xref: /openbmc/linux/fs/inode.c (revision e6dec923)
1 /*
2  * (C) 1997 Linus Torvalds
3  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4  */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <trace/events/writeback.h>
22 #include "internal.h"
23 
24 /*
25  * Inode locking rules:
26  *
27  * inode->i_lock protects:
28  *   inode->i_state, inode->i_hash, __iget()
29  * Inode LRU list locks protect:
30  *   inode->i_sb->s_inode_lru, inode->i_lru
31  * inode->i_sb->s_inode_list_lock protects:
32  *   inode->i_sb->s_inodes, inode->i_sb_list
33  * bdi->wb.list_lock protects:
34  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
35  * inode_hash_lock protects:
36  *   inode_hashtable, inode->i_hash
37  *
38  * Lock ordering:
39  *
40  * inode->i_sb->s_inode_list_lock
41  *   inode->i_lock
42  *     Inode LRU list locks
43  *
44  * bdi->wb.list_lock
45  *   inode->i_lock
46  *
47  * inode_hash_lock
48  *   inode->i_sb->s_inode_list_lock
49  *   inode->i_lock
50  *
51  * iunique_lock
52  *   inode_hash_lock
53  */
54 
55 static unsigned int i_hash_mask __read_mostly;
56 static unsigned int i_hash_shift __read_mostly;
57 static struct hlist_head *inode_hashtable __read_mostly;
58 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
59 
60 /*
61  * Empty aops. Can be used for the cases where the user does not
62  * define any of the address_space operations.
63  */
64 const struct address_space_operations empty_aops = {
65 };
66 EXPORT_SYMBOL(empty_aops);
67 
68 /*
69  * Statistics gathering..
70  */
71 struct inodes_stat_t inodes_stat;
72 
73 static DEFINE_PER_CPU(unsigned long, nr_inodes);
74 static DEFINE_PER_CPU(unsigned long, nr_unused);
75 
76 static struct kmem_cache *inode_cachep __read_mostly;
77 
78 static long get_nr_inodes(void)
79 {
80 	int i;
81 	long sum = 0;
82 	for_each_possible_cpu(i)
83 		sum += per_cpu(nr_inodes, i);
84 	return sum < 0 ? 0 : sum;
85 }
86 
87 static inline long get_nr_inodes_unused(void)
88 {
89 	int i;
90 	long sum = 0;
91 	for_each_possible_cpu(i)
92 		sum += per_cpu(nr_unused, i);
93 	return sum < 0 ? 0 : sum;
94 }
95 
96 long get_nr_dirty_inodes(void)
97 {
98 	/* not actually dirty inodes, but a wild approximation */
99 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
100 	return nr_dirty > 0 ? nr_dirty : 0;
101 }
102 
103 /*
104  * Handle nr_inode sysctl
105  */
106 #ifdef CONFIG_SYSCTL
107 int proc_nr_inodes(struct ctl_table *table, int write,
108 		   void __user *buffer, size_t *lenp, loff_t *ppos)
109 {
110 	inodes_stat.nr_inodes = get_nr_inodes();
111 	inodes_stat.nr_unused = get_nr_inodes_unused();
112 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
113 }
114 #endif
115 
116 static int no_open(struct inode *inode, struct file *file)
117 {
118 	return -ENXIO;
119 }
120 
121 /**
122  * inode_init_always - perform inode structure initialisation
123  * @sb: superblock inode belongs to
124  * @inode: inode to initialise
125  *
126  * These are initializations that need to be done on every inode
127  * allocation as the fields are not initialised by slab allocation.
128  */
129 int inode_init_always(struct super_block *sb, struct inode *inode)
130 {
131 	static const struct inode_operations empty_iops;
132 	static const struct file_operations no_open_fops = {.open = no_open};
133 	struct address_space *const mapping = &inode->i_data;
134 
135 	inode->i_sb = sb;
136 	inode->i_blkbits = sb->s_blocksize_bits;
137 	inode->i_flags = 0;
138 	atomic_set(&inode->i_count, 1);
139 	inode->i_op = &empty_iops;
140 	inode->i_fop = &no_open_fops;
141 	inode->__i_nlink = 1;
142 	inode->i_opflags = 0;
143 	if (sb->s_xattr)
144 		inode->i_opflags |= IOP_XATTR;
145 	i_uid_write(inode, 0);
146 	i_gid_write(inode, 0);
147 	atomic_set(&inode->i_writecount, 0);
148 	inode->i_size = 0;
149 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
150 	inode->i_blocks = 0;
151 	inode->i_bytes = 0;
152 	inode->i_generation = 0;
153 	inode->i_pipe = NULL;
154 	inode->i_bdev = NULL;
155 	inode->i_cdev = NULL;
156 	inode->i_link = NULL;
157 	inode->i_dir_seq = 0;
158 	inode->i_rdev = 0;
159 	inode->dirtied_when = 0;
160 
161 #ifdef CONFIG_CGROUP_WRITEBACK
162 	inode->i_wb_frn_winner = 0;
163 	inode->i_wb_frn_avg_time = 0;
164 	inode->i_wb_frn_history = 0;
165 #endif
166 
167 	if (security_inode_alloc(inode))
168 		goto out;
169 	spin_lock_init(&inode->i_lock);
170 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
171 
172 	init_rwsem(&inode->i_rwsem);
173 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
174 
175 	atomic_set(&inode->i_dio_count, 0);
176 
177 	mapping->a_ops = &empty_aops;
178 	mapping->host = inode;
179 	mapping->flags = 0;
180 	atomic_set(&mapping->i_mmap_writable, 0);
181 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
182 	mapping->private_data = NULL;
183 	mapping->writeback_index = 0;
184 	inode->i_private = NULL;
185 	inode->i_mapping = mapping;
186 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
187 #ifdef CONFIG_FS_POSIX_ACL
188 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
189 #endif
190 
191 #ifdef CONFIG_FSNOTIFY
192 	inode->i_fsnotify_mask = 0;
193 #endif
194 	inode->i_flctx = NULL;
195 	this_cpu_inc(nr_inodes);
196 
197 	return 0;
198 out:
199 	return -ENOMEM;
200 }
201 EXPORT_SYMBOL(inode_init_always);
202 
203 static struct inode *alloc_inode(struct super_block *sb)
204 {
205 	struct inode *inode;
206 
207 	if (sb->s_op->alloc_inode)
208 		inode = sb->s_op->alloc_inode(sb);
209 	else
210 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
211 
212 	if (!inode)
213 		return NULL;
214 
215 	if (unlikely(inode_init_always(sb, inode))) {
216 		if (inode->i_sb->s_op->destroy_inode)
217 			inode->i_sb->s_op->destroy_inode(inode);
218 		else
219 			kmem_cache_free(inode_cachep, inode);
220 		return NULL;
221 	}
222 
223 	return inode;
224 }
225 
226 void free_inode_nonrcu(struct inode *inode)
227 {
228 	kmem_cache_free(inode_cachep, inode);
229 }
230 EXPORT_SYMBOL(free_inode_nonrcu);
231 
232 void __destroy_inode(struct inode *inode)
233 {
234 	BUG_ON(inode_has_buffers(inode));
235 	inode_detach_wb(inode);
236 	security_inode_free(inode);
237 	fsnotify_inode_delete(inode);
238 	locks_free_lock_context(inode);
239 	if (!inode->i_nlink) {
240 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
241 		atomic_long_dec(&inode->i_sb->s_remove_count);
242 	}
243 
244 #ifdef CONFIG_FS_POSIX_ACL
245 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
246 		posix_acl_release(inode->i_acl);
247 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
248 		posix_acl_release(inode->i_default_acl);
249 #endif
250 	this_cpu_dec(nr_inodes);
251 }
252 EXPORT_SYMBOL(__destroy_inode);
253 
254 static void i_callback(struct rcu_head *head)
255 {
256 	struct inode *inode = container_of(head, struct inode, i_rcu);
257 	kmem_cache_free(inode_cachep, inode);
258 }
259 
260 static void destroy_inode(struct inode *inode)
261 {
262 	BUG_ON(!list_empty(&inode->i_lru));
263 	__destroy_inode(inode);
264 	if (inode->i_sb->s_op->destroy_inode)
265 		inode->i_sb->s_op->destroy_inode(inode);
266 	else
267 		call_rcu(&inode->i_rcu, i_callback);
268 }
269 
270 /**
271  * drop_nlink - directly drop an inode's link count
272  * @inode: inode
273  *
274  * This is a low-level filesystem helper to replace any
275  * direct filesystem manipulation of i_nlink.  In cases
276  * where we are attempting to track writes to the
277  * filesystem, a decrement to zero means an imminent
278  * write when the file is truncated and actually unlinked
279  * on the filesystem.
