1 /* 2 * linux/fs/inode.c 3 * 4 * (C) 1997 Linus Torvalds 5 */ 6 7 #include <linux/fs.h> 8 #include <linux/mm.h> 9 #include <linux/dcache.h> 10 #include <linux/init.h> 11 #include <linux/quotaops.h> 12 #include <linux/slab.h> 13 #include <linux/writeback.h> 14 #include <linux/module.h> 15 #include <linux/backing-dev.h> 16 #include <linux/wait.h> 17 #include <linux/hash.h> 18 #include <linux/swap.h> 19 #include <linux/security.h> 20 #include <linux/pagemap.h> 21 #include <linux/cdev.h> 22 #include <linux/bootmem.h> 23 #include <linux/inotify.h> 24 #include <linux/mount.h> 25 26 /* 27 * This is needed for the following functions: 28 * - inode_has_buffers 29 * - invalidate_inode_buffers 30 * - invalidate_bdev 31 * 32 * FIXME: remove all knowledge of the buffer layer from this file 33 */ 34 #include <linux/buffer_head.h> 35 36 /* 37 * New inode.c implementation. 38 * 39 * This implementation has the basic premise of trying 40 * to be extremely low-overhead and SMP-safe, yet be 41 * simple enough to be "obviously correct". 42 * 43 * Famous last words. 44 */ 45 46 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */ 47 48 /* #define INODE_PARANOIA 1 */ 49 /* #define INODE_DEBUG 1 */ 50 51 /* 52 * Inode lookup is no longer as critical as it used to be: 53 * most of the lookups are going to be through the dcache. 54 */ 55 #define I_HASHBITS i_hash_shift 56 #define I_HASHMASK i_hash_mask 57 58 static unsigned int i_hash_mask __read_mostly; 59 static unsigned int i_hash_shift __read_mostly; 60 61 /* 62 * Each inode can be on two separate lists. One is 63 * the hash list of the inode, used for lookups. The 64 * other linked list is the "type" list: 65 * "in_use" - valid inode, i_count > 0, i_nlink > 0 66 * "dirty" - as "in_use" but also dirty 67 * "unused" - valid inode, i_count = 0 68 * 69 * A "dirty" list is maintained for each super block, 70 * allowing for low-overhead inode sync() operations. 71 */ 72 73 LIST_HEAD(inode_in_use); 74 LIST_HEAD(inode_unused); 75 static struct hlist_head *inode_hashtable __read_mostly; 76 77 /* 78 * A simple spinlock to protect the list manipulations. 79 * 80 * NOTE! You also have to own the lock if you change 81 * the i_state of an inode while it is in use.. 82 */ 83 DEFINE_SPINLOCK(inode_lock); 84 85 /* 86 * iprune_mutex provides exclusion between the kswapd or try_to_free_pages 87 * icache shrinking path, and the umount path. Without this exclusion, 88 * by the time prune_icache calls iput for the inode whose pages it has 89 * been invalidating, or by the time it calls clear_inode & destroy_inode 90 * from its final dispose_list, the struct super_block they refer to 91 * (for inode->i_sb->s_op) may already have been freed and reused. 92 */ 93 static DEFINE_MUTEX(iprune_mutex); 94 95 /* 96 * Statistics gathering.. 97 */ 98 struct inodes_stat_t inodes_stat; 99 100 static struct kmem_cache * inode_cachep __read_mostly; 101 102 static void wake_up_inode(struct inode *inode) 103 { 104 /* 105 * Prevent speculative execution through spin_unlock(&inode_lock); 106 */ 107 smp_mb(); 108 wake_up_bit(&inode->i_state, __I_LOCK); 109 } 110 111 static struct inode *alloc_inode(struct super_block *sb) 112 { 113 static const struct address_space_operations empty_aops; 114 static struct inode_operations empty_iops; 115 static const struct file_operations empty_fops; 116 struct inode *inode; 117 118 if (sb->s_op->alloc_inode) 119 inode = sb->s_op->alloc_inode(sb); 120 else 121 inode = (struct inode *) kmem_cache_alloc(inode_cachep, GFP_KERNEL); 122 123 if (inode) { 124 struct address_space * const mapping = &inode->i_data; 125 126 inode->i_sb = sb; 127 inode->i_blkbits = sb->s_blocksize_bits; 128 inode->i_flags = 0; 129 atomic_set(&inode->i_count, 1); 130 inode->i_op = &empty_iops; 131 inode->i_fop = &empty_fops; 132 inode->i_nlink = 1; 133 atomic_set(&inode->i_writecount, 0); 134 inode->i_size = 0; 135 inode->i_blocks = 0; 136 inode->i_bytes = 0; 137 inode->i_generation = 0; 138 #ifdef CONFIG_QUOTA 139 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); 140 #endif 141 inode->i_pipe = NULL; 142 inode->i_bdev = NULL; 143 inode->i_cdev = NULL; 144 inode->i_rdev = 0; 145 inode->dirtied_when = 0; 146 if (security_inode_alloc(inode)) { 147 if (inode->i_sb->s_op->destroy_inode) 148 inode->i_sb->s_op->destroy_inode(inode); 149 else 150 kmem_cache_free(inode_cachep, (inode)); 151 return NULL; 152 } 153 154 spin_lock_init(&inode->i_lock); 155 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 156 157 mutex_init(&inode->i_mutex); 158 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key); 159 160 init_rwsem(&inode->i_alloc_sem); 161 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key); 162 163 mapping->a_ops = &empty_aops; 164 mapping->host = inode; 165 mapping->flags = 0; 166 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_PAGECACHE); 167 mapping->assoc_mapping = NULL; 168 mapping->backing_dev_info = &default_backing_dev_info; 169 170 /* 171 * If the block_device provides a backing_dev_info for client 172 * inodes then use that. Otherwise the inode share the bdev's 173 * backing_dev_info. 174 */ 175 if (sb->s_bdev) { 176 struct backing_dev_info *bdi; 177 178 bdi = sb->s_bdev->bd_inode_backing_dev_info; 179 if (!bdi) 180 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 181 mapping->backing_dev_info = bdi; 182 } 183 inode->i_private = NULL; 184 inode->i_mapping = mapping; 185 } 186 return inode; 187 } 188 189 void destroy_inode(struct inode *inode) 190 { 191 BUG_ON(inode_has_buffers(inode)); 192 security_inode_free(inode); 193 if (inode->i_sb->s_op->destroy_inode) 194 inode->i_sb->s_op->destroy_inode(inode); 195 else 196 kmem_cache_free(inode_cachep, (inode)); 197 } 198 199 200 /* 201 * These are initializations that only need to be done 202 * once, because the fields are idempotent across use 203 * of the inode, so let the slab aware of that. 204 */ 205 void inode_init_once(struct inode *inode) 206 { 207 memset(inode, 0, sizeof(*inode)); 208 INIT_HLIST_NODE(&inode->i_hash); 209 INIT_LIST_HEAD(&inode->i_dentry); 210 INIT_LIST_HEAD(&inode->i_devices); 211 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC); 212 rwlock_init(&inode->i_data.tree_lock); 213 spin_lock_init(&inode->i_data.i_mmap_lock); 214 INIT_LIST_HEAD(&inode->i_data.private_list); 215 spin_lock_init(&inode->i_data.private_lock); 216 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap); 217 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear); 218 i_size_ordered_init(inode); 219 #ifdef CONFIG_INOTIFY 220 INIT_LIST_HEAD(&inode->inotify_watches); 221 mutex_init(&inode->inotify_mutex); 222 #endif 223 } 224 225 EXPORT_SYMBOL(inode_init_once); 226 227 static void init_once(struct kmem_cache * cachep, void *foo) 228 { 229 struct inode * inode = (struct inode *) foo; 230 231 inode_init_once(inode); 232 } 233 234 /* 235 * inode_lock must be held 236 */ 237 void __iget(struct inode * inode) 238 { 239 if (atomic_read(&inode->i_count)) { 240 atomic_inc(&inode->i_count); 241 return; 242 } 243 atomic_inc(&inode->i_count); 244 if (!(inode->i_state & (I_DIRTY|I_SYNC))) 245 list_move(&inode->i_list, &inode_in_use); 246 inodes_stat.nr_unused--; 247 } 248 249 /** 250 * clear_inode - clear an inode 251 * @inode: inode to clear 252 * 253 * This is called by the filesystem to tell us 254 * that the inode is no longer useful. We just 255 * terminate it with extreme prejudice. 256 */ 257 void clear_inode(struct inode *inode) 258 { 259 might_sleep(); 260 invalidate_inode_buffers(inode); 261 262 BUG_ON(inode->i_data.nrpages); 263 BUG_ON(!(inode->i_state & I_FREEING)); 264 BUG_ON(inode->i_state & I_CLEAR); 265 inode_sync_wait(inode); 266 DQUOT_DROP(inode); 267 if (inode->i_sb->s_op->clear_inode) 268 inode->i_sb->s_op->clear_inode(inode); 269 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 270 bd_forget(inode); 271 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 272 cd_forget(inode); 273 inode->i_state = I_CLEAR; 274 } 275 276 EXPORT_SYMBOL(clear_inode); 277 278 /* 279 * dispose_list - dispose of the contents of a local list 280 * @head: the head of the list to free 281 * 282 * Dispose-list gets a local list with local inodes in it, so it doesn't 283 * need to worry about list corruption and SMP locks. 284 */ 285 static void dispose_list(struct list_head *head) 286 { 287 int nr_disposed = 0; 288 289 while (!list_empty(head)) { 290 struct inode *inode; 291 292 inode = list_first_entry(head, struct inode, i_list); 293 list_del(&inode->i_list); 294 295 if (inode->i_data.nrpages) 296 truncate_inode_pages(&inode->i_data, 0); 297 clear_inode(inode); 298 299 spin_lock(&inode_lock); 300 hlist_del_init(&inode->i_hash); 301 list_del_init(&inode->i_sb_list); 302 spin_unlock(&inode_lock); 303 304 wake_up_inode(inode); 305 destroy_inode(inode); 306 nr_disposed++; 307 } 308 spin_lock(&inode_lock); 309 inodes_stat.nr_inodes -= nr_disposed; 310 spin_unlock(&inode_lock); 311 } 312 313 /* 314 * Invalidate all inodes for a device. 315 */ 316 static int invalidate_list(struct list_head *head, struct list_head *dispose) 317 { 318 struct list_head *next; 319 int busy = 0, count = 0; 320 321 next = head->next; 322 for (;;) { 323 struct list_head * tmp = next; 324 struct inode * inode; 325 326 /* 327 * We can reschedule here without worrying about the list's 328 * consistency because the per-sb list of inodes must not 329 * change during umount anymore, and because iprune_mutex keeps 330 * shrink_icache_memory() away. 331 */ 332 cond_resched_lock(&inode_lock); 333 334 next = next->next; 335 if (tmp == head) 336 break; 337 inode = list_entry(tmp, struct inode, i_sb_list); 338 invalidate_inode_buffers(inode); 339 if (!atomic_read(&inode->i_count)) { 340 list_move(&inode->i_list, dispose); 341 inode->i_state |= I_FREEING; 342 count++; 343 continue; 344 } 345 busy = 1; 346 } 347 /* only unused inodes may be cached with i_count zero */ 348 inodes_stat.nr_unused -= count; 349 return busy; 350 } 351 352 /** 353 * invalidate_inodes - discard the inodes on a device 354 * @sb: superblock 355 * 356 * Discard all of the inodes for a given superblock. If the discard 357 * fails because there are busy inodes then a non zero value is returned. 358 * If the discard is successful all the inodes have been discarded. 