1997 Linus Torvalds
3  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4  */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <trace/events/writeback.h>
22 #include "internal.h"
23 
24 /*
25  * Inode locking rules:
26  *
27  * inode->i_lock protects:
28  *   inode->i_state, inode->i_hash, __iget()
29  * Inode LRU list locks protect:
30  *   inode->i_sb->s_inode_lru, inode->i_lru
31  * inode->i_sb->s_inode_list_lock protects:
32  *   inode->i_sb->s_inodes, inode->i_sb_list
33  * bdi->wb.list_lock protects:
34  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
35  * inode_hash_lock protects:
36  *   inode_hashtable, inode->i_hash
37  *
38  * Lock ordering:
39  *
40  * inode->i_sb->s_inode_list_lock
41  *   inode->i_lock
42  *     Inode LRU list locks
43  *
44  * bdi->wb.list_lock
45  *   inode->i_lock
46  *
47  * inode_hash_lock
48  *   inode->i_sb->s_inode_list_lock
49  *   inode->i_lock
50  *
51  * iunique_lock
52  *   inode_hash_lock
53  */
54 
55 static unsigned int i_hash_mask __read_mostly;
56 static unsigned int i_hash_shift __read_mostly;
57 static struct hlist_head *inode_hashtable __read_mostly;
58 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
59 
60 /*
61  * Empty aops. Can be used for the cases where the user does not
62  * define any of the address_space operations.
63  */
64 const struct address_space_operations empty_aops = {
65 };
66 EXPORT_SYMBOL(empty_aops);
67 
68 /*
69  * Statistics gathering..
70  */
71 struct inodes_stat_t inodes_stat;
72 
73 static DEFINE_PER_CPU(unsigned long, nr_inodes);
74 static DEFINE_PER_CPU(unsigned long, nr_unused);
75 
76 static struct kmem_cache *inode_cachep __read_mostly;
77 
78 static long get_nr_inodes(void)
79 {
80 	int i;
81 	long sum = 0;
82 	for_each_possible_cpu(i)
83 		sum += per_cpu(nr_inodes, i);
84 	return sum < 0 ? 0 : sum;
85 }
86 
87 static inline long get_nr_inodes_unused(void)
88 {
89 	int i;
90 	long sum = 0;
91 	for_each_possible_cpu(i)
92 		sum += per_cpu(nr_unused, i);
93 	return sum < 0 ? 0 : sum;
94 }
95 
96 long get_nr_dirty_inodes(void)
97 {
98 	/* not actually dirty inodes, but a wild approximation */
99 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
100 	return nr_dirty > 0 ? nr_dirty : 0;
101 }
102 
103 /*
104  * Handle nr_inode sysctl
105  */
106 #ifdef CONFIG_SYSCTL
107 int proc_nr_inodes(struct ctl_table *table, int write,
108 		   void __user *buffer, size_t *lenp, loff_t *ppos)
109 {
110 	inodes_stat.nr_inodes = get_nr_inodes();
111 	inodes_stat.nr_unused = get_nr_inodes_unused();
112 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
113 }
114 #endif
115 
116 static int no_open(struct inode *inode, struct file *file)
117 {
118 	return -ENXIO;
119 }
120 
121 /**
122  * inode_init_always - perform inode structure intialisation
123  * @sb: superblock inode belongs to
124  * @inode: inode to initialise
125  *
126  * These are initializations that need to be done on every inode
127  * allocation as the fields are not initialised by slab allocation.
128  */
129 int inode_init_always(struct super_block *sb, struct inode *inode)
130 {
131 	static const struct inode_operations empty_iops;
132 	static const struct file_operations no_open_fops = {.open = no_open};
133 	struct address_space *const mapping = &inode->i_data;
134 
135 	inode->i_sb = sb;
136 	inode->i_blkbits = sb->s_blocksize_bits;
137 	inode->i_flags = 0;
138 	atomic_set(&inode->i_count, 1);
139 	inode->i_op = &empty_iops;
140 	inode->i_fop = &no_open_fops;
141 	inode->__i_nlink = 1;
142 	inode->i_opflags = 0;
143 	i_uid_write(inode, 0);
144 	i_gid_write(inode, 0);
145 	atomic_set(&inode->i_writecount, 0);
146 	inode->i_size = 0;
147 	inode->i_blocks = 0;
148 	inode->i_bytes = 0;
149 	inode->i_generation = 0;
150 	inode->i_pipe = NULL;
151 	inode->i_bdev = NULL;
152 	inode->i_cdev = NULL;
153 	inode->i_link = NULL;
154 	inode->i_dir_seq = 0;
155 	inode->i_rdev = 0;
156 	inode->dirtied_when = 0;
157 
158 #ifdef CONFIG_CGROUP_WRITEBACK
159 	inode->i_wb_frn_winner = 0;
160 	inode->i_wb_frn_avg_time = 0;
161 	inode->i_wb_frn_history = 0;
162 #endif
163 
164 	if (security_inode_alloc(inode))
165 		goto out;
166 	spin_lock_init(&inode->i_lock);
167 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
168 
169 	init_rwsem(&inode->i_rwsem);
170 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
171 
172 	atomic_set(&inode->i_dio_count, 0);
173 
174 	mapping->a_ops = &empty_aops;
175 	mapping->host = inode;
176 	mapping->flags = 0;
177 	atomic_set(&mapping->i_mmap_writable, 0);
178 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
179 	mapping->private_data = NULL;
180 	mapping->writeback_index = 0;
181 	inode->i_private = NULL;
182 	inode->i_mapping = mapping;
183 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
184 #ifdef CONFIG_FS_POSIX_ACL
185 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
186 #endif
187 
188 #ifdef CONFIG_FSNOTIFY
189 	inode->i_fsnotify_mask = 0;
190 #endif
191 	inode->i_flctx = NULL;
192 	this_cpu_inc(nr_inodes);
193 
194 	return 0;
195 out:
196 	return -ENOMEM;
197 }
198 EXPORT_SYMBOL(inode_init_always);
199 
200 static struct inode *alloc_inode(struct super_block *sb)
201 {
202 	struct inode *inode;
203 
204 	if (sb->s_op->alloc_inode)
205 		inode = sb->s_op->alloc_inode(sb);
206 	else
207 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
208 
209 	if (!inode)
210 		return NULL;
211 
212 	if (unlikely(inode_init_always(sb, inode))) {
213 		if (inode->i_sb->s_op->destroy_inode)
214 			inode->i_sb->s_op->destroy_inode(inode);
215 		else
216 			kmem_cache_free(inode_cachep, inode);
217 		return NULL;
218 	}
219 
220 	return inode;
221 }
222 
223 void free_inode_nonrcu(struct inode *inode)
224 {
225 	kmem_cache_free(inode_cachep, inode);
226 }
227 EXPORT_SYMBOL(free_inode_nonrcu);
228 
229 void __destroy_inode(struct inode *inode)
230 {
231 	BUG_ON(inode_has_buffers(inode));
232 	inode_detach_wb(inode);
233 	security_inode_free(inode);
234 	fsnotify_inode_delete(inode);
235 	locks_free_lock_context(inode);
236 	if (!inode->i_nlink) {
237 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
238 		atomic_long_dec(&inode->i_sb->s_remove_count);
239 	}
240 
241 #ifdef CONFIG_FS_POSIX_ACL
242 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
243 		posix_acl_release(inode->i_acl);
244 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
245 		posix_acl_release(inode->i_default_acl);
246 #endif
247 	this_cpu_dec(nr_inodes);
248 }
249 EXPORT_SYMBOL(__destroy_inode);
250 
251 static void i_callback(struct rcu_head *head)
252 {
253 	struct inode *inode = container_of(head, struct inode, i_rcu);
254 	kmem_cache_free(inode_cachep, inode);
255 }
256 
257 static void destroy_inode(struct inode *inode)
258 {
259 	BUG_ON(!list_empty(&inode->i_lru));
260 	__destroy_inode(inode);
261 	if (inode->i_sb->s_op->destroy_inode)
262 		inode->i_sb->s_op->destroy_inode(inode);
263 	else
264 		call_rcu(&inode->i_rcu, i_callback);
265 }
266 
267 /**
268  * drop_nlink - directly drop an inode's link count
269  * @inode: inode
270  *
271  * This is a low-level filesystem helper to replace any
272  * direct filesystem manipulation of i_nlink.  In cases
273  * where we are attempting to track writes to the
274  * filesystem, a decrement to zero means an imminent
275  * write when the file is truncated and actually unlinked
276  * on the filesystem.
