xref: /openbmc/linux/fs/inode.c (revision e23feb16)
1 /*
2  * (C) 1997 Linus Torvalds
3  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4  */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include "internal.h"
22 
23 /*
24  * Inode locking rules:
25  *
26  * inode->i_lock protects:
27  *   inode->i_state, inode->i_hash, __iget()
28  * Inode LRU list locks protect:
29  *   inode->i_sb->s_inode_lru, inode->i_lru
30  * inode_sb_list_lock protects:
31  *   sb->s_inodes, inode->i_sb_list
32  * bdi->wb.list_lock protects:
33  *   bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
34  * inode_hash_lock protects:
35  *   inode_hashtable, inode->i_hash
36  *
37  * Lock ordering:
38  *
39  * inode_sb_list_lock
40  *   inode->i_lock
41  *     Inode LRU list locks
42  *
43  * bdi->wb.list_lock
44  *   inode->i_lock
45  *
46  * inode_hash_lock
47  *   inode_sb_list_lock
48  *   inode->i_lock
49  *
50  * iunique_lock
51  *   inode_hash_lock
52  */
53 
54 static unsigned int i_hash_mask __read_mostly;
55 static unsigned int i_hash_shift __read_mostly;
56 static struct hlist_head *inode_hashtable __read_mostly;
57 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
58 
59 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
60 
61 /*
62  * Empty aops. Can be used for the cases where the user does not
63  * define any of the address_space operations.
64  */
65 const struct address_space_operations empty_aops = {
66 };
67 EXPORT_SYMBOL(empty_aops);
68 
69 /*
70  * Statistics gathering..
71  */
72 struct inodes_stat_t inodes_stat;
73 
74 static DEFINE_PER_CPU(unsigned long, nr_inodes);
75 static DEFINE_PER_CPU(unsigned long, nr_unused);
76 
77 static struct kmem_cache *inode_cachep __read_mostly;
78 
79 static long get_nr_inodes(void)
80 {
81 	int i;
82 	long sum = 0;
83 	for_each_possible_cpu(i)
84 		sum += per_cpu(nr_inodes, i);
85 	return sum < 0 ? 0 : sum;
86 }
87 
88 static inline long get_nr_inodes_unused(void)
89 {
90 	int i;
91 	long sum = 0;
92 	for_each_possible_cpu(i)
93 		sum += per_cpu(nr_unused, i);
94 	return sum < 0 ? 0 : sum;
95 }
96 
97 long get_nr_dirty_inodes(void)
98 {
99 	/* not actually dirty inodes, but a wild approximation */
100 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
101 	return nr_dirty > 0 ? nr_dirty : 0;
102 }
103 
104 /*
105  * Handle nr_inode sysctl
106  */
107 #ifdef CONFIG_SYSCTL
108 int proc_nr_inodes(ctl_table *table, int write,
109 		   void __user *buffer, size_t *lenp, loff_t *ppos)
110 {
111 	inodes_stat.nr_inodes = get_nr_inodes();
112 	inodes_stat.nr_unused = get_nr_inodes_unused();
113 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
114 }
115 #endif
116 
117 /**
118  * inode_init_always - perform inode structure intialisation
119  * @sb: superblock inode belongs to
120  * @inode: inode to initialise
121  *
122  * These are initializations that need to be done on every inode
123  * allocation as the fields are not initialised by slab allocation.