359 */ 360 int invalidate_inodes(struct super_block * sb) 361 { 362 int busy; 363 LIST_HEAD(throw_away); 364 365 mutex_lock(&iprune_mutex); 366 spin_lock(&inode_lock); 367 inotify_unmount_inodes(&sb->s_inodes); 368 busy = invalidate_list(&sb->s_inodes, &throw_away); 369 spin_unlock(&inode_lock); 370 371 dispose_list(&throw_away); 372 mutex_unlock(&iprune_mutex); 373 374 return busy; 375 } 376 377 EXPORT_SYMBOL(invalidate_inodes); 378 379 static int can_unuse(struct inode *inode) 380 { 381 if (inode->i_state) 382 return 0; 383 if (inode_has_buffers(inode)) 384 return 0; 385 if (atomic_read(&inode->i_count)) 386 return 0; 387 if (inode->i_data.nrpages) 388 return 0; 389 return 1; 390 } 391 392 /* 393 * Scan `goal' inodes on the unused list for freeable ones. They are moved to 394 * a temporary list and then are freed outside inode_lock by dispose_list(). 395 * 396 * Any inodes which are pinned purely because of attached pagecache have their 397 * pagecache removed. We expect the final iput() on that inode to add it to 398 * the front of the inode_unused list. So look for it there and if the 399 * inode is still freeable, proceed. The right inode is found 99.9% of the 400 * time in testing on a 4-way. 401 * 402 * If the inode has metadata buffers attached to mapping->private_list then 403 * try to remove them. 404 */ 405 static void prune_icache(int nr_to_scan) 406 { 407 LIST_HEAD(freeable); 408 int nr_pruned = 0; 409 int nr_scanned; 410 unsigned long reap = 0; 411 412 mutex_lock(&iprune_mutex); 413 spin_lock(&inode_lock); 414 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) { 415 struct inode *inode; 416 417 if (list_empty(&inode_unused)) 418 break; 419 420 inode = list_entry(inode_unused.prev, struct inode, i_list); 421 422 if (inode->i_state || atomic_read(&inode->i_count)) { 423 list_move(&inode->i_list, &inode_unused); 424 continue; 425 } 426 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 427 __iget(inode); 428 spin_unlock(&inode_lock); 429 if (remove_inode_buffers(inode)) 430 reap += invalidate_mapping_pages(&inode->i_data, 431 0, -1); 432 iput(inode); 433 spin_lock(&inode_lock); 434 435 if (inode != list_entry(inode_unused.next, 436 struct inode, i_list)) 437 continue; /* wrong inode or list_empty */ 438 if (!can_unuse(inode)) 439 continue; 440 } 441 list_move(&inode->i_list, &freeable); 442 inode->i_state |= I_FREEING; 443 nr_pruned++; 444 } 445 inodes_stat.nr_unused -= nr_pruned; 446 if (current_is_kswapd()) 447 __count_vm_events(KSWAPD_INODESTEAL, reap); 448 else 449 __count_vm_events(PGINODESTEAL, reap); 450 spin_unlock(&inode_lock); 451 452 dispose_list(&freeable); 453 mutex_unlock(&iprune_mutex); 454 } 455 456 /* 457 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here, 458 * "unused" means that no dentries are referring to the inodes: the files are 459 * not open and the dcache references to those inodes have already been 460 * reclaimed. 461 * 462 * This function is passed the number of inodes to scan, and it returns the 463 * total number of remaining possibly-reclaimable inodes. 464 */ 465 static int shrink_icache_memory(int nr, gfp_t gfp_mask) 466 { 467 if (nr) { 468 /* 469 * Nasty deadlock avoidance. We may hold various FS locks, 470 * and we don't want to recurse into the FS that called us 471 * in clear_inode() and friends.. 472 */ 473 if (!(gfp_mask & __GFP_FS)) 474 return -1; 475 prune_icache(nr); 476 } 477 return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure; 478 } 479 480 static struct shrinker icache_shrinker = { 481 .shrink = shrink_icache_memory, 482 .seeks = DEFAULT_SEEKS, 483 }; 484 485 static void __wait_on_freeing_inode(struct inode *inode); 486 /* 487 * Called with the inode lock held. 488 * NOTE: we are not increasing the inode-refcount, you must call __iget() 489 * by hand after calling find_inode now! This simplifies iunique and won't 490 * add any additional branch in the common code. 491 */ 492 static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data) 493 { 494 struct hlist_node *node; 495 struct inode * inode = NULL; 496 497 repeat: 498 hlist_for_each (node, head) { 499 inode = hlist_entry(node, struct inode, i_hash); 500 if (inode->i_sb != sb) 501 continue; 502 if (!test(inode, data)) 503 continue; 504 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 505 __wait_on_freeing_inode(inode); 506 goto repeat; 507 } 508 break; 509 } 510 return node ? inode : NULL; 511 } 512 513 /* 514 * find_inode_fast is the fast path version of find_inode, see the comment at 515 * iget_locked for details. 516 */ 517 static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino) 518 { 519 struct hlist_node *node; 520 struct inode * inode = NULL; 521 522 repeat: 523 hlist_for_each (node, head) { 524 inode = hlist_entry(node, struct inode, i_hash); 525 if (inode->i_ino != ino) 526 continue; 527 if (inode->i_sb != sb) 528 continue; 529 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 530 __wait_on_freeing_inode(inode); 531 goto repeat; 532 } 533 break; 534 } 535 return node ? inode : NULL; 536 } 537 538 /** 539 * new_inode - obtain an inode 540 * @sb: superblock 541 * 542 * Allocates a new inode for given superblock. The default gfp_mask 543 * for allocations related to inode->i_mapping is GFP_HIGHUSER_PAGECACHE. 