277  */
278 void drop_nlink(struct inode *inode)
279 {
280 	WARN_ON(inode->i_nlink == 0);
281 	inode->__i_nlink--;
282 	if (!inode->i_nlink)
283 		atomic_long_inc(&inode->i_sb->s_remove_count);
284 }
285 EXPORT_SYMBOL(drop_nlink);
286 
287 /**
288  * clear_nlink - directly zero an inode's link count
289  * @inode: inode
290  *
291  * This is a low-level filesystem helper to replace any
292  * direct filesystem manipulation of i_nlink.  See
293  * drop_nlink() for why we care about i_nlink hitting zero.
294  */
295 void clear_nlink(struct inode *inode)
296 {
297 	if (inode->i_nlink) {
298 		inode->__i_nlink = 0;
299 		atomic_long_inc(&inode->i_sb->s_remove_count);
300 	}
301 }
302 EXPORT_SYMBOL(clear_nlink);
303 
304 /**
305  * set_nlink - directly set an inode's link count
306  * @inode: inode
307  * @nlink: new nlink (should be non-zero)
308  *
309  * This is a low-level filesystem helper to replace any
310  * direct filesystem manipulation of i_nlink.
311  */
312 void set_nlink(struct inode *inode, unsigned int nlink)
313 {
314 	if (!nlink) {
315 		clear_nlink(inode);
316 	} else {
317 		/* Yes, some filesystems do change nlink from zero to one */
318 		if (inode->i_nlink == 0)
319 			atomic_long_dec(&inode->i_sb->s_remove_count);
320 
321 		inode->__i_nlink = nlink;
322 	}
323 }
324 EXPORT_SYMBOL(set_nlink);
325 
326 /**
327  * inc_nlink - directly increment an inode's link count
328  * @inode: inode
329  *
330  * This is a low-level filesystem helper to replace any
331  * direct filesystem manipulation of i_nlink.  Currently,
332  * it is only here for parity with dec_nlink().
333  */
334 void inc_nlink(struct inode *inode)
335 {
336 	if (unlikely(inode->i_nlink == 0)) {
337 		WARN_ON(!(inode->i_state & I_LINKABLE));
338 		atomic_long_dec(&inode->i_sb->s_remove_count);
339 	}
340 
341 	inode->__i_nlink++;
342 }
343 EXPORT_SYMBOL(inc_nlink);
344 
345 void address_space_init_once(struct address_space *mapping)
346 {
347 	memset(mapping, 0, sizeof(*mapping));
348 	INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC | __GFP_ACCOUNT);
349 	spin_lock_init(&mapping->tree_lock);
350 	init_rwsem(&mapping->i_mmap_rwsem);
351 	INIT_LIST_HEAD(&mapping->private_list);
352 	spin_lock_init(&mapping->private_lock);
353 	mapping->i_mmap = RB_ROOT;
354 }
355 EXPORT_SYMBOL(address_space_init_once);
356 
357 /*
358  * These are initializations that only need to be done
359  * once, because the fields are idempotent across use
360  * of the inode, so let the slab aware of that.
361  */
362 void inode_init_once(struct inode *inode)
363 {
364 	memset(inode, 0, sizeof(*inode));
365 	INIT_HLIST_NODE(&inode->i_hash);
366 	INIT_LIST_HEAD(&inode->i_devices);
367 	INIT_LIST_HEAD(&inode->i_io_list);
368 	INIT_LIST_HEAD(&inode->i_wb_list);
369 	INIT_LIST_HEAD(&inode->i_lru);
370 	address_space_init_once(&inode->i_data);
371 	i_size_ordered_init(inode);
372 #ifdef CONFIG_FSNOTIFY
373 	INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
374 #endif
375 }
376 EXPORT_SYMBOL(inode_init_once);
377 
378 static void init_once(void *foo)
379 {
380 	struct inode *inode = (struct inode *) foo;
381 
382 	inode_init_once(inode);
383 }
384 
385 /*
386  * inode->i_lock must be held
387  */
388 void __iget(struct inode *inode)
389 {
390 	atomic_inc(&inode->i_count);
391 }
392 
393 /*
394  * get additional reference to inode; caller must already hold one.
395  */
396 void ihold(struct inode *inode)
397 {
398 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
399 }
400 EXPORT_SYMBOL(ihold);
401 
402 static void inode_lru_list_add(struct inode *inode)
403 {
404 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
405 		this_cpu_inc(nr_unused);
406 }
407 
408 /*
409  * Add inode to LRU if needed (inode is unused and clean).
410  *
411  * Needs inode->i_lock held.
412  */
413 void inode_add_lru(struct inode *inode)
414 {
415 	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
416 				I_FREEING | I_WILL_FREE)) &&
417 	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
418 		inode_lru_list_add(inode);
419 }
420 
421 
422 static void inode_lru_list_del(struct inode *inode)
423 {
424 
425 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
426 		this_cpu_dec(nr_unused);
427 }
428 
429 /**
430  * inode_sb_list_add - add inode to the superblock list of inodes
431  * @inode: inode to add
432  */
433 void inode_sb_list_add(struct inode *inode)
434 {
435 	spin_lock(&inode->i_sb->s_inode_list_lock);
436 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
437 	spin_unlock(&inode->i_sb->s_inode_list_lock);
438 }
439 EXPORT_SYMBOL_GPL(inode_sb_list_add);
440 
441 static inline void inode_sb_list_del(struct inode *inode)
442 {
443 	if (!list_empty(&inode->i_sb_list)) {
444 		spin_lock(&inode->i_sb->s_inode_list_lock);
445 		list_del_init(&inode->i_sb_list);
446 		spin_unlock(&inode->i_sb->s_inode_list_lock);
447 	}
448 }
449 
450 static unsigned long hash(struct super_block *sb, unsigned long hashval)
451 {
452 	unsigned long tmp;
453 
454 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
455 			L1_CACHE_BYTES;
456 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
457 	return tmp & i_hash_mask;
458 }
459 
460 /**
461  *	__insert_inode_hash - hash an inode
462  *	@inode: unhashed inode
463  *	@hashval: unsigned long value used to locate this object in the
464  *		inode_hashtable.
465  *
466  *	Add an inode to the inode hash for this superblock.
467  */
468 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
469 {
470 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
471 
472 	spin_lock(&inode_hash_lock);
473 	spin_lock(&inode->i_lock);
474 	hlist_add_head(&inode->i_hash, b);
475 	spin_unlock(&inode->i_lock);
476 	spin_unlock(&inode_hash_lock);
477 }
478 EXPORT_SYMBOL(__insert_inode_hash);
479 
480 /**
481  *	__remove_inode_hash - remove an inode from the hash
482  *	@inode: inode to unhash
483  *
484  *	Remove an inode from the superblock.
485  */
486 void __remove_inode_hash(struct inode *inode)
487 {
488 	spin_lock(&inode_hash_lock);
489 	spin_lock(&inode->i_lock);
490 	hlist_del_init(&inode->i_hash);
491 	spin_unlock(&inode->i_lock);
492 	spin_unlock(&inode_hash_lock);
493 }
494 EXPORT_SYMBOL(__remove_inode_hash);
495 
496 void clear_inode(struct inode *inode)
497 {
498 	might_sleep();
499 	/*
500 	 * We have to cycle tree_lock here because reclaim can be still in the
501 	 * process of removing the last page (in __delete_from_page_cache())
502 	 * and we must not free mapping under it.
503 	 */
504 	spin_lock_irq(&inode->i_data.tree_lock);
505 	BUG_ON(inode->i_data.nrpages);
506 	BUG_ON(inode->i_data.nrexceptional);
507 	spin_unlock_irq(&inode->i_data.tree_lock);
508 	BUG_ON(!list_empty(&inode->i_data.private_list));
509 	BUG_ON(!(inode->i_state & I_FREEING));
510 	BUG_ON(inode->i_state & I_CLEAR);
511 	BUG_ON(!list_empty(&inode->i_wb_list));
512 	/* don't need i_lock here, no concurrent mods to i_state */
513 	inode->i_state = I_FREEING | I_CLEAR;
514 }
515 EXPORT_SYMBOL(clear_inode);
516 
517 /*
518  * Free the inode passed in, removing it from the lists it is still connected
519  * to. We remove any pages still attached to the inode and wait for any IO that
520  * is still in progress before finally destroying the inode.