124  */
125 int inode_init_always(struct super_block *sb, struct inode *inode)
126 {
127 	static const struct inode_operations empty_iops;
128 	static const struct file_operations empty_fops;
129 	struct address_space *const mapping = &inode->i_data;
130 
131 	inode->i_sb = sb;
132 	inode->i_blkbits = sb->s_blocksize_bits;
133 	inode->i_flags = 0;
134 	atomic_set(&inode->i_count, 1);
135 	inode->i_op = &empty_iops;
136 	inode->i_fop = &empty_fops;
137 	inode->__i_nlink = 1;
138 	inode->i_opflags = 0;
139 	i_uid_write(inode, 0);
140 	i_gid_write(inode, 0);
141 	atomic_set(&inode->i_writecount, 0);
142 	inode->i_size = 0;
143 	inode->i_blocks = 0;
144 	inode->i_bytes = 0;
145 	inode->i_generation = 0;
146 #ifdef CONFIG_QUOTA
147 	memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
148 #endif
149 	inode->i_pipe = NULL;
150 	inode->i_bdev = NULL;
151 	inode->i_cdev = NULL;
152 	inode->i_rdev = 0;
153 	inode->dirtied_when = 0;
154 
155 	if (security_inode_alloc(inode))
156 		goto out;
157 	spin_lock_init(&inode->i_lock);
158 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
159 
160 	mutex_init(&inode->i_mutex);
161 	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
162 
163 	atomic_set(&inode->i_dio_count, 0);
164 
165 	mapping->a_ops = &empty_aops;
166 	mapping->host = inode;
167 	mapping->flags = 0;
168 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
169 	mapping->private_data = NULL;
170 	mapping->backing_dev_info = &default_backing_dev_info;
171 	mapping->writeback_index = 0;
172 
173 	/*
174 	 * If the block_device provides a backing_dev_info for client
175 	 * inodes then use that.  Otherwise the inode share the bdev's
176 	 * backing_dev_info.
177 	 */
178 	if (sb->s_bdev) {
179 		struct backing_dev_info *bdi;
180 
181 		bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
182 		mapping->backing_dev_info = bdi;
183 	}
184 	inode->i_private = NULL;
185 	inode->i_mapping = mapping;
186 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
187 #ifdef CONFIG_FS_POSIX_ACL
188 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
189 #endif
190 
191 #ifdef CONFIG_FSNOTIFY
192 	inode->i_fsnotify_mask = 0;
193 #endif
194 
195 	this_cpu_inc(nr_inodes);
196 
197 	return 0;
198 out:
199 	return -ENOMEM;
200 }
201 EXPORT_SYMBOL(inode_init_always);
202 
203 static struct inode *alloc_inode(struct super_block *sb)
204 {
205 	struct inode *inode;
206 
207 	if (sb->s_op->alloc_inode)
208 		inode = sb->s_op->alloc_inode(sb);
209 	else
210 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
211 
212 	if (!inode)
213 		return NULL;
214 
215 	if (unlikely(inode_init_always(sb, inode))) {
216 		if (inode->i_sb->s_op->destroy_inode)
217 			inode->i_sb->s_op->destroy_inode(inode);
218 		else
219 			kmem_cache_free(inode_cachep, inode);
220 		return NULL;
221 	}
222 
223 	return inode;
224 }
225 
226 void free_inode_nonrcu(struct inode *inode)
227 {
228 	kmem_cache_free(inode_cachep, inode);
229 }
230 EXPORT_SYMBOL(free_inode_nonrcu);
231 
232 void __destroy_inode(struct inode *inode)
233 {
234 	BUG_ON(inode_has_buffers(inode));
235 	security_inode_free(inode);
236 	fsnotify_inode_delete(inode);
237 	if (!inode->i_nlink) {
238 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
239 		atomic_long_dec(&inode->i_sb->s_remove_count);
240 	}
241 
242 #ifdef CONFIG_FS_POSIX_ACL
243 	if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
244 		posix_acl_release(inode->i_acl);
245 	if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
246 		posix_acl_release(inode->i_default_acl);
247 #endif
248 	this_cpu_dec(nr_inodes);
249 }
250 EXPORT_SYMBOL(__destroy_inode);
251 
252 static void i_callback(struct rcu_head *head)
253 {
254 	struct inode *inode = container_of(head, struct inode, i_rcu);
255 	kmem_cache_free(inode_cachep, inode);
256 }
257 
258 static void destroy_inode(struct inode *inode)
259 {
260 	BUG_ON(!list_empty(&inode->i_lru));
261 	__destroy_inode(inode);
262 	if (inode->i_sb->s_op->destroy_inode)
263 		inode->i_sb->s_op->destroy_inode(inode);
264 	else
265 		call_rcu(&inode->i_rcu, i_callback);
266 }
267 
268 /**
269  * drop_nlink - directly drop an inode's link count
270  * @inode: inode
271  *
272  * This is a low-level filesystem helper to replace any
273  * direct filesystem manipulation of i_nlink.  In cases
274  * where we are attempting to track writes to the
275  * filesystem, a decrement to zero means an imminent
276  * write when the file is truncated and actually unlinked
277  * on the filesystem.