280  */
281 void drop_nlink(struct inode *inode)
282 {
283 	WARN_ON(inode->i_nlink == 0);
284 	inode->__i_nlink--;
285 	if (!inode->i_nlink)
286 		atomic_long_inc(&inode->i_sb->s_remove_count);
287 }
288 EXPORT_SYMBOL(drop_nlink);
289 
290 /**
291  * clear_nlink - directly zero an inode's link count
292  * @inode: inode
293  *
294  * This is a low-level filesystem helper to replace any
295  * direct filesystem manipulation of i_nlink.  See
296  * drop_nlink() for why we care about i_nlink hitting zero.
297  */
298 void clear_nlink(struct inode *inode)
299 {
300 	if (inode->i_nlink) {
301 		inode->__i_nlink = 0;
302 		atomic_long_inc(&inode->i_sb->s_remove_count);
303 	}
304 }
305 EXPORT_SYMBOL(clear_nlink);
306 
307 /**
308  * set_nlink - directly set an inode's link count
309  * @inode: inode
310  * @nlink: new nlink (should be non-zero)
311  *
312  * This is a low-level filesystem helper to replace any
313  * direct filesystem manipulation of i_nlink.
314  */
315 void set_nlink(struct inode *inode, unsigned int nlink)
316 {
317 	if (!nlink) {
318 		clear_nlink(inode);
319 	} else {
320 		/* Yes, some filesystems do change nlink from zero to one */
321 		if (inode->i_nlink == 0)
322 			atomic_long_dec(&inode->i_sb->s_remove_count);
323 
324 		inode->__i_nlink = nlink;
325 	}
326 }
327 EXPORT_SYMBOL(set_nlink);
328 
329 /**
330  * inc_nlink - directly increment an inode's link count
331  * @inode: inode
332  *
333  * This is a low-level filesystem helper to replace any
334  * direct filesystem manipulation of i_nlink.  Currently,
335  * it is only here for parity with dec_nlink().
336  */
337 void inc_nlink(struct inode *inode)
338 {
339 	if (unlikely(inode->i_nlink == 0)) {
340 		WARN_ON(!(inode->i_state & I_LINKABLE));
341 		atomic_long_dec(&inode->i_sb->s_remove_count);
342 	}
343 
344 	inode->__i_nlink++;
345 }
346 EXPORT_SYMBOL(inc_nlink);
347 
348 void address_space_init_once(struct address_space *mapping)
349 {
350 	memset(mapping, 0, sizeof(*mapping));
351 	INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC | __GFP_ACCOUNT);
352 	spin_lock_init(&mapping->tree_lock);
353 	init_rwsem(&mapping->i_mmap_rwsem);
354 	INIT_LIST_HEAD(&mapping->private_list);
355 	spin_lock_init(&mapping->private_lock);
356 	mapping->i_mmap = RB_ROOT;
357 }
358 EXPORT_SYMBOL(address_space_init_once);
359 
360 /*
361  * These are initializations that only need to be done
362  * once, because the fields are idempotent across use
363  * of the inode, so let the slab aware of that.
364  */
365 void inode_init_once(struct inode *inode)
366 {
367 	memset(inode, 0, sizeof(*inode));
368 	INIT_HLIST_NODE(&inode->i_hash);
369 	INIT_LIST_HEAD(&inode->i_devices);
370 	INIT_LIST_HEAD(&inode->i_io_list);
371 	INIT_LIST_HEAD(&inode->i_wb_list);
372 	INIT_LIST_HEAD(&inode->i_lru);
373 	address_space_init_once(&inode->i_data);
374 	i_size_ordered_init(inode);
375 }
376 EXPORT_SYMBOL(inode_init_once);
377 
378 static void init_once(void *foo)
379 {
380 	struct inode *inode = (struct inode *) foo;
381 
382 	inode_init_once(inode);
383 }
384 
385 /*
386  * inode->i_lock must be held
387  */
388 void __iget(struct inode *inode)
389 {
390 	atomic_inc(&inode->i_count);
391 }
392 
393 /*
394  * get additional reference to inode; caller must already hold one.
395  */
396 void ihold(struct inode *inode)
397 {
398 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
399 }
400 EXPORT_SYMBOL(ihold);
401 
402 static void inode_lru_list_add(struct inode *inode)
403 {
404 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
405 		this_cpu_inc(nr_unused);
406 	else
407 		inode->i_state |= I_REFERENCED;
408 }
409 
410 /*
411  * Add inode to LRU if needed (inode is unused and clean).
412  *
413  * Needs inode->i_lock held.
414  */
415 void inode_add_lru(struct inode *inode)
416 {
417 	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
418 				I_FREEING | I_WILL_FREE)) &&
419 	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
420 		inode_lru_list_add(inode);
421 }
422 
423 
424 static void inode_lru_list_del(struct inode *inode)
425 {
426 
427 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
428 		this_cpu_dec(nr_unused);
429 }
430 
431 /**
432  * inode_sb_list_add - add inode to the superblock list of inodes
433  * @inode: inode to add
434  */
435 void inode_sb_list_add(struct inode *inode)
436 {
437 	spin_lock(&inode->i_sb->s_inode_list_lock);
438 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
439 	spin_unlock(&inode->i_sb->s_inode_list_lock);
440 }
441 EXPORT_SYMBOL_GPL(inode_sb_list_add);
442 
443 static inline void inode_sb_list_del(struct inode *inode)
444 {
445 	if (!list_empty(&inode->i_sb_list)) {
446 		spin_lock(&inode->i_sb->s_inode_list_lock);
447 		list_del_init(&inode->i_sb_list);
448 		spin_unlock(&inode->i_sb->s_inode_list_lock);
449 	}
450 }
451 
452 static unsigned long hash(struct super_block *sb, unsigned long hashval)
453 {
454 	unsigned long tmp;
455 
456 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
457 			L1_CACHE_BYTES;
458 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
459 	return tmp & i_hash_mask;
460 }
461 
462 /**
463  *	__insert_inode_hash - hash an inode
464  *	@inode: unhashed inode
465  *	@hashval: unsigned long value used to locate this object in the
466  *		inode_hashtable.
467  *
468  *	Add an inode to the inode hash for this superblock.
469  */
470 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
471 {
472 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
473 
474 	spin_lock(&inode_hash_lock);
475 	spin_lock(&inode->i_lock);
476 	hlist_add_head(&inode->i_hash, b);
477 	spin_unlock(&inode->i_lock);
478 	spin_unlock(&inode_hash_lock);
479 }
480 EXPORT_SYMBOL(__insert_inode_hash);
481 
482 /**
483  *	__remove_inode_hash - remove an inode from the hash
484  *	@inode: inode to unhash
485  *
486  *	Remove an inode from the superblock.
487  */
488 void __remove_inode_hash(struct inode *inode)
489 {
490 	spin_lock(&inode_hash_lock);
491 	spin_lock(&inode->i_lock);
492 	hlist_del_init(&inode->i_hash);
493 	spin_unlock(&inode->i_lock);
494 	spin_unlock(&inode_hash_lock);
495 }
496 EXPORT_SYMBOL(__remove_inode_hash);
497 
498 void clear_inode(struct inode *inode)
499 {
500 	might_sleep();
501 	/*
502 	 * We have to cycle tree_lock here because reclaim can be still in the
503 	 * process of removing the last page (in __delete_from_page_cache())
504 	 * and we must not free mapping under it.
505 	 */
506 	spin_lock_irq(&inode->i_data.tree_lock);
507 	BUG_ON(inode->i_data.nrpages);
508 	BUG_ON(inode->i_data.nrexceptional);
509 	spin_unlock_irq(&inode->i_data.tree_lock);
510 	BUG_ON(!list_empty(&inode->i_data.private_list));
511 	BUG_ON(!(inode->i_state & I_FREEING));
512 	BUG_ON(inode->i_state & I_CLEAR);
513 	BUG_ON(!list_empty(&inode->i_wb_list));
514 	/* don't need i_lock here, no concurrent mods to i_state */
515 	inode->i_state = I_FREEING | I_CLEAR;
516 }
517 EXPORT_SYMBOL(clear_inode);
518 
519 /*
520  * Free the inode passed in, removing it from the lists it is still connected
521  * to. We remove any pages still attached to the inode and wait for any IO that
522  * is still in progress before finally destroying the inode.
523  *
524  * An inode must already be marked I_FREEING so that we avoid the inode being
525  * moved back onto lists if we race with other code that manipulates the lists
526  * (e.g. writeback_single_inode). The caller is responsible for setting this.
527  *
528  * An inode must already be removed from the LRU list before being evicted from
529  * the cache. This should occur atomically with setting the I_FREEING state
530  * flag, so no inodes here should ever be on the LRU when being evicted.
