1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * (C) 1997 Linus Torvalds 4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 5 */ 6 #include <linux/export.h> 7 #include <linux/fs.h> 8 #include <linux/mm.h> 9 #include <linux/backing-dev.h> 10 #include <linux/hash.h> 11 #include <linux/swap.h> 12 #include <linux/security.h> 13 #include <linux/cdev.h> 14 #include <linux/memblock.h> 15 #include <linux/fsnotify.h> 16 #include <linux/mount.h> 17 #include <linux/posix_acl.h> 18 #include <linux/prefetch.h> 19 #include <linux/buffer_head.h> /* for inode_has_buffers */ 20 #include <linux/ratelimit.h> 21 #include <linux/list_lru.h> 22 #include <linux/iversion.h> 23 #include <trace/events/writeback.h> 24 #include "internal.h" 25 26 /* 27 * Inode locking rules: 28 * 29 * inode->i_lock protects: 30 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list 31 * Inode LRU list locks protect: 32 * inode->i_sb->s_inode_lru, inode->i_lru 33 * inode->i_sb->s_inode_list_lock protects: 34 * inode->i_sb->s_inodes, inode->i_sb_list 35 * bdi->wb.list_lock protects: 36 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 37 * inode_hash_lock protects: 38 * inode_hashtable, inode->i_hash 39 * 40 * Lock ordering: 41 * 42 * inode->i_sb->s_inode_list_lock 43 * inode->i_lock 44 * Inode LRU list locks 45 * 46 * bdi->wb.list_lock 47 * inode->i_lock 48 * 49 * inode_hash_lock 50 * inode->i_sb->s_inode_list_lock 51 * inode->i_lock 52 * 53 * iunique_lock 54 * inode_hash_lock 55 */ 56 57 static unsigned int i_hash_mask __read_mostly; 58 static unsigned int i_hash_shift __read_mostly; 59 static struct hlist_head *inode_hashtable __read_mostly; 60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 61 62 /* 63 * Empty aops. Can be used for the cases where the user does not 64 * define any of the address_space operations. 65 */ 66 const struct address_space_operations empty_aops = { 67 }; 68 EXPORT_SYMBOL(empty_aops); 69 70 static DEFINE_PER_CPU(unsigned long, nr_inodes); 71 static DEFINE_PER_CPU(unsigned long, nr_unused); 72 73 static struct kmem_cache *inode_cachep __read_mostly; 74 75 static long get_nr_inodes(void) 76 { 77 int i; 78 long sum = 0; 79 for_each_possible_cpu(i) 80 sum += per_cpu(nr_inodes, i); 81 return sum < 0 ? 0 : sum; 82 } 83 84 static inline long get_nr_inodes_unused(void) 85 { 86 int i; 87 long sum = 0; 88 for_each_possible_cpu(i) 89 sum += per_cpu(nr_unused, i); 90 return sum < 0 ? 0 : sum; 91 } 92 93 long get_nr_dirty_inodes(void) 94 { 95 /* not actually dirty inodes, but a wild approximation */ 96 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 97 return nr_dirty > 0 ? nr_dirty : 0; 98 } 99 100 /* 101 * Handle nr_inode sysctl 102 */ 103 #ifdef CONFIG_SYSCTL 104 /* 105 * Statistics gathering.. 106 */ 107 static struct inodes_stat_t inodes_stat; 108 109 static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer, 110 size_t *lenp, loff_t *ppos) 111 { 112 inodes_stat.nr_inodes = get_nr_inodes(); 113 inodes_stat.nr_unused = get_nr_inodes_unused(); 114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 115 } 116 117 static struct ctl_table inodes_sysctls[] = { 118 { 119 .procname = "inode-nr", 120 .data = &inodes_stat, 121 .maxlen = 2*sizeof(long), 122 .mode = 0444, 123 .proc_handler = proc_nr_inodes, 124 }, 125 { 126 .procname = "inode-state", 127 .data = &inodes_stat, 128 .maxlen = 7*sizeof(long), 129 .mode = 0444, 130 .proc_handler = proc_nr_inodes, 131 }, 132 { } 133 }; 134 135 static int __init init_fs_inode_sysctls(void) 136 { 137 register_sysctl_init("fs", inodes_sysctls); 138 return 0; 139 } 140 early_initcall(init_fs_inode_sysctls); 141 #endif 142 143 static int no_open(struct inode *inode, struct file *file) 144 { 145 return -ENXIO; 146 } 147 148 /** 149 * inode_init_always - perform inode structure initialisation 150 * @sb: superblock inode belongs to 151 * @inode: inode to initialise 152 * 153 * These are initializations that need to be done on every inode 154 * allocation as the fields are not initialised by slab allocation. 155 */ 156 int inode_init_always(struct super_block *sb, struct inode *inode) 157 { 158 static const struct inode_operations empty_iops; 159 static const struct file_operations no_open_fops = {.open = no_open}; 160 struct address_space *const mapping = &inode->i_data; 161 162 inode->i_sb = sb; 163 inode->i_blkbits = sb->s_blocksize_bits; 164 inode->i_flags = 0; 165 atomic64_set(&inode->i_sequence, 0); 166 atomic_set(&inode->i_count, 1); 167 inode->i_op = &empty_iops; 168 inode->i_fop = &no_open_fops; 169 inode->i_ino = 0; 170 inode->__i_nlink = 1; 171 inode->i_opflags = 0; 172 if (sb->s_xattr) 173 inode->i_opflags |= IOP_XATTR; 174 i_uid_write(inode, 0); 175 i_gid_write(inode, 0); 176 atomic_set(&inode->i_writecount, 0); 177 inode->i_size = 0; 178 inode->i_write_hint = WRITE_LIFE_NOT_SET; 179 inode->i_blocks = 0; 180 inode->i_bytes = 0; 181 inode->i_generation = 0; 182 inode->i_pipe = NULL; 183 inode->i_cdev = NULL; 184 inode->i_link = NULL; 185 inode->i_dir_seq = 0; 186 inode->i_rdev = 0; 187 inode->dirtied_when = 0; 188 189 #ifdef CONFIG_CGROUP_WRITEBACK 190 inode->i_wb_frn_winner = 0; 191 inode->i_wb_frn_avg_time = 0; 192 inode->i_wb_frn_history = 0; 193 #endif 194 195 if (security_inode_alloc(inode)) 196 goto out; 197 spin_lock_init(&inode->i_lock); 198 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 199 200 init_rwsem(&inode->i_rwsem); 201 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 202 203 atomic_set(&inode->i_dio_count, 0); 204 205 mapping->a_ops = &empty_aops; 206 mapping->host = inode; 207 mapping->flags = 0; 208 mapping->wb_err = 0; 209 atomic_set(&mapping->i_mmap_writable, 0); 210 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 211 atomic_set(&mapping->nr_thps, 0); 212 #endif 213 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 214 mapping->private_data = NULL; 215 mapping->writeback_index = 0; 216 init_rwsem(&mapping->invalidate_lock); 217 lockdep_set_class_and_name(&mapping->invalidate_lock, 218 &sb->s_type->invalidate_lock_key, 219 "mapping.invalidate_lock"); 220 inode->i_private = NULL; 221 inode->i_mapping = mapping; 222 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 223 #ifdef CONFIG_FS_POSIX_ACL 224 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 225 #endif 226 227 #ifdef CONFIG_FSNOTIFY 228 inode->i_fsnotify_mask = 0; 229 #endif 230 inode->i_flctx = NULL; 231 this_cpu_inc(nr_inodes); 232 233 return 0; 234 out: 235 return -ENOMEM; 236 } 237 EXPORT_SYMBOL(inode_init_always); 238 239 void free_inode_nonrcu(struct inode *inode) 240 { 241 kmem_cache_free(inode_cachep, inode); 242 } 243 EXPORT_SYMBOL(free_inode_nonrcu); 244 245 static void i_callback(struct rcu_head *head) 246 { 247 struct inode *inode = container_of(head, struct inode, i_rcu); 248 if (inode->free_inode) 249 inode->free_inode(inode); 250 else 251 free_inode_nonrcu(inode); 252 } 253 254 static struct inode *alloc_inode(struct super_block *sb) 255 { 256 const struct super_operations *ops = sb->s_op; 257 struct inode *inode; 258 259 if (ops->alloc_inode) 260 inode = ops->alloc_inode(sb); 261 else 262 inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL); 263 264 if (!inode) 265 return NULL; 266 267 if (unlikely(inode_init_always(sb, inode))) { 268 if (ops->destroy_inode) { 269 ops->destroy_inode(inode); 270 if (!ops->free_inode) 271 return NULL; 272 } 273 inode->free_inode = ops->free_inode; 274 i_callback(&inode->i_rcu); 275 return NULL; 276 } 277 278 return inode; 279 } 280 281 void __destroy_inode(struct inode *inode) 282 { 283 BUG_ON(inode_has_buffers(inode)); 284 inode_detach_wb(inode); 285 security_inode_free(inode); 286 fsnotify_inode_delete(inode); 287 locks_free_lock_context(inode); 288 if (!inode->i_nlink) { 289 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 290 atomic_long_dec(&inode->i_sb->s_remove_count); 291 } 292 293 #ifdef CONFIG_FS_POSIX_ACL 294 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 295 posix_acl_release(inode->i_acl); 296 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 297 posix_acl_release(inode->i_default_acl); 298 #endif 299 this_cpu_dec(nr_inodes); 300 } 301 EXPORT_SYMBOL(__destroy_inode); 302 303 static void destroy_inode(struct inode *inode) 304 { 305 const struct super_operations *ops = inode->i_sb->s_op; 306 307 BUG_ON(!list_empty(&inode->i_lru)); 308 __destroy_inode(inode); 309 if (ops->destroy_inode) { 310 ops->destroy_inode(inode); 311 if (!ops->free_inode) 312 return; 313 } 314 inode->free_inode = ops->free_inode; 315 call_rcu(&inode->i_rcu, i_callback); 316 } 317 318 /** 319 * drop_nlink - directly drop an inode's link count 320 * @inode: inode 321 * 322 * This is a low-level filesystem helper to replace any 323 * direct filesystem manipulation of i_nlink. In cases 324 * where we are attempting to track writes to the 325 * filesystem, a decrement to zero means an imminent 326 * write when the file is truncated and actually unlinked 327 * on the filesystem. 328 */ 329 void drop_nlink(struct inode *inode) 330 { 331 WARN_ON(inode->i_nlink == 0); 332 inode->__i_nlink--; 333 if (!inode->i_nlink) 334 atomic_long_inc(&inode->i_sb->s_remove_count); 335 } 336 EXPORT_SYMBOL(drop_nlink); 337 338 /** 339 * clear_nlink - directly zero an inode's link count 340 * @inode: inode 341 * 342 * This is a low-level filesystem helper to replace any 343 * direct filesystem manipulation of i_nlink. See 344 * drop_nlink() for why we care about i_nlink hitting zero. 345 */ 346 void clear_nlink(struct inode *inode) 347 { 348 if (inode->i_nlink) { 349 inode->__i_nlink = 0; 350 atomic_long_inc(&inode->i_sb->s_remove_count); 351 } 352 } 353 EXPORT_SYMBOL(clear_nlink); 354 355 /** 356 * set_nlink - directly set an inode's link count 357 * @inode: inode 358 * @nlink: new nlink (should be non-zero) 359 * 360 * This is a low-level filesystem helper to replace any 361 * direct filesystem manipulation of i_nlink. 