xref: /openbmc/linux/fs/inode.c (revision e8e0929d)
1 /*
2  * linux/fs/inode.c
3  *
4  * (C) 1997 Linus Torvalds
5  */
6 
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/quotaops.h>
12 #include <linux/slab.h>
13 #include <linux/writeback.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/wait.h>
17 #include <linux/rwsem.h>
18 #include <linux/hash.h>
19 #include <linux/swap.h>
20 #include <linux/security.h>
21 #include <linux/ima.h>
22 #include <linux/pagemap.h>
23 #include <linux/cdev.h>
24 #include <linux/bootmem.h>
25 #include <linux/inotify.h>
26 #include <linux/fsnotify.h>
27 #include <linux/mount.h>
28 #include <linux/async.h>
29 #include <linux/posix_acl.h>
30 
31 /*
32  * This is needed for the following functions:
33  *  - inode_has_buffers
34  *  - invalidate_inode_buffers
35  *  - invalidate_bdev
36  *
37  * FIXME: remove all knowledge of the buffer layer from this file
38  */
39 #include <linux/buffer_head.h>
40 
41 /*
42  * New inode.c implementation.
43  *
44  * This implementation has the basic premise of trying
45  * to be extremely low-overhead and SMP-safe, yet be
46  * simple enough to be "obviously correct".
47  *
48  * Famous last words.
49  */
50 
51 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
52 
53 /* #define INODE_PARANOIA 1 */
54 /* #define INODE_DEBUG 1 */
55 
56 /*
57  * Inode lookup is no longer as critical as it used to be:
58  * most of the lookups are going to be through the dcache.
59  */
60 #define I_HASHBITS	i_hash_shift
61 #define I_HASHMASK	i_hash_mask
62 
63 static unsigned int i_hash_mask __read_mostly;
64 static unsigned int i_hash_shift __read_mostly;
65 
66 /*
67  * Each inode can be on two separate lists. One is
68  * the hash list of the inode, used for lookups. The
69  * other linked list is the "type" list:
70  *  "in_use" - valid inode, i_count > 0, i_nlink > 0
71  *  "dirty"  - as "in_use" but also dirty
72  *  "unused" - valid inode, i_count = 0
73  *
74  * A "dirty" list is maintained for each super block,
75  * allowing for low-overhead inode sync() operations.
76  */
77 
78 LIST_HEAD(inode_in_use);
79 LIST_HEAD(inode_unused);
80 static struct hlist_head *inode_hashtable __read_mostly;
81 
82 /*
83  * A simple spinlock to protect the list manipulations.
84  *
85  * NOTE! You also have to own the lock if you change
86  * the i_state of an inode while it is in use..
87  */
88 DEFINE_SPINLOCK(inode_lock);
89 
90 /*
91  * iprune_sem provides exclusion between the kswapd or try_to_free_pages
92  * icache shrinking path, and the umount path.  Without this exclusion,
93  * by the time prune_icache calls iput for the inode whose pages it has
94  * been invalidating, or by the time it calls clear_inode & destroy_inode
95  * from its final dispose_list, the struct super_block they refer to
96  * (for inode->i_sb->s_op) may already have been freed and reused.
97  *
98  * We make this an rwsem because the fastpath is icache shrinking. In
99  * some cases a filesystem may be doing a significant amount of work in
100  * its inode reclaim code, so this should improve parallelism.
101  */
102 static DECLARE_RWSEM(iprune_sem);
103 
104 /*
105  * Statistics gathering..
106  */
107 struct inodes_stat_t inodes_stat;
108 
109 static struct kmem_cache *inode_cachep __read_mostly;
110 
111 static void wake_up_inode(struct inode *inode)
112 {
113 	/*
114 	 * Prevent speculative execution through spin_unlock(&inode_lock);
115 	 */
116 	smp_mb();
117 	wake_up_bit(&inode->i_state, __I_LOCK);
118 }
119 
120 /**
121  * inode_init_always - perform inode structure intialisation
122  * @sb: superblock inode belongs to
123  * @inode: inode to initialise
124  *
125  * These are initializations that need to be done on every inode
126  * allocation as the fields are not initialised by slab allocation.
127  */
128 int inode_init_always(struct super_block *sb, struct inode *inode)
129 {
130 	static const struct address_space_operations empty_aops;
131 	static const struct inode_operations empty_iops;
132 	static const struct file_operations empty_fops;
133 	struct address_space *const mapping = &inode->i_data;
134 
135 	inode->i_sb = sb;
136 	inode->i_blkbits = sb->s_blocksize_bits;
137 	inode->i_flags = 0;
138 	atomic_set(&inode->i_count, 1);
139 	inode->i_op = &empty_iops;
140 	inode->i_fop = &empty_fops;
141 	inode->i_nlink = 1;
142 	inode->i_uid = 0;
143 	inode->i_gid = 0;
144 	atomic_set(&inode->i_writecount, 0);
145 	inode->i_size = 0;
146 	inode->i_blocks = 0;
147 	inode->i_bytes = 0;
148 	inode->i_generation = 0;
149 #ifdef CONFIG_QUOTA
150 	memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
151 #endif
152 	inode->i_pipe = NULL;
153 	inode->i_bdev = NULL;
154 	inode->i_cdev = NULL;
155 	inode->i_rdev = 0;
156 	inode->dirtied_when = 0;
157 
158 	if (security_inode_alloc(inode))
159 		goto out;
160 
161 	/* allocate and initialize an i_integrity */
162 	if (ima_inode_alloc(inode))
163 		goto out_free_security;
164 
165 	spin_lock_init(&inode->i_lock);
166 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
167 
168 	mutex_init(&inode->i_mutex);
169 	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
170 
171 	init_rwsem(&inode->i_alloc_sem);
172 	lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
173 
174 	mapping->a_ops = &empty_aops;
175 	mapping->host = inode;
176 	mapping->flags = 0;
177 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
178 	mapping->assoc_mapping = NULL;
179 	mapping->backing_dev_info = &default_backing_dev_info;
180 	mapping->writeback_index = 0;
181 
182 	/*
183 	 * If the block_device provides a backing_dev_info for client
184 	 * inodes then use that.  Otherwise the inode share the bdev's
185 	 * backing_dev_info.