521  *
522  * An inode must already be marked I_FREEING so that we avoid the inode being
523  * moved back onto lists if we race with other code that manipulates the lists
524  * (e.g. writeback_single_inode). The caller is responsible for setting this.
525  *
526  * An inode must already be removed from the LRU list before being evicted from
527  * the cache. This should occur atomically with setting the I_FREEING state
528  * flag, so no inodes here should ever be on the LRU when being evicted.
529  */
530 static void evict(struct inode *inode)
531 {
532 	const struct super_operations *op = inode->i_sb->s_op;
533 
534 	BUG_ON(!(inode->i_state & I_FREEING));
535 	BUG_ON(!list_empty(&inode->i_lru));
536 
537 	if (!list_empty(&inode->i_io_list))
538 		inode_io_list_del(inode);
539 
540 	inode_sb_list_del(inode);
541 
542 	/*
543 	 * Wait for flusher thread to be done with the inode so that filesystem
544 	 * does not start destroying it while writeback is still running. Since
545 	 * the inode has I_FREEING set, flusher thread won't start new work on
546 	 * the inode.  We just have to wait for running writeback to finish.
547 	 */
548 	inode_wait_for_writeback(inode);
549 
550 	if (op->evict_inode) {
551 		op->evict_inode(inode);
552 	} else {
553 		truncate_inode_pages_final(&inode->i_data);
554 		clear_inode(inode);
555 	}
556 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
557 		bd_forget(inode);
558 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
559 		cd_forget(inode);
560 
561 	remove_inode_hash(inode);
562 
563 	spin_lock(&inode->i_lock);
564 	wake_up_bit(&inode->i_state, __I_NEW);
565 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
566 	spin_unlock(&inode->i_lock);
567 
568 	destroy_inode(inode);
569 }
570 
571 /*
572  * dispose_list - dispose of the contents of a local list
573  * @head: the head of the list to free
574  *
575  * Dispose-list gets a local list with local inodes in it, so it doesn't
576  * need to worry about list corruption and SMP locks.
577  */
578 static void dispose_list(struct list_head *head)
579 {
580 	while (!list_empty(head)) {
581 		struct inode *inode;
582 
583 		inode = list_first_entry(head, struct inode, i_lru);
584 		list_del_init(&inode->i_lru);
585 
586 		evict(inode);
587 		cond_resched();
588 	}
589 }
590 
591 /**
592  * evict_inodes	- evict all evictable inodes for a superblock
593  * @sb:		superblock to operate on
594  *
595  * Make sure that no inodes with zero refcount are retained.  This is
596  * called by superblock shutdown after having MS_ACTIVE flag removed,
597  * so any inode reaching zero refcount during or after that call will
598  * be immediately evicted.
599  */
600 void evict_inodes(struct super_block *sb)
601 {
602 	struct inode *inode, *next;
603 	LIST_HEAD(dispose);
604 
605 again:
606 	spin_lock(&sb->s_inode_list_lock);
607 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
608 		if (atomic_read(&inode->i_count))
609 			continue;
610 
611 		spin_lock(&inode->i_lock);
612 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
613 			spin_unlock(&inode->i_lock);
614 			continue;
615 		}
616 
617 		inode->i_state |= I_FREEING;
618 		inode_lru_list_del(inode);
619 		spin_unlock(&inode->i_lock);
620 		list_add(&inode->i_lru, &dispose);
621 
622 		/*
623 		 * We can have a ton of inodes to evict at unmount time given
624 		 * enough memory, check to see if we need to go to sleep for a
625 		 * bit so we don't livelock.
626 		 */
627 		if (need_resched()) {
628 			spin_unlock(&sb->s_inode_list_lock);
629 			cond_resched();
630 			dispose_list(&dispose);
631 			goto again;
632 		}
633 	}
634 	spin_unlock(&sb->s_inode_list_lock);
635 
636 	dispose_list(&dispose);
637 }
638 
639 /**
640  * invalidate_inodes	- attempt to free all inodes on a superblock
641  * @sb:		superblock to operate on
642  * @kill_dirty: flag to guide handling of dirty inodes
643  *
644  * Attempts to free all inodes for a given superblock.  If there were any
645  * busy inodes return a non-zero value, else zero.
646  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
647  * them as busy.
648  */
649 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
650 {
651 	int busy = 0;
652 	struct inode *inode, *next;
653 	LIST_HEAD(dispose);
654 
655 	spin_lock(&sb->s_inode_list_lock);
656 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
657 		spin_lock(&inode->i_lock);
658 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
659 			spin_unlock(&inode->i_lock);
660 			continue;
661 		}
662 		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
663 			spin_unlock(&inode->i_lock);
664 			busy = 1;
665 			continue;
666 		}
667 		if (atomic_read(&inode->i_count)) {
668 			spin_unlock(&inode->i_lock);
669 			busy = 1;
670 			continue;
671 		}
672 
673 		inode->i_state |= I_FREEING;
674 		inode_lru_list_del(inode);
675 		spin_unlock(&inode->i_lock);
676 		list_add(&inode->i_lru, &dispose);
677 	}
678 	spin_unlock(&sb->s_inode_list_lock);
679 
680 	dispose_list(&dispose);
681 
682 	return busy;
683 }
684 
685 /*
686  * Isolate the inode from the LRU in preparation for freeing it.
687  *
688  * Any inodes which are pinned purely because of attached pagecache have their
689  * pagecache removed.  If the inode has metadata buffers attached to
690  * mapping->private_list then try to remove them.
691  *
692  * If the inode has the I_REFERENCED flag set, then it means that it has been
693  * used recently - the flag is set in iput_final(). When we encounter such an
694  * inode, clear the flag and move it to the back of the LRU so it gets another
695  * pass through the LRU before it gets reclaimed. This is necessary because of
696  * the fact we are doing lazy LRU updates to minimise lock contention so the
697  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
698  * with this flag set because they are the inodes that are out of order.
699  */
700 static enum lru_status inode_lru_isolate(struct list_head *item,
701 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
702 {
703 	struct list_head *freeable = arg;
704 	struct inode	*inode = container_of(item, struct inode, i_lru);
705 
706 	/*
707 	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
708 	 * If we fail to get the lock, just skip it.
709 	 */
710 	if (!spin_trylock(&inode->i_lock))
711 		return LRU_SKIP;
712 
713 	/*
714 	 * Referenced or dirty inodes are still in use. Give them another pass
715 	 * through the LRU as we canot reclaim them now.
716 	 */
717 	if (atomic_read(&inode->i_count) ||
718 	    (inode->i_state & ~I_REFERENCED)) {
719 		list_lru_isolate(lru, &inode->i_lru);
720 		spin_unlock(&inode->i_lock);
721 		this_cpu_dec(nr_unused);
722 		return LRU_REMOVED;
723 	}
724 
725 	/* recently referenced inodes get one more pass */
726 	if (inode->i_state & I_REFERENCED) {
727 		inode->i_state &= ~I_REFERENCED;
728 		spin_unlock(&inode->i_lock);
729 		return LRU_ROTATE;
730 	}
731 
732 	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
733 		__iget(inode);
734 		spin_unlock(&inode->i_lock);
735 		spin_unlock(lru_lock);
736 		if (remove_inode_buffers(inode)) {
737 			unsigned long reap;
738 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
739 			if (current_is_kswapd())
740 				__count_vm_events(KSWAPD_INODESTEAL, reap);
741 			else
742 				__count_vm_events(PGINODESTEAL, reap);
743 			if (current->reclaim_state)
744 				current->reclaim_state->reclaimed_slab += reap;
745 		}
746 		iput(inode);
747 		spin_lock(lru_lock);
748 		return LRU_RETRY;
749 	}
750 
751 	WARN_ON(inode->i_state & I_NEW);
752 	inode->i_state |= I_FREEING;
753 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
754 	spin_unlock(&inode->i_lock);
755 
756 	this_cpu_dec(nr_unused);
757 	return LRU_REMOVED;
758 }
759 
760 /*
761  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
762  * This is called from the superblock shrinker function with a number of inodes
763  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
764  * then are freed outside inode_lock by dispose_list().
765  */
766 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
767 {
768 	LIST_HEAD(freeable);
769 	long freed;
770 
771 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
772 				     inode_lru_isolate, &freeable);
773 	dispose_list(&freeable);
774 	return freed;
775 }
776 
777 static void __wait_on_freeing_inode(struct inode *inode);
778 /*
779  * Called with the inode lock held.