362 */ 363 void set_nlink(struct inode *inode, unsigned int nlink) 364 { 365 if (!nlink) { 366 clear_nlink(inode); 367 } else { 368 /* Yes, some filesystems do change nlink from zero to one */ 369 if (inode->i_nlink == 0) 370 atomic_long_dec(&inode->i_sb->s_remove_count); 371 372 inode->__i_nlink = nlink; 373 } 374 } 375 EXPORT_SYMBOL(set_nlink); 376 377 /** 378 * inc_nlink - directly increment an inode's link count 379 * @inode: inode 380 * 381 * This is a low-level filesystem helper to replace any 382 * direct filesystem manipulation of i_nlink. Currently, 383 * it is only here for parity with dec_nlink(). 384 */ 385 void inc_nlink(struct inode *inode) 386 { 387 if (unlikely(inode->i_nlink == 0)) { 388 WARN_ON(!(inode->i_state & I_LINKABLE)); 389 atomic_long_dec(&inode->i_sb->s_remove_count); 390 } 391 392 inode->__i_nlink++; 393 } 394 EXPORT_SYMBOL(inc_nlink); 395 396 static void __address_space_init_once(struct address_space *mapping) 397 { 398 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); 399 init_rwsem(&mapping->i_mmap_rwsem); 400 INIT_LIST_HEAD(&mapping->private_list); 401 spin_lock_init(&mapping->private_lock); 402 mapping->i_mmap = RB_ROOT_CACHED; 403 } 404 405 void address_space_init_once(struct address_space *mapping) 406 { 407 memset(mapping, 0, sizeof(*mapping)); 408 __address_space_init_once(mapping); 409 } 410 EXPORT_SYMBOL(address_space_init_once); 411 412 /* 413 * These are initializations that only need to be done 414 * once, because the fields are idempotent across use 415 * of the inode, so let the slab aware of that. 416 */ 417 void inode_init_once(struct inode *inode) 418 { 419 memset(inode, 0, sizeof(*inode)); 420 INIT_HLIST_NODE(&inode->i_hash); 421 INIT_LIST_HEAD(&inode->i_devices); 422 INIT_LIST_HEAD(&inode->i_io_list); 423 INIT_LIST_HEAD(&inode->i_wb_list); 424 INIT_LIST_HEAD(&inode->i_lru); 425 INIT_LIST_HEAD(&inode->i_sb_list); 426 __address_space_init_once(&inode->i_data); 427 i_size_ordered_init(inode); 428 } 429 EXPORT_SYMBOL(inode_init_once); 430 431 static void init_once(void *foo) 432 { 433 struct inode *inode = (struct inode *) foo; 434 435 inode_init_once(inode); 436 } 437 438 /* 439 * inode->i_lock must be held 440 */ 441 void __iget(struct inode *inode) 442 { 443 atomic_inc(&inode->i_count); 444 } 445 446 /* 447 * get additional reference to inode; caller must already hold one. 448 */ 449 void ihold(struct inode *inode) 450 { 451 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 452 } 453 EXPORT_SYMBOL(ihold); 454 455 static void __inode_add_lru(struct inode *inode, bool rotate) 456 { 457 if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE)) 458 return; 459 if (atomic_read(&inode->i_count)) 460 return; 461 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 462 return; 463 if (!mapping_shrinkable(&inode->i_data)) 464 return; 465 466 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru)) 467 this_cpu_inc(nr_unused); 468 else if (rotate) 469 inode->i_state |= I_REFERENCED; 470 } 471 472 /* 473 * Add inode to LRU if needed (inode is unused and clean). 474 * 475 * Needs inode->i_lock held. 476 */ 477 void inode_add_lru(struct inode *inode) 478 { 479 __inode_add_lru(inode, false); 480 } 481 482 static void inode_lru_list_del(struct inode *inode) 483 { 484 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru)) 485 this_cpu_dec(nr_unused); 486 } 487 488 /** 489 * inode_sb_list_add - add inode to the superblock list of inodes 490 * @inode: inode to add 491 */ 492 void inode_sb_list_add(struct inode *inode) 493 { 494 spin_lock(&inode->i_sb->s_inode_list_lock); 495 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 496 spin_unlock(&inode->i_sb->s_inode_list_lock); 497 } 498 EXPORT_SYMBOL_GPL(inode_sb_list_add); 499 500 static inline void inode_sb_list_del(struct inode *inode) 501 { 502 if (!list_empty(&inode->i_sb_list)) { 503 spin_lock(&inode->i_sb->s_inode_list_lock); 504 list_del_init(&inode->i_sb_list); 505 spin_unlock(&inode->i_sb->s_inode_list_lock); 506 } 507 } 508 509 static unsigned long hash(struct super_block *sb, unsigned long hashval) 510 { 511 unsigned long tmp; 512 513 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 514 L1_CACHE_BYTES; 515 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 516 return tmp & i_hash_mask; 517 } 518 519 /** 520 * __insert_inode_hash - hash an inode 521 * @inode: unhashed inode 522 * @hashval: unsigned long value used to locate this object in the 523 * inode_hashtable. 524 * 525 * Add an inode to the inode hash for this superblock. 526 */ 527 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 528 { 529 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 530 531 spin_lock(&inode_hash_lock); 532 spin_lock(&inode->i_lock); 533 hlist_add_head_rcu(&inode->i_hash, b); 534 spin_unlock(&inode->i_lock); 535 spin_unlock(&inode_hash_lock); 536 } 537 EXPORT_SYMBOL(__insert_inode_hash); 538 539 /** 540 * __remove_inode_hash - remove an inode from the hash 541 * @inode: inode to unhash 542 * 543 * Remove an inode from the superblock. 544 */ 545 void __remove_inode_hash(struct inode *inode) 546 { 547 spin_lock(&inode_hash_lock); 548 spin_lock(&inode->i_lock); 549 hlist_del_init_rcu(&inode->i_hash); 550 spin_unlock(&inode->i_lock); 551 spin_unlock(&inode_hash_lock); 552 } 553 EXPORT_SYMBOL(__remove_inode_hash); 554 555 void dump_mapping(const struct address_space *mapping) 556 { 557 struct inode *host; 558 const struct address_space_operations *a_ops; 559 struct hlist_node *dentry_first; 560 struct dentry *dentry_ptr; 561 struct dentry dentry; 562 unsigned long ino; 563 564 /* 565 * If mapping is an invalid pointer, we don't want to crash 566 * accessing it, so probe everything depending on it carefully. 567 */ 568 if (get_kernel_nofault(host, &mapping->host) || 569 get_kernel_nofault(a_ops, &mapping->a_ops)) { 570 pr_warn("invalid mapping:%px\n", mapping); 571 return; 572 } 573 574 if (!host) { 575 pr_warn("aops:%ps\n", a_ops); 576 return; 577 } 578 579 if (get_kernel_nofault(dentry_first, &host->i_dentry.first) || 580 get_kernel_nofault(ino, &host->i_ino)) { 581 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host); 582 return; 583 } 584 585 if (!dentry_first) { 586 pr_warn("aops:%ps ino:%lx\n", a_ops, ino); 587 return; 588 } 589 590 dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias); 591 if (get_kernel_nofault(dentry, dentry_ptr)) { 592 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n", 593 a_ops, ino, dentry_ptr); 594 return; 595 } 596 597 /* 598 * if dentry is corrupted, the %pd handler may still crash, 599 * but it's unlikely that we reach here with a corrupt mapping 600 */ 601 pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry); 602 } 603 604 void clear_inode(struct inode *inode) 605 { 606 /* 607 * We have to cycle the i_pages lock here because reclaim can be in the 608 * process of removing the last page (in __filemap_remove_folio()) 609 * and we must not free the mapping under it. 610 */ 611 xa_lock_irq(&inode->i_data.i_pages); 612 BUG_ON(inode->i_data.nrpages); 613 /* 614 * Almost always, mapping_empty(&inode->i_data) here; but there are 615 * two known and long-standing ways in which nodes may get left behind 616 * (when deep radix-tree node allocation failed partway; or when THP 617 * collapse_file() failed). Until those two known cases are cleaned up, 618 * or a cleanup function is called here, do not BUG_ON(!mapping_empty), 619 * nor even WARN_ON(!mapping_empty). 620 */ 621 xa_unlock_irq(&inode->i_data.i_pages); 622 BUG_ON(!list_empty(&inode->i_data.private_list)); 623 BUG_ON(!(inode->i_state & I_FREEING)); 624 BUG_ON(inode->i_state & I_CLEAR); 625 BUG_ON(!list_empty(&inode->i_wb_list)); 626 /* don't need i_lock here, no concurrent mods to i_state */ 627 inode->i_state = I_FREEING | I_CLEAR; 628 } 629 EXPORT_SYMBOL(clear_inode); 630 631 /* 632 * Free the inode passed in, removing it from the lists it is still connected 633 * to. We remove any pages still attached to the inode and wait for any IO that 634 * is still in progress before finally destroying the inode. 635 * 636 * An inode must already be marked I_FREEING so that we avoid the inode being 637 * moved back onto lists if we race with other code that manipulates the lists 638 * (e.g. writeback_single_inode). The caller is responsible for setting this. 639 * 640 * An inode must already be removed from the LRU list before being evicted from 641 * the cache. This should occur atomically with setting the I_FREEING state 642 * flag, so no inodes here should ever be on the LRU when being evicted. 643 */ 644 static void evict(struct inode *inode) 645 { 646 const struct super_operations *op = inode->i_sb->s_op; 647 648 BUG_ON(!(inode->i_state & I_FREEING)); 649 BUG_ON(!list_empty(&inode->i_lru)); 650 651 if (!list_empty(&inode->i_io_list)) 652 inode_io_list_del(inode); 653 654 inode_sb_list_del(inode); 655 656 /* 657 * Wait for flusher thread to be done with the inode so that filesystem 658 * does not start destroying it while writeback is still running. Since 659 * the inode has I_FREEING set, flusher thread won't start new work on 660 * the inode. We just have to wait for running writeback to finish. 