xref: /openbmc/linux/fs/inode.c (revision e2f1cf25)
1 /*
2  * (C) 1997 Linus Torvalds
3  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4  */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <trace/events/writeback.h>
22 #include "internal.h"
23 
24 /*
25  * Inode locking rules:
26  *
27  * inode->i_lock protects:
28  *   inode->i_state, inode->i_hash, __iget()
29  * Inode LRU list locks protect:
30  *   inode->i_sb->s_inode_lru, inode->i_lru
31  * inode_sb_list_lock protects:
32  *   sb->s_inodes, inode->i_sb_list
33  * bdi->wb.list_lock protects:
34  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_wb_list
35  * inode_hash_lock protects:
36  *   inode_hashtable, inode->i_hash
37  *
38  * Lock ordering:
39  *
40  * inode_sb_list_lock
41  *   inode->i_lock
42  *     Inode LRU list locks
43  *
44  * bdi->wb.list_lock
45  *   inode->i_lock
46  *
47  * inode_hash_lock
48  *   inode_sb_list_lock
49  *   inode->i_lock
50  *
51  * iunique_lock
52  *   inode_hash_lock
53  */
54 
55 static unsigned int i_hash_mask __read_mostly;
56 static unsigned int i_hash_shift __read_mostly;
57 static struct hlist_head *inode_hashtable __read_mostly;
58 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
59 
60 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
61 
62 /*
63  * Empty aops. Can be used for the cases where the user does not
64  * define any of the address_space operations.
65  */
66 const struct address_space_operations empty_aops = {
67 };
68 EXPORT_SYMBOL(empty_aops);
69 
70 /*
71  * Statistics gathering..
72  */
73 struct inodes_stat_t inodes_stat;
74 
75 static DEFINE_PER_CPU(unsigned long, nr_inodes);
76 static DEFINE_PER_CPU(unsigned long, nr_unused);
77 
78 static struct kmem_cache *inode_cachep __read_mostly;
79 
80 static long get_nr_inodes(void)
81 {
82 	int i;
83 	long sum = 0;
84 	for_each_possible_cpu(i)
85 		sum += per_cpu(nr_inodes, i);
86 	return sum < 0 ? 0 : sum;
87 }
88 
89 static inline long get_nr_inodes_unused(void)
90 {
91 	int i;
92 	long sum = 0;
93 	for_each_possible_cpu(i)
94 		sum += per_cpu(nr_unused, i);
95 	return sum < 0 ? 0 : sum;
96 }
97 
98 long get_nr_dirty_inodes(void)
99 {
100 	/* not actually dirty inodes, but a wild approximation */
101 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
102 	return nr_dirty > 0 ? nr_dirty : 0;
103 }
104 
105 /*
106  * Handle nr_inode sysctl
107  */
108 #ifdef CONFIG_SYSCTL
109 int proc_nr_inodes(struct ctl_table *table, int write,
110 		   void __user *buffer, size_t *lenp, loff_t *ppos)
111 {
112 	inodes_stat.nr_inodes = get_nr_inodes();
113 	inodes_stat.nr_unused = get_nr_inodes_unused();
114 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115 }
116 #endif
117 
118 static int no_open(struct inode *inode, struct file *file)
119 {
120 	return -ENXIO;
121 }
122 
123 /**
124  * inode_init_always - perform inode structure intialisation
125  * @sb: superblock inode belongs to
126  * @inode: inode to initialise
127  *
128  * These are initializations that need to be done on every inode
129  * allocation as the fields are not initialised by slab allocation.
130  */
131 int inode_init_always(struct super_block *sb, struct inode *inode)
132 {
133 	static const struct inode_operations empty_iops;
134 	static const struct file_operations no_open_fops = {.open = no_open};
135 	struct address_space *const mapping = &inode->i_data;
136 
137 	inode->i_sb = sb;
138 	inode->i_blkbits = sb->s_blocksize_bits;
139 	inode->i_flags = 0;
140 	atomic_set(&inode->i_count, 1);
141 	inode->i_op = &empty_iops;
142 	inode->i_fop = &no_open_fops;
143 	inode->__i_nlink = 1;
144 	inode->i_opflags = 0;
145 	i_uid_write(inode, 0);
146 	i_gid_write(inode, 0);
147 	atomic_set(&inode->i_writecount, 0);
148 	inode->i_size = 0;
149 	inode->i_blocks = 0;
150 	inode->i_bytes = 0;
151 	inode->i_generation = 0;
152 	inode->i_pipe = NULL;
153 	inode->i_bdev = NULL;
154 	inode->i_cdev = NULL;
155 	inode->i_link = NULL;
156 	inode->i_rdev = 0;
157 	inode->dirtied_when = 0;
158 
159 	if (security_inode_alloc(inode))
160 		goto out;
161 	spin_lock_init(&inode->i_lock);
162 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
163 
164 	mutex_init(&inode->i_mutex);
165 	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
166 
167 	atomic_set(&inode->i_dio_count, 0);
168 
169 	mapping->a_ops = &empty_aops;
170 	mapping->host = inode;
171 	mapping->flags = 0;
172 	atomic_set(&mapping->i_mmap_writable, 0);
173 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
174 	mapping->private_data = NULL;
175 	mapping->writeback_index = 0;
176 	inode->i_private = NULL;
177 	inode->i_mapping = mapping;
178 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
179 #ifdef CONFIG_FS_POSIX_ACL
180 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
181 #endif
182 
183 #ifdef CONFIG_FSNOTIFY
184 	inode->i_fsnotify_mask = 0;
185 #endif
186 	inode->i_flctx = NULL;
187 	this_cpu_inc(nr_inodes);
188 
189 	return 0;
190 out:
191 	return -ENOMEM;
192 }
193 EXPORT_SYMBOL(inode_init_always);
194 
195 static struct inode *alloc_inode(struct super_block *sb)
196 {
197 	struct inode *inode;
198 
199 	if (sb->s_op->alloc_inode)
200 		inode = sb->s_op->alloc_inode(sb);
201 	else
202 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
203 
204 	if (!inode)
205 		return NULL;
206 
207 	if (unlikely(inode_init_always(sb, inode))) {
208 		if (inode->i_sb->s_op->destroy_inode)
209 			inode->i_sb->s_op->destroy_inode(inode);
210 		else
211 			kmem_cache_free(inode_cachep, inode);
212 		return NULL;
213 	}
214 
215 	return inode;
216 }
217 
218 void free_inode_nonrcu(struct inode *inode)
219 {
220 	kmem_cache_free(inode_cachep, inode);
221 }
222 EXPORT_SYMBOL(free_inode_nonrcu);
223 
224 void __destroy_inode(struct inode *inode)
225 {
226 	BUG_ON(inode_has_buffers(inode));
227 	inode_detach_wb(inode);
228 	security_inode_free(inode);
229 	fsnotify_inode_delete(inode);
230 	locks_free_lock_context(inode->i_flctx);
231 	if (!inode->i_nlink) {
232 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
233 		atomic_long_dec(&inode->i_sb->s_remove_count);
234 	}
235 
236 #ifdef CONFIG_FS_POSIX_ACL
237 	if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
238 		posix_acl_release(inode->i_acl);
239 	if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
240 		posix_acl_release(inode->i_default_acl);
241 #endif
242 	this_cpu_dec(nr_inodes);
243 }
244 EXPORT_SYMBOL(__destroy_inode);
245 
246 static void i_callback(struct rcu_head *head)
247 {
248 	struct inode *inode = container_of(head, struct inode, i_rcu);
249 	kmem_cache_free(inode_cachep, inode);
250 }
251 
252 static void destroy_inode(struct inode *inode)
253 {
254 	BUG_ON(!list_empty(&inode->i_lru));
255 	__destroy_inode(inode);
256 	if (inode->i_sb->s_op->destroy_inode)
257 		inode->i_sb->s_op->destroy_inode(inode);
258 	else
259 		call_rcu(&inode->i_rcu, i_callback);
260 }
261 
262 /**
263  * drop_nlink - directly drop an inode's link count
264  * @inode: inode
265  *
266  * This is a low-level filesystem helper to replace any
267  * direct filesystem manipulation of i_nlink.  In cases
268  * where we are attempting to track writes to the
269  * filesystem, a decrement to zero means an imminent
270  * write when the file is truncated and actually unlinked
271  * on the filesystem.