186 	 */
187 	if (sb->s_bdev) {
188 		struct backing_dev_info *bdi;
189 
190 		bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
191 		mapping->backing_dev_info = bdi;
192 	}
193 	inode->i_private = NULL;
194 	inode->i_mapping = mapping;
195 #ifdef CONFIG_FS_POSIX_ACL
196 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
197 #endif
198 
199 #ifdef CONFIG_FSNOTIFY
200 	inode->i_fsnotify_mask = 0;
201 #endif
202 
203 	return 0;
204 
205 out_free_security:
206 	security_inode_free(inode);
207 out:
208 	return -ENOMEM;
209 }
210 EXPORT_SYMBOL(inode_init_always);
211 
212 static struct inode *alloc_inode(struct super_block *sb)
213 {
214 	struct inode *inode;
215 
216 	if (sb->s_op->alloc_inode)
217 		inode = sb->s_op->alloc_inode(sb);
218 	else
219 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
220 
221 	if (!inode)
222 		return NULL;
223 
224 	if (unlikely(inode_init_always(sb, inode))) {
225 		if (inode->i_sb->s_op->destroy_inode)
226 			inode->i_sb->s_op->destroy_inode(inode);
227 		else
228 			kmem_cache_free(inode_cachep, inode);
229 		return NULL;
230 	}
231 
232 	return inode;
233 }
234 
235 void __destroy_inode(struct inode *inode)
236 {
237 	BUG_ON(inode_has_buffers(inode));
238 	ima_inode_free(inode);
239 	security_inode_free(inode);
240 	fsnotify_inode_delete(inode);
241 #ifdef CONFIG_FS_POSIX_ACL
242 	if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
243 		posix_acl_release(inode->i_acl);
244 	if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
245 		posix_acl_release(inode->i_default_acl);
246 #endif
247 }
248 EXPORT_SYMBOL(__destroy_inode);
249 
250 void destroy_inode(struct inode *inode)
251 {
252 	__destroy_inode(inode);
253 	if (inode->i_sb->s_op->destroy_inode)
254 		inode->i_sb->s_op->destroy_inode(inode);
255 	else
256 		kmem_cache_free(inode_cachep, (inode));
257 }
258 
259 /*
260  * These are initializations that only need to be done
261  * once, because the fields are idempotent across use
262  * of the inode, so let the slab aware of that.
263  */
264 void inode_init_once(struct inode *inode)
265 {
266 	memset(inode, 0, sizeof(*inode));
267 	INIT_HLIST_NODE(&inode->i_hash);
268 	INIT_LIST_HEAD(&inode->i_dentry);
269 	INIT_LIST_HEAD(&inode->i_devices);
270 	INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
271 	spin_lock_init(&inode->i_data.tree_lock);
272 	spin_lock_init(&inode->i_data.i_mmap_lock);
273 	INIT_LIST_HEAD(&inode->i_data.private_list);
274 	spin_lock_init(&inode->i_data.private_lock);
275 	INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
276 	INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
277 	i_size_ordered_init(inode);
278 #ifdef CONFIG_INOTIFY
279 	INIT_LIST_HEAD(&inode->inotify_watches);
280 	mutex_init(&inode->inotify_mutex);
281 #endif
282 #ifdef CONFIG_FSNOTIFY
283 	INIT_HLIST_HEAD(&inode->i_fsnotify_mark_entries);
284 #endif
285 }
286 EXPORT_SYMBOL(inode_init_once);
287 
288 static void init_once(void *foo)
289 {
290 	struct inode *inode = (struct inode *) foo;
291 
292 	inode_init_once(inode);
293 }
294 
295 /*
296  * inode_lock must be held
297  */
298 void __iget(struct inode *inode)
299 {
300 	if (atomic_read(&inode->i_count)) {
301 		atomic_inc(&inode->i_count);
302 		return;
303 	}
304 	atomic_inc(&inode->i_count);
305 	if (!(inode->i_state & (I_DIRTY|I_SYNC)))
306 		list_move(&inode->i_list, &inode_in_use);
307 	inodes_stat.nr_unused--;
308 }
309 
310 /**
311  * clear_inode - clear an inode
312  * @inode: inode to clear
313  *
314  * This is called by the filesystem to tell us
315  * that the inode is no longer useful. We just
316  * terminate it with extreme prejudice.
317  */
318 void clear_inode(struct inode *inode)
319 {
320 	might_sleep();
321 	invalidate_inode_buffers(inode);
322 
323 	BUG_ON(inode->i_data.nrpages);
324 	BUG_ON(!(inode->i_state & I_FREEING));
325 	BUG_ON(inode->i_state & I_CLEAR);
326 	inode_sync_wait(inode);
327 	vfs_dq_drop(inode);
328 	if (inode->i_sb->s_op->clear_inode)
329 		inode->i_sb->s_op->clear_inode(inode);
330 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
331 		bd_forget(inode);
332 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
333 		cd_forget(inode);
334 	inode->i_state = I_CLEAR;
335 }
336 EXPORT_SYMBOL(clear_inode);
337 
338 /*
339  * dispose_list - dispose of the contents of a local list
340  * @head: the head of the list to free
341  *
342  * Dispose-list gets a local list with local inodes in it, so it doesn't
343  * need to worry about list corruption and SMP locks.
344  */
345 static void dispose_list(struct list_head *head)
346 {
347 	int nr_disposed = 0;
348 
349 	while (!list_empty(head)) {
350 		struct inode *inode;
351 
352 		inode = list_first_entry(head, struct inode, i_list);
353 		list_del(&inode->i_list);
354 
355 		if (inode->i_data.nrpages)
356 			truncate_inode_pages(&inode->i_data, 0);
357 		clear_inode(inode);
358 
359 		spin_lock(&inode_lock);
360 		hlist_del_init(&inode->i_hash);
361 		list_del_init(&inode->i_sb_list);
362 		spin_unlock(&inode_lock);
363 
364 		wake_up_inode(inode);
365 		destroy_inode(inode);
366 		nr_disposed++;
367 	}
368 	spin_lock(&inode_lock);
369 	inodes_stat.nr_inodes -= nr_disposed;
370 	spin_unlock(&inode_lock);
371 }
372 
373 /*
374  * Invalidate all inodes for a device.
375  */
376 static int invalidate_list(struct list_head *head, struct list_head *dispose)
377 {
378 	struct list_head *next;
379 	int busy = 0, count = 0;
380 
381 	next = head->next;
382 	for (;;) {
383 		struct list_head *tmp = next;
384 		struct inode *inode;
385 
386 		/*
387 		 * We can reschedule here without worrying about the list's
388 		 * consistency because the per-sb list of inodes must not
389 		 * change during umount anymore, and because iprune_sem keeps
390 		 * shrink_icache_memory() away.
391 		 */
392 		cond_resched_lock(&inode_lock);
393 
394 		next = next->next;
395 		if (tmp == head)
396 			break;
397 		inode = list_entry(tmp, struct inode, i_sb_list);
398 		if (inode->i_state & I_NEW)
399 			continue;
400 		invalidate_inode_buffers(inode);
401 		if (!atomic_read(&inode->i_count)) {
402 			list_move(&inode->i_list, dispose);
403 			WARN_ON(inode->i_state & I_NEW);
404 			inode->i_state |= I_FREEING;
405 			count++;
406 			continue;
407 		}
408 		busy = 1;
409 	}
410 	/* only unused inodes may be cached with i_count zero */
411 	inodes_stat.nr_unused -= count;
412 	return busy;
413 }
414 
415 /**
416  *	invalidate_inodes	- discard the inodes on a device
417  *	@sb: superblock
418  *
419  *	Discard all of the inodes for a given superblock. If the discard
420  *	fails because there are busy inodes then a non zero value is returned.