531  */
532 static void evict(struct inode *inode)
533 {
534 	const struct super_operations *op = inode->i_sb->s_op;
535 
536 	BUG_ON(!(inode->i_state & I_FREEING));
537 	BUG_ON(!list_empty(&inode->i_lru));
538 
539 	if (!list_empty(&inode->i_io_list))
540 		inode_io_list_del(inode);
541 
542 	inode_sb_list_del(inode);
543 
544 	/*
545 	 * Wait for flusher thread to be done with the inode so that filesystem
546 	 * does not start destroying it while writeback is still running. Since
547 	 * the inode has I_FREEING set, flusher thread won't start new work on
548 	 * the inode.  We just have to wait for running writeback to finish.
549 	 */
550 	inode_wait_for_writeback(inode);
551 
552 	if (op->evict_inode) {
553 		op->evict_inode(inode);
554 	} else {
555 		truncate_inode_pages_final(&inode->i_data);
556 		clear_inode(inode);
557 	}
558 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
559 		bd_forget(inode);
560 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
561 		cd_forget(inode);
562 
563 	remove_inode_hash(inode);
564 
565 	spin_lock(&inode->i_lock);
566 	wake_up_bit(&inode->i_state, __I_NEW);
567 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
568 	spin_unlock(&inode->i_lock);
569 
570 	destroy_inode(inode);
571 }
572 
573 /*
574  * dispose_list - dispose of the contents of a local list
575  * @head: the head of the list to free
576  *
577  * Dispose-list gets a local list with local inodes in it, so it doesn't
578  * need to worry about list corruption and SMP locks.
579  */
580 static void dispose_list(struct list_head *head)
581 {
582 	while (!list_empty(head)) {
583 		struct inode *inode;
584 
585 		inode = list_first_entry(head, struct inode, i_lru);
586 		list_del_init(&inode->i_lru);
587 
588 		evict(inode);
589 		cond_resched();
590 	}
591 }
592 
593 /**
594  * evict_inodes	- evict all evictable inodes for a superblock
595  * @sb:		superblock to operate on
596  *
597  * Make sure that no inodes with zero refcount are retained.  This is
598  * called by superblock shutdown after having MS_ACTIVE flag removed,
599  * so any inode reaching zero refcount during or after that call will
600  * be immediately evicted.
601  */
602 void evict_inodes(struct super_block *sb)
603 {
604 	struct inode *inode, *next;
605 	LIST_HEAD(dispose);
606 
607 again:
608 	spin_lock(&sb->s_inode_list_lock);
609 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
610 		if (atomic_read(&inode->i_count))
611 			continue;
612 
613 		spin_lock(&inode->i_lock);
614 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
615 			spin_unlock(&inode->i_lock);
616 			continue;
617 		}
618 
619 		inode->i_state |= I_FREEING;
620 		inode_lru_list_del(inode);
621 		spin_unlock(&inode->i_lock);
622 		list_add(&inode->i_lru, &dispose);
623 
624 		/*
625 		 * We can have a ton of inodes to evict at unmount time given
626 		 * enough memory, check to see if we need to go to sleep for a
627 		 * bit so we don't livelock.
628 		 */
629 		if (need_resched()) {
630 			spin_unlock(&sb->s_inode_list_lock);
631 			cond_resched();
632 			dispose_list(&dispose);
633 			goto again;
634 		}
635 	}
636 	spin_unlock(&sb->s_inode_list_lock);
637 
638 	dispose_list(&dispose);
639 }
640 
641 /**
642  * invalidate_inodes	- attempt to free all inodes on a superblock
643  * @sb:		superblock to operate on
644  * @kill_dirty: flag to guide handling of dirty inodes
645  *
646  * Attempts to free all inodes for a given superblock.  If there were any
647  * busy inodes return a non-zero value, else zero.
648  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
649  * them as busy.
650  */
651 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
652 {
653 	int busy = 0;
654 	struct inode *inode, *next;
655 	LIST_HEAD(dispose);
656 
657 	spin_lock(&sb->s_inode_list_lock);
658 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
659 		spin_lock(&inode->i_lock);
660 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
661 			spin_unlock(&inode->i_lock);
662 			continue;
663 		}
664 		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
665 			spin_unlock(&inode->i_lock);
666 			busy = 1;
667 			continue;
668 		}
669 		if (atomic_read(&inode->i_count)) {
670 			spin_unlock(&inode->i_lock);
671 			busy = 1;
672 			continue;
673 		}
674 
675 		inode->i_state |= I_FREEING;
676 		inode_lru_list_del(inode);
677 		spin_unlock(&inode->i_lock);
678 		list_add(&inode->i_lru, &dispose);
679 	}
680 	spin_unlock(&sb->s_inode_list_lock);
681 
682 	dispose_list(&dispose);
683 
684 	return busy;
685 }
686 
687 /*
688  * Isolate the inode from the LRU in preparation for freeing it.
689  *
690  * Any inodes which are pinned purely because of attached pagecache have their
691  * pagecache removed.  If the inode has metadata buffers attached to
692  * mapping->private_list then try to remove them.
693  *
694  * If the inode has the I_REFERENCED flag set, then it means that it has been
695  * used recently - the flag is set in iput_final(). When we encounter such an
696  * inode, clear the flag and move it to the back of the LRU so it gets another
697  * pass through the LRU before it gets reclaimed. This is necessary because of
698  * the fact we are doing lazy LRU updates to minimise lock contention so the
699  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
700  * with this flag set because they are the inodes that are out of order.
701  */
702 static enum lru_status inode_lru_isolate(struct list_head *item,
703 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
704 {
705 	struct list_head *freeable = arg;
706 	struct inode	*inode = container_of(item, struct inode, i_lru);
707 
708 	/*
709 	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
710 	 * If we fail to get the lock, just skip it.
711 	 */
712 	if (!spin_trylock(&inode->i_lock))
713 		return LRU_SKIP;
714 
715 	/*
716 	 * Referenced or dirty inodes are still in use. Give them another pass
717 	 * through the LRU as we canot reclaim them now.
718 	 */
719 	if (atomic_read(&inode->i_count) ||
720 	    (inode->i_state & ~I_REFERENCED)) {
721 		list_lru_isolate(lru, &inode->i_lru);
722 		spin_unlock(&inode->i_lock);
723 		this_cpu_dec(nr_unused);
724 		return LRU_REMOVED;
725 	}
726 
727 	/* recently referenced inodes get one more pass */
728 	if (inode->i_state & I_REFERENCED) {
729 		inode->i_state &= ~I_REFERENCED;
730 		spin_unlock(&inode->i_lock);
731 		return LRU_ROTATE;
732 	}
733 
734 	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
735 		__iget(inode);
736 		spin_unlock(&inode->i_lock);
737 		spin_unlock(lru_lock);
738 		if (remove_inode_buffers(inode)) {
739 			unsigned long reap;
740 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
741 			if (current_is_kswapd())
742 				__count_vm_events(KSWAPD_INODESTEAL, reap);
743 			else
744 				__count_vm_events(PGINODESTEAL, reap);
745 			if (current->reclaim_state)
746 				current->reclaim_state->reclaimed_slab += reap;
747 		}
748 		iput(inode);
749 		spin_lock(lru_lock);
750 		return LRU_RETRY;
751 	}
752 
753 	WARN_ON(inode->i_state & I_NEW);
754 	inode->i_state |= I_FREEING;
755 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
756 	spin_unlock(&inode->i_lock);
757 
758 	this_cpu_dec(nr_unused);
759 	return LRU_REMOVED;
760 }
761 
762 /*
763  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
764  * This is called from the superblock shrinker function with a number of inodes
765  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
766  * then are freed outside inode_lock by dispose_list().
767  */
768 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
769 {
770 	LIST_HEAD(freeable);
771 	long freed;
772 
773 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
774 				     inode_lru_isolate, &freeable);
775 	dispose_list(&freeable);
776 	return freed;
777 }
778 
779 static void __wait_on_freeing_inode(struct inode *inode);
780 /*
781  * Called with the inode lock held.
782  */
783 static struct inode *find_inode(struct super_block *sb,
784 				struct hlist_head *head,
785 				int (*test)(struct inode *, void *),
786 				void *data)
787 {
788 	struct inode *inode = NULL;
789 
790 repeat:
791 	hlist_for_each_entry(inode, head, i_hash) {
792 		if (inode->i_sb != sb)
793 			continue;
794 		if (!test(inode, data))
795 			continue;
796 		spin_lock(&inode->i_lock);
797 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
798 			__wait_on_freeing_inode(inode);
799 			goto repeat;
800 		}
801 		__iget(inode);
802 		spin_unlock(&inode->i_lock);
803 		return inode;
804 	}
805 	return NULL;
806 }
807 
808 /*
809  * find_inode_fast is the fast path version of find_inode, see the comment at
810  * iget_locked for details.