272  */
273 void drop_nlink(struct inode *inode)
274 {
275 	WARN_ON(inode->i_nlink == 0);
276 	inode->__i_nlink--;
277 	if (!inode->i_nlink)
278 		atomic_long_inc(&inode->i_sb->s_remove_count);
279 }
280 EXPORT_SYMBOL(drop_nlink);
281 
282 /**
283  * clear_nlink - directly zero an inode's link count
284  * @inode: inode
285  *
286  * This is a low-level filesystem helper to replace any
287  * direct filesystem manipulation of i_nlink.  See
288  * drop_nlink() for why we care about i_nlink hitting zero.
289  */
290 void clear_nlink(struct inode *inode)
291 {
292 	if (inode->i_nlink) {
293 		inode->__i_nlink = 0;
294 		atomic_long_inc(&inode->i_sb->s_remove_count);
295 	}
296 }
297 EXPORT_SYMBOL(clear_nlink);
298 
299 /**
300  * set_nlink - directly set an inode's link count
301  * @inode: inode
302  * @nlink: new nlink (should be non-zero)
303  *
304  * This is a low-level filesystem helper to replace any
305  * direct filesystem manipulation of i_nlink.
306  */
307 void set_nlink(struct inode *inode, unsigned int nlink)
308 {
309 	if (!nlink) {
310 		clear_nlink(inode);
311 	} else {
312 		/* Yes, some filesystems do change nlink from zero to one */
313 		if (inode->i_nlink == 0)
314 			atomic_long_dec(&inode->i_sb->s_remove_count);
315 
316 		inode->__i_nlink = nlink;
317 	}
318 }
319 EXPORT_SYMBOL(set_nlink);
320 
321 /**
322  * inc_nlink - directly increment an inode's link count
323  * @inode: inode
324  *
325  * This is a low-level filesystem helper to replace any
326  * direct filesystem manipulation of i_nlink.  Currently,
327  * it is only here for parity with dec_nlink().
328  */
329 void inc_nlink(struct inode *inode)
330 {
331 	if (unlikely(inode->i_nlink == 0)) {
332 		WARN_ON(!(inode->i_state & I_LINKABLE));
333 		atomic_long_dec(&inode->i_sb->s_remove_count);
334 	}
335 
336 	inode->__i_nlink++;
337 }
338 EXPORT_SYMBOL(inc_nlink);
339 
340 void address_space_init_once(struct address_space *mapping)
341 {
342 	memset(mapping, 0, sizeof(*mapping));
343 	INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
344 	spin_lock_init(&mapping->tree_lock);
345 	init_rwsem(&mapping->i_mmap_rwsem);
346 	INIT_LIST_HEAD(&mapping->private_list);
347 	spin_lock_init(&mapping->private_lock);
348 	mapping->i_mmap = RB_ROOT;
349 }
350 EXPORT_SYMBOL(address_space_init_once);
351 
352 /*
353  * These are initializations that only need to be done
354  * once, because the fields are idempotent across use
355  * of the inode, so let the slab aware of that.
356  */
357 void inode_init_once(struct inode *inode)
358 {
359 	memset(inode, 0, sizeof(*inode));
360 	INIT_HLIST_NODE(&inode->i_hash);
361 	INIT_LIST_HEAD(&inode->i_devices);
362 	INIT_LIST_HEAD(&inode->i_wb_list);
363 	INIT_LIST_HEAD(&inode->i_lru);
364 	address_space_init_once(&inode->i_data);
365 	i_size_ordered_init(inode);
366 #ifdef CONFIG_FSNOTIFY
367 	INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
368 #endif
369 }
370 EXPORT_SYMBOL(inode_init_once);
371 
372 static void init_once(void *foo)
373 {
374 	struct inode *inode = (struct inode *) foo;
375 
376 	inode_init_once(inode);
377 }
378 
379 /*
380  * inode->i_lock must be held
381  */
382 void __iget(struct inode *inode)
383 {
384 	atomic_inc(&inode->i_count);
385 }
386 
387 /*
388  * get additional reference to inode; caller must already hold one.
389  */
390 void ihold(struct inode *inode)
391 {
392 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
393 }
394 EXPORT_SYMBOL(ihold);
395 
396 static void inode_lru_list_add(struct inode *inode)
397 {
398 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
399 		this_cpu_inc(nr_unused);
400 }
401 
402 /*
403  * Add inode to LRU if needed (inode is unused and clean).
404  *
405  * Needs inode->i_lock held.
406  */
407 void inode_add_lru(struct inode *inode)
408 {
409 	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
410 				I_FREEING | I_WILL_FREE)) &&
411 	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
412 		inode_lru_list_add(inode);
413 }
414 
415 
416 static void inode_lru_list_del(struct inode *inode)
417 {
418 
419 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
420 		this_cpu_dec(nr_unused);
421 }
422 
423 /**
424  * inode_sb_list_add - add inode to the superblock list of inodes
425  * @inode: inode to add
426  */
427 void inode_sb_list_add(struct inode *inode)
428 {
429 	spin_lock(&inode_sb_list_lock);
430 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
431 	spin_unlock(&inode_sb_list_lock);
432 }
433 EXPORT_SYMBOL_GPL(inode_sb_list_add);
434 
435 static inline void inode_sb_list_del(struct inode *inode)
436 {
437 	if (!list_empty(&inode->i_sb_list)) {
438 		spin_lock(&inode_sb_list_lock);
439 		list_del_init(&inode->i_sb_list);
440 		spin_unlock(&inode_sb_list_lock);
441 	}
442 }
443 
444 static unsigned long hash(struct super_block *sb, unsigned long hashval)
445 {
446 	unsigned long tmp;
447 
448 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
449 			L1_CACHE_BYTES;
450 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
451 	return tmp & i_hash_mask;
452 }
453 
454 /**
455  *	__insert_inode_hash - hash an inode
456  *	@inode: unhashed inode
457  *	@hashval: unsigned long value used to locate this object in the
458  *		inode_hashtable.
459  *
460  *	Add an inode to the inode hash for this superblock.
461  */
462 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
463 {
464 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
465 
466 	spin_lock(&inode_hash_lock);
467 	spin_lock(&inode->i_lock);
468 	hlist_add_head(&inode->i_hash, b);
469 	spin_unlock(&inode->i_lock);
470 	spin_unlock(&inode_hash_lock);
471 }
472 EXPORT_SYMBOL(__insert_inode_hash);
473 
474 /**
475  *	__remove_inode_hash - remove an inode from the hash
476  *	@inode: inode to unhash
477  *
478  *	Remove an inode from the superblock.
479  */
480 void __remove_inode_hash(struct inode *inode)
481 {
482 	spin_lock(&inode_hash_lock);
483 	spin_lock(&inode->i_lock);
484 	hlist_del_init(&inode->i_hash);
485 	spin_unlock(&inode->i_lock);
486 	spin_unlock(&inode_hash_lock);
487 }
488 EXPORT_SYMBOL(__remove_inode_hash);
489 
490 void clear_inode(struct inode *inode)
491 {
492 	might_sleep();
493 	/*
494 	 * We have to cycle tree_lock here because reclaim can be still in the
495 	 * process of removing the last page (in __delete_from_page_cache())
496 	 * and we must not free mapping under it.
497 	 */
498 	spin_lock_irq(&inode->i_data.tree_lock);
499 	BUG_ON(inode->i_data.nrpages);
500 	BUG_ON(inode->i_data.nrshadows);
501 	spin_unlock_irq(&inode->i_data.tree_lock);
502 	BUG_ON(!list_empty(&inode->i_data.private_list));
503 	BUG_ON(!(inode->i_state & I_FREEING));
504 	BUG_ON(inode->i_state & I_CLEAR);
505 	/* don't need i_lock here, no concurrent mods to i_state */
506 	inode->i_state = I_FREEING | I_CLEAR;
507 }
508 EXPORT_SYMBOL(clear_inode);
509 
510 /*
511  * Free the inode passed in, removing it from the lists it is still connected
512  * to. We remove any pages still attached to the inode and wait for any IO that
513  * is still in progress before finally destroying the inode.
514  *
515  * An inode must already be marked I_FREEING so that we avoid the inode being
516  * moved back onto lists if we race with other code that manipulates the lists
517  * (e.g. writeback_single_inode). The caller is responsible for setting this.