780  */
781 static struct inode *find_inode(struct super_block *sb,
782 				struct hlist_head *head,
783 				int (*test)(struct inode *, void *),
784 				void *data)
785 {
786 	struct inode *inode = NULL;
787 
788 repeat:
789 	hlist_for_each_entry(inode, head, i_hash) {
790 		if (inode->i_sb != sb)
791 			continue;
792 		if (!test(inode, data))
793 			continue;
794 		spin_lock(&inode->i_lock);
795 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
796 			__wait_on_freeing_inode(inode);
797 			goto repeat;
798 		}
799 		__iget(inode);
800 		spin_unlock(&inode->i_lock);
801 		return inode;
802 	}
803 	return NULL;
804 }
805 
806 /*
807  * find_inode_fast is the fast path version of find_inode, see the comment at
808  * iget_locked for details.
809  */
810 static struct inode *find_inode_fast(struct super_block *sb,
811 				struct hlist_head *head, unsigned long ino)
812 {
813 	struct inode *inode = NULL;
814 
815 repeat:
816 	hlist_for_each_entry(inode, head, i_hash) {
817 		if (inode->i_ino != ino)
818 			continue;
819 		if (inode->i_sb != sb)
820 			continue;
821 		spin_lock(&inode->i_lock);
822 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
823 			__wait_on_freeing_inode(inode);
824 			goto repeat;
825 		}
826 		__iget(inode);
827 		spin_unlock(&inode->i_lock);
828 		return inode;
829 	}
830 	return NULL;
831 }
832 
833 /*
834  * Each cpu owns a range of LAST_INO_BATCH numbers.
835  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
836  * to renew the exhausted range.
837  *
838  * This does not significantly increase overflow rate because every CPU can
839  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
840  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
841  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
842  * overflow rate by 2x, which does not seem too significant.
843  *
844  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
845  * error if st_ino won't fit in target struct field. Use 32bit counter
846  * here to attempt to avoid that.
847  */
848 #define LAST_INO_BATCH 1024
849 static DEFINE_PER_CPU(unsigned int, last_ino);
850 
851 unsigned int get_next_ino(void)
852 {
853 	unsigned int *p = &get_cpu_var(last_ino);
854 	unsigned int res = *p;
855 
856 #ifdef CONFIG_SMP
857 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
858 		static atomic_t shared_last_ino;
859 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
860 
861 		res = next - LAST_INO_BATCH;
862 	}
863 #endif
864 
865 	res++;
866 	/* get_next_ino should not provide a 0 inode number */
867 	if (unlikely(!res))
868 		res++;
869 	*p = res;
870 	put_cpu_var(last_ino);
871 	return res;
872 }
873 EXPORT_SYMBOL(get_next_ino);
874 
875 /**
876  *	new_inode_pseudo 	- obtain an inode
877  *	@sb: superblock
878  *
879  *	Allocates a new inode for given superblock.
880  *	Inode wont be chained in superblock s_inodes list
881  *	This means :
882  *	- fs can't be unmount
883  *	- quotas, fsnotify, writeback can't work
884  */
885 struct inode *new_inode_pseudo(struct super_block *sb)
886 {
887 	struct inode *inode = alloc_inode(sb);
888 
889 	if (inode) {
890 		spin_lock(&inode->i_lock);
891 		inode->i_state = 0;
892 		spin_unlock(&inode->i_lock);
893 		INIT_LIST_HEAD(&inode->i_sb_list);
894 	}
895 	return inode;
896 }
897 
898 /**
899  *	new_inode 	- obtain an inode
900  *	@sb: superblock
901  *
902  *	Allocates a new inode for given superblock. The default gfp_mask
903  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
904  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
905  *	for the page cache are not reclaimable or migratable,
906  *	mapping_set_gfp_mask() must be called with suitable flags on the
907  *	newly created inode's mapping
908  *
909  */
910 struct inode *new_inode(struct super_block *sb)
911 {
912 	struct inode *inode;
913 
914 	spin_lock_prefetch(&sb->s_inode_list_lock);
915 
916 	inode = new_inode_pseudo(sb);
917 	if (inode)
918 		inode_sb_list_add(inode);
919 	return inode;
920 }
921 EXPORT_SYMBOL(new_inode);
922 
923 #ifdef CONFIG_DEBUG_LOCK_ALLOC
924 void lockdep_annotate_inode_mutex_key(struct inode *inode)
925 {
926 	if (S_ISDIR(inode->i_mode)) {
927 		struct file_system_type *type = inode->i_sb->s_type;
928 
929 		/* Set new key only if filesystem hasn't already changed it */
930 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
931 			/*
932 			 * ensure nobody is actually holding i_mutex
933 			 */
934 			// mutex_destroy(&inode->i_mutex);
935 			init_rwsem(&inode->i_rwsem);
936 			lockdep_set_class(&inode->i_rwsem,
937 					  &type->i_mutex_dir_key);
938 		}
939 	}
940 }
941 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
942 #endif
943 
944 /**
945  * unlock_new_inode - clear the I_NEW state and wake up any waiters
946  * @inode:	new inode to unlock
947  *
948  * Called when the inode is fully initialised to clear the new state of the
949  * inode and wake up anyone waiting for the inode to finish initialisation.
950  */
951 void unlock_new_inode(struct inode *inode)
952 {
953 	lockdep_annotate_inode_mutex_key(inode);
954 	spin_lock(&inode->i_lock);
955 	WARN_ON(!(inode->i_state & I_NEW));
956 	inode->i_state &= ~I_NEW;
957 	smp_mb();
958 	wake_up_bit(&inode->i_state, __I_NEW);
959 	spin_unlock(&inode->i_lock);
960 }
961 EXPORT_SYMBOL(unlock_new_inode);
962 
963 /**
964  * lock_two_nondirectories - take two i_mutexes on non-directory objects
965  *
966  * Lock any non-NULL argument that is not a directory.
967  * Zero, one or two objects may be locked by this function.
968  *
969  * @inode1: first inode to lock
970  * @inode2: second inode to lock
971  */
972 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
973 {
974 	if (inode1 > inode2)
975 		swap(inode1, inode2);
976 
977 	if (inode1 && !S_ISDIR(inode1->i_mode))
978 		inode_lock(inode1);
979 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
980 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
981 }
982 EXPORT_SYMBOL(lock_two_nondirectories);
983 
984 /**
985  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
986  * @inode1: first inode to unlock
987  * @inode2: second inode to unlock
988  */
989 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
990 {
991 	if (inode1 && !S_ISDIR(inode1->i_mode))
992 		inode_unlock(inode1);
993 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
994 		inode_unlock(inode2);
995 }
996 EXPORT_SYMBOL(unlock_two_nondirectories);
997 
998 /**
999  * iget5_locked - obtain an inode from a mounted file system
1000  * @sb:		super block of file system
1001  * @hashval:	hash value (usually inode number) to get
1002  * @test:	callback used for comparisons between inodes
1003  * @set:	callback used to initialize a new struct inode
1004  * @data:	opaque data pointer to pass to @test and @set
1005  *
1006  * Search for the inode specified by @hashval and @data in the inode cache,
1007  * and if present it is return it with an increased reference count. This is
1008  * a generalized version of iget_locked() for file systems where the inode
1009  * number is not sufficient for unique identification of an inode.
1010  *
1011  * If the inode is not in cache, allocate a new inode and return it locked,
1012  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1013  * before unlocking it via unlock_new_inode().
1014  *
1015  * Note both @test and @set are called with the inode_hash_lock held, so can't
1016  * sleep.
1017  */
1018 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1019 		int (*test)(struct inode *, void *),
1020 		int (*set)(struct inode *, void *), void *data)
1021 {
1022 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1023 	struct inode *inode;
1024 
1025 	spin_lock(&inode_hash_lock);
1026 	inode = find_inode(sb, head, test, data);
1027 	spin_unlock(&inode_hash_lock);
1028 
1029 	if (inode) {
1030 		wait_on_inode(inode);
1031 		return inode;
1032 	}
1033 
1034 	inode = alloc_inode(sb);
1035 	if (inode) {
1036 		struct inode *old;
1037 
1038 		spin_lock(&inode_hash_lock);
1039 		/* We released the lock, so.. */
1040 		old = find_inode(sb, head, test, data);
1041 		if (!old) {
1042 			if (set(inode, data))
1043 				goto set_failed;
1044 
1045 			spin_lock(&inode->i_lock);
1046 			inode->i_state = I_NEW;
1047 			hlist_add_head(&inode->i_hash, head);
1048 			spin_unlock(&inode->i_lock);
1049 			inode_sb_list_add(inode);
1050 			spin_unlock(&inode_hash_lock);
1051 
1052 			/* Return the locked inode with I_NEW set, the
1053 			 * caller is responsible for filling in the contents
1054 			 */
1055 			return inode;
1056 		}
1057 
1058 		/*
1059 		 * Uhhuh, somebody else created the same inode under
1060 		 * us. Use the old inode instead of the one we just
1061 		 * allocated.