278  */
279 void drop_nlink(struct inode *inode)
280 {
281 	WARN_ON(inode->i_nlink == 0);
282 	inode->__i_nlink--;
283 	if (!inode->i_nlink)
284 		atomic_long_inc(&inode->i_sb->s_remove_count);
285 }
286 EXPORT_SYMBOL(drop_nlink);
287 
288 /**
289  * clear_nlink - directly zero an inode's link count
290  * @inode: inode
291  *
292  * This is a low-level filesystem helper to replace any
293  * direct filesystem manipulation of i_nlink.  See
294  * drop_nlink() for why we care about i_nlink hitting zero.
295  */
296 void clear_nlink(struct inode *inode)
297 {
298 	if (inode->i_nlink) {
299 		inode->__i_nlink = 0;
300 		atomic_long_inc(&inode->i_sb->s_remove_count);
301 	}
302 }
303 EXPORT_SYMBOL(clear_nlink);
304 
305 /**
306  * set_nlink - directly set an inode's link count
307  * @inode: inode
308  * @nlink: new nlink (should be non-zero)
309  *
310  * This is a low-level filesystem helper to replace any
311  * direct filesystem manipulation of i_nlink.
312  */
313 void set_nlink(struct inode *inode, unsigned int nlink)
314 {
315 	if (!nlink) {
316 		clear_nlink(inode);
317 	} else {
318 		/* Yes, some filesystems do change nlink from zero to one */
319 		if (inode->i_nlink == 0)
320 			atomic_long_dec(&inode->i_sb->s_remove_count);
321 
322 		inode->__i_nlink = nlink;
323 	}
324 }
325 EXPORT_SYMBOL(set_nlink);
326 
327 /**
328  * inc_nlink - directly increment an inode's link count
329  * @inode: inode
330  *
331  * This is a low-level filesystem helper to replace any
332  * direct filesystem manipulation of i_nlink.  Currently,
333  * it is only here for parity with dec_nlink().
334  */
335 void inc_nlink(struct inode *inode)
336 {
337 	if (unlikely(inode->i_nlink == 0)) {
338 		WARN_ON(!(inode->i_state & I_LINKABLE));
339 		atomic_long_dec(&inode->i_sb->s_remove_count);
340 	}
341 
342 	inode->__i_nlink++;
343 }
344 EXPORT_SYMBOL(inc_nlink);
345 
346 void address_space_init_once(struct address_space *mapping)
347 {
348 	memset(mapping, 0, sizeof(*mapping));
349 	INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
350 	spin_lock_init(&mapping->tree_lock);
351 	mutex_init(&mapping->i_mmap_mutex);
352 	INIT_LIST_HEAD(&mapping->private_list);
353 	spin_lock_init(&mapping->private_lock);
354 	mapping->i_mmap = RB_ROOT;
355 	INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
356 }
357 EXPORT_SYMBOL(address_space_init_once);
358 
359 /*
360  * These are initializations that only need to be done
361  * once, because the fields are idempotent across use
362  * of the inode, so let the slab aware of that.
363  */
364 void inode_init_once(struct inode *inode)
365 {
366 	memset(inode, 0, sizeof(*inode));
367 	INIT_HLIST_NODE(&inode->i_hash);
368 	INIT_LIST_HEAD(&inode->i_devices);
369 	INIT_LIST_HEAD(&inode->i_wb_list);
370 	INIT_LIST_HEAD(&inode->i_lru);
371 	address_space_init_once(&inode->i_data);
372 	i_size_ordered_init(inode);
373 #ifdef CONFIG_FSNOTIFY
374 	INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
375 #endif
376 }
377 EXPORT_SYMBOL(inode_init_once);
378 
379 static void init_once(void *foo)
380 {
381 	struct inode *inode = (struct inode *) foo;
382 
383 	inode_init_once(inode);
384 }
385 
386 /*
387  * inode->i_lock must be held
388  */
389 void __iget(struct inode *inode)
390 {
391 	atomic_inc(&inode->i_count);
392 }
393 
394 /*
395  * get additional reference to inode; caller must already hold one.