518  *
519  * An inode must already be removed from the LRU list before being evicted from
520  * the cache. This should occur atomically with setting the I_FREEING state
521  * flag, so no inodes here should ever be on the LRU when being evicted.
522  */
523 static void evict(struct inode *inode)
524 {
525 	const struct super_operations *op = inode->i_sb->s_op;
526 
527 	BUG_ON(!(inode->i_state & I_FREEING));
528 	BUG_ON(!list_empty(&inode->i_lru));
529 
530 	if (!list_empty(&inode->i_wb_list))
531 		inode_wb_list_del(inode);
532 
533 	inode_sb_list_del(inode);
534 
535 	/*
536 	 * Wait for flusher thread to be done with the inode so that filesystem
537 	 * does not start destroying it while writeback is still running. Since
538 	 * the inode has I_FREEING set, flusher thread won't start new work on
539 	 * the inode.  We just have to wait for running writeback to finish.
540 	 */
541 	inode_wait_for_writeback(inode);
542 
543 	if (op->evict_inode) {
544 		op->evict_inode(inode);
545 	} else {
546 		truncate_inode_pages_final(&inode->i_data);
547 		clear_inode(inode);
548 	}
549 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
550 		bd_forget(inode);
551 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
552 		cd_forget(inode);
553 
554 	remove_inode_hash(inode);
555 
556 	spin_lock(&inode->i_lock);
557 	wake_up_bit(&inode->i_state, __I_NEW);
558 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
559 	spin_unlock(&inode->i_lock);
560 
561 	destroy_inode(inode);
562 }
563 
564 /*
565  * dispose_list - dispose of the contents of a local list
566  * @head: the head of the list to free
567  *
568  * Dispose-list gets a local list with local inodes in it, so it doesn't
569  * need to worry about list corruption and SMP locks.
570  */
571 static void dispose_list(struct list_head *head)
572 {
573 	while (!list_empty(head)) {
574 		struct inode *inode;
575 
576 		inode = list_first_entry(head, struct inode, i_lru);
577 		list_del_init(&inode->i_lru);
578 
579 		evict(inode);
580 	}
581 }
582 
583 /**
584  * evict_inodes	- evict all evictable inodes for a superblock
585  * @sb:		superblock to operate on
586  *
587  * Make sure that no inodes with zero refcount are retained.  This is
588  * called by superblock shutdown after having MS_ACTIVE flag removed,
589  * so any inode reaching zero refcount during or after that call will
590  * be immediately evicted.
591  */
592 void evict_inodes(struct super_block *sb)
593 {
594 	struct inode *inode, *next;
595 	LIST_HEAD(dispose);
596 
597 	spin_lock(&inode_sb_list_lock);
598 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
599 		if (atomic_read(&inode->i_count))
600 			continue;
601 
602 		spin_lock(&inode->i_lock);
603 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
604 			spin_unlock(&inode->i_lock);
605 			continue;
606 		}
607 
608 		inode->i_state |= I_FREEING;
609 		inode_lru_list_del(inode);
610 		spin_unlock(&inode->i_lock);
611 		list_add(&inode->i_lru, &dispose);
612 	}
613 	spin_unlock(&inode_sb_list_lock);
614 
615 	dispose_list(&dispose);
616 }
617 
618 /**
619  * invalidate_inodes	- attempt to free all inodes on a superblock
620  * @sb:		superblock to operate on
621  * @kill_dirty: flag to guide handling of dirty inodes
622  *
623  * Attempts to free all inodes for a given superblock.  If there were any
624  * busy inodes return a non-zero value, else zero.
625  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
626  * them as busy.
627  */
628 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
629 {
630 	int busy = 0;
631 	struct inode *inode, *next;
632 	LIST_HEAD(dispose);
633 
634 	spin_lock(&inode_sb_list_lock);
635 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
636 		spin_lock(&inode->i_lock);
637 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
638 			spin_unlock(&inode->i_lock);
639 			continue;
640 		}
641 		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
642 			spin_unlock(&inode->i_lock);
643 			busy = 1;
644 			continue;
645 		}
646 		if (atomic_read(&inode->i_count)) {
647 			spin_unlock(&inode->i_lock);
648 			busy = 1;
649 			continue;
650 		}
651 
652 		inode->i_state |= I_FREEING;
653 		inode_lru_list_del(inode);
654 		spin_unlock(&inode->i_lock);
655 		list_add(&inode->i_lru, &dispose);
656 	}
657 	spin_unlock(&inode_sb_list_lock);
658 
659 	dispose_list(&dispose);
660 
661 	return busy;
662 }
663 
664 /*
665  * Isolate the inode from the LRU in preparation for freeing it.
666  *
667  * Any inodes which are pinned purely because of attached pagecache have their
668  * pagecache removed.  If the inode has metadata buffers attached to
669  * mapping->private_list then try to remove them.
670  *
671  * If the inode has the I_REFERENCED flag set, then it means that it has been
672  * used recently - the flag is set in iput_final(). When we encounter such an
673  * inode, clear the flag and move it to the back of the LRU so it gets another
674  * pass through the LRU before it gets reclaimed. This is necessary because of
675  * the fact we are doing lazy LRU updates to minimise lock contention so the
676  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
677  * with this flag set because they are the inodes that are out of order.
678  */
679 static enum lru_status inode_lru_isolate(struct list_head *item,
680 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
681 {
682 	struct list_head *freeable = arg;
683 	struct inode	*inode = container_of(item, struct inode, i_lru);
684 
685 	/*
686 	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
687 	 * If we fail to get the lock, just skip it.
688 	 */
689 	if (!spin_trylock(&inode->i_lock))
690 		return LRU_SKIP;
691 
692 	/*
693 	 * Referenced or dirty inodes are still in use. Give them another pass
694 	 * through the LRU as we canot reclaim them now.
695 	 */
696 	if (atomic_read(&inode->i_count) ||
697 	    (inode->i_state & ~I_REFERENCED)) {
698 		list_lru_isolate(lru, &inode->i_lru);
699 		spin_unlock(&inode->i_lock);
700 		this_cpu_dec(nr_unused);
701 		return LRU_REMOVED;
702 	}
703 
704 	/* recently referenced inodes get one more pass */
705 	if (inode->i_state & I_REFERENCED) {
706 		inode->i_state &= ~I_REFERENCED;
707 		spin_unlock(&inode->i_lock);
708 		return LRU_ROTATE;
709 	}
710 
711 	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
712 		__iget(inode);
713 		spin_unlock(&inode->i_lock);
714 		spin_unlock(lru_lock);
715 		if (remove_inode_buffers(inode)) {
716 			unsigned long reap;
717 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
718 			if (current_is_kswapd())
719 				__count_vm_events(KSWAPD_INODESTEAL, reap);
720 			else
721 				__count_vm_events(PGINODESTEAL, reap);
722 			if (current->reclaim_state)
723 				current->reclaim_state->reclaimed_slab += reap;
724 		}
725 		iput(inode);
726 		spin_lock(lru_lock);
727 		return LRU_RETRY;
728 	}
729 
730 	WARN_ON(inode->i_state & I_NEW);
731 	inode->i_state |= I_FREEING;
732 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
733 	spin_unlock(&inode->i_lock);
734 
735 	this_cpu_dec(nr_unused);
736 	return LRU_REMOVED;
737 }
738 
739 /*
740  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
741  * This is called from the superblock shrinker function with a number of inodes
742  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
743  * then are freed outside inode_lock by dispose_list().
744  */
745 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
746 {
747 	LIST_HEAD(freeable);
748 	long freed;
749 
750 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
751 				     inode_lru_isolate, &freeable);
752 	dispose_list(&freeable);
753 	return freed;
754 }
755 
756 static void __wait_on_freeing_inode(struct inode *inode);
757 /*
758  * Called with the inode lock held.
759  */
760 static struct inode *find_inode(struct super_block *sb,
761 				struct hlist_head *head,
762 				int (*test)(struct inode *, void *),
763 				void *data)
764 {
765 	struct inode *inode = NULL;
766 
767 repeat:
768 	hlist_for_each_entry(inode, head, i_hash) {
769 		if (inode->i_sb != sb)
770 			continue;
771 		if (!test(inode, data))
772 			continue;
773 		spin_lock(&inode->i_lock);
774 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
775 			__wait_on_freeing_inode(inode);
776 			goto repeat;
777 		}
778 		__iget(inode);
779 		spin_unlock(&inode->i_lock);
780 		return inode;
781 	}
782 	return NULL;
783 }
784 
785 /*
786  * find_inode_fast is the fast path version of find_inode, see the comment at
787  * iget_locked for details.