421  *	If the discard is successful all the inodes have been discarded.
422  */
423 int invalidate_inodes(struct super_block *sb)
424 {
425 	int busy;
426 	LIST_HEAD(throw_away);
427 
428 	down_write(&iprune_sem);
429 	spin_lock(&inode_lock);
430 	inotify_unmount_inodes(&sb->s_inodes);
431 	fsnotify_unmount_inodes(&sb->s_inodes);
432 	busy = invalidate_list(&sb->s_inodes, &throw_away);
433 	spin_unlock(&inode_lock);
434 
435 	dispose_list(&throw_away);
436 	up_write(&iprune_sem);
437 
438 	return busy;
439 }
440 EXPORT_SYMBOL(invalidate_inodes);
441 
442 static int can_unuse(struct inode *inode)
443 {
444 	if (inode->i_state)
445 		return 0;
446 	if (inode_has_buffers(inode))
447 		return 0;
448 	if (atomic_read(&inode->i_count))
449 		return 0;
450 	if (inode->i_data.nrpages)
451 		return 0;
452 	return 1;
453 }
454 
455 /*
456  * Scan `goal' inodes on the unused list for freeable ones. They are moved to
457  * a temporary list and then are freed outside inode_lock by dispose_list().
458  *
459  * Any inodes which are pinned purely because of attached pagecache have their
460  * pagecache removed.  We expect the final iput() on that inode to add it to
461  * the front of the inode_unused list.  So look for it there and if the
462  * inode is still freeable, proceed.  The right inode is found 99.9% of the
463  * time in testing on a 4-way.
464  *
465  * If the inode has metadata buffers attached to mapping->private_list then
466  * try to remove them.
467  */
468 static void prune_icache(int nr_to_scan)
469 {
470 	LIST_HEAD(freeable);
471 	int nr_pruned = 0;
472 	int nr_scanned;
473 	unsigned long reap = 0;
474 
475 	down_read(&iprune_sem);
476 	spin_lock(&inode_lock);
477 	for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
478 		struct inode *inode;
479 
480 		if (list_empty(&inode_unused))
481 			break;
482 
483 		inode = list_entry(inode_unused.prev, struct inode, i_list);
484 
485 		if (inode->i_state || atomic_read(&inode->i_count)) {
486 			list_move(&inode->i_list, &inode_unused);
487 			continue;
488 		}
489 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
490 			__iget(inode);
491 			spin_unlock(&inode_lock);
492 			if (remove_inode_buffers(inode))
493 				reap += invalidate_mapping_pages(&inode->i_data,
494 								0, -1);
495 			iput(inode);
496 			spin_lock(&inode_lock);
497 
498 			if (inode != list_entry(inode_unused.next,
499 						struct inode, i_list))
500 				continue;	/* wrong inode or list_empty */
501 			if (!can_unuse(inode))
502 				continue;
503 		}
504 		list_move(&inode->i_list, &freeable);
505 		WARN_ON(inode->i_state & I_NEW);
506 		inode->i_state |= I_FREEING;
507 		nr_pruned++;
508 	}
509 	inodes_stat.nr_unused -= nr_pruned;
510 	if (current_is_kswapd())
511 		__count_vm_events(KSWAPD_INODESTEAL, reap);
512 	else
513 		__count_vm_events(PGINODESTEAL, reap);
514 	spin_unlock(&inode_lock);
515 
516 	dispose_list(&freeable);
517 	up_read(&iprune_sem);
518 }
519 
520 /*
521  * shrink_icache_memory() will attempt to reclaim some unused inodes.  Here,
522  * "unused" means that no dentries are referring to the inodes: the files are
523  * not open and the dcache references to those inodes have already been
524  * reclaimed.
525  *
526  * This function is passed the number of inodes to scan, and it returns the
527  * total number of remaining possibly-reclaimable inodes.
528  */
529 static int shrink_icache_memory(int nr, gfp_t gfp_mask)
530 {
531 	if (nr) {
532 		/*
533 		 * Nasty deadlock avoidance.  We may hold various FS locks,
534 		 * and we don't want to recurse into the FS that called us
535 		 * in clear_inode() and friends..
536 		 */
537 		if (!(gfp_mask & __GFP_FS))
538 			return -1;
539 		prune_icache(nr);
540 	}
541 	return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
542 }
543 
544 static struct shrinker icache_shrinker = {
545 	.shrink = shrink_icache_memory,
546 	.seeks = DEFAULT_SEEKS,
547 };
548 
549 static void __wait_on_freeing_inode(struct inode *inode);
550 /*
551  * Called with the inode lock held.
552  * NOTE: we are not increasing the inode-refcount, you must call __iget()
553  * by hand after calling find_inode now! This simplifies iunique and won't
554  * add any additional branch in the common code.
555  */
556 static struct inode *find_inode(struct super_block *sb,
557 				struct hlist_head *head,
558 				int (*test)(struct inode *, void *),
559 				void *data)
560 {
561 	struct hlist_node *node;
562 	struct inode *inode = NULL;
563 
564 repeat:
565 	hlist_for_each_entry(inode, node, head, i_hash) {
566 		if (inode->i_sb != sb)
567 			continue;
568 		if (!test(inode, data))
569 			continue;
570 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
571 			__wait_on_freeing_inode(inode);
572 			goto repeat;
573 		}
574 		break;
575 	}
576 	return node ? inode : NULL;
577 }
578 
579 /*
580  * find_inode_fast is the fast path version of find_inode, see the comment at
581  * iget_locked for details.
582  */
583 static struct inode *find_inode_fast(struct super_block *sb,
584 				struct hlist_head *head, unsigned long ino)
585 {
586 	struct hlist_node *node;
587 	struct inode *inode = NULL;
588 
589 repeat:
590 	hlist_for_each_entry(inode, node, head, i_hash) {
591 		if (inode->i_ino != ino)
592 			continue;
593 		if (inode->i_sb != sb)
594 			continue;
595 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
596 			__wait_on_freeing_inode(inode);
597 			goto repeat;
598 		}
599 		break;
600 	}
601 	return node ? inode : NULL;
602 }
603 
604 static unsigned long hash(struct super_block *sb, unsigned long hashval)
605 {
606 	unsigned long tmp;
607 
608 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
609 			L1_CACHE_BYTES;
610 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
611 	return tmp & I_HASHMASK;
612 }
613 
614 static inline void
615 __inode_add_to_lists(struct super_block *sb, struct hlist_head *head,
616 			struct inode *inode)
617 {
618 	inodes_stat.nr_inodes++;
619 	list_add(&inode->i_list, &inode_in_use);
620 	list_add(&inode->i_sb_list, &sb->s_inodes);
621 	if (head)
622 		hlist_add_head(&inode->i_hash, head);
623 }
624 
625 /**
626  * inode_add_to_lists - add a new inode to relevant lists
627  * @sb: superblock inode belongs to
628  * @inode: inode to mark in use
629  *
630  * When an inode is allocated it needs to be accounted for, added to the in use
631  * list, the owning superblock and the inode hash. This needs to be done under
632  * the inode_lock, so export a function to do this rather than the inode lock
633  * itself. We calculate the hash list to add to here so it is all internal
634  * which requires the caller to have already set up the inode number in the
635  * inode to add.