1062 		 */
1063 		spin_unlock(&inode_hash_lock);
1064 		destroy_inode(inode);
1065 		inode = old;
1066 		wait_on_inode(inode);
1067 	}
1068 	return inode;
1069 
1070 set_failed:
1071 	spin_unlock(&inode_hash_lock);
1072 	destroy_inode(inode);
1073 	return NULL;
1074 }
1075 EXPORT_SYMBOL(iget5_locked);
1076 
1077 /**
1078  * iget_locked - obtain an inode from a mounted file system
1079  * @sb:		super block of file system
1080  * @ino:	inode number to get
1081  *
1082  * Search for the inode specified by @ino in the inode cache and if present
1083  * return it with an increased reference count. This is for file systems
1084  * where the inode number is sufficient for unique identification of an inode.
1085  *
1086  * If the inode is not in cache, allocate a new inode and return it locked,
1087  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1088  * before unlocking it via unlock_new_inode().
1089  */
1090 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1091 {
1092 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1093 	struct inode *inode;
1094 
1095 	spin_lock(&inode_hash_lock);
1096 	inode = find_inode_fast(sb, head, ino);
1097 	spin_unlock(&inode_hash_lock);
1098 	if (inode) {
1099 		wait_on_inode(inode);
1100 		return inode;
1101 	}
1102 
1103 	inode = alloc_inode(sb);
1104 	if (inode) {
1105 		struct inode *old;
1106 
1107 		spin_lock(&inode_hash_lock);
1108 		/* We released the lock, so.. */
1109 		old = find_inode_fast(sb, head, ino);
1110 		if (!old) {
1111 			inode->i_ino = ino;
1112 			spin_lock(&inode->i_lock);
1113 			inode->i_state = I_NEW;
1114 			hlist_add_head(&inode->i_hash, head);
1115 			spin_unlock(&inode->i_lock);
1116 			inode_sb_list_add(inode);
1117 			spin_unlock(&inode_hash_lock);
1118 
1119 			/* Return the locked inode with I_NEW set, the
1120 			 * caller is responsible for filling in the contents
1121 			 */
1122 			return inode;
1123 		}
1124 
1125 		/*
1126 		 * Uhhuh, somebody else created the same inode under
1127 		 * us. Use the old inode instead of the one we just
1128 		 * allocated.
1129 		 */
1130 		spin_unlock(&inode_hash_lock);
1131 		destroy_inode(inode);
1132 		inode = old;
1133 		wait_on_inode(inode);
1134 	}
1135 	return inode;
1136 }
1137 EXPORT_SYMBOL(iget_locked);
1138 
1139 /*
1140  * search the inode cache for a matching inode number.
1141  * If we find one, then the inode number we are trying to
1142  * allocate is not unique and so we should not use it.
1143  *
1144  * Returns 1 if the inode number is unique, 0 if it is not.
1145  */
1146 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1147 {
1148 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1149 	struct inode *inode;
1150 
1151 	spin_lock(&inode_hash_lock);
1152 	hlist_for_each_entry(inode, b, i_hash) {
1153 		if (inode->i_ino == ino && inode->i_sb == sb) {
1154 			spin_unlock(&inode_hash_lock);
1155 			return 0;
1156 		}
1157 	}
1158 	spin_unlock(&inode_hash_lock);
1159 
1160 	return 1;
1161 }
1162 
1163 /**
1164  *	iunique - get a unique inode number
1165  *	@sb: superblock
1166  *	@max_reserved: highest reserved inode number
1167  *
1168  *	Obtain an inode number that is unique on the system for a given
1169  *	superblock. This is used by file systems that have no natural
1170  *	permanent inode numbering system. An inode number is returned that
1171  *	is higher than the reserved limit but unique.
1172  *
1173  *	BUGS:
1174  *	With a large number of inodes live on the file system this function
1175  *	currently becomes quite slow.
1176  */
1177 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1178 {
1179 	/*
1180 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1181 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1182 	 * here to attempt to avoid that.
1183 	 */
1184 	static DEFINE_SPINLOCK(iunique_lock);
1185 	static unsigned int counter;
1186 	ino_t res;
1187 
1188 	spin_lock(&iunique_lock);
1189 	do {
1190 		if (counter <= max_reserved)
1191 			counter = max_reserved + 1;
1192 		res = counter++;
1193 	} while (!test_inode_iunique(sb, res));
1194 	spin_unlock(&iunique_lock);
1195 
1196 	return res;
1197 }
1198 EXPORT_SYMBOL(iunique);
1199 
1200 struct inode *igrab(struct inode *inode)
1201 {
1202 	spin_lock(&inode->i_lock);
1203 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1204 		__iget(inode);
1205 		spin_unlock(&inode->i_lock);
1206 	} else {
1207 		spin_unlock(&inode->i_lock);
1208 		/*
1209 		 * Handle the case where s_op->clear_inode is not been
1210 		 * called yet, and somebody is calling igrab
1211 		 * while the inode is getting freed.
1212 		 */
1213 		inode = NULL;
1214 	}
1215 	return inode;
1216 }
1217 EXPORT_SYMBOL(igrab);
1218 
1219 /**
1220  * ilookup5_nowait - search for an inode in the inode cache
1221  * @sb:		super block of file system to search
1222  * @hashval:	hash value (usually inode number) to search for
1223  * @test:	callback used for comparisons between inodes
1224  * @data:	opaque data pointer to pass to @test
1225  *
1226  * Search for the inode specified by @hashval and @data in the inode cache.
1227  * If the inode is in the cache, the inode is returned with an incremented
1228  * reference count.
1229  *
1230  * Note: I_NEW is not waited upon so you have to be very careful what you do
1231  * with the returned inode.  You probably should be using ilookup5() instead.
1232  *
1233  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1234  */
1235 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1236 		int (*test)(struct inode *, void *), void *data)
1237 {
1238 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1239 	struct inode *inode;
1240 
1241 	spin_lock(&inode_hash_lock);
1242 	inode = find_inode(sb, head, test, data);
1243 	spin_unlock(&inode_hash_lock);
1244 
1245 	return inode;
1246 }
1247 EXPORT_SYMBOL(ilookup5_nowait);
1248 
1249 /**
1250  * ilookup5 - search for an inode in the inode cache
1251  * @sb:		super block of file system to search
1252  * @hashval:	hash value (usually inode number) to search for
1253  * @test:	callback used for comparisons between inodes
1254  * @data:	opaque data pointer to pass to @test
1255  *
1256  * Search for the inode specified by @hashval and @data in the inode cache,
1257  * and if the inode is in the cache, return the inode with an incremented
1258  * reference count.  Waits on I_NEW before returning the inode.
1259  * returned with an incremented reference count.
1260  *
1261  * This is a generalized version of ilookup() for file systems where the
1262  * inode number is not sufficient for unique identification of an inode.
1263  *
1264  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1265  */
1266 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1267 		int (*test)(struct inode *, void *), void *data)
1268 {
1269 	struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1270 
1271 	if (inode)
1272 		wait_on_inode(inode);
1273 	return inode;
1274 }
1275 EXPORT_SYMBOL(ilookup5);
1276 
1277 /**
1278  * ilookup - search for an inode in the inode cache
1279  * @sb:		super block of file system to search
1280  * @ino:	inode number to search for
1281  *
1282  * Search for the inode @ino in the inode cache, and if the inode is in the
1283  * cache, the inode is returned with an incremented reference count.