396  */
397 void ihold(struct inode *inode)
398 {
399 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
400 }
401 EXPORT_SYMBOL(ihold);
402 
403 static void inode_lru_list_add(struct inode *inode)
404 {
405 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
406 		this_cpu_inc(nr_unused);
407 }
408 
409 /*
410  * Add inode to LRU if needed (inode is unused and clean).
411  *
412  * Needs inode->i_lock held.
413  */
414 void inode_add_lru(struct inode *inode)
415 {
416 	if (!(inode->i_state & (I_DIRTY | I_SYNC | I_FREEING | I_WILL_FREE)) &&
417 	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
418 		inode_lru_list_add(inode);
419 }
420 
421 
422 static void inode_lru_list_del(struct inode *inode)
423 {
424 
425 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
426 		this_cpu_dec(nr_unused);
427 }
428 
429 /**
430  * inode_sb_list_add - add inode to the superblock list of inodes
431  * @inode: inode to add
432  */
433 void inode_sb_list_add(struct inode *inode)
434 {
435 	spin_lock(&inode_sb_list_lock);
436 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
437 	spin_unlock(&inode_sb_list_lock);
438 }
439 EXPORT_SYMBOL_GPL(inode_sb_list_add);
440 
441 static inline void inode_sb_list_del(struct inode *inode)
442 {
443 	if (!list_empty(&inode->i_sb_list)) {
444 		spin_lock(&inode_sb_list_lock);
445 		list_del_init(&inode->i_sb_list);
446 		spin_unlock(&inode_sb_list_lock);
447 	}
448 }
449 
450 static unsigned long hash(struct super_block *sb, unsigned long hashval)
451 {
452 	unsigned long tmp;
453 
454 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
455 			L1_CACHE_BYTES;
456 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
457 	return tmp & i_hash_mask;
458 }
459 
460 /**
461  *	__insert_inode_hash - hash an inode
462  *	@inode: unhashed inode
463  *	@hashval: unsigned long value used to locate this object in the
464  *		inode_hashtable.
465  *
466  *	Add an inode to the inode hash for this superblock.
467  */
468 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
469 {
470 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
471 
472 	spin_lock(&inode_hash_lock);
473 	spin_lock(&inode->i_lock);
474 	hlist_add_head(&inode->i_hash, b);
475 	spin_unlock(&inode->i_lock);
476 	spin_unlock(&inode_hash_lock);
477 }
478 EXPORT_SYMBOL(__insert_inode_hash);
479 
480 /**
481  *	__remove_inode_hash - remove an inode from the hash
482  *	@inode: inode to unhash
483  *
484  *	Remove an inode from the superblock.
485  */
486 void __remove_inode_hash(struct inode *inode)
487 {
488 	spin_lock(&inode_hash_lock);
489 	spin_lock(&inode->i_lock);
490 	hlist_del_init(&inode->i_hash);
491 	spin_unlock(&inode->i_lock);
492 	spin_unlock(&inode_hash_lock);
493 }
494 EXPORT_SYMBOL(__remove_inode_hash);
495 
496 void clear_inode(struct inode *inode)
497 {
498 	might_sleep();
499 	/*
500 	 * We have to cycle tree_lock here because reclaim can be still in the
501 	 * process of removing the last page (in __delete_from_page_cache())
502 	 * and we must not free mapping under it.
503 	 */
504 	spin_lock_irq(&inode->i_data.tree_lock);
505 	BUG_ON(inode->i_data.nrpages);
506 	spin_unlock_irq(&inode->i_data.tree_lock);
507 	BUG_ON(!list_empty(&inode->i_data.private_list));
508 	BUG_ON(!(inode->i_state & I_FREEING));
509 	BUG_ON(inode->i_state & I_CLEAR);
510 	/* don't need i_lock here, no concurrent mods to i_state */
511 	inode->i_state = I_FREEING | I_CLEAR;
512 }
513 EXPORT_SYMBOL(clear_inode);
514 
515 /*
516  * Free the inode passed in, removing it from the lists it is still connected
517  * to. We remove any pages still attached to the inode and wait for any IO that
518  * is still in progress before finally destroying the inode.