636  */
637 void inode_add_to_lists(struct super_block *sb, struct inode *inode)
638 {
639 	struct hlist_head *head = inode_hashtable + hash(sb, inode->i_ino);
640 
641 	spin_lock(&inode_lock);
642 	__inode_add_to_lists(sb, head, inode);
643 	spin_unlock(&inode_lock);
644 }
645 EXPORT_SYMBOL_GPL(inode_add_to_lists);
646 
647 /**
648  *	new_inode 	- obtain an inode
649  *	@sb: superblock
650  *
651  *	Allocates a new inode for given superblock. The default gfp_mask
652  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
653  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
654  *	for the page cache are not reclaimable or migratable,
655  *	mapping_set_gfp_mask() must be called with suitable flags on the
656  *	newly created inode's mapping
657  *
658  */
659 struct inode *new_inode(struct super_block *sb)
660 {
661 	/*
662 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
663 	 * error if st_ino won't fit in target struct field. Use 32bit counter
664 	 * here to attempt to avoid that.
665 	 */
666 	static unsigned int last_ino;
667 	struct inode *inode;
668 
669 	spin_lock_prefetch(&inode_lock);
670 
671 	inode = alloc_inode(sb);
672 	if (inode) {
673 		spin_lock(&inode_lock);
674 		__inode_add_to_lists(sb, NULL, inode);
675 		inode->i_ino = ++last_ino;
676 		inode->i_state = 0;
677 		spin_unlock(&inode_lock);
678 	}
679 	return inode;
680 }
681 EXPORT_SYMBOL(new_inode);
682 
683 void unlock_new_inode(struct inode *inode)
684 {
685 #ifdef CONFIG_DEBUG_LOCK_ALLOC
686 	if (inode->i_mode & S_IFDIR) {
687 		struct file_system_type *type = inode->i_sb->s_type;
688 
689 		/* Set new key only if filesystem hasn't already changed it */
690 		if (!lockdep_match_class(&inode->i_mutex,
691 		    &type->i_mutex_key)) {
692 			/*
693 			 * ensure nobody is actually holding i_mutex
694 			 */
695 			mutex_destroy(&inode->i_mutex);
696 			mutex_init(&inode->i_mutex);
697 			lockdep_set_class(&inode->i_mutex,
698 					  &type->i_mutex_dir_key);
699 		}
700 	}
701 #endif
702 	/*
703 	 * This is special!  We do not need the spinlock when clearing I_LOCK,
704 	 * because we're guaranteed that nobody else tries to do anything about
705 	 * the state of the inode when it is locked, as we just created it (so
706 	 * there can be no old holders that haven't tested I_LOCK).
707 	 * However we must emit the memory barrier so that other CPUs reliably
708 	 * see the clearing of I_LOCK after the other inode initialisation has
709 	 * completed.
710 	 */
711 	smp_mb();
712 	WARN_ON((inode->i_state & (I_LOCK|I_NEW)) != (I_LOCK|I_NEW));
713 	inode->i_state &= ~(I_LOCK|I_NEW);
714 	wake_up_inode(inode);
715 }
716 EXPORT_SYMBOL(unlock_new_inode);
717 
718 /*
719  * This is called without the inode lock held.. Be careful.
720  *
721  * We no longer cache the sb_flags in i_flags - see fs.h
722  *	-- rmk@arm.uk.linux.org
723  */
724 static struct inode *get_new_inode(struct super_block *sb,
725 				struct hlist_head *head,
726 				int (*test)(struct inode *, void *),
727 				int (*set)(struct inode *, void *),
728 				void *data)
729 {
730 	struct inode *inode;
731 
732 	inode = alloc_inode(sb);
733 	if (inode) {
734 		struct inode *old;
735 
736 		spin_lock(&inode_lock);
737 		/* We released the lock, so.. */
738 		old = find_inode(sb, head, test, data);
739 		if (!old) {
740 			if (set(inode, data))
741 				goto set_failed;
742 
743 			__inode_add_to_lists(sb, head, inode);
744 			inode->i_state = I_LOCK|I_NEW;
745 			spin_unlock(&inode_lock);
746 
747 			/* Return the locked inode with I_NEW set, the
748 			 * caller is responsible for filling in the contents
749 			 */
750 			return inode;
751 		}
752 
753 		/*
754 		 * Uhhuh, somebody else created the same inode under
755 		 * us. Use the old inode instead of the one we just
756 		 * allocated.
757 		 */
758 		__iget(old);
759 		spin_unlock(&inode_lock);
760 		destroy_inode(inode);
761 		inode = old;
762 		wait_on_inode(inode);
763 	}
764 	return inode;
765 
766 set_failed:
767 	spin_unlock(&inode_lock);
768 	destroy_inode(inode);
769 	return NULL;
770 }
771 
772 /*
773  * get_new_inode_fast is the fast path version of get_new_inode, see the
774  * comment at iget_locked for details.
775  */
776 static struct inode *get_new_inode_fast(struct super_block *sb,
777 				struct hlist_head *head, unsigned long ino)
778 {
779 	struct inode *inode;
780 
781 	inode = alloc_inode(sb);
782 	if (inode) {
783 		struct inode *old;
784 
785 		spin_lock(&inode_lock);
786 		/* We released the lock, so.. */
787 		old = find_inode_fast(sb, head, ino);
788 		if (!old) {
789 			inode->i_ino = ino;
790 			__inode_add_to_lists(sb, head, inode);
791 			inode->i_state = I_LOCK|I_NEW;
792 			spin_unlock(&inode_lock);
793 
794 			/* Return the locked inode with I_NEW set, the
795 			 * caller is responsible for filling in the contents
796 			 */
797 			return inode;
798 		}
799 
800 		/*
801 		 * Uhhuh, somebody else created the same inode under
802 		 * us. Use the old inode instead of the one we just
803 		 * allocated.
804 		 */
805 		__iget(old);
806 		spin_unlock(&inode_lock);
807 		destroy_inode(inode);
808 		inode = old;
809 		wait_on_inode(inode);
810 	}
811 	return inode;
812 }
813 
814 /**
815  *	iunique - get a unique inode number
816  *	@sb: superblock
817  *	@max_reserved: highest reserved inode number
818  *
819  *	Obtain an inode number that is unique on the system for a given
820  *	superblock. This is used by file systems that have no natural
821  *	permanent inode numbering system. An inode number is returned that
822  *	is higher than the reserved limit but unique.