661 */ 662 inode_wait_for_writeback(inode); 663 664 if (op->evict_inode) { 665 op->evict_inode(inode); 666 } else { 667 truncate_inode_pages_final(&inode->i_data); 668 clear_inode(inode); 669 } 670 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 671 cd_forget(inode); 672 673 remove_inode_hash(inode); 674 675 spin_lock(&inode->i_lock); 676 wake_up_bit(&inode->i_state, __I_NEW); 677 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 678 spin_unlock(&inode->i_lock); 679 680 destroy_inode(inode); 681 } 682 683 /* 684 * dispose_list - dispose of the contents of a local list 685 * @head: the head of the list to free 686 * 687 * Dispose-list gets a local list with local inodes in it, so it doesn't 688 * need to worry about list corruption and SMP locks. 689 */ 690 static void dispose_list(struct list_head *head) 691 { 692 while (!list_empty(head)) { 693 struct inode *inode; 694 695 inode = list_first_entry(head, struct inode, i_lru); 696 list_del_init(&inode->i_lru); 697 698 evict(inode); 699 cond_resched(); 700 } 701 } 702 703 /** 704 * evict_inodes - evict all evictable inodes for a superblock 705 * @sb: superblock to operate on 706 * 707 * Make sure that no inodes with zero refcount are retained. This is 708 * called by superblock shutdown after having SB_ACTIVE flag removed, 709 * so any inode reaching zero refcount during or after that call will 710 * be immediately evicted. 711 */ 712 void evict_inodes(struct super_block *sb) 713 { 714 struct inode *inode, *next; 715 LIST_HEAD(dispose); 716 717 again: 718 spin_lock(&sb->s_inode_list_lock); 719 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 720 if (atomic_read(&inode->i_count)) 721 continue; 722 723 spin_lock(&inode->i_lock); 724 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 725 spin_unlock(&inode->i_lock); 726 continue; 727 } 728 729 inode->i_state |= I_FREEING; 730 inode_lru_list_del(inode); 731 spin_unlock(&inode->i_lock); 732 list_add(&inode->i_lru, &dispose); 733 734 /* 735 * We can have a ton of inodes to evict at unmount time given 736 * enough memory, check to see if we need to go to sleep for a 737 * bit so we don't livelock. 738 */ 739 if (need_resched()) { 740 spin_unlock(&sb->s_inode_list_lock); 741 cond_resched(); 742 dispose_list(&dispose); 743 goto again; 744 } 745 } 746 spin_unlock(&sb->s_inode_list_lock); 747 748 dispose_list(&dispose); 749 } 750 EXPORT_SYMBOL_GPL(evict_inodes); 751 752 /** 753 * invalidate_inodes - attempt to free all inodes on a superblock 754 * @sb: superblock to operate on 755 * @kill_dirty: flag to guide handling of dirty inodes 756 * 757 * Attempts to free all inodes for a given superblock. If there were any 758 * busy inodes return a non-zero value, else zero. 759 * If @kill_dirty is set, discard dirty inodes too, otherwise treat 760 * them as busy. 761 */ 762 int invalidate_inodes(struct super_block *sb, bool kill_dirty) 763 { 764 int busy = 0; 765 struct inode *inode, *next; 766 LIST_HEAD(dispose); 767 768 again: 769 spin_lock(&sb->s_inode_list_lock); 770 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 771 spin_lock(&inode->i_lock); 772 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 773 spin_unlock(&inode->i_lock); 774 continue; 775 } 776 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) { 777 spin_unlock(&inode->i_lock); 778 busy = 1; 779 continue; 780 } 781 if (atomic_read(&inode->i_count)) { 782 spin_unlock(&inode->i_lock); 783 busy = 1; 784 continue; 785 } 786 787 inode->i_state |= I_FREEING; 788 inode_lru_list_del(inode); 789 spin_unlock(&inode->i_lock); 790 list_add(&inode->i_lru, &dispose); 791 if (need_resched()) { 792 spin_unlock(&sb->s_inode_list_lock); 793 cond_resched(); 794 dispose_list(&dispose); 795 goto again; 796 } 797 } 798 spin_unlock(&sb->s_inode_list_lock); 799 800 dispose_list(&dispose); 801 802 return busy; 803 } 804 805 /* 806 * Isolate the inode from the LRU in preparation for freeing it. 807 * 808 * If the inode has the I_REFERENCED flag set, then it means that it has been 809 * used recently - the flag is set in iput_final(). When we encounter such an 810 * inode, clear the flag and move it to the back of the LRU so it gets another 811 * pass through the LRU before it gets reclaimed. This is necessary because of 812 * the fact we are doing lazy LRU updates to minimise lock contention so the 813 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 814 * with this flag set because they are the inodes that are out of order. 815 */ 816 static enum lru_status inode_lru_isolate(struct list_head *item, 817 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 818 { 819 struct list_head *freeable = arg; 820 struct inode *inode = container_of(item, struct inode, i_lru); 821 822 /* 823 * We are inverting the lru lock/inode->i_lock here, so use a 824 * trylock. If we fail to get the lock, just skip it. 825 */ 826 if (!spin_trylock(&inode->i_lock)) 827 return LRU_SKIP; 828 829 /* 830 * Inodes can get referenced, redirtied, or repopulated while 831 * they're already on the LRU, and this can make them 832 * unreclaimable for a while. Remove them lazily here; iput, 833 * sync, or the last page cache deletion will requeue them. 834 */ 835 if (atomic_read(&inode->i_count) || 836 (inode->i_state & ~I_REFERENCED) || 837 !mapping_shrinkable(&inode->i_data)) { 838 list_lru_isolate(lru, &inode->i_lru); 839 spin_unlock(&inode->i_lock); 840 this_cpu_dec(nr_unused); 841 return LRU_REMOVED; 842 } 843 844 /* Recently referenced inodes get one more pass */ 845 if (inode->i_state & I_REFERENCED) { 846 inode->i_state &= ~I_REFERENCED; 847 spin_unlock(&inode->i_lock); 848 return LRU_ROTATE; 849 } 850 851 /* 852 * On highmem systems, mapping_shrinkable() permits dropping 853 * page cache in order to free up struct inodes: lowmem might 854 * be under pressure before the cache inside the highmem zone. 855 */ 856 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) { 857 __iget(inode); 858 spin_unlock(&inode->i_lock); 859 spin_unlock(lru_lock); 860 if (remove_inode_buffers(inode)) { 861 unsigned long reap; 862 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 863 if (current_is_kswapd()) 864 __count_vm_events(KSWAPD_INODESTEAL, reap); 865 else 866 __count_vm_events(PGINODESTEAL, reap); 867 if (current->reclaim_state) 868 current->reclaim_state->reclaimed_slab += reap; 869 } 870 iput(inode); 871 spin_lock(lru_lock); 872 return LRU_RETRY; 873 } 874 875 WARN_ON(inode->i_state & I_NEW); 876 inode->i_state |= I_FREEING; 877 list_lru_isolate_move(lru, &inode->i_lru, freeable); 878 spin_unlock(&inode->i_lock); 879 880 this_cpu_dec(nr_unused); 881 return LRU_REMOVED; 882 } 883 884 /* 885 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 886 * This is called from the superblock shrinker function with a number of inodes 887 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 888 * then are freed outside inode_lock by dispose_list(). 889 */ 890 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 891 { 892 LIST_HEAD(freeable); 893 long freed; 894 895 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 896 inode_lru_isolate, &freeable); 897 dispose_list(&freeable); 898 return freed; 899 } 900 901 static void __wait_on_freeing_inode(struct inode *inode); 902 /* 903 * Called with the inode lock held. 904 */ 905 static struct inode *find_inode(struct super_block *sb, 906 struct hlist_head *head, 907 int (*test)(struct inode *, void *), 908 void *data) 909 { 910 struct inode *inode = NULL; 911 912 repeat: 913 hlist_for_each_entry(inode, head, i_hash) { 914 if (inode->i_sb != sb) 915 continue; 916 if (!test(inode, data)) 917 continue; 918 spin_lock(&inode->i_lock); 919 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 920 __wait_on_freeing_inode(inode); 921 goto repeat; 922 } 923 if (unlikely(inode->i_state & I_CREATING)) { 924 spin_unlock(&inode->i_lock); 925 return ERR_PTR(-ESTALE); 926 } 927 __iget(inode); 928 spin_unlock(&inode->i_lock); 929 return inode; 930 } 931 return NULL; 932 } 933 934 /* 935 * find_inode_fast is the fast path version of find_inode, see the comment at 936 * iget_locked for details. 937 */ 938 static struct inode *find_inode_fast(struct super_block *sb, 939 struct hlist_head *head, unsigned long ino) 940 { 941 struct inode *inode = NULL; 942 943 repeat: 944 hlist_for_each_entry(inode, head, i_hash) { 945 if (inode->i_ino != ino) 946 continue; 947 if (inode->i_sb != sb) 948 continue; 949 spin_lock(&inode->i_lock); 950 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 951 __wait_on_freeing_inode(inode); 952 goto repeat; 953 } 954 if (unlikely(inode->i_state & I_CREATING)) { 955 spin_unlock(&inode->i_lock); 956 return ERR_PTR(-ESTALE); 957 } 958 __iget(inode); 959 spin_unlock(&inode->i_lock); 960 return inode; 961 } 962 return NULL; 963 } 964 965 /* 966 * Each cpu owns a range of LAST_INO_BATCH numbers. 967 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 968 * to renew the exhausted range. 969 * 970 * This does not significantly increase overflow rate because every CPU can 971 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 972 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 973 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 974 * overflow rate by 2x, which does not seem too significant. 