811  */
812 static struct inode *find_inode_fast(struct super_block *sb,
813 				struct hlist_head *head, unsigned long ino)
814 {
815 	struct inode *inode = NULL;
816 
817 repeat:
818 	hlist_for_each_entry(inode, head, i_hash) {
819 		if (inode->i_ino != ino)
820 			continue;
821 		if (inode->i_sb != sb)
822 			continue;
823 		spin_lock(&inode->i_lock);
824 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
825 			__wait_on_freeing_inode(inode);
826 			goto repeat;
827 		}
828 		__iget(inode);
829 		spin_unlock(&inode->i_lock);
830 		return inode;
831 	}
832 	return NULL;
833 }
834 
835 /*
836  * Each cpu owns a range of LAST_INO_BATCH numbers.
837  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
838  * to renew the exhausted range.
839  *
840  * This does not significantly increase overflow rate because every CPU can
841  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
842  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
843  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
844  * overflow rate by 2x, which does not seem too significant.
845  *
846  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
847  * error if st_ino won't fit in target struct field. Use 32bit counter
848  * here to attempt to avoid that.
849  */
850 #define LAST_INO_BATCH 1024
851 static DEFINE_PER_CPU(unsigned int, last_ino);
852 
853 unsigned int get_next_ino(void)
854 {
855 	unsigned int *p = &get_cpu_var(last_ino);
856 	unsigned int res = *p;
857 
858 #ifdef CONFIG_SMP
859 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
860 		static atomic_t shared_last_ino;
861 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
862 
863 		res = next - LAST_INO_BATCH;
864 	}
865 #endif
866 
867 	res++;
868 	/* get_next_ino should not provide a 0 inode number */
869 	if (unlikely(!res))
870 		res++;
871 	*p = res;
872 	put_cpu_var(last_ino);
873 	return res;
874 }
875 EXPORT_SYMBOL(get_next_ino);
876 
877 /**
878  *	new_inode_pseudo 	- obtain an inode
879  *	@sb: superblock
880  *
881  *	Allocates a new inode for given superblock.
882  *	Inode wont be chained in superblock s_inodes list
883  *	This means :
884  *	- fs can't be unmount
885  *	- quotas, fsnotify, writeback can't work
886  */
887 struct inode *new_inode_pseudo(struct super_block *sb)
888 {
889 	struct inode *inode = alloc_inode(sb);
890 
891 	if (inode) {
892 		spin_lock(&inode->i_lock);
893 		inode->i_state = 0;
894 		spin_unlock(&inode->i_lock);
895 		INIT_LIST_HEAD(&inode->i_sb_list);
896 	}
897 	return inode;
898 }
899 
900 /**
901  *	new_inode 	- obtain an inode
902  *	@sb: superblock
903  *
904  *	Allocates a new inode for given superblock. The default gfp_mask
905  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
906  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
907  *	for the page cache are not reclaimable or migratable,
908  *	mapping_set_gfp_mask() must be called with suitable flags on the
909  *	newly created inode's mapping
910  *
911  */
912 struct inode *new_inode(struct super_block *sb)
913 {
914 	struct inode *inode;
915 
916 	spin_lock_prefetch(&sb->s_inode_list_lock);
917 
918 	inode = new_inode_pseudo(sb);
919 	if (inode)
920 		inode_sb_list_add(inode);
921 	return inode;
922 }
923 EXPORT_SYMBOL(new_inode);
924 
925 #ifdef CONFIG_DEBUG_LOCK_ALLOC
926 void lockdep_annotate_inode_mutex_key(struct inode *inode)
927 {
928 	if (S_ISDIR(inode->i_mode)) {
929 		struct file_system_type *type = inode->i_sb->s_type;
930 
931 		/* Set new key only if filesystem hasn't already changed it */
932 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
933 			/*
934 			 * ensure nobody is actually holding i_mutex
935 			 */
936 			// mutex_destroy(&inode->i_mutex);
937 			init_rwsem(&inode->i_rwsem);
938 			lockdep_set_class(&inode->i_rwsem,
939 					  &type->i_mutex_dir_key);
940 		}
941 	}
942 }
943 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
944 #endif
945 
946 /**
947  * unlock_new_inode - clear the I_NEW state and wake up any waiters
948  * @inode:	new inode to unlock
949  *
950  * Called when the inode is fully initialised to clear the new state of the
951  * inode and wake up anyone waiting for the inode to finish initialisation.
952  */
953 void unlock_new_inode(struct inode *inode)
954 {
955 	lockdep_annotate_inode_mutex_key(inode);
956 	spin_lock(&inode->i_lock);
957 	WARN_ON(!(inode->i_state & I_NEW));
958 	inode->i_state &= ~I_NEW;
959 	smp_mb();
960 	wake_up_bit(&inode->i_state, __I_NEW);
961 	spin_unlock(&inode->i_lock);
962 }
963 EXPORT_SYMBOL(unlock_new_inode);
964 
965 /**
966  * lock_two_nondirectories - take two i_mutexes on non-directory objects
967  *
968  * Lock any non-NULL argument that is not a directory.
969  * Zero, one or two objects may be locked by this function.
970  *
971  * @inode1: first inode to lock
972  * @inode2: second inode to lock
973  */
974 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
975 {
976 	if (inode1 > inode2)
977 		swap(inode1, inode2);
978 
979 	if (inode1 && !S_ISDIR(inode1->i_mode))
980 		inode_lock(inode1);
981 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
982 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
983 }
984 EXPORT_SYMBOL(lock_two_nondirectories);
985 
986 /**
987  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
988  * @inode1: first inode to unlock
989  * @inode2: second inode to unlock
990  */
991 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
992 {
993 	if (inode1 && !S_ISDIR(inode1->i_mode))
994 		inode_unlock(inode1);
995 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
996 		inode_unlock(inode2);
997 }
998 EXPORT_SYMBOL(unlock_two_nondirectories);
999 
1000 /**
1001  * iget5_locked - obtain an inode from a mounted file system
1002  * @sb:		super block of file system
1003  * @hashval:	hash value (usually inode number) to get
1004  * @test:	callback used for comparisons between inodes
1005  * @set:	callback used to initialize a new struct inode
1006  * @data:	opaque data pointer to pass to @test and @set
1007  *
1008  * Search for the inode specified by @hashval and @data in the inode cache,
1009  * and if present it is return it with an increased reference count. This is
1010  * a generalized version of iget_locked() for file systems where the inode
1011  * number is not sufficient for unique identification of an inode.
1012  *
1013  * If the inode is not in cache, allocate a new inode and return it locked,
1014  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1015  * before unlocking it via unlock_new_inode().
1016  *
1017  * Note both @test and @set are called with the inode_hash_lock held, so can't
1018  * sleep.
1019  */
1020 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1021 		int (*test)(struct inode *, void *),
1022 		int (*set)(struct inode *, void *), void *data)
1023 {
1024 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1025 	struct inode *inode;
1026 again:
1027 	spin_lock(&inode_hash_lock);
1028 	inode = find_inode(sb, head, test, data);
1029 	spin_unlock(&inode_hash_lock);
1030 
1031 	if (inode) {
1032 		wait_on_inode(inode);
1033 		if (unlikely(inode_unhashed(inode))) {
1034 			iput(inode);
1035 			goto again;
1036 		}
1037 		return inode;
1038 	}
1039 
1040 	inode = alloc_inode(sb);
1041 	if (inode) {
1042 		struct inode *old;
1043 
1044 		spin_lock(&inode_hash_lock);
1045 		/* We released the lock, so.. */
1046 		old = find_inode(sb, head, test, data);
1047 		if (!old) {
1048 			if (set(inode, data))
1049 				goto set_failed;
1050 
1051 			spin_lock(&inode->i_lock);
1052 			inode->i_state = I_NEW;
1053 			hlist_add_head(&inode->i_hash, head);
1054 			spin_unlock(&inode->i_lock);
1055 			inode_sb_list_add(inode);
1056 			spin_unlock(&inode_hash_lock);
1057 
1058 			/* Return the locked inode with I_NEW set, the
1059 			 * caller is responsible for filling in the contents
1060 			 */
1061 			return inode;
1062 		}
1063 
1064 		/*
1065 		 * Uhhuh, somebody else created the same inode under
1066 		 * us. Use the old inode instead of the one we just
1067 		 * allocated.