823  *
824  *	BUGS:
825  *	With a large number of inodes live on the file system this function
826  *	currently becomes quite slow.
827  */
828 ino_t iunique(struct super_block *sb, ino_t max_reserved)
829 {
830 	/*
831 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
832 	 * error if st_ino won't fit in target struct field. Use 32bit counter
833 	 * here to attempt to avoid that.
834 	 */
835 	static unsigned int counter;
836 	struct inode *inode;
837 	struct hlist_head *head;
838 	ino_t res;
839 
840 	spin_lock(&inode_lock);
841 	do {
842 		if (counter <= max_reserved)
843 			counter = max_reserved + 1;
844 		res = counter++;
845 		head = inode_hashtable + hash(sb, res);
846 		inode = find_inode_fast(sb, head, res);
847 	} while (inode != NULL);
848 	spin_unlock(&inode_lock);
849 
850 	return res;
851 }
852 EXPORT_SYMBOL(iunique);
853 
854 struct inode *igrab(struct inode *inode)
855 {
856 	spin_lock(&inode_lock);
857 	if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)))
858 		__iget(inode);
859 	else
860 		/*
861 		 * Handle the case where s_op->clear_inode is not been
862 		 * called yet, and somebody is calling igrab
863 		 * while the inode is getting freed.
864 		 */
865 		inode = NULL;
866 	spin_unlock(&inode_lock);
867 	return inode;
868 }
869 EXPORT_SYMBOL(igrab);
870 
871 /**
872  * ifind - internal function, you want ilookup5() or iget5().
873  * @sb:		super block of file system to search
874  * @head:       the head of the list to search
875  * @test:	callback used for comparisons between inodes
876  * @data:	opaque data pointer to pass to @test
877  * @wait:	if true wait for the inode to be unlocked, if false do not
878  *
879  * ifind() searches for the inode specified by @data in the inode
880  * cache. This is a generalized version of ifind_fast() for file systems where
881  * the inode number is not sufficient for unique identification of an inode.
882  *
883  * If the inode is in the cache, the inode is returned with an incremented
884  * reference count.
885  *
886  * Otherwise NULL is returned.
887  *
888  * Note, @test is called with the inode_lock held, so can't sleep.
889  */
890 static struct inode *ifind(struct super_block *sb,
891 		struct hlist_head *head, int (*test)(struct inode *, void *),
892 		void *data, const int wait)
893 {
894 	struct inode *inode;
895 
896 	spin_lock(&inode_lock);
897 	inode = find_inode(sb, head, test, data);
898 	if (inode) {
899 		__iget(inode);
900 		spin_unlock(&inode_lock);
901 		if (likely(wait))
902 			wait_on_inode(inode);
903 		return inode;
904 	}
905 	spin_unlock(&inode_lock);
906 	return NULL;
907 }
908 
909 /**
910  * ifind_fast - internal function, you want ilookup() or iget().
911  * @sb:		super block of file system to search
912  * @head:       head of the list to search
913  * @ino:	inode number to search for
914  *
915  * ifind_fast() searches for the inode @ino in the inode cache. This is for
916  * file systems where the inode number is sufficient for unique identification
917  * of an inode.
918  *
919  * If the inode is in the cache, the inode is returned with an incremented
920  * reference count.
921  *
922  * Otherwise NULL is returned.
923  */
924 static struct inode *ifind_fast(struct super_block *sb,
925 		struct hlist_head *head, unsigned long ino)
926 {
927 	struct inode *inode;
928 
929 	spin_lock(&inode_lock);
930 	inode = find_inode_fast(sb, head, ino);
931 	if (inode) {
932 		__iget(inode);
933 		spin_unlock(&inode_lock);
934 		wait_on_inode(inode);
935 		return inode;
936 	}
937 	spin_unlock(&inode_lock);
938 	return NULL;
939 }
940 
941 /**
942  * ilookup5_nowait - search for an inode in the inode cache
943  * @sb:		super block of file system to search
944  * @hashval:	hash value (usually inode number) to search for
945  * @test:	callback used for comparisons between inodes
946  * @data:	opaque data pointer to pass to @test
947  *
948  * ilookup5() uses ifind() to search for the inode specified by @hashval and
949  * @data in the inode cache. This is a generalized version of ilookup() for
950  * file systems where the inode number is not sufficient for unique
951  * identification of an inode.
952  *
953  * If the inode is in the cache, the inode is returned with an incremented
954  * reference count.  Note, the inode lock is not waited upon so you have to be
955  * very careful what you do with the returned inode.  You probably should be
956  * using ilookup5() instead.
957  *
958  * Otherwise NULL is returned.
959  *
960  * Note, @test is called with the inode_lock held, so can't sleep.
961  */
962 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
963 		int (*test)(struct inode *, void *), void *data)
964 {
965 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
966 
967 	return ifind(sb, head, test, data, 0);
968 }
969 EXPORT_SYMBOL(ilookup5_nowait);
970 
971 /**
972  * ilookup5 - search for an inode in the inode cache
973  * @sb:		super block of file system to search
974  * @hashval:	hash value (usually inode number) to search for
975  * @test:	callback used for comparisons between inodes
976  * @data:	opaque data pointer to pass to @test
977  *
978  * ilookup5() uses ifind() to search for the inode specified by @hashval and
979  * @data in the inode cache. This is a generalized version of ilookup() for
980  * file systems where the inode number is not sufficient for unique
981  * identification of an inode.
982  *
983  * If the inode is in the cache, the inode lock is waited upon and the inode is
984  * returned with an incremented reference count.
985  *
986  * Otherwise NULL is returned.
987  *
988  * Note, @test is called with the inode_lock held, so can't sleep.
989  */
990 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
991 		int (*test)(struct inode *, void *), void *data)
992 {
993 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
994 
995 	return ifind(sb, head, test, data, 1);
996 }
997 EXPORT_SYMBOL(ilookup5);
998 
999 /**
1000  * ilookup - search for an inode in the inode cache
1001  * @sb:		super block of file system to search
1002  * @ino:	inode number to search for
1003  *
1004  * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
1005  * This is for file systems where the inode number is sufficient for unique
1006  * identification of an inode.
1007  *
1008  * If the inode is in the cache, the inode is returned with an incremented
1009  * reference count.
1010  *
1011  * Otherwise NULL is returned.