975 * 976 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 977 * error if st_ino won't fit in target struct field. Use 32bit counter 978 * here to attempt to avoid that. 979 */ 980 #define LAST_INO_BATCH 1024 981 static DEFINE_PER_CPU(unsigned int, last_ino); 982 983 unsigned int get_next_ino(void) 984 { 985 unsigned int *p = &get_cpu_var(last_ino); 986 unsigned int res = *p; 987 988 #ifdef CONFIG_SMP 989 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 990 static atomic_t shared_last_ino; 991 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 992 993 res = next - LAST_INO_BATCH; 994 } 995 #endif 996 997 res++; 998 /* get_next_ino should not provide a 0 inode number */ 999 if (unlikely(!res)) 1000 res++; 1001 *p = res; 1002 put_cpu_var(last_ino); 1003 return res; 1004 } 1005 EXPORT_SYMBOL(get_next_ino); 1006 1007 /** 1008 * new_inode_pseudo - obtain an inode 1009 * @sb: superblock 1010 * 1011 * Allocates a new inode for given superblock. 1012 * Inode wont be chained in superblock s_inodes list 1013 * This means : 1014 * - fs can't be unmount 1015 * - quotas, fsnotify, writeback can't work 1016 */ 1017 struct inode *new_inode_pseudo(struct super_block *sb) 1018 { 1019 struct inode *inode = alloc_inode(sb); 1020 1021 if (inode) { 1022 spin_lock(&inode->i_lock); 1023 inode->i_state = 0; 1024 spin_unlock(&inode->i_lock); 1025 } 1026 return inode; 1027 } 1028 1029 /** 1030 * new_inode - obtain an inode 1031 * @sb: superblock 1032 * 1033 * Allocates a new inode for given superblock. The default gfp_mask 1034 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 1035 * If HIGHMEM pages are unsuitable or it is known that pages allocated 1036 * for the page cache are not reclaimable or migratable, 1037 * mapping_set_gfp_mask() must be called with suitable flags on the 1038 * newly created inode's mapping 1039 * 1040 */ 1041 struct inode *new_inode(struct super_block *sb) 1042 { 1043 struct inode *inode; 1044 1045 spin_lock_prefetch(&sb->s_inode_list_lock); 1046 1047 inode = new_inode_pseudo(sb); 1048 if (inode) 1049 inode_sb_list_add(inode); 1050 return inode; 1051 } 1052 EXPORT_SYMBOL(new_inode); 1053 1054 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1055 void lockdep_annotate_inode_mutex_key(struct inode *inode) 1056 { 1057 if (S_ISDIR(inode->i_mode)) { 1058 struct file_system_type *type = inode->i_sb->s_type; 1059 1060 /* Set new key only if filesystem hasn't already changed it */ 1061 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 1062 /* 1063 * ensure nobody is actually holding i_mutex 1064 */ 1065 // mutex_destroy(&inode->i_mutex); 1066 init_rwsem(&inode->i_rwsem); 1067 lockdep_set_class(&inode->i_rwsem, 1068 &type->i_mutex_dir_key); 1069 } 1070 } 1071 } 1072 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 1073 #endif 1074 1075 /** 1076 * unlock_new_inode - clear the I_NEW state and wake up any waiters 1077 * @inode: new inode to unlock 1078 * 1079 * Called when the inode is fully initialised to clear the new state of the 1080 * inode and wake up anyone waiting for the inode to finish initialisation. 1081 */ 1082 void unlock_new_inode(struct inode *inode) 1083 { 1084 lockdep_annotate_inode_mutex_key(inode); 1085 spin_lock(&inode->i_lock); 1086 WARN_ON(!(inode->i_state & I_NEW)); 1087 inode->i_state &= ~I_NEW & ~I_CREATING; 1088 smp_mb(); 1089 wake_up_bit(&inode->i_state, __I_NEW); 1090 spin_unlock(&inode->i_lock); 1091 } 1092 EXPORT_SYMBOL(unlock_new_inode); 1093 1094 void discard_new_inode(struct inode *inode) 1095 { 1096 lockdep_annotate_inode_mutex_key(inode); 1097 spin_lock(&inode->i_lock); 1098 WARN_ON(!(inode->i_state & I_NEW)); 1099 inode->i_state &= ~I_NEW; 1100 smp_mb(); 1101 wake_up_bit(&inode->i_state, __I_NEW); 1102 spin_unlock(&inode->i_lock); 1103 iput(inode); 1104 } 1105 EXPORT_SYMBOL(discard_new_inode); 1106 1107 /** 1108 * lock_two_nondirectories - take two i_mutexes on non-directory objects 1109 * 1110 * Lock any non-NULL argument that is not a directory. 1111 * Zero, one or two objects may be locked by this function. 1112 * 1113 * @inode1: first inode to lock 1114 * @inode2: second inode to lock 1115 */ 1116 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1117 { 1118 if (inode1 > inode2) 1119 swap(inode1, inode2); 1120 1121 if (inode1 && !S_ISDIR(inode1->i_mode)) 1122 inode_lock(inode1); 1123 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 1124 inode_lock_nested(inode2, I_MUTEX_NONDIR2); 1125 } 1126 EXPORT_SYMBOL(lock_two_nondirectories); 1127 1128 /** 1129 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 1130 * @inode1: first inode to unlock 1131 * @inode2: second inode to unlock 1132 */ 1133 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1134 { 1135 if (inode1 && !S_ISDIR(inode1->i_mode)) 1136 inode_unlock(inode1); 1137 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 1138 inode_unlock(inode2); 1139 } 1140 EXPORT_SYMBOL(unlock_two_nondirectories); 1141 1142 /** 1143 * inode_insert5 - obtain an inode from a mounted file system 1144 * @inode: pre-allocated inode to use for insert to cache 1145 * @hashval: hash value (usually inode number) to get 1146 * @test: callback used for comparisons between inodes 1147 * @set: callback used to initialize a new struct inode 1148 * @data: opaque data pointer to pass to @test and @set 1149 * 1150 * Search for the inode specified by @hashval and @data in the inode cache, 1151 * and if present it is return it with an increased reference count. This is 1152 * a variant of iget5_locked() for callers that don't want to fail on memory 1153 * allocation of inode. 1154 * 1155 * If the inode is not in cache, insert the pre-allocated inode to cache and 1156 * return it locked, hashed, and with the I_NEW flag set. The file system gets 1157 * to fill it in before unlocking it via unlock_new_inode(). 1158 * 1159 * Note both @test and @set are called with the inode_hash_lock held, so can't 1160 * sleep. 1161 */ 1162 struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 1163 int (*test)(struct inode *, void *), 1164 int (*set)(struct inode *, void *), void *data) 1165 { 1166 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1167 struct inode *old; 1168 1169 again: 1170 spin_lock(&inode_hash_lock); 1171 old = find_inode(inode->i_sb, head, test, data); 1172 if (unlikely(old)) { 1173 /* 1174 * Uhhuh, somebody else created the same inode under us. 1175 * Use the old inode instead of the preallocated one. 1176 */ 1177 spin_unlock(&inode_hash_lock); 1178 if (IS_ERR(old)) 1179 return NULL; 1180 wait_on_inode(old); 1181 if (unlikely(inode_unhashed(old))) { 1182 iput(old); 1183 goto again; 1184 } 1185 return old; 1186 } 1187 1188 if (set && unlikely(set(inode, data))) { 1189 inode = NULL; 1190 goto unlock; 1191 } 1192 1193 /* 1194 * Return the locked inode with I_NEW set, the 1195 * caller is responsible for filling in the contents 1196 */ 1197 spin_lock(&inode->i_lock); 1198 inode->i_state |= I_NEW; 1199 hlist_add_head_rcu(&inode->i_hash, head); 1200 spin_unlock(&inode->i_lock); 1201 1202 /* 1203 * Add inode to the sb list if it's not already. It has I_NEW at this 1204 * point, so it should be safe to test i_sb_list locklessly. 1205 */ 1206 if (list_empty(&inode->i_sb_list)) 1207 inode_sb_list_add(inode); 1208 unlock: 1209 spin_unlock(&inode_hash_lock); 1210 1211 return inode; 1212 } 1213 EXPORT_SYMBOL(inode_insert5); 1214 1215 /** 1216 * iget5_locked - obtain an inode from a mounted file system 1217 * @sb: super block of file system 1218 * @hashval: hash value (usually inode number) to get 1219 * @test: callback used for comparisons between inodes 1220 * @set: callback used to initialize a new struct inode 1221 * @data: opaque data pointer to pass to @test and @set 1222 * 1223 * Search for the inode specified by @hashval and @data in the inode cache, 1224 * and if present it is return it with an increased reference count. This is 1225 * a generalized version of iget_locked() for file systems where the inode 1226 * number is not sufficient for unique identification of an inode. 1227 * 1228 * If the inode is not in cache, allocate a new inode and return it locked, 1229 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1230 * before unlocking it via unlock_new_inode(). 1231 * 1232 * Note both @test and @set are called with the inode_hash_lock held, so can't 1233 * sleep. 1234 */ 1235 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1236 int (*test)(struct inode *, void *), 1237 int (*set)(struct inode *, void *), void *data) 1238 { 1239 struct inode *inode = ilookup5(sb, hashval, test, data); 1240 1241 if (!inode) { 1242 struct inode *new = alloc_inode(sb); 1243 1244 if (new) { 1245 new->i_state = 0; 1246 inode = inode_insert5(new, hashval, test, set, data); 1247 if (unlikely(inode != new)) 1248 destroy_inode(new); 1249 } 1250 } 1251 return inode; 1252 } 1253 EXPORT_SYMBOL(iget5_locked); 1254 1255 /** 1256 * iget_locked - obtain an inode from a mounted file system 1257 * @sb: super block of file system 1258 * @ino: inode number to get 1259 * 1260 * Search for the inode specified by @ino in the inode cache and if present 1261 * return it with an increased reference count. This is for file systems 1262 * where the inode number is sufficient for unique identification of an inode. 1263 * 1264 * If the inode is not in cache, allocate a new inode and return it locked, 1265 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1266 * before unlocking it via unlock_new_inode(). 