519  *
520  * An inode must already be marked I_FREEING so that we avoid the inode being
521  * moved back onto lists if we race with other code that manipulates the lists
522  * (e.g. writeback_single_inode). The caller is responsible for setting this.
523  *
524  * An inode must already be removed from the LRU list before being evicted from
525  * the cache. This should occur atomically with setting the I_FREEING state
526  * flag, so no inodes here should ever be on the LRU when being evicted.
527  */
528 static void evict(struct inode *inode)
529 {
530 	const struct super_operations *op = inode->i_sb->s_op;
531 
532 	BUG_ON(!(inode->i_state & I_FREEING));
533 	BUG_ON(!list_empty(&inode->i_lru));
534 
535 	if (!list_empty(&inode->i_wb_list))
536 		inode_wb_list_del(inode);
537 
538 	inode_sb_list_del(inode);
539 
540 	/*
541 	 * Wait for flusher thread to be done with the inode so that filesystem
542 	 * does not start destroying it while writeback is still running. Since
543 	 * the inode has I_FREEING set, flusher thread won't start new work on
544 	 * the inode.  We just have to wait for running writeback to finish.
545 	 */
546 	inode_wait_for_writeback(inode);
547 
548 	if (op->evict_inode) {
549 		op->evict_inode(inode);
550 	} else {
551 		if (inode->i_data.nrpages)
552 			truncate_inode_pages(&inode->i_data, 0);
553 		clear_inode(inode);
554 	}
555 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
556 		bd_forget(inode);
557 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
558 		cd_forget(inode);
559 
560 	remove_inode_hash(inode);
561 
562 	spin_lock(&inode->i_lock);
563 	wake_up_bit(&inode->i_state, __I_NEW);
564 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
565 	spin_unlock(&inode->i_lock);
566 
567 	destroy_inode(inode);
568 }
569 
570 /*
571  * dispose_list - dispose of the contents of a local list
572  * @head: the head of the list to free
573  *
574  * Dispose-list gets a local list with local inodes in it, so it doesn't
575  * need to worry about list corruption and SMP locks.
576  */
577 static void dispose_list(struct list_head *head)
578 {
579 	while (!list_empty(head)) {
580 		struct inode *inode;
581 
582 		inode = list_first_entry(head, struct inode, i_lru);
583 		list_del_init(&inode->i_lru);
584 
585 		evict(inode);
586 	}
587 }
588 
589 /**
590  * evict_inodes	- evict all evictable inodes for a superblock
591  * @sb:		superblock to operate on
592  *
593  * Make sure that no inodes with zero refcount are retained.  This is
594  * called by superblock shutdown after having MS_ACTIVE flag removed,
595  * so any inode reaching zero refcount during or after that call will
596  * be immediately evicted.
597  */
598 void evict_inodes(struct super_block *sb)
599 {
600 	struct inode *inode, *next;
601 	LIST_HEAD(dispose);
602 
603 	spin_lock(&inode_sb_list_lock);
604 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
605 		if (atomic_read(&inode->i_count))
606 			continue;
607 
608 		spin_lock(&inode->i_lock);
609 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
610 			spin_unlock(&inode->i_lock);
611 			continue;
612 		}
613 
614 		inode->i_state |= I_FREEING;
615 		inode_lru_list_del(inode);
616 		spin_unlock(&inode->i_lock);
617 		list_add(&inode->i_lru, &dispose);
618 	}
619 	spin_unlock(&inode_sb_list_lock);
620 
621 	dispose_list(&dispose);
622 }
623 
624 /**
625  * invalidate_inodes	- attempt to free all inodes on a superblock
626  * @sb:		superblock to operate on
627  * @kill_dirty: flag to guide handling of dirty inodes
628  *
629  * Attempts to free all inodes for a given superblock.  If there were any
630  * busy inodes return a non-zero value, else zero.