1068 		 */
1069 		spin_unlock(&inode_hash_lock);
1070 		destroy_inode(inode);
1071 		inode = old;
1072 		wait_on_inode(inode);
1073 		if (unlikely(inode_unhashed(inode))) {
1074 			iput(inode);
1075 			goto again;
1076 		}
1077 	}
1078 	return inode;
1079 
1080 set_failed:
1081 	spin_unlock(&inode_hash_lock);
1082 	destroy_inode(inode);
1083 	return NULL;
1084 }
1085 EXPORT_SYMBOL(iget5_locked);
1086 
1087 /**
1088  * iget_locked - obtain an inode from a mounted file system
1089  * @sb:		super block of file system
1090  * @ino:	inode number to get
1091  *
1092  * Search for the inode specified by @ino in the inode cache and if present
1093  * return it with an increased reference count. This is for file systems
1094  * where the inode number is sufficient for unique identification of an inode.
1095  *
1096  * If the inode is not in cache, allocate a new inode and return it locked,
1097  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1098  * before unlocking it via unlock_new_inode().
1099  */
1100 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1101 {
1102 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1103 	struct inode *inode;
1104 again:
1105 	spin_lock(&inode_hash_lock);
1106 	inode = find_inode_fast(sb, head, ino);
1107 	spin_unlock(&inode_hash_lock);
1108 	if (inode) {
1109 		wait_on_inode(inode);
1110 		if (unlikely(inode_unhashed(inode))) {
1111 			iput(inode);
1112 			goto again;
1113 		}
1114 		return inode;
1115 	}
1116 
1117 	inode = alloc_inode(sb);
1118 	if (inode) {
1119 		struct inode *old;
1120 
1121 		spin_lock(&inode_hash_lock);
1122 		/* We released the lock, so.. */
1123 		old = find_inode_fast(sb, head, ino);
1124 		if (!old) {
1125 			inode->i_ino = ino;
1126 			spin_lock(&inode->i_lock);
1127 			inode->i_state = I_NEW;
1128 			hlist_add_head(&inode->i_hash, head);
1129 			spin_unlock(&inode->i_lock);
1130 			inode_sb_list_add(inode);
1131 			spin_unlock(&inode_hash_lock);
1132 
1133 			/* Return the locked inode with I_NEW set, the
1134 			 * caller is responsible for filling in the contents
1135 			 */
1136 			return inode;
1137 		}
1138 
1139 		/*
1140 		 * Uhhuh, somebody else created the same inode under
1141 		 * us. Use the old inode instead of the one we just
1142 		 * allocated.
1143 		 */
1144 		spin_unlock(&inode_hash_lock);
1145 		destroy_inode(inode);
1146 		inode = old;
1147 		wait_on_inode(inode);
1148 		if (unlikely(inode_unhashed(inode))) {
1149 			iput(inode);
1150 			goto again;
1151 		}
1152 	}
1153 	return inode;
1154 }
1155 EXPORT_SYMBOL(iget_locked);
1156 
1157 /*
1158  * search the inode cache for a matching inode number.
1159  * If we find one, then the inode number we are trying to
1160  * allocate is not unique and so we should not use it.
1161  *
1162  * Returns 1 if the inode number is unique, 0 if it is not.
1163  */
1164 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1165 {
1166 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1167 	struct inode *inode;
1168 
1169 	spin_lock(&inode_hash_lock);
1170 	hlist_for_each_entry(inode, b, i_hash) {
1171 		if (inode->i_ino == ino && inode->i_sb == sb) {
1172 			spin_unlock(&inode_hash_lock);
1173 			return 0;
1174 		}
1175 	}
1176 	spin_unlock(&inode_hash_lock);
1177 
1178 	return 1;
1179 }
1180 
1181 /**
1182  *	iunique - get a unique inode number
1183  *	@sb: superblock
1184  *	@max_reserved: highest reserved inode number
1185  *
1186  *	Obtain an inode number that is unique on the system for a given
1187  *	superblock. This is used by file systems that have no natural
1188  *	permanent inode numbering system. An inode number is returned that
1189  *	is higher than the reserved limit but unique.
1190  *
1191  *	BUGS:
1192  *	With a large number of inodes live on the file system this function
1193  *	currently becomes quite slow.
1194  */
1195 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1196 {
1197 	/*
1198 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1199 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1200 	 * here to attempt to avoid that.
1201 	 */
1202 	static DEFINE_SPINLOCK(iunique_lock);
1203 	static unsigned int counter;
1204 	ino_t res;
1205 
1206 	spin_lock(&iunique_lock);
1207 	do {
1208 		if (counter <= max_reserved)
1209 			counter = max_reserved + 1;
1210 		res = counter++;
1211 	} while (!test_inode_iunique(sb, res));
1212 	spin_unlock(&iunique_lock);
1213 
1214 	return res;
1215 }
1216 EXPORT_SYMBOL(iunique);
1217 
1218 struct inode *igrab(struct inode *inode)
1219 {
1220 	spin_lock(&inode->i_lock);
1221 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1222 		__iget(inode);
1223 		spin_unlock(&inode->i_lock);
1224 	} else {
1225 		spin_unlock(&inode->i_lock);
1226 		/*
1227 		 * Handle the case where s_op->clear_inode is not been
1228 		 * called yet, and somebody is calling igrab
1229 		 * while the inode is getting freed.
1230 		 */
1231 		inode = NULL;
1232 	}
1233 	return inode;
1234 }
1235 EXPORT_SYMBOL(igrab);
1236 
1237 /**
1238  * ilookup5_nowait - search for an inode in the inode cache
1239  * @sb:		super block of file system to search
1240  * @hashval:	hash value (usually inode number) to search for
1241  * @test:	callback used for comparisons between inodes
1242  * @data:	opaque data pointer to pass to @test
1243  *
1244  * Search for the inode specified by @hashval and @data in the inode cache.
1245  * If the inode is in the cache, the inode is returned with an incremented
1246  * reference count.
1247  *
1248  * Note: I_NEW is not waited upon so you have to be very careful what you do
1249  * with the returned inode.  You probably should be using ilookup5() instead.
1250  *
1251  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1252  */
1253 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1254 		int (*test)(struct inode *, void *), void *data)
1255 {
1256 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1257 	struct inode *inode;
1258 
1259 	spin_lock(&inode_hash_lock);
1260 	inode = find_inode(sb, head, test, data);
1261 	spin_unlock(&inode_hash_lock);
1262 
1263 	return inode;
1264 }
1265 EXPORT_SYMBOL(ilookup5_nowait);
1266 
1267 /**
1268  * ilookup5 - search for an inode in the inode cache
1269  * @sb:		super block of file system to search
1270  * @hashval:	hash value (usually inode number) to search for
1271  * @test:	callback used for comparisons between inodes
1272  * @data:	opaque data pointer to pass to @test
1273  *
1274  * Search for the inode specified by @hashval and @data in the inode cache,
1275  * and if the inode is in the cache, return the inode with an incremented
1276  * reference count.  Waits on I_NEW before returning the inode.
1277  * returned with an incremented reference count.
1278  *
1279  * This is a generalized version of ilookup() for file systems where the
1280  * inode number is not sufficient for unique identification of an inode.
1281  *
1282  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1283  */
1284 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1285 		int (*test)(struct inode *, void *), void *data)
1286 {
1287 	struct inode *inode;
1288 again:
1289 	inode = ilookup5_nowait(sb, hashval, test, data);
1290 	if (inode) {
1291 		wait_on_inode(inode);
1292 		if (unlikely(inode_unhashed(inode))) {
1293 			iput(inode);
1294 			goto again;
1295 		}
1296 	}
1297 	return inode;
1298 }
1299 EXPORT_SYMBOL(ilookup5);
1300 
1301 /**
1302  * ilookup - search for an inode in the inode cache
1303  * @sb:		super block of file system to search
1304  * @ino:	inode number to search for
1305  *
1306  * Search for the inode @ino in the inode cache, and if the inode is in the
1307  * cache, the inode is returned with an incremented reference count.
1308  */
1309 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1310 {
1311 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1312 	struct inode *inode;
1313 again:
1314 	spin_lock(&inode_hash_lock);
1315 	inode = find_inode_fast(sb, head, ino);
1316 	spin_unlock(&inode_hash_lock);
1317 
1318 	if (inode) {
1319 		wait_on_inode(inode);
1320 		if (unlikely(inode_unhashed(inode))) {
1321 			iput(inode);
1322 			goto again;
1323 		}
1324 	}
1325 	return inode;
1326 }
1327 EXPORT_SYMBOL(ilookup);
1328 
1329 /**
1330  * find_inode_nowait - find an inode in the inode cache
1331  * @sb:		super block of file system to search
1332  * @hashval:	hash value (usually inode number) to search for
1333  * @match:	callback used for comparisons between inodes
1334  * @data:	opaque data pointer to pass to @match
1335  *
1336  * Search for the inode specified by @hashval and @data in the inode
1337  * cache, where the helper function @match will return 0 if the inode
1338  * does not match, 1 if the inode does match, and -1 if the search
1339  * should be stopped.  The @match function must be responsible for
1340  * taking the i_lock spin_lock and checking i_state for an inode being
1341  * freed or being initialized, and incrementing the reference count
1342  * before returning 1.  It also must not sleep, since it is called with
1343  * the inode_hash_lock spinlock held.