1267 */ 1268 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1269 { 1270 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1271 struct inode *inode; 1272 again: 1273 spin_lock(&inode_hash_lock); 1274 inode = find_inode_fast(sb, head, ino); 1275 spin_unlock(&inode_hash_lock); 1276 if (inode) { 1277 if (IS_ERR(inode)) 1278 return NULL; 1279 wait_on_inode(inode); 1280 if (unlikely(inode_unhashed(inode))) { 1281 iput(inode); 1282 goto again; 1283 } 1284 return inode; 1285 } 1286 1287 inode = alloc_inode(sb); 1288 if (inode) { 1289 struct inode *old; 1290 1291 spin_lock(&inode_hash_lock); 1292 /* We released the lock, so.. */ 1293 old = find_inode_fast(sb, head, ino); 1294 if (!old) { 1295 inode->i_ino = ino; 1296 spin_lock(&inode->i_lock); 1297 inode->i_state = I_NEW; 1298 hlist_add_head_rcu(&inode->i_hash, head); 1299 spin_unlock(&inode->i_lock); 1300 inode_sb_list_add(inode); 1301 spin_unlock(&inode_hash_lock); 1302 1303 /* Return the locked inode with I_NEW set, the 1304 * caller is responsible for filling in the contents 1305 */ 1306 return inode; 1307 } 1308 1309 /* 1310 * Uhhuh, somebody else created the same inode under 1311 * us. Use the old inode instead of the one we just 1312 * allocated. 1313 */ 1314 spin_unlock(&inode_hash_lock); 1315 destroy_inode(inode); 1316 if (IS_ERR(old)) 1317 return NULL; 1318 inode = old; 1319 wait_on_inode(inode); 1320 if (unlikely(inode_unhashed(inode))) { 1321 iput(inode); 1322 goto again; 1323 } 1324 } 1325 return inode; 1326 } 1327 EXPORT_SYMBOL(iget_locked); 1328 1329 /* 1330 * search the inode cache for a matching inode number. 1331 * If we find one, then the inode number we are trying to 1332 * allocate is not unique and so we should not use it. 1333 * 1334 * Returns 1 if the inode number is unique, 0 if it is not. 1335 */ 1336 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1337 { 1338 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1339 struct inode *inode; 1340 1341 hlist_for_each_entry_rcu(inode, b, i_hash) { 1342 if (inode->i_ino == ino && inode->i_sb == sb) 1343 return 0; 1344 } 1345 return 1; 1346 } 1347 1348 /** 1349 * iunique - get a unique inode number 1350 * @sb: superblock 1351 * @max_reserved: highest reserved inode number 1352 * 1353 * Obtain an inode number that is unique on the system for a given 1354 * superblock. This is used by file systems that have no natural 1355 * permanent inode numbering system. An inode number is returned that 1356 * is higher than the reserved limit but unique. 1357 * 1358 * BUGS: 1359 * With a large number of inodes live on the file system this function 1360 * currently becomes quite slow. 1361 */ 1362 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1363 { 1364 /* 1365 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1366 * error if st_ino won't fit in target struct field. Use 32bit counter 1367 * here to attempt to avoid that. 1368 */ 1369 static DEFINE_SPINLOCK(iunique_lock); 1370 static unsigned int counter; 1371 ino_t res; 1372 1373 rcu_read_lock(); 1374 spin_lock(&iunique_lock); 1375 do { 1376 if (counter <= max_reserved) 1377 counter = max_reserved + 1; 1378 res = counter++; 1379 } while (!test_inode_iunique(sb, res)); 1380 spin_unlock(&iunique_lock); 1381 rcu_read_unlock(); 1382 1383 return res; 1384 } 1385 EXPORT_SYMBOL(iunique); 1386 1387 struct inode *igrab(struct inode *inode) 1388 { 1389 spin_lock(&inode->i_lock); 1390 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1391 __iget(inode); 1392 spin_unlock(&inode->i_lock); 1393 } else { 1394 spin_unlock(&inode->i_lock); 1395 /* 1396 * Handle the case where s_op->clear_inode is not been 1397 * called yet, and somebody is calling igrab 1398 * while the inode is getting freed. 1399 */ 1400 inode = NULL; 1401 } 1402 return inode; 1403 } 1404 EXPORT_SYMBOL(igrab); 1405 1406 /** 1407 * ilookup5_nowait - search for an inode in the inode cache 1408 * @sb: super block of file system to search 1409 * @hashval: hash value (usually inode number) to search for 1410 * @test: callback used for comparisons between inodes 1411 * @data: opaque data pointer to pass to @test 1412 * 1413 * Search for the inode specified by @hashval and @data in the inode cache. 1414 * If the inode is in the cache, the inode is returned with an incremented 1415 * reference count. 1416 * 1417 * Note: I_NEW is not waited upon so you have to be very careful what you do 1418 * with the returned inode. You probably should be using ilookup5() instead. 1419 * 1420 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1421 */ 1422 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1423 int (*test)(struct inode *, void *), void *data) 1424 { 1425 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1426 struct inode *inode; 1427 1428 spin_lock(&inode_hash_lock); 1429 inode = find_inode(sb, head, test, data); 1430 spin_unlock(&inode_hash_lock); 1431 1432 return IS_ERR(inode) ? NULL : inode; 1433 } 1434 EXPORT_SYMBOL(ilookup5_nowait); 1435 1436 /** 1437 * ilookup5 - search for an inode in the inode cache 1438 * @sb: super block of file system to search 1439 * @hashval: hash value (usually inode number) to search for 1440 * @test: callback used for comparisons between inodes 1441 * @data: opaque data pointer to pass to @test 1442 * 1443 * Search for the inode specified by @hashval and @data in the inode cache, 1444 * and if the inode is in the cache, return the inode with an incremented 1445 * reference count. Waits on I_NEW before returning the inode. 1446 * returned with an incremented reference count. 1447 * 1448 * This is a generalized version of ilookup() for file systems where the 1449 * inode number is not sufficient for unique identification of an inode. 1450 * 1451 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1452 */ 1453 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1454 int (*test)(struct inode *, void *), void *data) 1455 { 1456 struct inode *inode; 1457 again: 1458 inode = ilookup5_nowait(sb, hashval, test, data); 1459 if (inode) { 1460 wait_on_inode(inode); 1461 if (unlikely(inode_unhashed(inode))) { 1462 iput(inode); 1463 goto again; 1464 } 1465 } 1466 return inode; 1467 } 1468 EXPORT_SYMBOL(ilookup5); 1469 1470 /** 1471 * ilookup - search for an inode in the inode cache 1472 * @sb: super block of file system to search 1473 * @ino: inode number to search for 1474 * 1475 * Search for the inode @ino in the inode cache, and if the inode is in the 1476 * cache, the inode is returned with an incremented reference count. 1477 */ 1478 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1479 { 1480 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1481 struct inode *inode; 1482 again: 1483 spin_lock(&inode_hash_lock); 1484 inode = find_inode_fast(sb, head, ino); 1485 spin_unlock(&inode_hash_lock); 1486 1487 if (inode) { 1488 if (IS_ERR(inode)) 1489 return NULL; 1490 wait_on_inode(inode); 1491 if (unlikely(inode_unhashed(inode))) { 1492 iput(inode); 1493 goto again; 1494 } 1495 } 1496 return inode; 1497 } 1498 EXPORT_SYMBOL(ilookup); 1499 1500 /** 1501 * find_inode_nowait - find an inode in the inode cache 1502 * @sb: super block of file system to search 1503 * @hashval: hash value (usually inode number) to search for 1504 * @match: callback used for comparisons between inodes 1505 * @data: opaque data pointer to pass to @match 1506 * 1507 * Search for the inode specified by @hashval and @data in the inode 1508 * cache, where the helper function @match will return 0 if the inode 1509 * does not match, 1 if the inode does match, and -1 if the search 1510 * should be stopped. The @match function must be responsible for 1511 * taking the i_lock spin_lock and checking i_state for an inode being 1512 * freed or being initialized, and incrementing the reference count 1513 * before returning 1. It also must not sleep, since it is called with 1514 * the inode_hash_lock spinlock held. 1515 * 1516 * This is a even more generalized version of ilookup5() when the 1517 * function must never block --- find_inode() can block in 1518 * __wait_on_freeing_inode() --- or when the caller can not increment 1519 * the reference count because the resulting iput() might cause an 1520 * inode eviction. The tradeoff is that the @match funtion must be 1521 * very carefully implemented. 1522 */ 1523 struct inode *find_inode_nowait(struct super_block *sb, 1524 unsigned long hashval, 1525 int (*match)(struct inode *, unsigned long, 1526 void *), 1527 void *data) 1528 { 1529 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1530 struct inode *inode, *ret_inode = NULL; 1531 int mval; 1532 1533 spin_lock(&inode_hash_lock); 1534 hlist_for_each_entry(inode, head, i_hash) { 1535 if (inode->i_sb != sb) 1536 continue; 1537 mval = match(inode, hashval, data); 1538 if (mval == 0) 1539 continue; 1540 if (mval == 1) 1541 ret_inode = inode; 1542 goto out; 1543 } 1544 out: 1545 spin_unlock(&inode_hash_lock); 1546 return ret_inode; 1547 } 1548 EXPORT_SYMBOL(find_inode_nowait); 1549 1550 /** 1551 * find_inode_rcu - find an inode in the inode cache 1552 * @sb: Super block of file system to search 1553 * @hashval: Key to hash 1554 * @test: Function to test match on an inode 1555 * @data: Data for test function 1556 * 1557 * Search for the inode specified by @hashval and @data in the inode cache, 1558 * where the helper function @test will return 0 if the inode does not match 1559 * and 1 if it does. The @test function must be responsible for taking the 1560 * i_lock spin_lock and checking i_state for an inode being freed or being 1561 * initialized. 1562 * 1563 * If successful, this will return the inode for which the @test function 1564 * returned 1 and NULL otherwise. 1565 * 1566 * The @test function is not permitted to take a ref on any inode presented. 1567 * It is also not permitted to sleep. 