544 * If HIGHMEM pages are unsuitable or it is known that pages allocated 545 * for the page cache are not reclaimable or migratable, 546 * mapping_set_gfp_mask() must be called with suitable flags on the 547 * newly created inode's mapping 548 * 549 */ 550 struct inode *new_inode(struct super_block *sb) 551 { 552 /* 553 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 554 * error if st_ino won't fit in target struct field. Use 32bit counter 555 * here to attempt to avoid that. 556 */ 557 static unsigned int last_ino; 558 struct inode * inode; 559 560 spin_lock_prefetch(&inode_lock); 561 562 inode = alloc_inode(sb); 563 if (inode) { 564 spin_lock(&inode_lock); 565 inodes_stat.nr_inodes++; 566 list_add(&inode->i_list, &inode_in_use); 567 list_add(&inode->i_sb_list, &sb->s_inodes); 568 inode->i_ino = ++last_ino; 569 inode->i_state = 0; 570 spin_unlock(&inode_lock); 571 } 572 return inode; 573 } 574 575 EXPORT_SYMBOL(new_inode); 576 577 void unlock_new_inode(struct inode *inode) 578 { 579 #ifdef CONFIG_DEBUG_LOCK_ALLOC 580 if (inode->i_mode & S_IFDIR) { 581 struct file_system_type *type = inode->i_sb->s_type; 582 583 /* 584 * ensure nobody is actually holding i_mutex 585 */ 586 mutex_destroy(&inode->i_mutex); 587 mutex_init(&inode->i_mutex); 588 lockdep_set_class(&inode->i_mutex, &type->i_mutex_dir_key); 589 } 590 #endif 591 /* 592 * This is special! We do not need the spinlock 593 * when clearing I_LOCK, because we're guaranteed 594 * that nobody else tries to do anything about the 595 * state of the inode when it is locked, as we 596 * just created it (so there can be no old holders 597 * that haven't tested I_LOCK). 598 */ 599 inode->i_state &= ~(I_LOCK|I_NEW); 600 wake_up_inode(inode); 601 } 602 603 EXPORT_SYMBOL(unlock_new_inode); 604 605 /* 606 * This is called without the inode lock held.. Be careful. 607 * 608 * We no longer cache the sb_flags in i_flags - see fs.h 609 * -- rmk@arm.uk.linux.org 610 */ 611 static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data) 612 { 613 struct inode * inode; 614 615 inode = alloc_inode(sb); 616 if (inode) { 617 struct inode * old; 618 619 spin_lock(&inode_lock); 620 /* We released the lock, so.. */ 621 old = find_inode(sb, head, test, data); 622 if (!old) { 623 if (set(inode, data)) 624 goto set_failed; 625 626 inodes_stat.nr_inodes++; 627 list_add(&inode->i_list, &inode_in_use); 628 list_add(&inode->i_sb_list, &sb->s_inodes); 629 hlist_add_head(&inode->i_hash, head); 630 inode->i_state = I_LOCK|I_NEW; 631 spin_unlock(&inode_lock); 632 633 /* Return the locked inode with I_NEW set, the 634 * caller is responsible for filling in the contents 635 */ 636 return inode; 637 } 638 639 /* 640 * Uhhuh, somebody else created the same inode under 641 * us. Use the old inode instead of the one we just 642 * allocated. 643 */ 644 __iget(old); 645 spin_unlock(&inode_lock); 646 destroy_inode(inode); 647 inode = old; 648 wait_on_inode(inode); 649 } 650 return inode; 651 652 set_failed: 653 spin_unlock(&inode_lock); 654 destroy_inode(inode); 655 return NULL; 656 } 657 658 /* 659 * get_new_inode_fast is the fast path version of get_new_inode, see the 660 * comment at iget_locked for details. 661 */ 662 static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino) 663 { 664 struct inode * inode; 665 666 inode = alloc_inode(sb); 667 if (inode) { 668 struct inode * old; 669 670 spin_lock(&inode_lock); 671 /* We released the lock, so.. */ 672 old = find_inode_fast(sb, head, ino); 673 if (!old) { 674 inode->i_ino = ino; 675 inodes_stat.nr_inodes++; 676 list_add(&inode->i_list, &inode_in_use); 677 list_add(&inode->i_sb_list, &sb->s_inodes); 678 hlist_add_head(&inode->i_hash, head); 679 inode->i_state = I_LOCK|I_NEW; 680 spin_unlock(&inode_lock); 681 682 /* Return the locked inode with I_NEW set, the 683 * caller is responsible for filling in the contents 684 */ 685 return inode; 686 } 687 688 /* 689 * Uhhuh, somebody else created the same inode under 690 * us. Use the old inode instead of the one we just 691 * allocated. 692 */ 693 __iget(old); 694 spin_unlock(&inode_lock); 695 destroy_inode(inode); 696 inode = old; 697 wait_on_inode(inode); 698 } 699 return inode; 700 } 701 702 static unsigned long hash(struct super_block *sb, unsigned long hashval) 703 { 704 unsigned long tmp; 705 706 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 707 L1_CACHE_BYTES; 708 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS); 709 return tmp & I_HASHMASK; 710 } 711 712 /** 713 * iunique - get a unique inode number 714 * @sb: superblock 715 * @max_reserved: highest reserved inode number 716 * 717 * Obtain an inode number that is unique on the system for a given 718 * superblock. This is used by file systems that have no natural 719 * permanent inode numbering system. An inode number is returned that 720 * is higher than the reserved limit but unique. 721 * 722 * BUGS: 723 * With a large number of inodes live on the file system this function 724 * currently becomes quite slow. 725 */ 726 ino_t iunique(struct super_block *sb, ino_t max_reserved) 727 { 728 /* 729 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 730 * error if st_ino won't fit in target struct field. Use 32bit counter 731 * here to attempt to avoid that. 732 */ 733 static unsigned int counter; 734 struct inode *inode; 735 struct hlist_head *head; 736 ino_t res; 737 738 spin_lock(&inode_lock); 739 do { 740 if (counter <= max_reserved) 741 counter = max_reserved + 1; 742 res = counter++; 743 head = inode_hashtable + hash(sb, res); 744 inode = find_inode_fast(sb, head, res); 745 } while (inode != NULL); 746 spin_unlock(&inode_lock); 747 748 return res; 749 } 750 EXPORT_SYMBOL(iunique); 751 752 struct inode *igrab(struct inode *inode) 753 { 754 spin_lock(&inode_lock); 755 if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE))) 756 __iget(inode); 757 else 758 /* 759 * Handle the case where s_op->clear_inode is not been 760 * called yet, and somebody is calling igrab 761 * while the inode is getting freed. 