1344  *
1345  * This is a even more generalized version of ilookup5() when the
1346  * function must never block --- find_inode() can block in
1347  * __wait_on_freeing_inode() --- or when the caller can not increment
1348  * the reference count because the resulting iput() might cause an
1349  * inode eviction.  The tradeoff is that the @match funtion must be
1350  * very carefully implemented.
1351  */
1352 struct inode *find_inode_nowait(struct super_block *sb,
1353 				unsigned long hashval,
1354 				int (*match)(struct inode *, unsigned long,
1355 					     void *),
1356 				void *data)
1357 {
1358 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1359 	struct inode *inode, *ret_inode = NULL;
1360 	int mval;
1361 
1362 	spin_lock(&inode_hash_lock);
1363 	hlist_for_each_entry(inode, head, i_hash) {
1364 		if (inode->i_sb != sb)
1365 			continue;
1366 		mval = match(inode, hashval, data);
1367 		if (mval == 0)
1368 			continue;
1369 		if (mval == 1)
1370 			ret_inode = inode;
1371 		goto out;
1372 	}
1373 out:
1374 	spin_unlock(&inode_hash_lock);
1375 	return ret_inode;
1376 }
1377 EXPORT_SYMBOL(find_inode_nowait);
1378 
1379 int insert_inode_locked(struct inode *inode)
1380 {
1381 	struct super_block *sb = inode->i_sb;
1382 	ino_t ino = inode->i_ino;
1383 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1384 
1385 	while (1) {
1386 		struct inode *old = NULL;
1387 		spin_lock(&inode_hash_lock);
1388 		hlist_for_each_entry(old, head, i_hash) {
1389 			if (old->i_ino != ino)
1390 				continue;
1391 			if (old->i_sb != sb)
1392 				continue;
1393 			spin_lock(&old->i_lock);
1394 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1395 				spin_unlock(&old->i_lock);
1396 				continue;
1397 			}
1398 			break;
1399 		}
1400 		if (likely(!old)) {
1401 			spin_lock(&inode->i_lock);
1402 			inode->i_state |= I_NEW;
1403 			hlist_add_head(&inode->i_hash, head);
1404 			spin_unlock(&inode->i_lock);
1405 			spin_unlock(&inode_hash_lock);
1406 			return 0;
1407 		}
1408 		__iget(old);
1409 		spin_unlock(&old->i_lock);
1410 		spin_unlock(&inode_hash_lock);
1411 		wait_on_inode(old);
1412 		if (unlikely(!inode_unhashed(old))) {
1413 			iput(old);
1414 			return -EBUSY;
1415 		}
1416 		iput(old);
1417 	}
1418 }
1419 EXPORT_SYMBOL(insert_inode_locked);
1420 
1421 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1422 		int (*test)(struct inode *, void *), void *data)
1423 {
1424 	struct super_block *sb = inode->i_sb;
1425 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1426 
1427 	while (1) {
1428 		struct inode *old = NULL;
1429 
1430 		spin_lock(&inode_hash_lock);
1431 		hlist_for_each_entry(old, head, i_hash) {
1432 			if (old->i_sb != sb)
1433 				continue;
1434 			if (!test(old, data))
1435 				continue;
1436 			spin_lock(&old->i_lock);
1437 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1438 				spin_unlock(&old->i_lock);
1439 				continue;
1440 			}
1441 			break;
1442 		}
1443 		if (likely(!old)) {
1444 			spin_lock(&inode->i_lock);
1445 			inode->i_state |= I_NEW;
1446 			hlist_add_head(&inode->i_hash, head);
1447 			spin_unlock(&inode->i_lock);
1448 			spin_unlock(&inode_hash_lock);
1449 			return 0;
1450 		}
1451 		__iget(old);
1452 		spin_unlock(&old->i_lock);
1453 		spin_unlock(&inode_hash_lock);
1454 		wait_on_inode(old);
1455 		if (unlikely(!inode_unhashed(old))) {
1456 			iput(old);
1457 			return -EBUSY;
1458 		}
1459 		iput(old);
1460 	}
1461 }
1462 EXPORT_SYMBOL(insert_inode_locked4);
1463 
1464 
1465 int generic_delete_inode(struct inode *inode)
1466 {
1467 	return 1;
1468 }
1469 EXPORT_SYMBOL(generic_delete_inode);
1470 
1471 /*
1472  * Called when we're dropping the last reference
1473  * to an inode.
1474  *
1475  * Call the FS "drop_inode()" function, defaulting to
1476  * the legacy UNIX filesystem behaviour.  If it tells
1477  * us to evict inode, do so.  Otherwise, retain inode
1478  * in cache if fs is alive, sync and evict if fs is
1479  * shutting down.
1480  */
1481 static void iput_final(struct inode *inode)
1482 {
1483 	struct super_block *sb = inode->i_sb;
1484 	const struct super_operations *op = inode->i_sb->s_op;
1485 	int drop;
1486 
1487 	WARN_ON(inode->i_state & I_NEW);
1488 
1489 	if (op->drop_inode)
1490 		drop = op->drop_inode(inode);
1491 	else
1492 		drop = generic_drop_inode(inode);
1493 
1494 	if (!drop && (sb->s_flags & MS_ACTIVE)) {
1495 		inode_add_lru(inode);
1496 		spin_unlock(&inode->i_lock);
1497 		return;
1498 	}
1499 
1500 	if (!drop) {
1501 		inode->i_state |= I_WILL_FREE;
1502 		spin_unlock(&inode->i_lock);
1503 		write_inode_now(inode, 1);
1504 		spin_lock(&inode->i_lock);
1505 		WARN_ON(inode->i_state & I_NEW);
1506 		inode->i_state &= ~I_WILL_FREE;
1507 	}
1508 
1509 	inode->i_state |= I_FREEING;
1510 	if (!list_empty(&inode->i_lru))
1511 		inode_lru_list_del(inode);
1512 	spin_unlock(&inode->i_lock);
1513 
1514 	evict(inode);
1515 }
1516 
1517 /**
1518  *	iput	- put an inode
1519  *	@inode: inode to put
1520  *
1521  *	Puts an inode, dropping its usage count. If the inode use count hits
1522  *	zero, the inode is then freed and may also be destroyed.
1523  *
1524  *	Consequently, iput() can sleep.
1525  */
1526 void iput(struct inode *inode)
1527 {
1528 	if (!inode)
1529 		return;
1530 	BUG_ON(inode->i_state & I_CLEAR);
1531 retry:
1532 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1533 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1534 			atomic_inc(&inode->i_count);
1535 			inode->i_state &= ~I_DIRTY_TIME;
1536 			spin_unlock(&inode->i_lock);
1537 			trace_writeback_lazytime_iput(inode);
1538 			mark_inode_dirty_sync(inode);
1539 			goto retry;
1540 		}
1541 		iput_final(inode);
1542 	}
1543 }
1544 EXPORT_SYMBOL(iput);
1545 
1546 /**
1547  *	bmap	- find a block number in a file
1548  *	@inode: inode of file
1549  *	@block: block to find
1550  *
1551  *	Returns the block number on the device holding the inode that
1552  *	is the disk block number for the block of the file requested.
1553  *	That is, asked for block 4 of inode 1 the function will return the
1554  *	disk block relative to the disk start that holds that block of the
1555  *	file.
1556  */
1557 sector_t bmap(struct inode *inode, sector_t block)
1558 {
1559 	sector_t res = 0;
1560 	if (inode->i_mapping->a_ops->bmap)
1561 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1562 	return res;
1563 }
1564 EXPORT_SYMBOL(bmap);
1565 
1566 /*
1567  * Update times in overlayed inode from underlying real inode
1568  */
1569 static void update_ovl_inode_times(struct dentry *dentry, struct inode *inode,
1570 			       bool rcu)
1571 {
1572 	if (!rcu) {
1573 		struct inode *realinode = d_real_inode(dentry);
1574 
1575 		if (unlikely(inode != realinode) &&
1576 		    (!timespec_equal(&inode->i_mtime, &realinode->i_mtime) ||
1577 		     !timespec_equal(&inode->i_ctime, &realinode->i_ctime))) {
1578 			inode->i_mtime = realinode->i_mtime;
1579 			inode->i_ctime = realinode->i_ctime;
1580 		}
1581 	}
1582 }
1583 
1584 /*
1585  * With relative atime, only update atime if the previous atime is
1586  * earlier than either the ctime or mtime or if at least a day has
1587  * passed since the last atime update.