1284  */
1285 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1286 {
1287 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1288 	struct inode *inode;
1289 
1290 	spin_lock(&inode_hash_lock);
1291 	inode = find_inode_fast(sb, head, ino);
1292 	spin_unlock(&inode_hash_lock);
1293 
1294 	if (inode)
1295 		wait_on_inode(inode);
1296 	return inode;
1297 }
1298 EXPORT_SYMBOL(ilookup);
1299 
1300 /**
1301  * find_inode_nowait - find an inode in the inode cache
1302  * @sb:		super block of file system to search
1303  * @hashval:	hash value (usually inode number) to search for
1304  * @match:	callback used for comparisons between inodes
1305  * @data:	opaque data pointer to pass to @match
1306  *
1307  * Search for the inode specified by @hashval and @data in the inode
1308  * cache, where the helper function @match will return 0 if the inode
1309  * does not match, 1 if the inode does match, and -1 if the search
1310  * should be stopped.  The @match function must be responsible for
1311  * taking the i_lock spin_lock and checking i_state for an inode being
1312  * freed or being initialized, and incrementing the reference count
1313  * before returning 1.  It also must not sleep, since it is called with
1314  * the inode_hash_lock spinlock held.
1315  *
1316  * This is a even more generalized version of ilookup5() when the
1317  * function must never block --- find_inode() can block in
1318  * __wait_on_freeing_inode() --- or when the caller can not increment
1319  * the reference count because the resulting iput() might cause an
1320  * inode eviction.  The tradeoff is that the @match funtion must be
1321  * very carefully implemented.
1322  */
1323 struct inode *find_inode_nowait(struct super_block *sb,
1324 				unsigned long hashval,
1325 				int (*match)(struct inode *, unsigned long,
1326 					     void *),
1327 				void *data)
1328 {
1329 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1330 	struct inode *inode, *ret_inode = NULL;
1331 	int mval;
1332 
1333 	spin_lock(&inode_hash_lock);
1334 	hlist_for_each_entry(inode, head, i_hash) {
1335 		if (inode->i_sb != sb)
1336 			continue;
1337 		mval = match(inode, hashval, data);
1338 		if (mval == 0)
1339 			continue;
1340 		if (mval == 1)
1341 			ret_inode = inode;
1342 		goto out;
1343 	}
1344 out:
1345 	spin_unlock(&inode_hash_lock);
1346 	return ret_inode;
1347 }
1348 EXPORT_SYMBOL(find_inode_nowait);
1349 
1350 int insert_inode_locked(struct inode *inode)
1351 {
1352 	struct super_block *sb = inode->i_sb;
1353 	ino_t ino = inode->i_ino;
1354 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1355 
1356 	while (1) {
1357 		struct inode *old = NULL;
1358 		spin_lock(&inode_hash_lock);
1359 		hlist_for_each_entry(old, head, i_hash) {
1360 			if (old->i_ino != ino)
1361 				continue;
1362 			if (old->i_sb != sb)
1363 				continue;
1364 			spin_lock(&old->i_lock);
1365 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1366 				spin_unlock(&old->i_lock);
1367 				continue;
1368 			}
1369 			break;
1370 		}
1371 		if (likely(!old)) {
1372 			spin_lock(&inode->i_lock);
1373 			inode->i_state |= I_NEW;
1374 			hlist_add_head(&inode->i_hash, head);
1375 			spin_unlock(&inode->i_lock);
1376 			spin_unlock(&inode_hash_lock);
1377 			return 0;
1378 		}
1379 		__iget(old);
1380 		spin_unlock(&old->i_lock);
1381 		spin_unlock(&inode_hash_lock);
1382 		wait_on_inode(old);
1383 		if (unlikely(!inode_unhashed(old))) {
1384 			iput(old);
1385 			return -EBUSY;
1386 		}
1387 		iput(old);
1388 	}
1389 }
1390 EXPORT_SYMBOL(insert_inode_locked);
1391 
1392 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1393 		int (*test)(struct inode *, void *), void *data)
1394 {
1395 	struct super_block *sb = inode->i_sb;
1396 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1397 
1398 	while (1) {
1399 		struct inode *old = NULL;
1400 
1401 		spin_lock(&inode_hash_lock);
1402 		hlist_for_each_entry(old, head, i_hash) {
1403 			if (old->i_sb != sb)
1404 				continue;
1405 			if (!test(old, data))
1406 				continue;
1407 			spin_lock(&old->i_lock);
1408 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1409 				spin_unlock(&old->i_lock);
1410 				continue;
1411 			}
1412 			break;
1413 		}
1414 		if (likely(!old)) {
1415 			spin_lock(&inode->i_lock);
1416 			inode->i_state |= I_NEW;
1417 			hlist_add_head(&inode->i_hash, head);
1418 			spin_unlock(&inode->i_lock);
1419 			spin_unlock(&inode_hash_lock);
1420 			return 0;
1421 		}
1422 		__iget(old);
1423 		spin_unlock(&old->i_lock);
1424 		spin_unlock(&inode_hash_lock);
1425 		wait_on_inode(old);
1426 		if (unlikely(!inode_unhashed(old))) {
1427 			iput(old);
1428 			return -EBUSY;
1429 		}
1430 		iput(old);
1431 	}
1432 }
1433 EXPORT_SYMBOL(insert_inode_locked4);
1434 
1435 
1436 int generic_delete_inode(struct inode *inode)
1437 {
1438 	return 1;
1439 }
1440 EXPORT_SYMBOL(generic_delete_inode);
1441 
1442 /*
1443  * Called when we're dropping the last reference
1444  * to an inode.
1445  *
1446  * Call the FS "drop_inode()" function, defaulting to
1447  * the legacy UNIX filesystem behaviour.  If it tells
1448  * us to evict inode, do so.  Otherwise, retain inode
1449  * in cache if fs is alive, sync and evict if fs is
1450  * shutting down.
1451  */
1452 static void iput_final(struct inode *inode)
1453 {
1454 	struct super_block *sb = inode->i_sb;
1455 	const struct super_operations *op = inode->i_sb->s_op;
1456 	int drop;
1457 
1458 	WARN_ON(inode->i_state & I_NEW);
1459 
1460 	if (op->drop_inode)
1461 		drop = op->drop_inode(inode);
1462 	else
1463 		drop = generic_drop_inode(inode);
1464 
1465 	if (!drop && (sb->s_flags & MS_ACTIVE)) {
1466 		inode->i_state |= I_REFERENCED;
1467 		inode_add_lru(inode);
1468 		spin_unlock(&inode->i_lock);
1469 		return;
1470 	}
1471 
1472 	if (!drop) {
1473 		inode->i_state |= I_WILL_FREE;
1474 		spin_unlock(&inode->i_lock);
1475 		write_inode_now(inode, 1);
1476 		spin_lock(&inode->i_lock);
1477 		WARN_ON(inode->i_state & I_NEW);
1478 		inode->i_state &= ~I_WILL_FREE;
1479 	}
1480 
1481 	inode->i_state |= I_FREEING;
1482 	if (!list_empty(&inode->i_lru))
1483 		inode_lru_list_del(inode);
1484 	spin_unlock(&inode->i_lock);
1485 
1486 	evict(inode);
1487 }
1488 
1489 /**
1490  *	iput	- put an inode
1491  *	@inode: inode to put
1492  *
1493  *	Puts an inode, dropping its usage count. If the inode use count hits
1494  *	zero, the inode is then freed and may also be destroyed.
1495  *
1496  *	Consequently, iput() can sleep.
1497  */
1498 void iput(struct inode *inode)
1499 {
1500 	if (!inode)
1501 		return;
1502 	BUG_ON(inode->i_state & I_CLEAR);
1503 retry:
1504 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1505 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1506 			atomic_inc(&inode->i_count);
1507 			inode->i_state &= ~I_DIRTY_TIME;
1508 			spin_unlock(&inode->i_lock);
1509 			trace_writeback_lazytime_iput(inode);
1510 			mark_inode_dirty_sync(inode);
1511 			goto retry;
1512 		}
1513 		iput_final(inode);
1514 	}
1515 }
1516 EXPORT_SYMBOL(iput);
1517 
1518 /**
1519  *	bmap	- find a block number in a file
1520  *	@inode: inode of file
1521  *	@block: block to find
1522  *
1523  *	Returns the block number on the device holding the inode that
1524  *	is the disk block number for the block of the file requested.
1525  *	That is, asked for block 4 of inode 1 the function will return the
1526  *	disk block relative to the disk start that holds that block of the
1527  *	file.
1528  */
1529 sector_t bmap(struct inode *inode, sector_t block)
1530 {
1531 	sector_t res = 0;
1532 	if (inode->i_mapping->a_ops->bmap)
1533 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1534 	return res;
1535 }
1536 EXPORT_SYMBOL(bmap);
1537 
1538 /*
1539  * With relative atime, only update atime if the previous atime is
1540  * earlier than either the ctime or mtime or if at least a day has
1541  * passed since the last atime update.