788  */
789 static struct inode *find_inode_fast(struct super_block *sb,
790 				struct hlist_head *head, unsigned long ino)
791 {
792 	struct inode *inode = NULL;
793 
794 repeat:
795 	hlist_for_each_entry(inode, head, i_hash) {
796 		if (inode->i_ino != ino)
797 			continue;
798 		if (inode->i_sb != sb)
799 			continue;
800 		spin_lock(&inode->i_lock);
801 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
802 			__wait_on_freeing_inode(inode);
803 			goto repeat;
804 		}
805 		__iget(inode);
806 		spin_unlock(&inode->i_lock);
807 		return inode;
808 	}
809 	return NULL;
810 }
811 
812 /*
813  * Each cpu owns a range of LAST_INO_BATCH numbers.
814  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
815  * to renew the exhausted range.
816  *
817  * This does not significantly increase overflow rate because every CPU can
818  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
819  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
820  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
821  * overflow rate by 2x, which does not seem too significant.
822  *
823  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
824  * error if st_ino won't fit in target struct field. Use 32bit counter
825  * here to attempt to avoid that.
826  */
827 #define LAST_INO_BATCH 1024
828 static DEFINE_PER_CPU(unsigned int, last_ino);
829 
830 unsigned int get_next_ino(void)
831 {
832 	unsigned int *p = &get_cpu_var(last_ino);
833 	unsigned int res = *p;
834 
835 #ifdef CONFIG_SMP
836 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
837 		static atomic_t shared_last_ino;
838 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
839 
840 		res = next - LAST_INO_BATCH;
841 	}
842 #endif
843 
844 	res++;
845 	/* get_next_ino should not provide a 0 inode number */
846 	if (unlikely(!res))
847 		res++;
848 	*p = res;
849 	put_cpu_var(last_ino);
850 	return res;
851 }
852 EXPORT_SYMBOL(get_next_ino);
853 
854 /**
855  *	new_inode_pseudo 	- obtain an inode
856  *	@sb: superblock
857  *
858  *	Allocates a new inode for given superblock.
859  *	Inode wont be chained in superblock s_inodes list
860  *	This means :
861  *	- fs can't be unmount
862  *	- quotas, fsnotify, writeback can't work
863  */
864 struct inode *new_inode_pseudo(struct super_block *sb)
865 {
866 	struct inode *inode = alloc_inode(sb);
867 
868 	if (inode) {
869 		spin_lock(&inode->i_lock);
870 		inode->i_state = 0;
871 		spin_unlock(&inode->i_lock);
872 		INIT_LIST_HEAD(&inode->i_sb_list);
873 	}
874 	return inode;
875 }
876 
877 /**
878  *	new_inode 	- obtain an inode
879  *	@sb: superblock
880  *
881  *	Allocates a new inode for given superblock. The default gfp_mask
882  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
883  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
884  *	for the page cache are not reclaimable or migratable,
885  *	mapping_set_gfp_mask() must be called with suitable flags on the
886  *	newly created inode's mapping
887  *
888  */
889 struct inode *new_inode(struct super_block *sb)
890 {
891 	struct inode *inode;
892 
893 	spin_lock_prefetch(&inode_sb_list_lock);
894 
895 	inode = new_inode_pseudo(sb);
896 	if (inode)
897 		inode_sb_list_add(inode);
898 	return inode;
899 }
900 EXPORT_SYMBOL(new_inode);
901 
902 #ifdef CONFIG_DEBUG_LOCK_ALLOC
903 void lockdep_annotate_inode_mutex_key(struct inode *inode)
904 {
905 	if (S_ISDIR(inode->i_mode)) {
906 		struct file_system_type *type = inode->i_sb->s_type;
907 
908 		/* Set new key only if filesystem hasn't already changed it */
909 		if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
910 			/*
911 			 * ensure nobody is actually holding i_mutex
912 			 */
913 			mutex_destroy(&inode->i_mutex);
914 			mutex_init(&inode->i_mutex);
915 			lockdep_set_class(&inode->i_mutex,
916 					  &type->i_mutex_dir_key);
917 		}
918 	}
919 }
920 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
921 #endif
922 
923 /**
924  * unlock_new_inode - clear the I_NEW state and wake up any waiters
925  * @inode:	new inode to unlock
926  *
927  * Called when the inode is fully initialised to clear the new state of the
928  * inode and wake up anyone waiting for the inode to finish initialisation.
929  */
930 void unlock_new_inode(struct inode *inode)
931 {
932 	lockdep_annotate_inode_mutex_key(inode);
933 	spin_lock(&inode->i_lock);
934 	WARN_ON(!(inode->i_state & I_NEW));
935 	inode->i_state &= ~I_NEW;
936 	smp_mb();
937 	wake_up_bit(&inode->i_state, __I_NEW);
938 	spin_unlock(&inode->i_lock);
939 }
940 EXPORT_SYMBOL(unlock_new_inode);
941 
942 /**
943  * lock_two_nondirectories - take two i_mutexes on non-directory objects
944  *
945  * Lock any non-NULL argument that is not a directory.
946  * Zero, one or two objects may be locked by this function.
947  *
948  * @inode1: first inode to lock
949  * @inode2: second inode to lock
950  */
951 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
952 {
953 	if (inode1 > inode2)
954 		swap(inode1, inode2);
955 
956 	if (inode1 && !S_ISDIR(inode1->i_mode))
957 		mutex_lock(&inode1->i_mutex);
958 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
959 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_NONDIR2);
960 }
961 EXPORT_SYMBOL(lock_two_nondirectories);
962 
963 /**
964  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
965  * @inode1: first inode to unlock
966  * @inode2: second inode to unlock
967  */
968 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
969 {
970 	if (inode1 && !S_ISDIR(inode1->i_mode))
971 		mutex_unlock(&inode1->i_mutex);
972 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
973 		mutex_unlock(&inode2->i_mutex);
974 }
975 EXPORT_SYMBOL(unlock_two_nondirectories);
976 
977 /**
978  * iget5_locked - obtain an inode from a mounted file system
979  * @sb:		super block of file system
980  * @hashval:	hash value (usually inode number) to get
981  * @test:	callback used for comparisons between inodes
982  * @set:	callback used to initialize a new struct inode
983  * @data:	opaque data pointer to pass to @test and @set
984  *
985  * Search for the inode specified by @hashval and @data in the inode cache,
986  * and if present it is return it with an increased reference count. This is
987  * a generalized version of iget_locked() for file systems where the inode
988  * number is not sufficient for unique identification of an inode.
989  *
990  * If the inode is not in cache, allocate a new inode and return it locked,
991  * hashed, and with the I_NEW flag set. The file system gets to fill it in
992  * before unlocking it via unlock_new_inode().
993  *
994  * Note both @test and @set are called with the inode_hash_lock held, so can't
995  * sleep.
996  */
997 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
998 		int (*test)(struct inode *, void *),
999 		int (*set)(struct inode *, void *), void *data)
1000 {
1001 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1002 	struct inode *inode;
1003 
1004 	spin_lock(&inode_hash_lock);
1005 	inode = find_inode(sb, head, test, data);
1006 	spin_unlock(&inode_hash_lock);
1007 
1008 	if (inode) {
1009 		wait_on_inode(inode);
1010 		return inode;
1011 	}
1012 
1013 	inode = alloc_inode(sb);
1014 	if (inode) {
1015 		struct inode *old;
1016 
1017 		spin_lock(&inode_hash_lock);
1018 		/* We released the lock, so.. */
1019 		old = find_inode(sb, head, test, data);
1020 		if (!old) {
1021 			if (set(inode, data))
1022 				goto set_failed;
1023 
1024 			spin_lock(&inode->i_lock);
1025 			inode->i_state = I_NEW;
1026 			hlist_add_head(&inode->i_hash, head);
1027 			spin_unlock(&inode->i_lock);
1028 			inode_sb_list_add(inode);
1029 			spin_unlock(&inode_hash_lock);
1030 
1031 			/* Return the locked inode with I_NEW set, the
1032 			 * caller is responsible for filling in the contents
1033 			 */
1034 			return inode;
1035 		}
1036 
1037 		/*
1038 		 * Uhhuh, somebody else created the same inode under
1039 		 * us. Use the old inode instead of the one we just
1040 		 * allocated.