1588  */
1589 static int relatime_need_update(const struct path *path, struct inode *inode,
1590 				struct timespec now, bool rcu)
1591 {
1592 
1593 	if (!(path->mnt->mnt_flags & MNT_RELATIME))
1594 		return 1;
1595 
1596 	update_ovl_inode_times(path->dentry, inode, rcu);
1597 	/*
1598 	 * Is mtime younger than atime? If yes, update atime:
1599 	 */
1600 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1601 		return 1;
1602 	/*
1603 	 * Is ctime younger than atime? If yes, update atime:
1604 	 */
1605 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1606 		return 1;
1607 
1608 	/*
1609 	 * Is the previous atime value older than a day? If yes,
1610 	 * update atime:
1611 	 */
1612 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1613 		return 1;
1614 	/*
1615 	 * Good, we can skip the atime update:
1616 	 */
1617 	return 0;
1618 }
1619 
1620 int generic_update_time(struct inode *inode, struct timespec *time, int flags)
1621 {
1622 	int iflags = I_DIRTY_TIME;
1623 
1624 	if (flags & S_ATIME)
1625 		inode->i_atime = *time;
1626 	if (flags & S_VERSION)
1627 		inode_inc_iversion(inode);
1628 	if (flags & S_CTIME)
1629 		inode->i_ctime = *time;
1630 	if (flags & S_MTIME)
1631 		inode->i_mtime = *time;
1632 
1633 	if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION))
1634 		iflags |= I_DIRTY_SYNC;
1635 	__mark_inode_dirty(inode, iflags);
1636 	return 0;
1637 }
1638 EXPORT_SYMBOL(generic_update_time);
1639 
1640 /*
1641  * This does the actual work of updating an inodes time or version.  Must have
1642  * had called mnt_want_write() before calling this.
1643  */
1644 static int update_time(struct inode *inode, struct timespec *time, int flags)
1645 {
1646 	int (*update_time)(struct inode *, struct timespec *, int);
1647 
1648 	update_time = inode->i_op->update_time ? inode->i_op->update_time :
1649 		generic_update_time;
1650 
1651 	return update_time(inode, time, flags);
1652 }
1653 
1654 /**
1655  *	touch_atime	-	update the access time
1656  *	@path: the &struct path to update
1657  *	@inode: inode to update
1658  *
1659  *	Update the accessed time on an inode and mark it for writeback.
1660  *	This function automatically handles read only file systems and media,
1661  *	as well as the "noatime" flag and inode specific "noatime" markers.
1662  */
1663 bool __atime_needs_update(const struct path *path, struct inode *inode,
1664 			  bool rcu)
1665 {
1666 	struct vfsmount *mnt = path->mnt;
1667 	struct timespec now;
1668 
1669 	if (inode->i_flags & S_NOATIME)
1670 		return false;
1671 
1672 	/* Atime updates will likely cause i_uid and i_gid to be written
1673 	 * back improprely if their true value is unknown to the vfs.
1674 	 */
1675 	if (HAS_UNMAPPED_ID(inode))
1676 		return false;
1677 
1678 	if (IS_NOATIME(inode))
1679 		return false;
1680 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1681 		return false;
1682 
1683 	if (mnt->mnt_flags & MNT_NOATIME)
1684 		return false;
1685 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1686 		return false;
1687 
1688 	now = current_time(inode);
1689 
1690 	if (!relatime_need_update(path, inode, now, rcu))
1691 		return false;
1692 
1693 	if (timespec_equal(&inode->i_atime, &now))
1694 		return false;
1695 
1696 	return true;
1697 }
1698 
1699 void touch_atime(const struct path *path)
1700 {
1701 	struct vfsmount *mnt = path->mnt;
1702 	struct inode *inode = d_inode(path->dentry);
1703 	struct timespec now;
1704 
1705 	if (!__atime_needs_update(path, inode, false))
1706 		return;
1707 
1708 	if (!sb_start_write_trylock(inode->i_sb))
1709 		return;
1710 
1711 	if (__mnt_want_write(mnt) != 0)
1712 		goto skip_update;
1713 	/*
1714 	 * File systems can error out when updating inodes if they need to
1715 	 * allocate new space to modify an inode (such is the case for
1716 	 * Btrfs), but since we touch atime while walking down the path we
1717 	 * really don't care if we failed to update the atime of the file,
1718 	 * so just ignore the return value.
1719 	 * We may also fail on filesystems that have the ability to make parts
1720 	 * of the fs read only, e.g. subvolumes in Btrfs.
1721 	 */
1722 	now = current_time(inode);
1723 	update_time(inode, &now, S_ATIME);
1724 	__mnt_drop_write(mnt);
1725 skip_update:
1726 	sb_end_write(inode->i_sb);
1727 }
1728 EXPORT_SYMBOL(touch_atime);
1729 
1730 /*
1731  * The logic we want is
1732  *
1733  *	if suid or (sgid and xgrp)
1734  *		remove privs
1735  */
1736 int should_remove_suid(struct dentry *dentry)
1737 {
1738 	umode_t mode = d_inode(dentry)->i_mode;
1739 	int kill = 0;
1740 
1741 	/* suid always must be killed */
1742 	if (unlikely(mode & S_ISUID))
1743 		kill = ATTR_KILL_SUID;
1744 
1745 	/*
1746 	 * sgid without any exec bits is just a mandatory locking mark; leave
1747 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1748 	 */
1749 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1750 		kill |= ATTR_KILL_SGID;
1751 
1752 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1753 		return kill;
1754 
1755 	return 0;
1756 }
1757 EXPORT_SYMBOL(should_remove_suid);
1758 
1759 /*
1760  * Return mask of changes for notify_change() that need to be done as a
1761  * response to write or truncate. Return 0 if nothing has to be changed.
1762  * Negative value on error (change should be denied).
1763  */
1764 int dentry_needs_remove_privs(struct dentry *dentry)
1765 {
1766 	struct inode *inode = d_inode(dentry);
1767 	int mask = 0;
1768 	int ret;
1769 
1770 	if (IS_NOSEC(inode))
1771 		return 0;
1772 
1773 	mask = should_remove_suid(dentry);
1774 	ret = security_inode_need_killpriv(dentry);
1775 	if (ret < 0)
1776 		return ret;
1777 	if (ret)
1778 		mask |= ATTR_KILL_PRIV;
1779 	return mask;
1780 }
1781 
1782 static int __remove_privs(struct dentry *dentry, int kill)
1783 {
1784 	struct iattr newattrs;
1785 
1786 	newattrs.ia_valid = ATTR_FORCE | kill;
1787 	/*
1788 	 * Note we call this on write, so notify_change will not
1789 	 * encounter any conflicting delegations:
1790 	 */
1791 	return notify_change(dentry, &newattrs, NULL);
1792 }
1793 
1794 /*
1795  * Remove special file priviledges (suid, capabilities) when file is written
1796  * to or truncated.
1797  */
1798 int file_remove_privs(struct file *file)
1799 {
1800 	struct dentry *dentry = file_dentry(file);
1801 	struct inode *inode = file_inode(file);
1802 	int kill;
1803 	int error = 0;
1804 
1805 	/* Fast path for nothing security related */
1806 	if (IS_NOSEC(inode))
1807 		return 0;
1808 
1809 	kill = dentry_needs_remove_privs(dentry);
1810 	if (kill < 0)
1811 		return kill;
1812 	if (kill)
1813 		error = __remove_privs(dentry, kill);
1814 	if (!error)
1815 		inode_has_no_xattr(inode);
1816 
1817 	return error;
1818 }
1819 EXPORT_SYMBOL(file_remove_privs);
1820 
1821 /**
1822  *	file_update_time	-	update mtime and ctime time
1823  *	@file: file accessed
1824  *
1825  *	Update the mtime and ctime members of an inode and mark the inode
1826  *	for writeback.  Note that this function is meant exclusively for
1827  *	usage in the file write path of filesystems, and filesystems may
1828  *	choose to explicitly ignore update via this function with the
1829  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1830  *	timestamps are handled by the server.  This can return an error for
1831  *	file systems who need to allocate space in order to update an inode.