1568 * 1569 * The caller must hold the RCU read lock. 1570 */ 1571 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval, 1572 int (*test)(struct inode *, void *), void *data) 1573 { 1574 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1575 struct inode *inode; 1576 1577 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1578 "suspicious find_inode_rcu() usage"); 1579 1580 hlist_for_each_entry_rcu(inode, head, i_hash) { 1581 if (inode->i_sb == sb && 1582 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) && 1583 test(inode, data)) 1584 return inode; 1585 } 1586 return NULL; 1587 } 1588 EXPORT_SYMBOL(find_inode_rcu); 1589 1590 /** 1591 * find_inode_by_ino_rcu - Find an inode in the inode cache 1592 * @sb: Super block of file system to search 1593 * @ino: The inode number to match 1594 * 1595 * Search for the inode specified by @hashval and @data in the inode cache, 1596 * where the helper function @test will return 0 if the inode does not match 1597 * and 1 if it does. The @test function must be responsible for taking the 1598 * i_lock spin_lock and checking i_state for an inode being freed or being 1599 * initialized. 1600 * 1601 * If successful, this will return the inode for which the @test function 1602 * returned 1 and NULL otherwise. 1603 * 1604 * The @test function is not permitted to take a ref on any inode presented. 1605 * It is also not permitted to sleep. 1606 * 1607 * The caller must hold the RCU read lock. 1608 */ 1609 struct inode *find_inode_by_ino_rcu(struct super_block *sb, 1610 unsigned long ino) 1611 { 1612 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1613 struct inode *inode; 1614 1615 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1616 "suspicious find_inode_by_ino_rcu() usage"); 1617 1618 hlist_for_each_entry_rcu(inode, head, i_hash) { 1619 if (inode->i_ino == ino && 1620 inode->i_sb == sb && 1621 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE))) 1622 return inode; 1623 } 1624 return NULL; 1625 } 1626 EXPORT_SYMBOL(find_inode_by_ino_rcu); 1627 1628 int insert_inode_locked(struct inode *inode) 1629 { 1630 struct super_block *sb = inode->i_sb; 1631 ino_t ino = inode->i_ino; 1632 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1633 1634 while (1) { 1635 struct inode *old = NULL; 1636 spin_lock(&inode_hash_lock); 1637 hlist_for_each_entry(old, head, i_hash) { 1638 if (old->i_ino != ino) 1639 continue; 1640 if (old->i_sb != sb) 1641 continue; 1642 spin_lock(&old->i_lock); 1643 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1644 spin_unlock(&old->i_lock); 1645 continue; 1646 } 1647 break; 1648 } 1649 if (likely(!old)) { 1650 spin_lock(&inode->i_lock); 1651 inode->i_state |= I_NEW | I_CREATING; 1652 hlist_add_head_rcu(&inode->i_hash, head); 1653 spin_unlock(&inode->i_lock); 1654 spin_unlock(&inode_hash_lock); 1655 return 0; 1656 } 1657 if (unlikely(old->i_state & I_CREATING)) { 1658 spin_unlock(&old->i_lock); 1659 spin_unlock(&inode_hash_lock); 1660 return -EBUSY; 1661 } 1662 __iget(old); 1663 spin_unlock(&old->i_lock); 1664 spin_unlock(&inode_hash_lock); 1665 wait_on_inode(old); 1666 if (unlikely(!inode_unhashed(old))) { 1667 iput(old); 1668 return -EBUSY; 1669 } 1670 iput(old); 1671 } 1672 } 1673 EXPORT_SYMBOL(insert_inode_locked); 1674 1675 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1676 int (*test)(struct inode *, void *), void *data) 1677 { 1678 struct inode *old; 1679 1680 inode->i_state |= I_CREATING; 1681 old = inode_insert5(inode, hashval, test, NULL, data); 1682 1683 if (old != inode) { 1684 iput(old); 1685 return -EBUSY; 1686 } 1687 return 0; 1688 } 1689 EXPORT_SYMBOL(insert_inode_locked4); 1690 1691 1692 int generic_delete_inode(struct inode *inode) 1693 { 1694 return 1; 1695 } 1696 EXPORT_SYMBOL(generic_delete_inode); 1697 1698 /* 1699 * Called when we're dropping the last reference 1700 * to an inode. 1701 * 1702 * Call the FS "drop_inode()" function, defaulting to 1703 * the legacy UNIX filesystem behaviour. If it tells 1704 * us to evict inode, do so. Otherwise, retain inode 1705 * in cache if fs is alive, sync and evict if fs is 1706 * shutting down. 1707 */ 1708 static void iput_final(struct inode *inode) 1709 { 1710 struct super_block *sb = inode->i_sb; 1711 const struct super_operations *op = inode->i_sb->s_op; 1712 unsigned long state; 1713 int drop; 1714 1715 WARN_ON(inode->i_state & I_NEW); 1716 1717 if (op->drop_inode) 1718 drop = op->drop_inode(inode); 1719 else 1720 drop = generic_drop_inode(inode); 1721 1722 if (!drop && 1723 !(inode->i_state & I_DONTCACHE) && 1724 (sb->s_flags & SB_ACTIVE)) { 1725 __inode_add_lru(inode, true); 1726 spin_unlock(&inode->i_lock); 1727 return; 1728 } 1729 1730 state = inode->i_state; 1731 if (!drop) { 1732 WRITE_ONCE(inode->i_state, state | I_WILL_FREE); 1733 spin_unlock(&inode->i_lock); 1734 1735 write_inode_now(inode, 1); 1736 1737 spin_lock(&inode->i_lock); 1738 state = inode->i_state; 1739 WARN_ON(state & I_NEW); 1740 state &= ~I_WILL_FREE; 1741 } 1742 1743 WRITE_ONCE(inode->i_state, state | I_FREEING); 1744 if (!list_empty(&inode->i_lru)) 1745 inode_lru_list_del(inode); 1746 spin_unlock(&inode->i_lock); 1747 1748 evict(inode); 1749 } 1750 1751 /** 1752 * iput - put an inode 1753 * @inode: inode to put 1754 * 1755 * Puts an inode, dropping its usage count. If the inode use count hits 1756 * zero, the inode is then freed and may also be destroyed. 1757 * 1758 * Consequently, iput() can sleep. 1759 */ 1760 void iput(struct inode *inode) 1761 { 1762 if (!inode) 1763 return; 1764 BUG_ON(inode->i_state & I_CLEAR); 1765 retry: 1766 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { 1767 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { 1768 atomic_inc(&inode->i_count); 1769 spin_unlock(&inode->i_lock); 1770 trace_writeback_lazytime_iput(inode); 1771 mark_inode_dirty_sync(inode); 1772 goto retry; 1773 } 1774 iput_final(inode); 1775 } 1776 } 1777 EXPORT_SYMBOL(iput); 1778 1779 #ifdef CONFIG_BLOCK 1780 /** 1781 * bmap - find a block number in a file 1782 * @inode: inode owning the block number being requested 1783 * @block: pointer containing the block to find 1784 * 1785 * Replaces the value in ``*block`` with the block number on the device holding 1786 * corresponding to the requested block number in the file. 1787 * That is, asked for block 4 of inode 1 the function will replace the 1788 * 4 in ``*block``, with disk block relative to the disk start that holds that 1789 * block of the file. 1790 * 1791 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a 1792 * hole, returns 0 and ``*block`` is also set to 0. 1793 */ 1794 int bmap(struct inode *inode, sector_t *block) 1795 { 1796 if (!inode->i_mapping->a_ops->bmap) 1797 return -EINVAL; 1798 1799 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block); 1800 return 0; 1801 } 1802 EXPORT_SYMBOL(bmap); 1803 #endif 1804 1805 /* 1806 * With relative atime, only update atime if the previous atime is 1807 * earlier than either the ctime or mtime or if at least a day has 1808 * passed since the last atime update. 1809 */ 1810 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1811 struct timespec64 now) 1812 { 1813 1814 if (!(mnt->mnt_flags & MNT_RELATIME)) 1815 return 1; 1816 /* 1817 * Is mtime younger than atime? If yes, update atime: 1818 */ 1819 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1820 return 1; 1821 /* 1822 * Is ctime younger than atime? If yes, update atime: 1823 */ 1824 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1825 return 1; 1826 1827 /* 1828 * Is the previous atime value older than a day? If yes, 1829 * update atime: 1830 */ 1831 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1832 return 1; 1833 /* 1834 * Good, we can skip the atime update: 1835 */ 1836 return 0; 1837 } 1838 1839 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags) 1840 { 1841 int dirty_flags = 0; 1842 1843 if (flags & (S_ATIME | S_CTIME | S_MTIME)) { 1844 if (flags & S_ATIME) 1845 inode->i_atime = *time; 1846 if (flags & S_CTIME) 1847 inode->i_ctime = *time; 1848 if (flags & S_MTIME) 1849 inode->i_mtime = *time; 1850 1851 if (inode->i_sb->s_flags & SB_LAZYTIME) 1852 dirty_flags |= I_DIRTY_TIME; 1853 else 1854 dirty_flags |= I_DIRTY_SYNC; 1855 } 1856 1857 if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false)) 1858 dirty_flags |= I_DIRTY_SYNC; 1859 1860 __mark_inode_dirty(inode, dirty_flags); 1861 return 0; 1862 } 1863 EXPORT_SYMBOL(generic_update_time); 1864 1865 /* 1866 * This does the actual work of updating an inodes time or version. Must have 1867 * had called mnt_want_write() before calling this. 1868 */ 1869 int inode_update_time(struct inode *inode, struct timespec64 *time, int flags) 1870 { 1871 if (inode->i_op->update_time) 1872 return inode->i_op->update_time(inode, time, flags); 1873 return generic_update_time(inode, time, flags); 1874 } 1875 EXPORT_SYMBOL(inode_update_time); 1876 1877 /** 1878 * atime_needs_update - update the access time 1879 * @path: the &struct path to update 1880 * @inode: inode to update 1881 * 1882 * Update the accessed time on an inode and mark it for writeback. 1883 * This function automatically handles read only file systems and media, 1884 * as well as the "noatime" flag and inode specific "noatime" markers. 