1041 		 */
1042 		spin_unlock(&inode_hash_lock);
1043 		destroy_inode(inode);
1044 		inode = old;
1045 		wait_on_inode(inode);
1046 	}
1047 	return inode;
1048 
1049 set_failed:
1050 	spin_unlock(&inode_hash_lock);
1051 	destroy_inode(inode);
1052 	return NULL;
1053 }
1054 EXPORT_SYMBOL(iget5_locked);
1055 
1056 /**
1057  * iget_locked - obtain an inode from a mounted file system
1058  * @sb:		super block of file system
1059  * @ino:	inode number to get
1060  *
1061  * Search for the inode specified by @ino in the inode cache and if present
1062  * return it with an increased reference count. This is for file systems
1063  * where the inode number is sufficient for unique identification of an inode.
1064  *
1065  * If the inode is not in cache, allocate a new inode and return it locked,
1066  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1067  * before unlocking it via unlock_new_inode().
1068  */
1069 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1070 {
1071 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1072 	struct inode *inode;
1073 
1074 	spin_lock(&inode_hash_lock);
1075 	inode = find_inode_fast(sb, head, ino);
1076 	spin_unlock(&inode_hash_lock);
1077 	if (inode) {
1078 		wait_on_inode(inode);
1079 		return inode;
1080 	}
1081 
1082 	inode = alloc_inode(sb);
1083 	if (inode) {
1084 		struct inode *old;
1085 
1086 		spin_lock(&inode_hash_lock);
1087 		/* We released the lock, so.. */
1088 		old = find_inode_fast(sb, head, ino);
1089 		if (!old) {
1090 			inode->i_ino = ino;
1091 			spin_lock(&inode->i_lock);
1092 			inode->i_state = I_NEW;
1093 			hlist_add_head(&inode->i_hash, head);
1094 			spin_unlock(&inode->i_lock);
1095 			inode_sb_list_add(inode);
1096 			spin_unlock(&inode_hash_lock);
1097 
1098 			/* Return the locked inode with I_NEW set, the
1099 			 * caller is responsible for filling in the contents
1100 			 */
1101 			return inode;
1102 		}
1103 
1104 		/*
1105 		 * Uhhuh, somebody else created the same inode under
1106 		 * us. Use the old inode instead of the one we just
1107 		 * allocated.
1108 		 */
1109 		spin_unlock(&inode_hash_lock);
1110 		destroy_inode(inode);
1111 		inode = old;
1112 		wait_on_inode(inode);
1113 	}
1114 	return inode;
1115 }
1116 EXPORT_SYMBOL(iget_locked);
1117 
1118 /*
1119  * search the inode cache for a matching inode number.
1120  * If we find one, then the inode number we are trying to
1121  * allocate is not unique and so we should not use it.
1122  *
1123  * Returns 1 if the inode number is unique, 0 if it is not.
1124  */
1125 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1126 {
1127 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1128 	struct inode *inode;
1129 
1130 	spin_lock(&inode_hash_lock);
1131 	hlist_for_each_entry(inode, b, i_hash) {
1132 		if (inode->i_ino == ino && inode->i_sb == sb) {
1133 			spin_unlock(&inode_hash_lock);
1134 			return 0;
1135 		}
1136 	}
1137 	spin_unlock(&inode_hash_lock);
1138 
1139 	return 1;
1140 }
1141 
1142 /**
1143  *	iunique - get a unique inode number
1144  *	@sb: superblock
1145  *	@max_reserved: highest reserved inode number
1146  *
1147  *	Obtain an inode number that is unique on the system for a given
1148  *	superblock. This is used by file systems that have no natural
1149  *	permanent inode numbering system. An inode number is returned that
1150  *	is higher than the reserved limit but unique.
1151  *
1152  *	BUGS:
1153  *	With a large number of inodes live on the file system this function
1154  *	currently becomes quite slow.
1155  */
1156 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1157 {
1158 	/*
1159 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1160 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1161 	 * here to attempt to avoid that.
1162 	 */
1163 	static DEFINE_SPINLOCK(iunique_lock);
1164 	static unsigned int counter;
1165 	ino_t res;
1166 
1167 	spin_lock(&iunique_lock);
1168 	do {
1169 		if (counter <= max_reserved)
1170 			counter = max_reserved + 1;
1171 		res = counter++;
1172 	} while (!test_inode_iunique(sb, res));
1173 	spin_unlock(&iunique_lock);
1174 
1175 	return res;
1176 }
1177 EXPORT_SYMBOL(iunique);
1178 
1179 struct inode *igrab(struct inode *inode)
1180 {
1181 	spin_lock(&inode->i_lock);
1182 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1183 		__iget(inode);
1184 		spin_unlock(&inode->i_lock);
1185 	} else {
1186 		spin_unlock(&inode->i_lock);
1187 		/*
1188 		 * Handle the case where s_op->clear_inode is not been
1189 		 * called yet, and somebody is calling igrab
1190 		 * while the inode is getting freed.
1191 		 */
1192 		inode = NULL;
1193 	}
1194 	return inode;
1195 }
1196 EXPORT_SYMBOL(igrab);
1197 
1198 /**
1199  * ilookup5_nowait - search for an inode in the inode cache
1200  * @sb:		super block of file system to search
1201  * @hashval:	hash value (usually inode number) to search for
1202  * @test:	callback used for comparisons between inodes
1203  * @data:	opaque data pointer to pass to @test
1204  *
1205  * Search for the inode specified by @hashval and @data in the inode cache.
1206  * If the inode is in the cache, the inode is returned with an incremented
1207  * reference count.
1208  *
1209  * Note: I_NEW is not waited upon so you have to be very careful what you do
1210  * with the returned inode.  You probably should be using ilookup5() instead.
1211  *
1212  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1213  */
1214 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1215 		int (*test)(struct inode *, void *), void *data)
1216 {
1217 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1218 	struct inode *inode;
1219 
1220 	spin_lock(&inode_hash_lock);
1221 	inode = find_inode(sb, head, test, data);
1222 	spin_unlock(&inode_hash_lock);
1223 
1224 	return inode;
1225 }
1226 EXPORT_SYMBOL(ilookup5_nowait);
1227 
1228 /**
1229  * ilookup5 - search for an inode in the inode cache
1230  * @sb:		super block of file system to search
1231  * @hashval:	hash value (usually inode number) to search for
1232  * @test:	callback used for comparisons between inodes
1233  * @data:	opaque data pointer to pass to @test
1234  *
1235  * Search for the inode specified by @hashval and @data in the inode cache,
1236  * and if the inode is in the cache, return the inode with an incremented
1237  * reference count.  Waits on I_NEW before returning the inode.
1238  * returned with an incremented reference count.
1239  *
1240  * This is a generalized version of ilookup() for file systems where the
1241  * inode number is not sufficient for unique identification of an inode.
1242  *
1243  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1244  */
1245 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1246 		int (*test)(struct inode *, void *), void *data)
1247 {
1248 	struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1249 
1250 	if (inode)
1251 		wait_on_inode(inode);
1252 	return inode;
1253 }
1254 EXPORT_SYMBOL(ilookup5);
1255 
1256 /**
1257  * ilookup - search for an inode in the inode cache
1258  * @sb:		super block of file system to search
1259  * @ino:	inode number to search for
1260  *
1261  * Search for the inode @ino in the inode cache, and if the inode is in the
1262  * cache, the inode is returned with an incremented reference count.