762 */ 763 inode = NULL; 764 spin_unlock(&inode_lock); 765 return inode; 766 } 767 768 EXPORT_SYMBOL(igrab); 769 770 /** 771 * ifind - internal function, you want ilookup5() or iget5(). 772 * @sb: super block of file system to search 773 * @head: the head of the list to search 774 * @test: callback used for comparisons between inodes 775 * @data: opaque data pointer to pass to @test 776 * @wait: if true wait for the inode to be unlocked, if false do not 777 * 778 * ifind() searches for the inode specified by @data in the inode 779 * cache. This is a generalized version of ifind_fast() for file systems where 780 * the inode number is not sufficient for unique identification of an inode. 781 * 782 * If the inode is in the cache, the inode is returned with an incremented 783 * reference count. 784 * 785 * Otherwise NULL is returned. 786 * 787 * Note, @test is called with the inode_lock held, so can't sleep. 788 */ 789 static struct inode *ifind(struct super_block *sb, 790 struct hlist_head *head, int (*test)(struct inode *, void *), 791 void *data, const int wait) 792 { 793 struct inode *inode; 794 795 spin_lock(&inode_lock); 796 inode = find_inode(sb, head, test, data); 797 if (inode) { 798 __iget(inode); 799 spin_unlock(&inode_lock); 800 if (likely(wait)) 801 wait_on_inode(inode); 802 return inode; 803 } 804 spin_unlock(&inode_lock); 805 return NULL; 806 } 807 808 /** 809 * ifind_fast - internal function, you want ilookup() or iget(). 810 * @sb: super block of file system to search 811 * @head: head of the list to search 812 * @ino: inode number to search for 813 * 814 * ifind_fast() searches for the inode @ino in the inode cache. This is for 815 * file systems where the inode number is sufficient for unique identification 816 * of an inode. 817 * 818 * If the inode is in the cache, the inode is returned with an incremented 819 * reference count. 820 * 821 * Otherwise NULL is returned. 822 */ 823 static struct inode *ifind_fast(struct super_block *sb, 824 struct hlist_head *head, unsigned long ino) 825 { 826 struct inode *inode; 827 828 spin_lock(&inode_lock); 829 inode = find_inode_fast(sb, head, ino); 830 if (inode) { 831 __iget(inode); 832 spin_unlock(&inode_lock); 833 wait_on_inode(inode); 834 return inode; 835 } 836 spin_unlock(&inode_lock); 837 return NULL; 838 } 839 840 /** 841 * ilookup5_nowait - search for an inode in the inode cache 842 * @sb: super block of file system to search 843 * @hashval: hash value (usually inode number) to search for 844 * @test: callback used for comparisons between inodes 845 * @data: opaque data pointer to pass to @test 846 * 847 * ilookup5() uses ifind() to search for the inode specified by @hashval and 848 * @data in the inode cache. This is a generalized version of ilookup() for 849 * file systems where the inode number is not sufficient for unique 850 * identification of an inode. 851 * 852 * If the inode is in the cache, the inode is returned with an incremented 853 * reference count. Note, the inode lock is not waited upon so you have to be 854 * very careful what you do with the returned inode. You probably should be 855 * using ilookup5() instead. 856 * 857 * Otherwise NULL is returned. 858 * 859 * Note, @test is called with the inode_lock held, so can't sleep. 860 */ 861 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 862 int (*test)(struct inode *, void *), void *data) 863 { 864 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 865 866 return ifind(sb, head, test, data, 0); 867 } 868 869 EXPORT_SYMBOL(ilookup5_nowait); 870 871 /** 872 * ilookup5 - search for an inode in the inode cache 873 * @sb: super block of file system to search 874 * @hashval: hash value (usually inode number) to search for 875 * @test: callback used for comparisons between inodes 876 * @data: opaque data pointer to pass to @test 877 * 878 * ilookup5() uses ifind() to search for the inode specified by @hashval and 879 * @data in the inode cache. This is a generalized version of ilookup() for 880 * file systems where the inode number is not sufficient for unique 881 * identification of an inode. 882 * 883 * If the inode is in the cache, the inode lock is waited upon and the inode is 884 * returned with an incremented reference count. 885 * 886 * Otherwise NULL is returned. 887 * 888 * Note, @test is called with the inode_lock held, so can't sleep. 889 */ 890 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 891 int (*test)(struct inode *, void *), void *data) 892 { 893 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 894 895 return ifind(sb, head, test, data, 1); 896 } 897 898 EXPORT_SYMBOL(ilookup5); 899 900 /** 901 * ilookup - search for an inode in the inode cache 902 * @sb: super block of file system to search 903 * @ino: inode number to search for 904 * 905 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache. 906 * This is for file systems where the inode number is sufficient for unique 907 * identification of an inode. 908 * 909 * If the inode is in the cache, the inode is returned with an incremented 910 * reference count. 