631  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
632  * them as busy.
633  */
634 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
635 {
636 	int busy = 0;
637 	struct inode *inode, *next;
638 	LIST_HEAD(dispose);
639 
640 	spin_lock(&inode_sb_list_lock);
641 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
642 		spin_lock(&inode->i_lock);
643 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
644 			spin_unlock(&inode->i_lock);
645 			continue;
646 		}
647 		if (inode->i_state & I_DIRTY && !kill_dirty) {
648 			spin_unlock(&inode->i_lock);
649 			busy = 1;
650 			continue;
651 		}
652 		if (atomic_read(&inode->i_count)) {
653 			spin_unlock(&inode->i_lock);
654 			busy = 1;
655 			continue;
656 		}
657 
658 		inode->i_state |= I_FREEING;
659 		inode_lru_list_del(inode);
660 		spin_unlock(&inode->i_lock);
661 		list_add(&inode->i_lru, &dispose);
662 	}
663 	spin_unlock(&inode_sb_list_lock);
664 
665 	dispose_list(&dispose);
666 
667 	return busy;
668 }
669 
670 /*
671  * Isolate the inode from the LRU in preparation for freeing it.
672  *
673  * Any inodes which are pinned purely because of attached pagecache have their
674  * pagecache removed.  If the inode has metadata buffers attached to
675  * mapping->private_list then try to remove them.
676  *
677  * If the inode has the I_REFERENCED flag set, then it means that it has been
678  * used recently - the flag is set in iput_final(). When we encounter such an
679  * inode, clear the flag and move it to the back of the LRU so it gets another
680  * pass through the LRU before it gets reclaimed. This is necessary because of
681  * the fact we are doing lazy LRU updates to minimise lock contention so the
682  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
683  * with this flag set because they are the inodes that are out of order.
684  */
685 static enum lru_status
686 inode_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
687 {
688 	struct list_head *freeable = arg;
689 	struct inode	*inode = container_of(item, struct inode, i_lru);
690 
691 	/*
692 	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
693 	 * If we fail to get the lock, just skip it.
694 	 */
695 	if (!spin_trylock(&inode->i_lock))
696 		return LRU_SKIP;
697 
698 	/*
699 	 * Referenced or dirty inodes are still in use. Give them another pass
700 	 * through the LRU as we canot reclaim them now.
701 	 */
702 	if (atomic_read(&inode->i_count) ||
703 	    (inode->i_state & ~I_REFERENCED)) {
704 		list_del_init(&inode->i_lru);
705 		spin_unlock(&inode->i_lock);
706 		this_cpu_dec(nr_unused);
707 		return LRU_REMOVED;
708 	}
709 
710 	/* recently referenced inodes get one more pass */
711 	if (inode->i_state & I_REFERENCED) {
712 		inode->i_state &= ~I_REFERENCED;
713 		spin_unlock(&inode->i_lock);
714 		return LRU_ROTATE;
715 	}
716 
717 	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
718 		__iget(inode);
719 		spin_unlock(&inode->i_lock);
720 		spin_unlock(lru_lock);
721 		if (remove_inode_buffers(inode)) {
722 			unsigned long reap;
723 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
724 			if (current_is_kswapd())
725 				__count_vm_events(KSWAPD_INODESTEAL, reap);
726 			else
727 				__count_vm_events(PGINODESTEAL, reap);
728 			if (current->reclaim_state)
729 				current->reclaim_state->reclaimed_slab += reap;
730 		}
731 		iput(inode);
732 		spin_lock(lru_lock);
733 		return LRU_RETRY;
734 	}
735 
736 	WARN_ON(inode->i_state & I_NEW);
737 	inode->i_state |= I_FREEING;
738 	list_move(&inode->i_lru, freeable);
739 	spin_unlock(&inode->i_lock);
740 
741 	this_cpu_dec(nr_unused);
742 	return LRU_REMOVED;
743 }
744 
745 /*
746  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
747  * This is called from the superblock shrinker function with a number of inodes
748  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
749  * then are freed outside inode_lock by dispose_list().