1263  */
1264 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1265 {
1266 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1267 	struct inode *inode;
1268 
1269 	spin_lock(&inode_hash_lock);
1270 	inode = find_inode_fast(sb, head, ino);
1271 	spin_unlock(&inode_hash_lock);
1272 
1273 	if (inode)
1274 		wait_on_inode(inode);
1275 	return inode;
1276 }
1277 EXPORT_SYMBOL(ilookup);
1278 
1279 /**
1280  * find_inode_nowait - find an inode in the inode cache
1281  * @sb:		super block of file system to search
1282  * @hashval:	hash value (usually inode number) to search for
1283  * @match:	callback used for comparisons between inodes
1284  * @data:	opaque data pointer to pass to @match
1285  *
1286  * Search for the inode specified by @hashval and @data in the inode
1287  * cache, where the helper function @match will return 0 if the inode
1288  * does not match, 1 if the inode does match, and -1 if the search
1289  * should be stopped.  The @match function must be responsible for
1290  * taking the i_lock spin_lock and checking i_state for an inode being
1291  * freed or being initialized, and incrementing the reference count
1292  * before returning 1.  It also must not sleep, since it is called with
1293  * the inode_hash_lock spinlock held.
1294  *
1295  * This is a even more generalized version of ilookup5() when the
1296  * function must never block --- find_inode() can block in
1297  * __wait_on_freeing_inode() --- or when the caller can not increment
1298  * the reference count because the resulting iput() might cause an
1299  * inode eviction.  The tradeoff is that the @match funtion must be
1300  * very carefully implemented.
1301  */
1302 struct inode *find_inode_nowait(struct super_block *sb,
1303 				unsigned long hashval,
1304 				int (*match)(struct inode *, unsigned long,
1305 					     void *),
1306 				void *data)
1307 {
1308 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1309 	struct inode *inode, *ret_inode = NULL;
1310 	int mval;
1311 
1312 	spin_lock(&inode_hash_lock);
1313 	hlist_for_each_entry(inode, head, i_hash) {
1314 		if (inode->i_sb != sb)
1315 			continue;
1316 		mval = match(inode, hashval, data);
1317 		if (mval == 0)
1318 			continue;
1319 		if (mval == 1)
1320 			ret_inode = inode;
1321 		goto out;
1322 	}
1323 out:
1324 	spin_unlock(&inode_hash_lock);
1325 	return ret_inode;
1326 }
1327 EXPORT_SYMBOL(find_inode_nowait);
1328 
1329 int insert_inode_locked(struct inode *inode)
1330 {
1331 	struct super_block *sb = inode->i_sb;
1332 	ino_t ino = inode->i_ino;
1333 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1334 
1335 	while (1) {
1336 		struct inode *old = NULL;
1337 		spin_lock(&inode_hash_lock);
1338 		hlist_for_each_entry(old, head, i_hash) {
1339 			if (old->i_ino != ino)
1340 				continue;
1341 			if (old->i_sb != sb)
1342 				continue;
1343 			spin_lock(&old->i_lock);
1344 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1345 				spin_unlock(&old->i_lock);
1346 				continue;
1347 			}
1348 			break;
1349 		}
1350 		if (likely(!old)) {
1351 			spin_lock(&inode->i_lock);
1352 			inode->i_state |= I_NEW;
1353 			hlist_add_head(&inode->i_hash, head);
1354 			spin_unlock(&inode->i_lock);
1355 			spin_unlock(&inode_hash_lock);
1356 			return 0;
1357 		}
1358 		__iget(old);
1359 		spin_unlock(&old->i_lock);
1360 		spin_unlock(&inode_hash_lock);
1361 		wait_on_inode(old);
1362 		if (unlikely(!inode_unhashed(old))) {
1363 			iput(old);
1364 			return -EBUSY;
1365 		}
1366 		iput(old);
1367 	}
1368 }
1369 EXPORT_SYMBOL(insert_inode_locked);
1370 
1371 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1372 		int (*test)(struct inode *, void *), void *data)
1373 {
1374 	struct super_block *sb = inode->i_sb;
1375 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1376 
1377 	while (1) {
1378 		struct inode *old = NULL;
1379 
1380 		spin_lock(&inode_hash_lock);
1381 		hlist_for_each_entry(old, head, i_hash) {
1382 			if (old->i_sb != sb)
1383 				continue;
1384 			if (!test(old, data))
1385 				continue;
1386 			spin_lock(&old->i_lock);
1387 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1388 				spin_unlock(&old->i_lock);
1389 				continue;
1390 			}
1391 			break;
1392 		}
1393 		if (likely(!old)) {
1394 			spin_lock(&inode->i_lock);
1395 			inode->i_state |= I_NEW;
1396 			hlist_add_head(&inode->i_hash, head);
1397 			spin_unlock(&inode->i_lock);
1398 			spin_unlock(&inode_hash_lock);
1399 			return 0;
1400 		}
1401 		__iget(old);
1402 		spin_unlock(&old->i_lock);
1403 		spin_unlock(&inode_hash_lock);
1404 		wait_on_inode(old);
1405 		if (unlikely(!inode_unhashed(old))) {
1406 			iput(old);
1407 			return -EBUSY;
1408 		}
1409 		iput(old);
1410 	}
1411 }
1412 EXPORT_SYMBOL(insert_inode_locked4);
1413 
1414 
1415 int generic_delete_inode(struct inode *inode)
1416 {
1417 	return 1;
1418 }
1419 EXPORT_SYMBOL(generic_delete_inode);
1420 
1421 /*
1422  * Called when we're dropping the last reference
1423  * to an inode.
1424  *
1425  * Call the FS "drop_inode()" function, defaulting to
1426  * the legacy UNIX filesystem behaviour.  If it tells
1427  * us to evict inode, do so.  Otherwise, retain inode
1428  * in cache if fs is alive, sync and evict if fs is
1429  * shutting down.
1430  */
1431 static void iput_final(struct inode *inode)
1432 {
1433 	struct super_block *sb = inode->i_sb;
1434 	const struct super_operations *op = inode->i_sb->s_op;
1435 	int drop;
1436 
1437 	WARN_ON(inode->i_state & I_NEW);
1438 
1439 	if (op->drop_inode)
1440 		drop = op->drop_inode(inode);
1441 	else
1442 		drop = generic_drop_inode(inode);
1443 
1444 	if (!drop && (sb->s_flags & MS_ACTIVE)) {
1445 		inode->i_state |= I_REFERENCED;
1446 		inode_add_lru(inode);
1447 		spin_unlock(&inode->i_lock);
1448 		return;
1449 	}
1450 
1451 	if (!drop) {
1452 		inode->i_state |= I_WILL_FREE;
1453 		spin_unlock(&inode->i_lock);
1454 		write_inode_now(inode, 1);
1455 		spin_lock(&inode->i_lock);
1456 		WARN_ON(inode->i_state & I_NEW);
1457 		inode->i_state &= ~I_WILL_FREE;
1458 	}
1459 
1460 	inode->i_state |= I_FREEING;
1461 	if (!list_empty(&inode->i_lru))
1462 		inode_lru_list_del(inode);
1463 	spin_unlock(&inode->i_lock);
1464 
1465 	evict(inode);
1466 }
1467 
1468 /**
1469  *	iput	- put an inode
1470  *	@inode: inode to put
1471  *
1472  *	Puts an inode, dropping its usage count. If the inode use count hits
1473  *	zero, the inode is then freed and may also be destroyed.
1474  *
1475  *	Consequently, iput() can sleep.
1476  */
1477 void iput(struct inode *inode)
1478 {
1479 	if (!inode)
1480 		return;
1481 	BUG_ON(inode->i_state & I_CLEAR);
1482 retry:
1483 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1484 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1485 			atomic_inc(&inode->i_count);
1486 			inode->i_state &= ~I_DIRTY_TIME;
1487 			spin_unlock(&inode->i_lock);
1488 			trace_writeback_lazytime_iput(inode);
1489 			mark_inode_dirty_sync(inode);
1490 			goto retry;
1491 		}
1492 		iput_final(inode);
1493 	}
1494 }
1495 EXPORT_SYMBOL(iput);
1496 
1497 /**
1498  *	bmap	- find a block number in a file
1499  *	@inode: inode of file
1500  *	@block: block to find
1501  *
1502  *	Returns the block number on the device holding the inode that
1503  *	is the disk block number for the block of the file requested.
1504  *	That is, asked for block 4 of inode 1 the function will return the
1505  *	disk block relative to the disk start that holds that block of the
1506  *	file.
1507  */
1508 sector_t bmap(struct inode *inode, sector_t block)
1509 {
1510 	sector_t res = 0;
1511 	if (inode->i_mapping->a_ops->bmap)
1512 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1513 	return res;
1514 }
1515 EXPORT_SYMBOL(bmap);
1516 
1517 /*
1518  * With relative atime, only update atime if the previous atime is
1519  * earlier than either the ctime or mtime or if at least a day has
1520  * passed since the last atime update.