911 * 912 * Otherwise NULL is returned. 913 */ 914 struct inode *ilookup(struct super_block *sb, unsigned long ino) 915 { 916 struct hlist_head *head = inode_hashtable + hash(sb, ino); 917 918 return ifind_fast(sb, head, ino); 919 } 920 921 EXPORT_SYMBOL(ilookup); 922 923 /** 924 * iget5_locked - obtain an inode from a mounted file system 925 * @sb: super block of file system 926 * @hashval: hash value (usually inode number) to get 927 * @test: callback used for comparisons between inodes 928 * @set: callback used to initialize a new struct inode 929 * @data: opaque data pointer to pass to @test and @set 930 * 931 * iget5_locked() uses ifind() to search for the inode specified by @hashval 932 * and @data in the inode cache and if present it is returned with an increased 933 * reference count. This is a generalized version of iget_locked() for file 934 * systems where the inode number is not sufficient for unique identification 935 * of an inode. 936 * 937 * If the inode is not in cache, get_new_inode() is called to allocate a new 938 * inode and this is returned locked, hashed, and with the I_NEW flag set. The 939 * file system gets to fill it in before unlocking it via unlock_new_inode(). 940 * 941 * Note both @test and @set are called with the inode_lock held, so can't sleep. 942 */ 943 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 944 int (*test)(struct inode *, void *), 945 int (*set)(struct inode *, void *), void *data) 946 { 947 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 948 struct inode *inode; 949 950 inode = ifind(sb, head, test, data, 1); 951 if (inode) 952 return inode; 953 /* 954 * get_new_inode() will do the right thing, re-trying the search 955 * in case it had to block at any point. 956 */ 957 return get_new_inode(sb, head, test, set, data); 958 } 959 960 EXPORT_SYMBOL(iget5_locked); 961 962 /** 963 * iget_locked - obtain an inode from a mounted file system 964 * @sb: super block of file system 965 * @ino: inode number to get 966 * 967 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in 968 * the inode cache and if present it is returned with an increased reference 969 * count. This is for file systems where the inode number is sufficient for 970 * unique identification of an inode. 971 * 972 * If the inode is not in cache, get_new_inode_fast() is called to allocate a 973 * new inode and this is returned locked, hashed, and with the I_NEW flag set. 974 * The file system gets to fill it in before unlocking it via 975 * unlock_new_inode(). 976 */ 977 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 978 { 979 struct hlist_head *head = inode_hashtable + hash(sb, ino); 980 struct inode *inode; 981 982 inode = ifind_fast(sb, head, ino); 983 if (inode) 984 return inode; 985 /* 986 * get_new_inode_fast() will do the right thing, re-trying the search 987 * in case it had to block at any point. 988 */ 989 return get_new_inode_fast(sb, head, ino); 990 } 991 992 EXPORT_SYMBOL(iget_locked); 993 994 /** 995 * __insert_inode_hash - hash an inode 996 * @inode: unhashed inode 997 * @hashval: unsigned long value used to locate this object in the 998 * inode_hashtable. 999 * 1000 * Add an inode to the inode hash for this superblock. 1001 */ 1002 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 1003 { 1004 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1005 spin_lock(&inode_lock); 1006 hlist_add_head(&inode->i_hash, head); 1007 spin_unlock(&inode_lock); 1008 } 1009 1010 EXPORT_SYMBOL(__insert_inode_hash); 1011 1012 /** 1013 * remove_inode_hash - remove an inode from the hash 1014 * @inode: inode to unhash 1015 * 1016 * Remove an inode from the superblock. 1017 */ 1018 void remove_inode_hash(struct inode *inode) 1019 { 1020 spin_lock(&inode_lock); 1021 hlist_del_init(&inode->i_hash); 1022 spin_unlock(&inode_lock); 1023 } 1024 1025 EXPORT_SYMBOL(remove_inode_hash); 1026 1027 /* 1028 * Tell the filesystem that this inode is no longer of any interest and should 1029 * be completely destroyed. 1030 * 1031 * We leave the inode in the inode hash table until *after* the filesystem's 1032 * ->delete_inode completes. This ensures that an iget (such as nfsd might 1033 * instigate) will always find up-to-date information either in the hash or on 1034 * disk. 1035 * 1036 * I_FREEING is set so that no-one will take a new reference to the inode while 1037 * it is being deleted. 1038 */ 1039 void generic_delete_inode(struct inode *inode) 1040 { 1041 const struct super_operations *op = inode->i_sb->s_op; 1042 1043 list_del_init(&inode->i_list); 1044 list_del_init(&inode->i_sb_list); 1045 inode->i_state |= I_FREEING; 1046 inodes_stat.nr_inodes--; 1047 spin_unlock(&inode_lock); 1048 1049 security_inode_delete(inode); 1050 1051 if (op->delete_inode) { 1052 void (*delete)(struct inode *) = op->delete_inode; 1053 if (!is_bad_inode(inode)) 1054 DQUOT_INIT(inode); 1055 /* Filesystems implementing their own 1056 * s_op->delete_inode are required to call 1057 * truncate_inode_pages and clear_inode() 1058 * internally */ 1059 delete(inode); 1060 } else { 1061 truncate_inode_pages(&inode->i_data, 0); 1062 clear_inode(inode); 1063 } 1064 spin_lock(&inode_lock); 1065 hlist_del_init(&inode->i_hash); 1066 spin_unlock(&inode_lock); 1067 wake_up_inode(inode); 1068 BUG_ON(inode->i_state != I_CLEAR); 1069 destroy_inode(inode); 1070 } 1071 1072 EXPORT_SYMBOL(generic_delete_inode); 1073 1074 static void generic_forget_inode(struct inode *inode) 1075 { 1076 struct super_block *sb = inode->i_sb; 1077 1078 if (!hlist_unhashed(&inode->i_hash)) { 1079 if (!