1012  */
1013 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1014 {
1015 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1016 
1017 	return ifind_fast(sb, head, ino);
1018 }
1019 EXPORT_SYMBOL(ilookup);
1020 
1021 /**
1022  * iget5_locked - obtain an inode from a mounted file system
1023  * @sb:		super block of file system
1024  * @hashval:	hash value (usually inode number) to get
1025  * @test:	callback used for comparisons between inodes
1026  * @set:	callback used to initialize a new struct inode
1027  * @data:	opaque data pointer to pass to @test and @set
1028  *
1029  * iget5_locked() uses ifind() to search for the inode specified by @hashval
1030  * and @data in the inode cache and if present it is returned with an increased
1031  * reference count. This is a generalized version of iget_locked() for file
1032  * systems where the inode number is not sufficient for unique identification
1033  * of an inode.
1034  *
1035  * If the inode is not in cache, get_new_inode() is called to allocate a new
1036  * inode and this is returned locked, hashed, and with the I_NEW flag set. The
1037  * file system gets to fill it in before unlocking it via unlock_new_inode().
1038  *
1039  * Note both @test and @set are called with the inode_lock held, so can't sleep.
1040  */
1041 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1042 		int (*test)(struct inode *, void *),
1043 		int (*set)(struct inode *, void *), void *data)
1044 {
1045 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1046 	struct inode *inode;
1047 
1048 	inode = ifind(sb, head, test, data, 1);
1049 	if (inode)
1050 		return inode;
1051 	/*
1052 	 * get_new_inode() will do the right thing, re-trying the search
1053 	 * in case it had to block at any point.
1054 	 */
1055 	return get_new_inode(sb, head, test, set, data);
1056 }
1057 EXPORT_SYMBOL(iget5_locked);
1058 
1059 /**
1060  * iget_locked - obtain an inode from a mounted file system
1061  * @sb:		super block of file system
1062  * @ino:	inode number to get
1063  *
1064  * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
1065  * the inode cache and if present it is returned with an increased reference
1066  * count. This is for file systems where the inode number is sufficient for
1067  * unique identification of an inode.
1068  *
1069  * If the inode is not in cache, get_new_inode_fast() is called to allocate a
1070  * new inode and this is returned locked, hashed, and with the I_NEW flag set.
1071  * The file system gets to fill it in before unlocking it via
1072  * unlock_new_inode().
1073  */
1074 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1075 {
1076 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1077 	struct inode *inode;
1078 
1079 	inode = ifind_fast(sb, head, ino);
1080 	if (inode)
1081 		return inode;
1082 	/*
1083 	 * get_new_inode_fast() will do the right thing, re-trying the search
1084 	 * in case it had to block at any point.
1085 	 */
1086 	return get_new_inode_fast(sb, head, ino);
1087 }
1088 EXPORT_SYMBOL(iget_locked);
1089 
1090 int insert_inode_locked(struct inode *inode)
1091 {
1092 	struct super_block *sb = inode->i_sb;
1093 	ino_t ino = inode->i_ino;
1094 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1095 
1096 	inode->i_state |= I_LOCK|I_NEW;
1097 	while (1) {
1098 		struct hlist_node *node;
1099 		struct inode *old = NULL;
1100 		spin_lock(&inode_lock);
1101 		hlist_for_each_entry(old, node, head, i_hash) {
1102 			if (old->i_ino != ino)
1103 				continue;
1104 			if (old->i_sb != sb)
1105 				continue;
1106 			if (old->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE))
1107 				continue;
1108 			break;
1109 		}
1110 		if (likely(!node)) {
1111 			hlist_add_head(&inode->i_hash, head);
1112 			spin_unlock(&inode_lock);
1113 			return 0;
1114 		}
1115 		__iget(old);
1116 		spin_unlock(&inode_lock);
1117 		wait_on_inode(old);
1118 		if (unlikely(!hlist_unhashed(&old->i_hash))) {
1119 			iput(old);
1120 			return -EBUSY;
1121 		}
1122 		iput(old);
1123 	}
1124 }
1125 EXPORT_SYMBOL(insert_inode_locked);
1126 
1127 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1128 		int (*test)(struct inode *, void *), void *data)
1129 {
1130 	struct super_block *sb = inode->i_sb;
1131 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1132 
1133 	inode->i_state |= I_LOCK|I_NEW;
1134 
1135 	while (1) {
1136 		struct hlist_node *node;
1137 		struct inode *old = NULL;
1138 
1139 		spin_lock(&inode_lock);
1140 		hlist_for_each_entry(old, node, head, i_hash) {
1141 			if (old->i_sb != sb)
1142 				continue;
1143 			if (!test(old, data))
1144 				continue;
1145 			if (old->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE))
1146 				continue;
1147 			break;
1148 		}
1149 		if (likely(!node)) {
1150 			hlist_add_head(&inode->i_hash, head);
1151 			spin_unlock(&inode_lock);
1152 			return 0;
1153 		}
1154 		__iget(old);
1155 		spin_unlock(&inode_lock);
1156 		wait_on_inode(old);
1157 		if (unlikely(!hlist_unhashed(&old->i_hash))) {
1158 			iput(old);
1159 			return -EBUSY;
1160 		}
1161 		iput(old);
1162 	}
1163 }
1164 EXPORT_SYMBOL(insert_inode_locked4);
1165 
1166 /**
1167  *	__insert_inode_hash - hash an inode
1168  *	@inode: unhashed inode
1169  *	@hashval: unsigned long value used to locate this object in the
1170  *		inode_hashtable.
1171  *
1172  *	Add an inode to the inode hash for this superblock.
1173  */
1174 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
1175 {
1176 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1177 	spin_lock(&inode_lock);
1178 	hlist_add_head(&inode->i_hash, head);
1179 	spin_unlock(&inode_lock);
1180 }
1181 EXPORT_SYMBOL(__insert_inode_hash);
1182 
1183 /**
1184  *	remove_inode_hash - remove an inode from the hash
1185  *	@inode: inode to unhash
1186  *
1187  *	Remove an inode from the superblock.
1188  */
1189 void remove_inode_hash(struct inode *inode)
1190 {
1191 	spin_lock(&inode_lock);
1192 	hlist_del_init(&inode->i_hash);
1193 	spin_unlock(&inode_lock);
1194 }
1195 EXPORT_SYMBOL(remove_inode_hash);
1196 
1197 /*
1198  * Tell the filesystem that this inode is no longer of any interest and should
1199  * be completely destroyed.
1200  *
1201  * We leave the inode in the inode hash table until *after* the filesystem's
1202  * ->delete_inode completes.  This ensures that an iget (such as nfsd might
1203  * instigate) will always find up-to-date information either in the hash or on
1204  * disk.
1205  *
1206  * I_FREEING is set so that no-one will take a new reference to the inode while
1207  * it is being deleted.