1542  */
1543 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1544 			     struct timespec now)
1545 {
1546 
1547 	if (!(mnt->mnt_flags & MNT_RELATIME))
1548 		return 1;
1549 	/*
1550 	 * Is mtime younger than atime? If yes, update atime:
1551 	 */
1552 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1553 		return 1;
1554 	/*
1555 	 * Is ctime younger than atime? If yes, update atime:
1556 	 */
1557 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1558 		return 1;
1559 
1560 	/*
1561 	 * Is the previous atime value older than a day? If yes,
1562 	 * update atime:
1563 	 */
1564 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1565 		return 1;
1566 	/*
1567 	 * Good, we can skip the atime update:
1568 	 */
1569 	return 0;
1570 }
1571 
1572 int generic_update_time(struct inode *inode, struct timespec *time, int flags)
1573 {
1574 	int iflags = I_DIRTY_TIME;
1575 
1576 	if (flags & S_ATIME)
1577 		inode->i_atime = *time;
1578 	if (flags & S_VERSION)
1579 		inode_inc_iversion(inode);
1580 	if (flags & S_CTIME)
1581 		inode->i_ctime = *time;
1582 	if (flags & S_MTIME)
1583 		inode->i_mtime = *time;
1584 
1585 	if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION))
1586 		iflags |= I_DIRTY_SYNC;
1587 	__mark_inode_dirty(inode, iflags);
1588 	return 0;
1589 }
1590 EXPORT_SYMBOL(generic_update_time);
1591 
1592 /*
1593  * This does the actual work of updating an inodes time or version.  Must have
1594  * had called mnt_want_write() before calling this.
1595  */
1596 static int update_time(struct inode *inode, struct timespec *time, int flags)
1597 {
1598 	int (*update_time)(struct inode *, struct timespec *, int);
1599 
1600 	update_time = inode->i_op->update_time ? inode->i_op->update_time :
1601 		generic_update_time;
1602 
1603 	return update_time(inode, time, flags);
1604 }
1605 
1606 /**
1607  *	touch_atime	-	update the access time
1608  *	@path: the &struct path to update
1609  *	@inode: inode to update
1610  *
1611  *	Update the accessed time on an inode and mark it for writeback.
1612  *	This function automatically handles read only file systems and media,
1613  *	as well as the "noatime" flag and inode specific "noatime" markers.
1614  */
1615 bool atime_needs_update(const struct path *path, struct inode *inode)
1616 {
1617 	struct vfsmount *mnt = path->mnt;
1618 	struct timespec now;
1619 
1620 	if (inode->i_flags & S_NOATIME)
1621 		return false;
1622 
1623 	/* Atime updates will likely cause i_uid and i_gid to be written
1624 	 * back improprely if their true value is unknown to the vfs.
1625 	 */
1626 	if (HAS_UNMAPPED_ID(inode))
1627 		return false;
1628 
1629 	if (IS_NOATIME(inode))
1630 		return false;
1631 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1632 		return false;
1633 
1634 	if (mnt->mnt_flags & MNT_NOATIME)
1635 		return false;
1636 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1637 		return false;
1638 
1639 	now = current_fs_time(inode->i_sb);
1640 
1641 	if (!relatime_need_update(mnt, inode, now))
1642 		return false;
1643 
1644 	if (timespec_equal(&inode->i_atime, &now))
1645 		return false;
1646 
1647 	return true;
1648 }
1649 
1650 void touch_atime(const struct path *path)
1651 {
1652 	struct vfsmount *mnt = path->mnt;
1653 	struct inode *inode = d_inode(path->dentry);
1654 	struct timespec now;
1655 
1656 	if (!atime_needs_update(path, inode))
1657 		return;
1658 
1659 	if (!sb_start_write_trylock(inode->i_sb))
1660 		return;
1661 
1662 	if (__mnt_want_write(mnt) != 0)
1663 		goto skip_update;
1664 	/*
1665 	 * File systems can error out when updating inodes if they need to
1666 	 * allocate new space to modify an inode (such is the case for
1667 	 * Btrfs), but since we touch atime while walking down the path we
1668 	 * really don't care if we failed to update the atime of the file,
1669 	 * so just ignore the return value.
1670 	 * We may also fail on filesystems that have the ability to make parts
1671 	 * of the fs read only, e.g. subvolumes in Btrfs.
1672 	 */
1673 	now = current_fs_time(inode->i_sb);
1674 	update_time(inode, &now, S_ATIME);
1675 	__mnt_drop_write(mnt);
1676 skip_update:
1677 	sb_end_write(inode->i_sb);
1678 }
1679 EXPORT_SYMBOL(touch_atime);
1680 
1681 /*
1682  * The logic we want is
1683  *
1684  *	if suid or (sgid and xgrp)
1685  *		remove privs
1686  */
1687 int should_remove_suid(struct dentry *dentry)
1688 {
1689 	umode_t mode = d_inode(dentry)->i_mode;
1690 	int kill = 0;
1691 
1692 	/* suid always must be killed */
1693 	if (unlikely(mode & S_ISUID))
1694 		kill = ATTR_KILL_SUID;
1695 
1696 	/*
1697 	 * sgid without any exec bits is just a mandatory locking mark; leave
1698 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1699 	 */
1700 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1701 		kill |= ATTR_KILL_SGID;
1702 
1703 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1704 		return kill;
1705 
1706 	return 0;
1707 }
1708 EXPORT_SYMBOL(should_remove_suid);
1709 
1710 /*
1711  * Return mask of changes for notify_change() that need to be done as a
1712  * response to write or truncate. Return 0 if nothing has to be changed.
1713  * Negative value on error (change should be denied).
1714  */
1715 int dentry_needs_remove_privs(struct dentry *dentry)
1716 {
1717 	struct inode *inode = d_inode(dentry);
1718 	int mask = 0;
1719 	int ret;
1720 
1721 	if (IS_NOSEC(inode))
1722 		return 0;
1723 
1724 	mask = should_remove_suid(dentry);
1725 	ret = security_inode_need_killpriv(dentry);
1726 	if (ret < 0)
1727 		return ret;
1728 	if (ret)
1729 		mask |= ATTR_KILL_PRIV;
1730 	return mask;
1731 }
1732 
1733 static int __remove_privs(struct dentry *dentry, int kill)
1734 {
1735 	struct iattr newattrs;
1736 
1737 	newattrs.ia_valid = ATTR_FORCE | kill;
1738 	/*
1739 	 * Note we call this on write, so notify_change will not
1740 	 * encounter any conflicting delegations:
1741 	 */
1742 	return notify_change(dentry, &newattrs, NULL);
1743 }
1744 
1745 /*
1746  * Remove special file priviledges (suid, capabilities) when file is written
1747  * to or truncated.
1748  */
1749 int file_remove_privs(struct file *file)
1750 {
1751 	struct dentry *dentry = file_dentry(file);
1752 	struct inode *inode = file_inode(file);
1753 	int kill;
1754 	int error = 0;
1755 
1756 	/* Fast path for nothing security related */
1757 	if (IS_NOSEC(inode))
1758 		return 0;
1759 
1760 	kill = dentry_needs_remove_privs(dentry);
1761 	if (kill < 0)
1762 		return kill;
1763 	if (kill)
1764 		error = __remove_privs(dentry, kill);
1765 	if (!error)
1766 		inode_has_no_xattr(inode);
1767 
1768 	return error;
1769 }
1770 EXPORT_SYMBOL(file_remove_privs);
1771 
1772 /**
1773  *	file_update_time	-	update mtime and ctime time
1774  *	@file: file accessed
1775  *
1776  *	Update the mtime and ctime members of an inode and mark the inode
1777  *	for writeback.  Note that this function is meant exclusively for
1778  *	usage in the file write path of filesystems, and filesystems may
1779  *	choose to explicitly ignore update via this function with the
1780  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1781  *	timestamps are handled by the server.  This can return an error for
1782  *	file systems who need to allocate space in order to update an inode.