1521  */
1522 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1523 			     struct timespec now)
1524 {
1525 
1526 	if (!(mnt->mnt_flags & MNT_RELATIME))
1527 		return 1;
1528 	/*
1529 	 * Is mtime younger than atime? If yes, update atime:
1530 	 */
1531 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1532 		return 1;
1533 	/*
1534 	 * Is ctime younger than atime? If yes, update atime:
1535 	 */
1536 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1537 		return 1;
1538 
1539 	/*
1540 	 * Is the previous atime value older than a day? If yes,
1541 	 * update atime:
1542 	 */
1543 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1544 		return 1;
1545 	/*
1546 	 * Good, we can skip the atime update:
1547 	 */
1548 	return 0;
1549 }
1550 
1551 int generic_update_time(struct inode *inode, struct timespec *time, int flags)
1552 {
1553 	int iflags = I_DIRTY_TIME;
1554 
1555 	if (flags & S_ATIME)
1556 		inode->i_atime = *time;
1557 	if (flags & S_VERSION)
1558 		inode_inc_iversion(inode);
1559 	if (flags & S_CTIME)
1560 		inode->i_ctime = *time;
1561 	if (flags & S_MTIME)
1562 		inode->i_mtime = *time;
1563 
1564 	if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION))
1565 		iflags |= I_DIRTY_SYNC;
1566 	__mark_inode_dirty(inode, iflags);
1567 	return 0;
1568 }
1569 EXPORT_SYMBOL(generic_update_time);
1570 
1571 /*
1572  * This does the actual work of updating an inodes time or version.  Must have
1573  * had called mnt_want_write() before calling this.
1574  */
1575 static int update_time(struct inode *inode, struct timespec *time, int flags)
1576 {
1577 	int (*update_time)(struct inode *, struct timespec *, int);
1578 
1579 	update_time = inode->i_op->update_time ? inode->i_op->update_time :
1580 		generic_update_time;
1581 
1582 	return update_time(inode, time, flags);
1583 }
1584 
1585 /**
1586  *	touch_atime	-	update the access time
1587  *	@path: the &struct path to update
1588  *
1589  *	Update the accessed time on an inode and mark it for writeback.
1590  *	This function automatically handles read only file systems and media,
1591  *	as well as the "noatime" flag and inode specific "noatime" markers.
1592  */
1593 bool atime_needs_update(const struct path *path, struct inode *inode)
1594 {
1595 	struct vfsmount *mnt = path->mnt;
1596 	struct timespec now;
1597 
1598 	if (inode->i_flags & S_NOATIME)
1599 		return false;
1600 	if (IS_NOATIME(inode))
1601 		return false;
1602 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1603 		return false;
1604 
1605 	if (mnt->mnt_flags & MNT_NOATIME)
1606 		return false;
1607 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1608 		return false;
1609 
1610 	now = current_fs_time(inode->i_sb);
1611 
1612 	if (!relatime_need_update(mnt, inode, now))
1613 		return false;
1614 
1615 	if (timespec_equal(&inode->i_atime, &now))
1616 		return false;
1617 
1618 	return true;
1619 }
1620 
1621 void touch_atime(const struct path *path)
1622 {
1623 	struct vfsmount *mnt = path->mnt;
1624 	struct inode *inode = d_inode(path->dentry);
1625 	struct timespec now;
1626 
1627 	if (!atime_needs_update(path, inode))
1628 		return;
1629 
1630 	if (!sb_start_write_trylock(inode->i_sb))
1631 		return;
1632 
1633 	if (__mnt_want_write(mnt) != 0)
1634 		goto skip_update;
1635 	/*
1636 	 * File systems can error out when updating inodes if they need to
1637 	 * allocate new space to modify an inode (such is the case for
1638 	 * Btrfs), but since we touch atime while walking down the path we
1639 	 * really don't care if we failed to update the atime of the file,
1640 	 * so just ignore the return value.
1641 	 * We may also fail on filesystems that have the ability to make parts
1642 	 * of the fs read only, e.g. subvolumes in Btrfs.
1643 	 */
1644 	now = current_fs_time(inode->i_sb);
1645 	update_time(inode, &now, S_ATIME);
1646 	__mnt_drop_write(mnt);
1647 skip_update:
1648 	sb_end_write(inode->i_sb);
1649 }
1650 EXPORT_SYMBOL(touch_atime);
1651 
1652 /*
1653  * The logic we want is
1654  *
1655  *	if suid or (sgid and xgrp)
1656  *		remove privs
1657  */
1658 int should_remove_suid(struct dentry *dentry)
1659 {
1660 	umode_t mode = d_inode(dentry)->i_mode;
1661 	int kill = 0;
1662 
1663 	/* suid always must be killed */
1664 	if (unlikely(mode & S_ISUID))
1665 		kill = ATTR_KILL_SUID;
1666 
1667 	/*
1668 	 * sgid without any exec bits is just a mandatory locking mark; leave
1669 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1670 	 */
1671 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1672 		kill |= ATTR_KILL_SGID;
1673 
1674 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1675 		return kill;
1676 
1677 	return 0;
1678 }
1679 EXPORT_SYMBOL(should_remove_suid);
1680 
1681 /*
1682  * Return mask of changes for notify_change() that need to be done as a
1683  * response to write or truncate. Return 0 if nothing has to be changed.
1684  * Negative value on error (change should be denied).
1685  */
1686 int dentry_needs_remove_privs(struct dentry *dentry)
1687 {
1688 	struct inode *inode = d_inode(dentry);
1689 	int mask = 0;
1690 	int ret;
1691 
1692 	if (IS_NOSEC(inode))
1693 		return 0;
1694 
1695 	mask = should_remove_suid(dentry);
1696 	ret = security_inode_need_killpriv(dentry);
1697 	if (ret < 0)
1698 		return ret;
1699 	if (ret)
1700 		mask |= ATTR_KILL_PRIV;
1701 	return mask;
1702 }
1703 EXPORT_SYMBOL(dentry_needs_remove_privs);
1704 
1705 static int __remove_privs(struct dentry *dentry, int kill)
1706 {
1707 	struct iattr newattrs;
1708 
1709 	newattrs.ia_valid = ATTR_FORCE | kill;
1710 	/*
1711 	 * Note we call this on write, so notify_change will not
1712 	 * encounter any conflicting delegations:
1713 	 */
1714 	return notify_change(dentry, &newattrs, NULL);
1715 }
1716 
1717 /*
1718  * Remove special file priviledges (suid, capabilities) when file is written
1719  * to or truncated.
1720  */
1721 int file_remove_privs(struct file *file)
1722 {
1723 	struct dentry *dentry = file->f_path.dentry;
1724 	struct inode *inode = d_inode(dentry);
1725 	int kill;
1726 	int error = 0;
1727 
1728 	/* Fast path for nothing security related */
1729 	if (IS_NOSEC(inode))
1730 		return 0;
1731 
1732 	kill = file_needs_remove_privs(file);
1733 	if (kill < 0)
1734 		return kill;
1735 	if (kill)
1736 		error = __remove_privs(dentry, kill);
1737 	if (!error)
1738 		inode_has_no_xattr(inode);
1739 
1740 	return error;
1741 }
1742 EXPORT_SYMBOL(file_remove_privs);
1743 
1744 /**
1745  *	file_update_time	-	update mtime and ctime time
1746  *	@file: file accessed
1747  *
1748  *	Update the mtime and ctime members of an inode and mark the inode
1749  *	for writeback.  Note that this function is meant exclusively for
1750  *	usage in the file write path of filesystems, and filesystems may
1751  *	choose to explicitly ignore update via this function with the
1752  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1753  *	timestamps are handled by the server.  This can return an error for
1754  *	file systems who need to allocate space in order to update an inode.