1208  */
1209 void generic_delete_inode(struct inode *inode)
1210 {
1211 	const struct super_operations *op = inode->i_sb->s_op;
1212 
1213 	list_del_init(&inode->i_list);
1214 	list_del_init(&inode->i_sb_list);
1215 	WARN_ON(inode->i_state & I_NEW);
1216 	inode->i_state |= I_FREEING;
1217 	inodes_stat.nr_inodes--;
1218 	spin_unlock(&inode_lock);
1219 
1220 	security_inode_delete(inode);
1221 
1222 	if (op->delete_inode) {
1223 		void (*delete)(struct inode *) = op->delete_inode;
1224 		if (!is_bad_inode(inode))
1225 			vfs_dq_init(inode);
1226 		/* Filesystems implementing their own
1227 		 * s_op->delete_inode are required to call
1228 		 * truncate_inode_pages and clear_inode()
1229 		 * internally */
1230 		delete(inode);
1231 	} else {
1232 		truncate_inode_pages(&inode->i_data, 0);
1233 		clear_inode(inode);
1234 	}
1235 	spin_lock(&inode_lock);
1236 	hlist_del_init(&inode->i_hash);
1237 	spin_unlock(&inode_lock);
1238 	wake_up_inode(inode);
1239 	BUG_ON(inode->i_state != I_CLEAR);
1240 	destroy_inode(inode);
1241 }
1242 EXPORT_SYMBOL(generic_delete_inode);
1243 
1244 /**
1245  *	generic_detach_inode - remove inode from inode lists
1246  *	@inode: inode to remove
1247  *
1248  *	Remove inode from inode lists, write it if it's dirty. This is just an
1249  *	internal VFS helper exported for hugetlbfs. Do not use!
1250  *
1251  *	Returns 1 if inode should be completely destroyed.
1252  */
1253 int generic_detach_inode(struct inode *inode)
1254 {
1255 	struct super_block *sb = inode->i_sb;
1256 
1257 	if (!hlist_unhashed(&inode->i_hash)) {
1258 		if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1259 			list_move(&inode->i_list, &inode_unused);
1260 		inodes_stat.nr_unused++;
1261 		if (sb->s_flags & MS_ACTIVE) {
1262 			spin_unlock(&inode_lock);
1263 			return 0;
1264 		}
1265 		WARN_ON(inode->i_state & I_NEW);
1266 		inode->i_state |= I_WILL_FREE;
1267 		spin_unlock(&inode_lock);
1268 		write_inode_now(inode, 1);
1269 		spin_lock(&inode_lock);
1270 		WARN_ON(inode->i_state & I_NEW);
1271 		inode->i_state &= ~I_WILL_FREE;
1272 		inodes_stat.nr_unused--;
1273 		hlist_del_init(&inode->i_hash);
1274 	}
1275 	list_del_init(&inode->i_list);
1276 	list_del_init(&inode->i_sb_list);
1277 	WARN_ON(inode->i_state & I_NEW);
1278 	inode->i_state |= I_FREEING;
1279 	inodes_stat.nr_inodes--;
1280 	spin_unlock(&inode_lock);
1281 	return 1;
1282 }
1283 EXPORT_SYMBOL_GPL(generic_detach_inode);
1284 
1285 static void generic_forget_inode(struct inode *inode)
1286 {
1287 	if (!generic_detach_inode(inode))
1288 		return;
1289 	if (inode->i_data.nrpages)
1290 		truncate_inode_pages(&inode->i_data, 0);
1291 	clear_inode(inode);
1292 	wake_up_inode(inode);
1293 	destroy_inode(inode);
1294 }
1295 
1296 /*
1297  * Normal UNIX filesystem behaviour: delete the
1298  * inode when the usage count drops to zero, and
1299  * i_nlink is zero.
1300  */
1301 void generic_drop_inode(struct inode *inode)
1302 {
1303 	if (!inode->i_nlink)
1304 		generic_delete_inode(inode);
1305 	else
1306 		generic_forget_inode(inode);
1307 }
1308 EXPORT_SYMBOL_GPL(generic_drop_inode);
1309 
1310 /*
1311  * Called when we're dropping the last reference
1312  * to an inode.
1313  *
1314  * Call the FS "drop()" function, defaulting to
1315  * the legacy UNIX filesystem behaviour..
1316  *
1317  * NOTE! NOTE! NOTE! We're called with the inode lock
1318  * held, and the drop function is supposed to release
1319  * the lock!
1320  */
1321 static inline void iput_final(struct inode *inode)
1322 {
1323 	const struct super_operations *op = inode->i_sb->s_op;
1324 	void (*drop)(struct inode *) = generic_drop_inode;
1325 
1326 	if (op && op->drop_inode)
1327 		drop = op->drop_inode;
1328 	drop(inode);
1329 }
1330 
1331 /**
1332  *	iput	- put an inode
1333  *	@inode: inode to put
1334  *
1335  *	Puts an inode, dropping its usage count. If the inode use count hits
1336  *	zero, the inode is then freed and may also be destroyed.
1337  *
1338  *	Consequently, iput() can sleep.
1339  */
1340 void iput(struct inode *inode)
1341 {
1342 	if (inode) {
1343 		BUG_ON(inode->i_state == I_CLEAR);
1344 
1345 		if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1346 			iput_final(inode);
1347 	}
1348 }
1349 EXPORT_SYMBOL(iput);
1350 
1351 /**
1352  *	bmap	- find a block number in a file
1353  *	@inode: inode of file
1354  *	@block: block to find
1355  *
1356  *	Returns the block number on the device holding the inode that
1357  *	is the disk block number for the block of the file requested.
1358  *	That is, asked for block 4 of inode 1 the function will return the
1359  *	disk block relative to the disk start that holds that block of the
1360  *	file.
1361  */
1362 sector_t bmap(struct inode *inode, sector_t block)
1363 {
1364 	sector_t res = 0;
1365 	if (inode->i_mapping->a_ops->bmap)
1366 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1367 	return res;
1368 }
1369 EXPORT_SYMBOL(bmap);
1370 
1371 /*
1372  * With relative atime, only update atime if the previous atime is
1373  * earlier than either the ctime or mtime or if at least a day has
1374  * passed since the last atime update.
1375  */
1376 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1377 			     struct timespec now)
1378 {
1379 
1380 	if (!(mnt->mnt_flags & MNT_RELATIME))
1381 		return 1;
1382 	/*
1383 	 * Is mtime younger than atime? If yes, update atime:
1384 	 */
1385 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1386 		return 1;
1387 	/*
1388 	 * Is ctime younger than atime? If yes, update atime:
1389 	 */
1390 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1391 		return 1;
1392 
1393 	/*
1394 	 * Is the previous atime value older than a day? If yes,
1395 	 * update atime:
1396 	 */
1397 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1398 		return 1;
1399 	/*
1400 	 * Good, we can skip the atime update:
1401 	 */
1402 	return 0;
1403 }
1404 
1405 /**
1406  *	touch_atime	-	update the access time
1407  *	@mnt: mount the inode is accessed on
1408  *	@dentry: dentry accessed
1409  *
1410  *	Update the accessed time on an inode and mark it for writeback.
1411  *	This function automatically handles read only file systems and media,
1412  *	as well as the "noatime" flag and inode specific "noatime" markers.