750  */
751 long prune_icache_sb(struct super_block *sb, unsigned long nr_to_scan,
752 		     int nid)
753 {
754 	LIST_HEAD(freeable);
755 	long freed;
756 
757 	freed = list_lru_walk_node(&sb->s_inode_lru, nid, inode_lru_isolate,
758 				       &freeable, &nr_to_scan);
759 	dispose_list(&freeable);
760 	return freed;
761 }
762 
763 static void __wait_on_freeing_inode(struct inode *inode);
764 /*
765  * Called with the inode lock held.
766  */
767 static struct inode *find_inode(struct super_block *sb,
768 				struct hlist_head *head,
769 				int (*test)(struct inode *, void *),
770 				void *data)
771 {
772 	struct inode *inode = NULL;
773 
774 repeat:
775 	hlist_for_each_entry(inode, head, i_hash) {
776 		spin_lock(&inode->i_lock);
777 		if (inode->i_sb != sb) {
778 			spin_unlock(&inode->i_lock);
779 			continue;
780 		}
781 		if (!test(inode, data)) {
782 			spin_unlock(&inode->i_lock);
783 			continue;
784 		}
785 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
786 			__wait_on_freeing_inode(inode);
787 			goto repeat;
788 		}
789 		__iget(inode);
790 		spin_unlock(&inode->i_lock);
791 		return inode;
792 	}
793 	return NULL;
794 }
795 
796 /*
797  * find_inode_fast is the fast path version of find_inode, see the comment at
798  * iget_locked for details.
799  */
800 static struct inode *find_inode_fast(struct super_block *sb,
801 				struct hlist_head *head, unsigned long ino)
802 {
803 	struct inode *inode = NULL;
804 
805 repeat:
806 	hlist_for_each_entry(inode, head, i_hash) {
807 		spin_lock(&inode->i_lock);
808 		if (inode->i_ino != ino) {
809 			spin_unlock(&inode->i_lock);
810 			continue;
811 		}
812 		if (inode->i_sb != sb) {
813 			spin_unlock(&inode->i_lock);
814 			continue;
815 		}
816 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
817 			__wait_on_freeing_inode(inode);
818 			goto repeat;
819 		}
820 		__iget(inode);
821 		spin_unlock(&inode->i_lock);
822 		return inode;
823 	}
824 	return NULL;
825 }
826 
827 /*
828  * Each cpu owns a range of LAST_INO_BATCH numbers.
829  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
830  * to renew the exhausted range.
831  *
832  * This does not significantly increase overflow rate because every CPU can
833  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
834  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
835  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
836  * overflow rate by 2x, which does not seem too significant.
837  *
838  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
839  * error if st_ino won't fit in target struct field. Use 32bit counter
840  * here to attempt to avoid that.
841  */
842 #define LAST_INO_BATCH 1024
843 static DEFINE_PER_CPU(unsigned int, last_ino);
844 
845 unsigned int get_next_ino(void)
846 {
847 	unsigned int *p = &get_cpu_var(last_ino);
848 	unsigned int res = *p;
849 
850 #ifdef CONFIG_SMP
851 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
852 		static atomic_t shared_last_ino;
853 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
854 
855 		res = next - LAST_INO_BATCH;
856 	}
857 #endif
858 
859 	*p = ++res;
860 	put_cpu_var(last_ino);
861 	return res;
862 }
863 EXPORT_SYMBOL(get_next_ino);
864 
865 /**
866  *	new_inode_pseudo 	- obtain an inode
867  *	@sb: superblock
868  *
869  *	Allocates a new inode for given superblock.