1885 */ 1886 bool atime_needs_update(const struct path *path, struct inode *inode) 1887 { 1888 struct vfsmount *mnt = path->mnt; 1889 struct timespec64 now; 1890 1891 if (inode->i_flags & S_NOATIME) 1892 return false; 1893 1894 /* Atime updates will likely cause i_uid and i_gid to be written 1895 * back improprely if their true value is unknown to the vfs. 1896 */ 1897 if (HAS_UNMAPPED_ID(mnt_user_ns(mnt), inode)) 1898 return false; 1899 1900 if (IS_NOATIME(inode)) 1901 return false; 1902 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) 1903 return false; 1904 1905 if (mnt->mnt_flags & MNT_NOATIME) 1906 return false; 1907 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1908 return false; 1909 1910 now = current_time(inode); 1911 1912 if (!relatime_need_update(mnt, inode, now)) 1913 return false; 1914 1915 if (timespec64_equal(&inode->i_atime, &now)) 1916 return false; 1917 1918 return true; 1919 } 1920 1921 void touch_atime(const struct path *path) 1922 { 1923 struct vfsmount *mnt = path->mnt; 1924 struct inode *inode = d_inode(path->dentry); 1925 struct timespec64 now; 1926 1927 if (!atime_needs_update(path, inode)) 1928 return; 1929 1930 if (!sb_start_write_trylock(inode->i_sb)) 1931 return; 1932 1933 if (__mnt_want_write(mnt) != 0) 1934 goto skip_update; 1935 /* 1936 * File systems can error out when updating inodes if they need to 1937 * allocate new space to modify an inode (such is the case for 1938 * Btrfs), but since we touch atime while walking down the path we 1939 * really don't care if we failed to update the atime of the file, 1940 * so just ignore the return value. 1941 * We may also fail on filesystems that have the ability to make parts 1942 * of the fs read only, e.g. subvolumes in Btrfs. 1943 */ 1944 now = current_time(inode); 1945 inode_update_time(inode, &now, S_ATIME); 1946 __mnt_drop_write(mnt); 1947 skip_update: 1948 sb_end_write(inode->i_sb); 1949 } 1950 EXPORT_SYMBOL(touch_atime); 1951 1952 /* 1953 * The logic we want is 1954 * 1955 * if suid or (sgid and xgrp) 1956 * remove privs 1957 */ 1958 int should_remove_suid(struct dentry *dentry) 1959 { 1960 umode_t mode = d_inode(dentry)->i_mode; 1961 int kill = 0; 1962 1963 /* suid always must be killed */ 1964 if (unlikely(mode & S_ISUID)) 1965 kill = ATTR_KILL_SUID; 1966 1967 /* 1968 * sgid without any exec bits is just a mandatory locking mark; leave 1969 * it alone. If some exec bits are set, it's a real sgid; kill it. 1970 */ 1971 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1972 kill |= ATTR_KILL_SGID; 1973 1974 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) 1975 return kill; 1976 1977 return 0; 1978 } 1979 EXPORT_SYMBOL(should_remove_suid); 1980 1981 /* 1982 * Return mask of changes for notify_change() that need to be done as a 1983 * response to write or truncate. Return 0 if nothing has to be changed. 1984 * Negative value on error (change should be denied). 1985 */ 1986 int dentry_needs_remove_privs(struct dentry *dentry) 1987 { 1988 struct inode *inode = d_inode(dentry); 1989 int mask = 0; 1990 int ret; 1991 1992 if (IS_NOSEC(inode)) 1993 return 0; 1994 1995 mask = should_remove_suid(dentry); 1996 ret = security_inode_need_killpriv(dentry); 1997 if (ret < 0) 1998 return ret; 1999 if (ret) 2000 mask |= ATTR_KILL_PRIV; 2001 return mask; 2002 } 2003 2004 static int __remove_privs(struct user_namespace *mnt_userns, 2005 struct dentry *dentry, int kill) 2006 { 2007 struct iattr newattrs; 2008 2009 newattrs.ia_valid = ATTR_FORCE | kill; 2010 /* 2011 * Note we call this on write, so notify_change will not 2012 * encounter any conflicting delegations: 2013 */ 2014 return notify_change(mnt_userns, dentry, &newattrs, NULL); 2015 } 2016 2017 static int __file_remove_privs(struct file *file, unsigned int flags) 2018 { 2019 struct dentry *dentry = file_dentry(file); 2020 struct inode *inode = file_inode(file); 2021 int error; 2022 int kill; 2023 2024 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode)) 2025 return 0; 2026 2027 kill = dentry_needs_remove_privs(dentry); 2028 if (kill <= 0) 2029 return kill; 2030 2031 if (flags & IOCB_NOWAIT) 2032 return -EAGAIN; 2033 2034 error = __remove_privs(file_mnt_user_ns(file), dentry, kill); 2035 if (!error) 2036 inode_has_no_xattr(inode); 2037 2038 return error; 2039 } 2040 2041 /** 2042 * file_remove_privs - remove special file privileges (suid, capabilities) 2043 * @file: file to remove privileges from 2044 * 2045 * When file is modified by a write or truncation ensure that special 2046 * file privileges are removed. 2047 * 2048 * Return: 0 on success, negative errno on failure. 2049 */ 2050 int file_remove_privs(struct file *file) 2051 { 2052 return __file_remove_privs(file, 0); 2053 } 2054 EXPORT_SYMBOL(file_remove_privs); 2055 2056 static int inode_needs_update_time(struct inode *inode, struct timespec64 *now) 2057 { 2058 int sync_it = 0; 2059 2060 /* First try to exhaust all avenues to not sync */ 2061 if (IS_NOCMTIME(inode)) 2062 return 0; 2063 2064 if (!timespec64_equal(&inode->i_mtime, now)) 2065 sync_it = S_MTIME; 2066 2067 if (!timespec64_equal(&inode->i_ctime, now)) 2068 sync_it |= S_CTIME; 2069 2070 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode)) 2071 sync_it |= S_VERSION; 2072 2073 if (!sync_it) 2074 return 0; 2075 2076 return sync_it; 2077 } 2078 2079 static int __file_update_time(struct file *file, struct timespec64 *now, 2080 int sync_mode) 2081 { 2082 int ret = 0; 2083 struct inode *inode = file_inode(file); 2084 2085 /* try to update time settings */ 2086 if (!__mnt_want_write_file(file)) { 2087 ret = inode_update_time(inode, now, sync_mode); 2088 __mnt_drop_write_file(file); 2089 } 2090 2091 return ret; 2092 } 2093 2094 /** 2095 * file_update_time - update mtime and ctime time 2096 * @file: file accessed 2097 * 2098 * Update the mtime and ctime members of an inode and mark the inode for 2099 * writeback. Note that this function is meant exclusively for usage in 2100 * the file write path of filesystems, and filesystems may choose to 2101 * explicitly ignore updates via this function with the _NOCMTIME inode 2102 * flag, e.g. for network filesystem where these imestamps are handled 2103 * by the server. This can return an error for file systems who need to 2104 * allocate space in order to update an inode. 2105 * 2106 * Return: 0 on success, negative errno on failure. 2107 */ 2108 int file_update_time(struct file *file) 2109 { 2110 int ret; 2111 struct inode *inode = file_inode(file); 2112 struct timespec64 now = current_time(inode); 2113 2114 ret = inode_needs_update_time(inode, &now); 2115 if (ret <= 0) 2116 return ret; 2117 2118 return __file_update_time(file, &now, ret); 2119 } 2120 EXPORT_SYMBOL(file_update_time); 2121 2122 /** 2123 * file_modified_flags - handle mandated vfs changes when modifying a file 2124 * @file: file that was modified 2125 * @flags: kiocb flags 2126 * 2127 * When file has been modified ensure that special 2128 * file privileges are removed and time settings are updated. 2129 * 2130 * If IOCB_NOWAIT is set, special file privileges will not be removed and 2131 * time settings will not be updated. It will return -EAGAIN. 2132 * 2133 * Context: Caller must hold the file's inode lock. 2134 * 2135 * Return: 0 on success, negative errno on failure. 2136 */ 2137 static int file_modified_flags(struct file *file, int flags) 2138 { 2139 int ret; 2140 struct inode *inode = file_inode(file); 2141 struct timespec64 now = current_time(inode); 2142 2143 /* 2144 * Clear the security bits if the process is not being run by root. 2145 * This keeps people from modifying setuid and setgid binaries. 2146 */ 2147 ret = __file_remove_privs(file, flags); 2148 if (ret) 2149 return ret; 2150 2151 if (unlikely(file->f_mode & FMODE_NOCMTIME)) 2152 return 0; 2153 2154 ret = inode_needs_update_time(inode, &now); 2155 if (ret <= 0) 2156 return ret; 2157 if (flags & IOCB_NOWAIT) 2158 return -EAGAIN; 2159 2160 return __file_update_time(file, &now, ret); 2161 } 2162 2163 /** 2164 * file_modified - handle mandated vfs changes when modifying a file 2165 * @file: file that was modified 2166 * 2167 * When file has been modified ensure that special 2168 * file privileges are removed and time settings are updated. 2169 * 2170 * Context: Caller must hold the file's inode lock. 2171 * 2172 * Return: 0 on success, negative errno on failure. 2173 */ 2174 int file_modified(struct file *file) 2175 { 2176 return file_modified_flags(file, 0); 2177 } 2178 EXPORT_SYMBOL(file_modified); 2179 2180 /** 2181 * kiocb_modified - handle mandated vfs changes when modifying a file 2182 * @iocb: iocb that was modified 2183 * 2184 * When file has been modified ensure that special 2185 * file privileges are removed and time settings are updated. 2186 * 2187 * Context: Caller must hold the file's inode lock. 2188 * 2189 * Return: 0 on success, negative errno on failure. 2190 */ 2191 int kiocb_modified(struct kiocb *iocb) 2192 { 2193 return file_modified_flags(iocb->ki_filp, iocb->ki_flags); 2194 } 2195 EXPORT_SYMBOL_GPL(kiocb_modified); 2196 2197 int inode_needs_sync(struct inode *inode) 2198 { 2199 if (IS_SYNC(inode)) 2200 return 1; 2201 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 2202 return 1; 2203 return 0; 2204 } 2205 EXPORT_SYMBOL(inode_needs_sync); 2206 2207 /* 2208 * If we try to find an inode in the inode hash while it is being 2209 * deleted, we have to wait until the filesystem completes its 2210 * deletion before reporting that it isn't found. This function waits 2211 * until the deletion _might_ have completed. Callers are responsible 2212 * to recheck inode state. 