1413  */
1414 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1415 {
1416 	struct inode *inode = dentry->d_inode;
1417 	struct timespec now;
1418 
1419 	if (inode->i_flags & S_NOATIME)
1420 		return;
1421 	if (IS_NOATIME(inode))
1422 		return;
1423 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1424 		return;
1425 
1426 	if (mnt->mnt_flags & MNT_NOATIME)
1427 		return;
1428 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1429 		return;
1430 
1431 	now = current_fs_time(inode->i_sb);
1432 
1433 	if (!relatime_need_update(mnt, inode, now))
1434 		return;
1435 
1436 	if (timespec_equal(&inode->i_atime, &now))
1437 		return;
1438 
1439 	if (mnt_want_write(mnt))
1440 		return;
1441 
1442 	inode->i_atime = now;
1443 	mark_inode_dirty_sync(inode);
1444 	mnt_drop_write(mnt);
1445 }
1446 EXPORT_SYMBOL(touch_atime);
1447 
1448 /**
1449  *	file_update_time	-	update mtime and ctime time
1450  *	@file: file accessed
1451  *
1452  *	Update the mtime and ctime members of an inode and mark the inode
1453  *	for writeback.  Note that this function is meant exclusively for
1454  *	usage in the file write path of filesystems, and filesystems may
1455  *	choose to explicitly ignore update via this function with the
1456  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1457  *	timestamps are handled by the server.
1458  */
1459 
1460 void file_update_time(struct file *file)
1461 {
1462 	struct inode *inode = file->f_path.dentry->d_inode;
1463 	struct timespec now;
1464 	enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
1465 
1466 	/* First try to exhaust all avenues to not sync */
1467 	if (IS_NOCMTIME(inode))
1468 		return;
1469 
1470 	now = current_fs_time(inode->i_sb);
1471 	if (!timespec_equal(&inode->i_mtime, &now))
1472 		sync_it = S_MTIME;
1473 
1474 	if (!timespec_equal(&inode->i_ctime, &now))
1475 		sync_it |= S_CTIME;
1476 
1477 	if (IS_I_VERSION(inode))
1478 		sync_it |= S_VERSION;
1479 
1480 	if (!sync_it)
1481 		return;
1482 
1483 	/* Finally allowed to write? Takes lock. */
1484 	if (mnt_want_write_file(file))
1485 		return;
1486 
1487 	/* Only change inode inside the lock region */
1488 	if (sync_it & S_VERSION)
1489 		inode_inc_iversion(inode);
1490 	if (sync_it & S_CTIME)
1491 		inode->i_ctime = now;
1492 	if (sync_it & S_MTIME)
1493 		inode->i_mtime = now;
1494 	mark_inode_dirty_sync(inode);
1495 	mnt_drop_write(file->f_path.mnt);
1496 }
1497 EXPORT_SYMBOL(file_update_time);
1498 
1499 int inode_needs_sync(struct inode *inode)
1500 {
1501 	if (IS_SYNC(inode))
1502 		return 1;
1503 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1504 		return 1;
1505 	return 0;
1506 }
1507 EXPORT_SYMBOL(inode_needs_sync);
1508 
1509 int inode_wait(void *word)
1510 {
1511 	schedule();
1512 	return 0;
1513 }
1514 EXPORT_SYMBOL(inode_wait);
1515 
1516 /*
1517  * If we try to find an inode in the inode hash while it is being
1518  * deleted, we have to wait until the filesystem completes its
1519  * deletion before reporting that it isn't found.  This function waits
1520  * until the deletion _might_ have completed.  Callers are responsible
1521  * to recheck inode state.
1522  *
1523  * It doesn't matter if I_LOCK is not set initially, a call to
1524  * wake_up_inode() after removing from the hash list will DTRT.
1525  *
1526  * This is called with inode_lock held.
1527  */
1528 static void __wait_on_freeing_inode(struct inode *inode)
1529 {
1530 	wait_queue_head_t *wq;
1531 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK);
1532 	wq = bit_waitqueue(&inode->i_state, __I_LOCK);
1533 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1534 	spin_unlock(&inode_lock);
1535 	schedule();
1536 	finish_wait(wq, &wait.wait);
1537 	spin_lock(&inode_lock);
1538 }
1539 
1540 static __initdata unsigned long ihash_entries;
1541 static int __init set_ihash_entries(char *str)
1542 {
1543 	if (!str)
1544 		return 0;
1545 	ihash_entries = simple_strtoul(str, &str, 0);
1546 	return 1;
1547 }
1548 __setup("ihash_entries=", set_ihash_entries);
1549 
1550 /*
1551  * Initialize the waitqueues and inode hash table.
1552  */
1553 void __init inode_init_early(void)
1554 {
1555 	int loop;
1556 
1557 	/* If hashes are distributed across NUMA nodes, defer
1558 	 * hash allocation until vmalloc space is available.
1559 	 */
1560 	if (hashdist)
1561 		return;
1562 
1563 	inode_hashtable =
1564 		alloc_large_system_hash("Inode-cache",
1565 					sizeof(struct hlist_head),
1566 					ihash_entries,
1567 					14,
1568 					HASH_EARLY,
1569 					&i_hash_shift,
1570 					&i_hash_mask,
1571 					0);
1572 
1573 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1574 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1575 }
1576 
1577 void __init inode_init(void)
1578 {
1579 	int loop;
1580 
1581 	/* inode slab cache */
1582 	inode_cachep = kmem_cache_create("inode_cache",
1583 					 sizeof(struct inode),
1584 					 0,
1585 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1586 					 SLAB_MEM_SPREAD),
1587 					 init_once);
1588 	register_shrinker(&icache_shrinker);
1589 
1590 	/* Hash may have been set up in inode_init_early */
1591 	if (!hashdist)
1592 		return;
1593 
1594 	inode_hashtable =
1595 		alloc_large_system_hash("Inode-cache",
1596 					sizeof(struct hlist_head),
1597 					ihash_entries,
1598 					14,
1599 					0,
1600 					&i_hash_shift,
1601 					&i_hash_mask,
1602 					0);
1603 
1604 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1605 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1606 }
1607 
1608 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1609 {
1610 	inode->i_mode = mode;
1611 	if (S_ISCHR(mode)) {
1612 		inode->i_fop = &def_chr_fops;
1613 		inode->i_rdev = rdev;
1614 	} else if (S_ISBLK(mode)) {
1615 		inode->i_fop = &def_blk_fops;
1616 		inode->i_rdev = rdev;
1617 	} else if (S_ISFIFO(mode))
1618 		inode->i_fop = &def_fifo_fops;
1619 	else if (S_ISSOCK(mode))
1620 		inode->i_fop = &bad_sock_fops;
1621 	else
1622 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1623 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1624 				  inode->i_ino);
1625 }
1626 EXPORT_SYMBOL(init_special_inode);
1627