1755  */
1756 
1757 int file_update_time(struct file *file)
1758 {
1759 	struct inode *inode = file_inode(file);
1760 	struct timespec now;
1761 	int sync_it = 0;
1762 	int ret;
1763 
1764 	/* First try to exhaust all avenues to not sync */
1765 	if (IS_NOCMTIME(inode))
1766 		return 0;
1767 
1768 	now = current_fs_time(inode->i_sb);
1769 	if (!timespec_equal(&inode->i_mtime, &now))
1770 		sync_it = S_MTIME;
1771 
1772 	if (!timespec_equal(&inode->i_ctime, &now))
1773 		sync_it |= S_CTIME;
1774 
1775 	if (IS_I_VERSION(inode))
1776 		sync_it |= S_VERSION;
1777 
1778 	if (!sync_it)
1779 		return 0;
1780 
1781 	/* Finally allowed to write? Takes lock. */
1782 	if (__mnt_want_write_file(file))
1783 		return 0;
1784 
1785 	ret = update_time(inode, &now, sync_it);
1786 	__mnt_drop_write_file(file);
1787 
1788 	return ret;
1789 }
1790 EXPORT_SYMBOL(file_update_time);
1791 
1792 int inode_needs_sync(struct inode *inode)
1793 {
1794 	if (IS_SYNC(inode))
1795 		return 1;
1796 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1797 		return 1;
1798 	return 0;
1799 }
1800 EXPORT_SYMBOL(inode_needs_sync);
1801 
1802 /*
1803  * If we try to find an inode in the inode hash while it is being
1804  * deleted, we have to wait until the filesystem completes its
1805  * deletion before reporting that it isn't found.  This function waits
1806  * until the deletion _might_ have completed.  Callers are responsible
1807  * to recheck inode state.
1808  *
1809  * It doesn't matter if I_NEW is not set initially, a call to
1810  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1811  * will DTRT.
1812  */
1813 static void __wait_on_freeing_inode(struct inode *inode)
1814 {
1815 	wait_queue_head_t *wq;
1816 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1817 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1818 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1819 	spin_unlock(&inode->i_lock);
1820 	spin_unlock(&inode_hash_lock);
1821 	schedule();
1822 	finish_wait(wq, &wait.wait);
1823 	spin_lock(&inode_hash_lock);
1824 }
1825 
1826 static __initdata unsigned long ihash_entries;
1827 static int __init set_ihash_entries(char *str)
1828 {
1829 	if (!str)
1830 		return 0;
1831 	ihash_entries = simple_strtoul(str, &str, 0);
1832 	return 1;
1833 }
1834 __setup("ihash_entries=", set_ihash_entries);
1835 
1836 /*
1837  * Initialize the waitqueues and inode hash table.
1838  */
1839 void __init inode_init_early(void)
1840 {
1841 	unsigned int loop;
1842 
1843 	/* If hashes are distributed across NUMA nodes, defer
1844 	 * hash allocation until vmalloc space is available.
1845 	 */
1846 	if (hashdist)
1847 		return;
1848 
1849 	inode_hashtable =
1850 		alloc_large_system_hash("Inode-cache",
1851 					sizeof(struct hlist_head),
1852 					ihash_entries,
1853 					14,
1854 					HASH_EARLY,
1855 					&i_hash_shift,
1856 					&i_hash_mask,
1857 					0,
1858 					0);
1859 
1860 	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1861 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1862 }
1863 
1864 void __init inode_init(void)
1865 {
1866 	unsigned int loop;
1867 
1868 	/* inode slab cache */
1869 	inode_cachep = kmem_cache_create("inode_cache",
1870 					 sizeof(struct inode),
1871 					 0,
1872 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1873 					 SLAB_MEM_SPREAD),
1874 					 init_once);
1875 
1876 	/* Hash may have been set up in inode_init_early */
1877 	if (!hashdist)
1878 		return;
1879 
1880 	inode_hashtable =
1881 		alloc_large_system_hash("Inode-cache",
1882 					sizeof(struct hlist_head),
1883 					ihash_entries,
1884 					14,
1885 					0,
1886 					&i_hash_shift,
1887 					&i_hash_mask,
1888 					0,
1889 					0);
1890 
1891 	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1892 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1893 }
1894 
1895 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1896 {
1897 	inode->i_mode = mode;
1898 	if (S_ISCHR(mode)) {
1899 		inode->i_fop = &def_chr_fops;
1900 		inode->i_rdev = rdev;
1901 	} else if (S_ISBLK(mode)) {
1902 		inode->i_fop = &def_blk_fops;
1903 		inode->i_rdev = rdev;
1904 	} else if (S_ISFIFO(mode))
1905 		inode->i_fop = &pipefifo_fops;
1906 	else if (S_ISSOCK(mode))
1907 		;	/* leave it no_open_fops */
1908 	else
1909 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1910 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1911 				  inode->i_ino);
1912 }
1913 EXPORT_SYMBOL(init_special_inode);
1914 
1915 /**
1916  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1917  * @inode: New inode
1918  * @dir: Directory inode
1919  * @mode: mode of the new inode
1920  */
1921 void inode_init_owner(struct inode *inode, const struct inode *dir,
1922 			umode_t mode)
1923 {
1924 	inode->i_uid = current_fsuid();
1925 	if (dir && dir->i_mode & S_ISGID) {
1926 		inode->i_gid = dir->i_gid;
1927 		if (S_ISDIR(mode))
1928 			mode |= S_ISGID;
1929 	} else
1930 		inode->i_gid = current_fsgid();
1931 	inode->i_mode = mode;
1932 }
1933 EXPORT_SYMBOL(inode_init_owner);
1934 
1935 /**
1936  * inode_owner_or_capable - check current task permissions to inode
1937  * @inode: inode being checked
1938  *
1939  * Return true if current either has CAP_FOWNER in a namespace with the
1940  * inode owner uid mapped, or owns the file.
1941  */
1942 bool inode_owner_or_capable(const struct inode *inode)
1943 {
1944 	struct user_namespace *ns;
1945 
1946 	if (uid_eq(current_fsuid(), inode->i_uid))
1947 		return true;
1948 
1949 	ns = current_user_ns();
1950 	if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
1951 		return true;
1952 	return false;
1953 }
1954 EXPORT_SYMBOL(inode_owner_or_capable);
1955 
1956 /*
1957  * Direct i/o helper functions
1958  */
1959 static void __inode_dio_wait(struct inode *inode)
1960 {
1961 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1962 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1963 
1964 	do {
1965 		prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1966 		if (atomic_read(&inode->i_dio_count))
1967 			schedule();
1968 	} while (atomic_read(&inode->i_dio_count));
1969 	finish_wait(wq, &q.wait);
1970 }
1971 
1972 /**
1973  * inode_dio_wait - wait for outstanding DIO requests to finish
1974  * @inode: inode to wait for
1975  *
1976  * Waits for all pending direct I/O requests to finish so that we can
1977  * proceed with a truncate or equivalent operation.
1978  *
1979  * Must be called under a lock that serializes taking new references
1980  * to i_dio_count, usually by inode->i_mutex.
1981  */
1982 void inode_dio_wait(struct inode *inode)
1983 {
1984 	if (atomic_read(&inode->i_dio_count))
1985 		__inode_dio_wait(inode);
1986 }
1987 EXPORT_SYMBOL(inode_dio_wait);
1988 
1989 /*
1990  * inode_set_flags - atomically set some inode flags
1991  *
1992  * Note: the caller should be holding i_mutex, or else be sure that
1993  * they have exclusive access to the inode structure (i.e., while the
1994  * inode is being instantiated).  The reason for the cmpxchg() loop
1995  * --- which wouldn't be necessary if all code paths which modify
1996  * i_flags actually followed this rule, is that there is at least one
1997  * code path which doesn't today so we use cmpxchg() out of an abundance
1998  * of caution.
1999  *
2000  * In the long run, i_mutex is overkill, and we should probably look
2001  * at using the i_lock spinlock to protect i_flags, and then make sure
2002  * it is so documented in include/linux/fs.h and that all code follows
2003  * the locking convention!!
2004  */
2005 void inode_set_flags(struct inode *inode, unsigned int flags,
2006 		     unsigned int mask)
2007 {
2008 	unsigned int old_flags, new_flags;
2009 
2010 	WARN_ON_ONCE(flags & ~mask);
2011 	do {
2012 		old_flags = ACCESS_ONCE(inode->i_flags);
2013 		new_flags = (old_flags & ~mask) | flags;
2014 	} while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2015 				  new_flags) != old_flags));
2016 }
2017 EXPORT_SYMBOL(inode_set_flags);
2018