1783  */
1784 
1785 int file_update_time(struct file *file)
1786 {
1787 	struct inode *inode = file_inode(file);
1788 	struct timespec now;
1789 	int sync_it = 0;
1790 	int ret;
1791 
1792 	/* First try to exhaust all avenues to not sync */
1793 	if (IS_NOCMTIME(inode))
1794 		return 0;
1795 
1796 	now = current_fs_time(inode->i_sb);
1797 	if (!timespec_equal(&inode->i_mtime, &now))
1798 		sync_it = S_MTIME;
1799 
1800 	if (!timespec_equal(&inode->i_ctime, &now))
1801 		sync_it |= S_CTIME;
1802 
1803 	if (IS_I_VERSION(inode))
1804 		sync_it |= S_VERSION;
1805 
1806 	if (!sync_it)
1807 		return 0;
1808 
1809 	/* Finally allowed to write? Takes lock. */
1810 	if (__mnt_want_write_file(file))
1811 		return 0;
1812 
1813 	ret = update_time(inode, &now, sync_it);
1814 	__mnt_drop_write_file(file);
1815 
1816 	return ret;
1817 }
1818 EXPORT_SYMBOL(file_update_time);
1819 
1820 int inode_needs_sync(struct inode *inode)
1821 {
1822 	if (IS_SYNC(inode))
1823 		return 1;
1824 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1825 		return 1;
1826 	return 0;
1827 }
1828 EXPORT_SYMBOL(inode_needs_sync);
1829 
1830 /*
1831  * If we try to find an inode in the inode hash while it is being
1832  * deleted, we have to wait until the filesystem completes its
1833  * deletion before reporting that it isn't found.  This function waits
1834  * until the deletion _might_ have completed.  Callers are responsible
1835  * to recheck inode state.
1836  *
1837  * It doesn't matter if I_NEW is not set initially, a call to
1838  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1839  * will DTRT.
1840  */
1841 static void __wait_on_freeing_inode(struct inode *inode)
1842 {
1843 	wait_queue_head_t *wq;
1844 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1845 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1846 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1847 	spin_unlock(&inode->i_lock);
1848 	spin_unlock(&inode_hash_lock);
1849 	schedule();
1850 	finish_wait(wq, &wait.wait);
1851 	spin_lock(&inode_hash_lock);
1852 }
1853 
1854 static __initdata unsigned long ihash_entries;
1855 static int __init set_ihash_entries(char *str)
1856 {
1857 	if (!str)
1858 		return 0;
1859 	ihash_entries = simple_strtoul(str, &str, 0);
1860 	return 1;
1861 }
1862 __setup("ihash_entries=", set_ihash_entries);
1863 
1864 /*
1865  * Initialize the waitqueues and inode hash table.
1866  */
1867 void __init inode_init_early(void)
1868 {
1869 	unsigned int loop;
1870 
1871 	/* If hashes are distributed across NUMA nodes, defer
1872 	 * hash allocation until vmalloc space is available.
1873 	 */
1874 	if (hashdist)
1875 		return;
1876 
1877 	inode_hashtable =
1878 		alloc_large_system_hash("Inode-cache",
1879 					sizeof(struct hlist_head),
1880 					ihash_entries,
1881 					14,
1882 					HASH_EARLY,
1883 					&i_hash_shift,
1884 					&i_hash_mask,
1885 					0,
1886 					0);
1887 
1888 	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1889 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1890 }
1891 
1892 void __init inode_init(void)
1893 {
1894 	unsigned int loop;
1895 
1896 	/* inode slab cache */
1897 	inode_cachep = kmem_cache_create("inode_cache",
1898 					 sizeof(struct inode),
1899 					 0,
1900 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1901 					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1902 					 init_once);
1903 
1904 	/* Hash may have been set up in inode_init_early */
1905 	if (!hashdist)
1906 		return;
1907 
1908 	inode_hashtable =
1909 		alloc_large_system_hash("Inode-cache",
1910 					sizeof(struct hlist_head),
1911 					ihash_entries,
1912 					14,
1913 					0,
1914 					&i_hash_shift,
1915 					&i_hash_mask,
1916 					0,
1917 					0);
1918 
1919 	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1920 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1921 }
1922 
1923 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1924 {
1925 	inode->i_mode = mode;
1926 	if (S_ISCHR(mode)) {
1927 		inode->i_fop = &def_chr_fops;
1928 		inode->i_rdev = rdev;
1929 	} else if (S_ISBLK(mode)) {
1930 		inode->i_fop = &def_blk_fops;
1931 		inode->i_rdev = rdev;
1932 	} else if (S_ISFIFO(mode))
1933 		inode->i_fop = &pipefifo_fops;
1934 	else if (S_ISSOCK(mode))
1935 		;	/* leave it no_open_fops */
1936 	else
1937 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1938 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1939 				  inode->i_ino);
1940 }
1941 EXPORT_SYMBOL(init_special_inode);
1942 
1943 /**
1944  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1945  * @inode: New inode
1946  * @dir: Directory inode
1947  * @mode: mode of the new inode
1948  */
1949 void inode_init_owner(struct inode *inode, const struct inode *dir,
1950 			umode_t mode)
1951 {
1952 	inode->i_uid = current_fsuid();
1953 	if (dir && dir->i_mode & S_ISGID) {
1954 		inode->i_gid = dir->i_gid;
1955 		if (S_ISDIR(mode))
1956 			mode |= S_ISGID;
1957 	} else
1958 		inode->i_gid = current_fsgid();
1959 	inode->i_mode = mode;
1960 }
1961 EXPORT_SYMBOL(inode_init_owner);
1962 
1963 /**
1964  * inode_owner_or_capable - check current task permissions to inode
1965  * @inode: inode being checked
1966  *
1967  * Return true if current either has CAP_FOWNER in a namespace with the
1968  * inode owner uid mapped, or owns the file.
1969  */
1970 bool inode_owner_or_capable(const struct inode *inode)
1971 {
1972 	struct user_namespace *ns;
1973 
1974 	if (uid_eq(current_fsuid(), inode->i_uid))
1975 		return true;
1976 
1977 	ns = current_user_ns();
1978 	if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
1979 		return true;
1980 	return false;
1981 }
1982 EXPORT_SYMBOL(inode_owner_or_capable);
1983 
1984 /*
1985  * Direct i/o helper functions
1986  */
1987 static void __inode_dio_wait(struct inode *inode)
1988 {
1989 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1990 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1991 
1992 	do {
1993 		prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1994 		if (atomic_read(&inode->i_dio_count))
1995 			schedule();
1996 	} while (atomic_read(&inode->i_dio_count));
1997 	finish_wait(wq, &q.wait);
1998 }
1999 
2000 /**
2001  * inode_dio_wait - wait for outstanding DIO requests to finish
2002  * @inode: inode to wait for
2003  *
2004  * Waits for all pending direct I/O requests to finish so that we can
2005  * proceed with a truncate or equivalent operation.
2006  *
2007  * Must be called under a lock that serializes taking new references
2008  * to i_dio_count, usually by inode->i_mutex.
2009  */
2010 void inode_dio_wait(struct inode *inode)
2011 {
2012 	if (atomic_read(&inode->i_dio_count))
2013 		__inode_dio_wait(inode);
2014 }
2015 EXPORT_SYMBOL(inode_dio_wait);
2016 
2017 /*
2018  * inode_set_flags - atomically set some inode flags
2019  *
2020  * Note: the caller should be holding i_mutex, or else be sure that
2021  * they have exclusive access to the inode structure (i.e., while the
2022  * inode is being instantiated).  The reason for the cmpxchg() loop
2023  * --- which wouldn't be necessary if all code paths which modify
2024  * i_flags actually followed this rule, is that there is at least one
2025  * code path which doesn't today so we use cmpxchg() out of an abundance
2026  * of caution.
2027  *
2028  * In the long run, i_mutex is overkill, and we should probably look
2029  * at using the i_lock spinlock to protect i_flags, and then make sure
2030  * it is so documented in include/linux/fs.h and that all code follows
2031  * the locking convention!!
2032  */
2033 void inode_set_flags(struct inode *inode, unsigned int flags,
2034 		     unsigned int mask)
2035 {
2036 	unsigned int old_flags, new_flags;
2037 
2038 	WARN_ON_ONCE(flags & ~mask);
2039 	do {
2040 		old_flags = ACCESS_ONCE(inode->i_flags);
2041 		new_flags = (old_flags & ~mask) | flags;
2042 	} while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2043 				  new_flags) != old_flags));
2044 }
2045 EXPORT_SYMBOL(inode_set_flags);
2046 
2047 void inode_nohighmem(struct inode *inode)
2048 {
2049 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2050 }
2051 EXPORT_SYMBOL(inode_nohighmem);
2052