1832  */
1833 
1834 int file_update_time(struct file *file)
1835 {
1836 	struct inode *inode = file_inode(file);
1837 	struct timespec now;
1838 	int sync_it = 0;
1839 	int ret;
1840 
1841 	/* First try to exhaust all avenues to not sync */
1842 	if (IS_NOCMTIME(inode))
1843 		return 0;
1844 
1845 	now = current_time(inode);
1846 	if (!timespec_equal(&inode->i_mtime, &now))
1847 		sync_it = S_MTIME;
1848 
1849 	if (!timespec_equal(&inode->i_ctime, &now))
1850 		sync_it |= S_CTIME;
1851 
1852 	if (IS_I_VERSION(inode))
1853 		sync_it |= S_VERSION;
1854 
1855 	if (!sync_it)
1856 		return 0;
1857 
1858 	/* Finally allowed to write? Takes lock. */
1859 	if (__mnt_want_write_file(file))
1860 		return 0;
1861 
1862 	ret = update_time(inode, &now, sync_it);
1863 	__mnt_drop_write_file(file);
1864 
1865 	return ret;
1866 }
1867 EXPORT_SYMBOL(file_update_time);
1868 
1869 int inode_needs_sync(struct inode *inode)
1870 {
1871 	if (IS_SYNC(inode))
1872 		return 1;
1873 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1874 		return 1;
1875 	return 0;
1876 }
1877 EXPORT_SYMBOL(inode_needs_sync);
1878 
1879 /*
1880  * If we try to find an inode in the inode hash while it is being
1881  * deleted, we have to wait until the filesystem completes its
1882  * deletion before reporting that it isn't found.  This function waits
1883  * until the deletion _might_ have completed.  Callers are responsible
1884  * to recheck inode state.
1885  *
1886  * It doesn't matter if I_NEW is not set initially, a call to
1887  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1888  * will DTRT.
1889  */
1890 static void __wait_on_freeing_inode(struct inode *inode)
1891 {
1892 	wait_queue_head_t *wq;
1893 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1894 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1895 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1896 	spin_unlock(&inode->i_lock);
1897 	spin_unlock(&inode_hash_lock);
1898 	schedule();
1899 	finish_wait(wq, &wait.wq_entry);
1900 	spin_lock(&inode_hash_lock);
1901 }
1902 
1903 static __initdata unsigned long ihash_entries;
1904 static int __init set_ihash_entries(char *str)
1905 {
1906 	if (!str)
1907 		return 0;
1908 	ihash_entries = simple_strtoul(str, &str, 0);
1909 	return 1;
1910 }
1911 __setup("ihash_entries=", set_ihash_entries);
1912 
1913 /*
1914  * Initialize the waitqueues and inode hash table.
1915  */
1916 void __init inode_init_early(void)
1917 {
1918 	/* If hashes are distributed across NUMA nodes, defer
1919 	 * hash allocation until vmalloc space is available.
1920 	 */
1921 	if (hashdist)
1922 		return;
1923 
1924 	inode_hashtable =
1925 		alloc_large_system_hash("Inode-cache",
1926 					sizeof(struct hlist_head),
1927 					ihash_entries,
1928 					14,
1929 					HASH_EARLY | HASH_ZERO,
1930 					&i_hash_shift,
1931 					&i_hash_mask,
1932 					0,
1933 					0);
1934 }
1935 
1936 void __init inode_init(void)
1937 {
1938 	/* inode slab cache */
1939 	inode_cachep = kmem_cache_create("inode_cache",
1940 					 sizeof(struct inode),
1941 					 0,
1942 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1943 					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1944 					 init_once);
1945 
1946 	/* Hash may have been set up in inode_init_early */
1947 	if (!hashdist)
1948 		return;
1949 
1950 	inode_hashtable =
1951 		alloc_large_system_hash("Inode-cache",
1952 					sizeof(struct hlist_head),
1953 					ihash_entries,
1954 					14,
1955 					HASH_ZERO,
1956 					&i_hash_shift,
1957 					&i_hash_mask,
1958 					0,
1959 					0);
1960 }
1961 
1962 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1963 {
1964 	inode->i_mode = mode;
1965 	if (S_ISCHR(mode)) {
1966 		inode->i_fop = &def_chr_fops;
1967 		inode->i_rdev = rdev;
1968 	} else if (S_ISBLK(mode)) {
1969 		inode->i_fop = &def_blk_fops;
1970 		inode->i_rdev = rdev;
1971 	} else if (S_ISFIFO(mode))
1972 		inode->i_fop = &pipefifo_fops;
1973 	else if (S_ISSOCK(mode))
1974 		;	/* leave it no_open_fops */
1975 	else
1976 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1977 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1978 				  inode->i_ino);
1979 }
1980 EXPORT_SYMBOL(init_special_inode);
1981 
1982 /**
1983  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1984  * @inode: New inode
1985  * @dir: Directory inode
1986  * @mode: mode of the new inode
1987  */
1988 void inode_init_owner(struct inode *inode, const struct inode *dir,
1989 			umode_t mode)
1990 {
1991 	inode->i_uid = current_fsuid();
1992 	if (dir && dir->i_mode & S_ISGID) {
1993 		inode->i_gid = dir->i_gid;
1994 		if (S_ISDIR(mode))
1995 			mode |= S_ISGID;
1996 	} else
1997 		inode->i_gid = current_fsgid();
1998 	inode->i_mode = mode;
1999 }
2000 EXPORT_SYMBOL(inode_init_owner);
2001 
2002 /**
2003  * inode_owner_or_capable - check current task permissions to inode
2004  * @inode: inode being checked
2005  *
2006  * Return true if current either has CAP_FOWNER in a namespace with the
2007  * inode owner uid mapped, or owns the file.
2008  */
2009 bool inode_owner_or_capable(const struct inode *inode)
2010 {
2011 	struct user_namespace *ns;
2012 
2013 	if (uid_eq(current_fsuid(), inode->i_uid))
2014 		return true;
2015 
2016 	ns = current_user_ns();
2017 	if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2018 		return true;
2019 	return false;
2020 }
2021 EXPORT_SYMBOL(inode_owner_or_capable);
2022 
2023 /*
2024  * Direct i/o helper functions
2025  */
2026 static void __inode_dio_wait(struct inode *inode)
2027 {
2028 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2029 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2030 
2031 	do {
2032 		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2033 		if (atomic_read(&inode->i_dio_count))
2034 			schedule();
2035 	} while (atomic_read(&inode->i_dio_count));
2036 	finish_wait(wq, &q.wq_entry);
2037 }
2038 
2039 /**
2040  * inode_dio_wait - wait for outstanding DIO requests to finish
2041  * @inode: inode to wait for
2042  *
2043  * Waits for all pending direct I/O requests to finish so that we can
2044  * proceed with a truncate or equivalent operation.
2045  *
2046  * Must be called under a lock that serializes taking new references
2047  * to i_dio_count, usually by inode->i_mutex.
2048  */
2049 void inode_dio_wait(struct inode *inode)
2050 {
2051 	if (atomic_read(&inode->i_dio_count))
2052 		__inode_dio_wait(inode);
2053 }
2054 EXPORT_SYMBOL(inode_dio_wait);
2055 
2056 /*
2057  * inode_set_flags - atomically set some inode flags
2058  *
2059  * Note: the caller should be holding i_mutex, or else be sure that
2060  * they have exclusive access to the inode structure (i.e., while the
2061  * inode is being instantiated).  The reason for the cmpxchg() loop
2062  * --- which wouldn't be necessary if all code paths which modify
2063  * i_flags actually followed this rule, is that there is at least one
2064  * code path which doesn't today so we use cmpxchg() out of an abundance
2065  * of caution.
2066  *
2067  * In the long run, i_mutex is overkill, and we should probably look
2068  * at using the i_lock spinlock to protect i_flags, and then make sure
2069  * it is so documented in include/linux/fs.h and that all code follows
2070  * the locking convention!!
2071  */
2072 void inode_set_flags(struct inode *inode, unsigned int flags,
2073 		     unsigned int mask)
2074 {
2075 	unsigned int old_flags, new_flags;
2076 
2077 	WARN_ON_ONCE(flags & ~mask);
2078 	do {
2079 		old_flags = ACCESS_ONCE(inode->i_flags);
2080 		new_flags = (old_flags & ~mask) | flags;
2081 	} while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2082 				  new_flags) != old_flags));
2083 }
2084 EXPORT_SYMBOL(inode_set_flags);
2085 
2086 void inode_nohighmem(struct inode *inode)
2087 {
2088 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2089 }
2090 EXPORT_SYMBOL(inode_nohighmem);
2091 
2092 /**
2093  * current_time - Return FS time
2094  * @inode: inode.
2095  *
2096  * Return the current time truncated to the time granularity supported by
2097  * the fs.
2098  *
2099  * Note that inode and inode->sb cannot be NULL.
2100  * Otherwise, the function warns and returns time without truncation.
2101  */
2102 struct timespec current_time(struct inode *inode)
2103 {
2104 	struct timespec now = current_kernel_time();
2105 
2106 	if (unlikely(!inode->i_sb)) {
2107 		WARN(1, "current_time() called with uninitialized super_block in the inode");
2108 		return now;
2109 	}
2110 
2111 	return timespec_trunc(now, inode->i_sb->s_time_gran);
2112 }
2113 EXPORT_SYMBOL(current_time);
2114