(inode->i_state & (I_DIRTY|I_SYNC))) 1080 list_move(&inode->i_list, &inode_unused); 1081 inodes_stat.nr_unused++; 1082 if (sb->s_flags & MS_ACTIVE) { 1083 spin_unlock(&inode_lock); 1084 return; 1085 } 1086 inode->i_state |= I_WILL_FREE; 1087 spin_unlock(&inode_lock); 1088 write_inode_now(inode, 1); 1089 spin_lock(&inode_lock); 1090 inode->i_state &= ~I_WILL_FREE; 1091 inodes_stat.nr_unused--; 1092 hlist_del_init(&inode->i_hash); 1093 } 1094 list_del_init(&inode->i_list); 1095 list_del_init(&inode->i_sb_list); 1096 inode->i_state |= I_FREEING; 1097 inodes_stat.nr_inodes--; 1098 spin_unlock(&inode_lock); 1099 if (inode->i_data.nrpages) 1100 truncate_inode_pages(&inode->i_data, 0); 1101 clear_inode(inode); 1102 wake_up_inode(inode); 1103 destroy_inode(inode); 1104 } 1105 1106 /* 1107 * Normal UNIX filesystem behaviour: delete the 1108 * inode when the usage count drops to zero, and 1109 * i_nlink is zero. 1110 */ 1111 void generic_drop_inode(struct inode *inode) 1112 { 1113 if (!inode->i_nlink) 1114 generic_delete_inode(inode); 1115 else 1116 generic_forget_inode(inode); 1117 } 1118 1119 EXPORT_SYMBOL_GPL(generic_drop_inode); 1120 1121 /* 1122 * Called when we're dropping the last reference 1123 * to an inode. 1124 * 1125 * Call the FS "drop()" function, defaulting to 1126 * the legacy UNIX filesystem behaviour.. 1127 * 1128 * NOTE! NOTE! NOTE! We're called with the inode lock 1129 * held, and the drop function is supposed to release 1130 * the lock! 1131 */ 1132 static inline void iput_final(struct inode *inode) 1133 { 1134 const struct super_operations *op = inode->i_sb->s_op; 1135 void (*drop)(struct inode *) = generic_drop_inode; 1136 1137 if (op && op->drop_inode) 1138 drop = op->drop_inode; 1139 drop(inode); 1140 } 1141 1142 /** 1143 * iput - put an inode 1144 * @inode: inode to put 1145 * 1146 * Puts an inode, dropping its usage count. If the inode use count hits 1147 * zero, the inode is then freed and may also be destroyed. 1148 * 1149 * Consequently, iput() can sleep. 1150 */ 1151 void iput(struct inode *inode) 1152 { 1153 if (inode) { 1154 const struct super_operations *op = inode->i_sb->s_op; 1155 1156 BUG_ON(inode->i_state == I_CLEAR); 1157 1158 if (op && op->put_inode) 1159 op->put_inode(inode); 1160 1161 if (atomic_dec_and_lock(&inode->i_count, &inode_lock)) 1162 iput_final(inode); 1163 } 1164 } 1165 1166 EXPORT_SYMBOL(iput); 1167 1168 /** 1169 * bmap - find a block number in a file 1170 * @inode: inode of file 1171 * @block: block to find 1172 * 1173 * Returns the block number on the device holding the inode that 1174 * is the disk block number for the block of the file requested. 1175 * That is, asked for block 4 of inode 1 the function will return the 1176 * disk block relative to the disk start that holds that block of the 1177 * file. 1178 */ 1179 sector_t bmap(struct inode * inode, sector_t block) 1180 { 1181 sector_t res = 0; 1182 if (inode->i_mapping->a_ops->bmap) 1183 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1184 return res; 1185 } 1186 EXPORT_SYMBOL(bmap); 1187 1188 /** 1189 * touch_atime - update the access time 1190 * @mnt: mount the inode is accessed on 1191 * @dentry: dentry accessed 1192 * 1193 * Update the accessed time on an inode and mark it for writeback. 1194 * This function automatically handles read only file systems and media, 1195 * as well as the "noatime" flag and inode specific "noatime" markers. 1196 */ 1197 void touch_atime(struct vfsmount *mnt, struct dentry *dentry) 1198 { 1199 struct inode *inode = dentry->d_inode; 1200 struct timespec now; 1201 1202 if (inode->i_flags & S_NOATIME) 1203 return; 1204 if (IS_NOATIME(inode)) 1205 return; 1206 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) 1207 return; 1208 1209 /* 1210 * We may have a NULL vfsmount when coming from NFSD 1211 */ 1212 if (mnt) { 1213 if (mnt->mnt_flags & MNT_NOATIME) 1214 return; 1215 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1216 return; 1217 1218 if (mnt->mnt_flags & MNT_RELATIME) { 1219 /* 1220 * With relative atime, only update atime if the 1221 * previous atime is earlier than either the ctime or 1222 * mtime. 1223 */ 1224 if (timespec_compare(&inode->i_mtime, 1225 &inode->i_atime) < 0 && 1226 timespec_compare(&inode->i_ctime, 1227 &inode->i_atime) < 0) 1228 return; 1229 } 1230 } 1231 1232 now = current_fs_time(inode->i_sb); 1233 if (timespec_equal(&inode->i_atime, &now)) 1234 return; 1235 1236 inode->i_atime = now; 1237 mark_inode_dirty_sync(inode); 1238 } 1239 EXPORT_SYMBOL(touch_atime); 1240 1241 /** 1242 * file_update_time - update mtime and ctime time 1243 * @file: file accessed 1244 * 1245 * Update the mtime and ctime members of an inode and mark the inode 1246 * for writeback. Note that this function is meant exclusively for 1247 * usage in the file write path of filesystems, and filesystems may 1248 * choose to explicitly ignore update via this function with the 1249 * S_NOCTIME inode flag, e.g. for network filesystem where these 1250 * timestamps are handled by the server. 