2213 * 2214 * It doesn't matter if I_NEW is not set initially, a call to 2215 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 2216 * will DTRT. 2217 */ 2218 static void __wait_on_freeing_inode(struct inode *inode) 2219 { 2220 wait_queue_head_t *wq; 2221 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 2222 wq = bit_waitqueue(&inode->i_state, __I_NEW); 2223 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2224 spin_unlock(&inode->i_lock); 2225 spin_unlock(&inode_hash_lock); 2226 schedule(); 2227 finish_wait(wq, &wait.wq_entry); 2228 spin_lock(&inode_hash_lock); 2229 } 2230 2231 static __initdata unsigned long ihash_entries; 2232 static int __init set_ihash_entries(char *str) 2233 { 2234 if (!str) 2235 return 0; 2236 ihash_entries = simple_strtoul(str, &str, 0); 2237 return 1; 2238 } 2239 __setup("ihash_entries=", set_ihash_entries); 2240 2241 /* 2242 * Initialize the waitqueues and inode hash table. 2243 */ 2244 void __init inode_init_early(void) 2245 { 2246 /* If hashes are distributed across NUMA nodes, defer 2247 * hash allocation until vmalloc space is available. 2248 */ 2249 if (hashdist) 2250 return; 2251 2252 inode_hashtable = 2253 alloc_large_system_hash("Inode-cache", 2254 sizeof(struct hlist_head), 2255 ihash_entries, 2256 14, 2257 HASH_EARLY | HASH_ZERO, 2258 &i_hash_shift, 2259 &i_hash_mask, 2260 0, 2261 0); 2262 } 2263 2264 void __init inode_init(void) 2265 { 2266 /* inode slab cache */ 2267 inode_cachep = kmem_cache_create("inode_cache", 2268 sizeof(struct inode), 2269 0, 2270 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 2271 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 2272 init_once); 2273 2274 /* Hash may have been set up in inode_init_early */ 2275 if (!hashdist) 2276 return; 2277 2278 inode_hashtable = 2279 alloc_large_system_hash("Inode-cache", 2280 sizeof(struct hlist_head), 2281 ihash_entries, 2282 14, 2283 HASH_ZERO, 2284 &i_hash_shift, 2285 &i_hash_mask, 2286 0, 2287 0); 2288 } 2289 2290 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 2291 { 2292 inode->i_mode = mode; 2293 if (S_ISCHR(mode)) { 2294 inode->i_fop = &def_chr_fops; 2295 inode->i_rdev = rdev; 2296 } else if (S_ISBLK(mode)) { 2297 inode->i_fop = &def_blk_fops; 2298 inode->i_rdev = rdev; 2299 } else if (S_ISFIFO(mode)) 2300 inode->i_fop = &pipefifo_fops; 2301 else if (S_ISSOCK(mode)) 2302 ; /* leave it no_open_fops */ 2303 else 2304 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 2305 " inode %s:%lu\n", mode, inode->i_sb->s_id, 2306 inode->i_ino); 2307 } 2308 EXPORT_SYMBOL(init_special_inode); 2309 2310 /** 2311 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 2312 * @mnt_userns: User namespace of the mount the inode was created from 2313 * @inode: New inode 2314 * @dir: Directory inode 2315 * @mode: mode of the new inode 2316 * 2317 * If the inode has been created through an idmapped mount the user namespace of 2318 * the vfsmount must be passed through @mnt_userns. This function will then take 2319 * care to map the inode according to @mnt_userns before checking permissions 2320 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission 2321 * checking is to be performed on the raw inode simply passs init_user_ns. 2322 */ 2323 void inode_init_owner(struct user_namespace *mnt_userns, struct inode *inode, 2324 const struct inode *dir, umode_t mode) 2325 { 2326 inode_fsuid_set(inode, mnt_userns); 2327 if (dir && dir->i_mode & S_ISGID) { 2328 inode->i_gid = dir->i_gid; 2329 2330 /* Directories are special, and always inherit S_ISGID */ 2331 if (S_ISDIR(mode)) 2332 mode |= S_ISGID; 2333 } else 2334 inode_fsgid_set(inode, mnt_userns); 2335 inode->i_mode = mode; 2336 } 2337 EXPORT_SYMBOL(inode_init_owner); 2338 2339 /** 2340 * inode_owner_or_capable - check current task permissions to inode 2341 * @mnt_userns: user namespace of the mount the inode was found from 2342 * @inode: inode being checked 2343 * 2344 * Return true if current either has CAP_FOWNER in a namespace with the 2345 * inode owner uid mapped, or owns the file. 2346 * 2347 * If the inode has been found through an idmapped mount the user namespace of 2348 * the vfsmount must be passed through @mnt_userns. This function will then take 2349 * care to map the inode according to @mnt_userns before checking permissions. 2350 * On non-idmapped mounts or if permission checking is to be performed on the 2351 * raw inode simply passs init_user_ns. 2352 */ 2353 bool inode_owner_or_capable(struct user_namespace *mnt_userns, 2354 const struct inode *inode) 2355 { 2356 kuid_t i_uid; 2357 struct user_namespace *ns; 2358 2359 i_uid = i_uid_into_mnt(mnt_userns, inode); 2360 if (uid_eq(current_fsuid(), i_uid)) 2361 return true; 2362 2363 ns = current_user_ns(); 2364 if (kuid_has_mapping(ns, i_uid) && ns_capable(ns, CAP_FOWNER)) 2365 return true; 2366 return false; 2367 } 2368 EXPORT_SYMBOL(inode_owner_or_capable); 2369 2370 /* 2371 * Direct i/o helper functions 2372 */ 2373 static void __inode_dio_wait(struct inode *inode) 2374 { 2375 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 2376 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 2377 2378 do { 2379 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE); 2380 if (atomic_read(&inode->i_dio_count)) 2381 schedule(); 2382 } while (atomic_read(&inode->i_dio_count)); 2383 finish_wait(wq, &q.wq_entry); 2384 } 2385 2386 /** 2387 * inode_dio_wait - wait for outstanding DIO requests to finish 2388 * @inode: inode to wait for 2389 * 2390 * Waits for all pending direct I/O requests to finish so that we can 2391 * proceed with a truncate or equivalent operation. 2392 * 2393 * Must be called under a lock that serializes taking new references 2394 * to i_dio_count, usually by inode->i_mutex. 2395 */ 2396 void inode_dio_wait(struct inode *inode) 2397 { 2398 if (atomic_read(&inode->i_dio_count)) 2399 __inode_dio_wait(inode); 2400 } 2401 EXPORT_SYMBOL(inode_dio_wait); 2402 2403 /* 2404 * inode_set_flags - atomically set some inode flags 2405 * 2406 * Note: the caller should be holding i_mutex, or else be sure that 2407 * they have exclusive access to the inode structure (i.e., while the 2408 * inode is being instantiated). The reason for the cmpxchg() loop 2409 * --- which wouldn't be necessary if all code paths which modify 2410 * i_flags actually followed this rule, is that there is at least one 2411 * code path which doesn't today so we use cmpxchg() out of an abundance 2412 * of caution. 2413 * 2414 * In the long run, i_mutex is overkill, and we should probably look 2415 * at using the i_lock spinlock to protect i_flags, and then make sure 2416 * it is so documented in include/linux/fs.h and that all code follows 2417 * the locking convention!! 2418 */ 2419 void inode_set_flags(struct inode *inode, unsigned int flags, 2420 unsigned int mask) 2421 { 2422 WARN_ON_ONCE(flags & ~mask); 2423 set_mask_bits(&inode->i_flags, mask, flags); 2424 } 2425 EXPORT_SYMBOL(inode_set_flags); 2426 2427 void inode_nohighmem(struct inode *inode) 2428 { 2429 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2430 } 2431 EXPORT_SYMBOL(inode_nohighmem); 2432 2433 /** 2434 * timestamp_truncate - Truncate timespec to a granularity 2435 * @t: Timespec 2436 * @inode: inode being updated 2437 * 2438 * Truncate a timespec to the granularity supported by the fs 2439 * containing the inode. Always rounds down. gran must 2440 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns). 2441 */ 2442 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode) 2443 { 2444 struct super_block *sb = inode->i_sb; 2445 unsigned int gran = sb->s_time_gran; 2446 2447 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max); 2448 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min)) 2449 t.tv_nsec = 0; 2450 2451 /* Avoid division in the common cases 1 ns and 1 s. */ 2452 if (gran == 1) 2453 ; /* nothing */ 2454 else if (gran == NSEC_PER_SEC) 2455 t.tv_nsec = 0; 2456 else if (gran > 1 && gran < NSEC_PER_SEC) 2457 t.tv_nsec -= t.tv_nsec % gran; 2458 else 2459 WARN(1, "invalid file time granularity: %u", gran); 2460 return t; 2461 } 2462 EXPORT_SYMBOL(timestamp_truncate); 2463 2464 /** 2465 * current_time - Return FS time 2466 * @inode: inode. 2467 * 2468 * Return the current time truncated to the time granularity supported by 2469 * the fs. 2470 * 2471 * Note that inode and inode->sb cannot be NULL. 2472 * Otherwise, the function warns and returns time without truncation. 2473 */ 2474 struct timespec64 current_time(struct inode *inode) 2475 { 2476 struct timespec64 now; 2477 2478 ktime_get_coarse_real_ts64(&now); 2479 2480 if (unlikely(!inode->i_sb)) { 2481 WARN(1, "current_time() called with uninitialized super_block in the inode"); 2482 return now; 2483 } 2484 2485 return timestamp_truncate(now, inode); 2486 } 2487 EXPORT_SYMBOL(current_time); 2488 2489 /** 2490 * mode_strip_sgid - handle the sgid bit for non-directories 2491 * @mnt_userns: User namespace of the mount the inode was created from 2492 * @dir: parent directory inode 2493 * @mode: mode of the file to be created in @dir 2494 * 2495 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit 2496 * raised and @dir has the S_ISGID bit raised ensure that the caller is 2497 * either in the group of the parent directory or they have CAP_FSETID 2498 * in their user namespace and are privileged over the parent directory. 2499 * In all other cases, strip the S_ISGID bit from @mode. 2500 * 2501 * Return: the new mode to use for the file 2502 */ 2503 umode_t mode_strip_sgid(struct user_namespace *mnt_userns, 2504 const struct inode *dir, umode_t mode) 2505 { 2506 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP)) 2507 return mode; 2508 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID)) 2509 return mode; 2510 if (in_group_p(i_gid_into_mnt(mnt_userns, dir))) 2511 return mode; 2512 if (capable_wrt_inode_uidgid(mnt_userns, dir, CAP_FSETID)) 2513 return mode; 2514 2515 return mode & ~S_ISGID; 2516 } 2517 EXPORT_SYMBOL(mode_strip_sgid); 2518