1251 */ 1252 1253 void file_update_time(struct file *file) 1254 { 1255 struct inode *inode = file->f_path.dentry->d_inode; 1256 struct timespec now; 1257 int sync_it = 0; 1258 1259 if (IS_NOCMTIME(inode)) 1260 return; 1261 if (IS_RDONLY(inode)) 1262 return; 1263 1264 now = current_fs_time(inode->i_sb); 1265 if (!timespec_equal(&inode->i_mtime, &now)) { 1266 inode->i_mtime = now; 1267 sync_it = 1; 1268 } 1269 1270 if (!timespec_equal(&inode->i_ctime, &now)) { 1271 inode->i_ctime = now; 1272 sync_it = 1; 1273 } 1274 1275 if (IS_I_VERSION(inode)) { 1276 inode_inc_iversion(inode); 1277 sync_it = 1; 1278 } 1279 1280 if (sync_it) 1281 mark_inode_dirty_sync(inode); 1282 } 1283 1284 EXPORT_SYMBOL(file_update_time); 1285 1286 int inode_needs_sync(struct inode *inode) 1287 { 1288 if (IS_SYNC(inode)) 1289 return 1; 1290 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1291 return 1; 1292 return 0; 1293 } 1294 1295 EXPORT_SYMBOL(inode_needs_sync); 1296 1297 int inode_wait(void *word) 1298 { 1299 schedule(); 1300 return 0; 1301 } 1302 1303 /* 1304 * If we try to find an inode in the inode hash while it is being 1305 * deleted, we have to wait until the filesystem completes its 1306 * deletion before reporting that it isn't found. This function waits 1307 * until the deletion _might_ have completed. Callers are responsible 1308 * to recheck inode state. 1309 * 1310 * It doesn't matter if I_LOCK is not set initially, a call to 1311 * wake_up_inode() after removing from the hash list will DTRT. 1312 * 1313 * This is called with inode_lock held. 1314 */ 1315 static void __wait_on_freeing_inode(struct inode *inode) 1316 { 1317 wait_queue_head_t *wq; 1318 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK); 1319 wq = bit_waitqueue(&inode->i_state, __I_LOCK); 1320 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1321 spin_unlock(&inode_lock); 1322 schedule(); 1323 finish_wait(wq, &wait.wait); 1324 spin_lock(&inode_lock); 1325 } 1326 1327 /* 1328 * We rarely want to lock two inodes that do not have a parent/child 1329 * relationship (such as directory, child inode) simultaneously. The 1330 * vast majority of file systems should be able to get along fine 1331 * without this. Do not use these functions except as a last resort. 1332 */ 1333 void inode_double_lock(struct inode *inode1, struct inode *inode2) 1334 { 1335 if (inode1 == NULL || inode2 == NULL || inode1 == inode2) { 1336 if (inode1) 1337 mutex_lock(&inode1->i_mutex); 1338 else if (inode2) 1339 mutex_lock(&inode2->i_mutex); 1340 return; 1341 } 1342 1343 if (inode1 < inode2) { 1344 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT); 1345 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD); 1346 } else { 1347 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_PARENT); 1348 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_CHILD); 1349 } 1350 } 1351 EXPORT_SYMBOL(inode_double_lock); 1352 1353 void inode_double_unlock(struct inode *inode1, struct inode *inode2) 1354 { 1355 if (inode1) 1356 mutex_unlock(&inode1->i_mutex); 1357 1358 if (inode2 && inode2 != inode1) 1359 mutex_unlock(&inode2->i_mutex); 1360 } 1361 EXPORT_SYMBOL(inode_double_unlock); 1362 1363 static __initdata unsigned long ihash_entries; 1364 static int __init set_ihash_entries(char *str) 1365 { 1366 if (!str) 1367 return 0; 1368 ihash_entries = simple_strtoul(str, &str, 0); 1369 return 1; 1370 } 1371 __setup("ihash_entries=", set_ihash_entries); 1372 1373 /* 1374 * Initialize the waitqueues and inode hash table. 1375 */ 1376 void __init inode_init_early(void) 1377 { 1378 int loop; 1379 1380 /* If hashes are distributed across NUMA nodes, defer 1381 * hash allocation until vmalloc space is available. 1382 */ 1383 if (hashdist) 1384 return; 1385 1386 inode_hashtable = 1387 alloc_large_system_hash("Inode-cache", 1388 sizeof(struct hlist_head), 1389 ihash_entries, 1390 14, 1391 HASH_EARLY, 1392 &i_hash_shift, 1393 &i_hash_mask, 1394 0); 1395 1396 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1397 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1398 } 1399 1400 void __init inode_init(void) 1401 { 1402 int loop; 1403 1404 /* inode slab cache */ 1405 inode_cachep = kmem_cache_create("inode_cache", 1406 sizeof(struct inode), 1407 0, 1408 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1409 SLAB_MEM_SPREAD), 1410 init_once); 1411 register_shrinker(&icache_shrinker); 1412 1413 /* Hash may have been set up in inode_init_early */ 1414 if (!hashdist) 1415 return; 1416 1417 inode_hashtable = 1418 alloc_large_system_hash("Inode-cache", 1419 sizeof(struct hlist_head), 1420 ihash_entries, 1421 14, 1422 0, 1423 &i_hash_shift, 1424 &i_hash_mask, 1425 0); 1426 1427 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1428 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1429 } 1430 1431 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1432 { 1433 inode->i_mode = mode; 1434 if (S_ISCHR(mode)) { 1435 inode->i_fop = &def_chr_fops; 1436 inode->i_rdev = rdev; 1437 } else if (S_ISBLK(mode)) { 1438 inode->i_fop = &def_blk_fops; 1439 inode->i_rdev = rdev; 1440 } else if (S_ISFIFO(mode)) 1441 inode->i_fop = &def_fifo_fops; 1442 else if (S_ISSOCK(mode)) 1443 inode->i_fop = &bad_sock_fops; 1444 else 1445 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n", 1446 mode); 1447 } 1448 EXPORT_SYMBOL(init_special_inode); 1449