870  *	Inode wont be chained in superblock s_inodes list
871  *	This means :
872  *	- fs can't be unmount
873  *	- quotas, fsnotify, writeback can't work
874  */
875 struct inode *new_inode_pseudo(struct super_block *sb)
876 {
877 	struct inode *inode = alloc_inode(sb);
878 
879 	if (inode) {
880 		spin_lock(&inode->i_lock);
881 		inode->i_state = 0;
882 		spin_unlock(&inode->i_lock);
883 		INIT_LIST_HEAD(&inode->i_sb_list);
884 	}
885 	return inode;
886 }
887 
888 /**
889  *	new_inode 	- obtain an inode
890  *	@sb: superblock
891  *
892  *	Allocates a new inode for given superblock. The default gfp_mask
893  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
894  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
895  *	for the page cache are not reclaimable or migratable,
896  *	mapping_set_gfp_mask() must be called with suitable flags on the
897  *	newly created inode's mapping
898  *
899  */
900 struct inode *new_inode(struct super_block *sb)
901 {
902 	struct inode *inode;
903 
904 	spin_lock_prefetch(&inode_sb_list_lock);
905 
906 	inode = new_inode_pseudo(sb);
907 	if (inode)
908 		inode_sb_list_add(inode);
909 	return inode;
910 }
911 EXPORT_SYMBOL(new_inode);
912 
913 #ifdef CONFIG_DEBUG_LOCK_ALLOC
914 void lockdep_annotate_inode_mutex_key(struct inode *inode)
915 {
916 	if (S_ISDIR(inode->i_mode)) {
917 		struct file_system_type *type = inode->i_sb->s_type;
918 
919 		/* Set new key only if filesystem hasn't already changed it */
920 		if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
921 			/*
922 			 * ensure nobody is actually holding i_mutex
923 			 */
924 			mutex_destroy(&inode->i_mutex);
925 			mutex_init(&inode->i_mutex);
926 			lockdep_set_class(&inode->i_mutex,
927 					  &type->i_mutex_dir_key);
928 		}
929 	}
930 }
931 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
932 #endif
933 
934 /**
935  * unlock_new_inode - clear the I_NEW state and wake up any waiters
936  * @inode:	new inode to unlock
937  *
938  * Called when the inode is fully initialised to clear the new state of the
939  * inode and wake up anyone waiting for the inode to finish initialisation.
940  */
941 void unlock_new_inode(struct inode *inode)
942 {
943 	lockdep_annotate_inode_mutex_key(inode);
944 	spin_lock(&inode->i_lock);
945 	WARN_ON(!(inode->i_state & I_NEW));
946 	inode->i_state &= ~I_NEW;
947 	smp_mb();
948 	wake_up_bit(&inode->i_state, __I_NEW);
949 	spin_unlock(&inode->i_lock);
950 }
951 EXPORT_SYMBOL(unlock_new_inode);
952 
953 /**
954  * iget5_locked - obtain an inode from a mounted file system
955  * @sb:		super block of file system
956  * @hashval:	hash value (usually inode number) to get
957  * @test:	callback used for comparisons between inodes
958  * @set:	callback used to initialize a new struct inode
959  * @data:	opaque data pointer to pass to @test and @set
960  *
961  * Search for the inode specified by @hashval and @data in the inode cache,
962  * and if present it is return it with an increased reference count. This is
963  * a generalized version of iget_locked() for file systems where the inode
964  * number is not sufficient for unique identification of an inode.
965  *
966  * If the inode is not in cache, allocate a new inode and return it locked,
967  * hashed, and with the I_NEW flag set. The file system gets to fill it in
968  * before unlocking it via unlock_new_inode().
969  *
970  * Note both @test and @set are called with the inode_hash_lock held, so can't
971  * sleep.
972  */
973 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
974 		int (*test)(struct inode *, void *),
975 		int (*set)(struct inode *, void *), void *data)
976 {
977 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
978 	struct inode *inode;
979 
980 	spin_lock(&inode_hash_lock);
981 	inode = find_inode(sb, head, test, data);
982 	spin_unlock(&inode_hash_lock);
983 
984 	if (inode) {
985 		wait_on_inode(inode);
986 		return inode;
987 	}
988 
989 	inode = alloc_inode(sb);
990 	if (inode) {
991 		struct inode *old;
992 
993 		spin_lock(&inode_hash_lock);
994 		/* We released the lock, so.. */
995 		old = find_inode(sb, head, test, data);
996 		if (!old) {
997 			if (set(inode, data))
998 				goto set_failed;
999 
1000 			spin_lock(&inode->i_lock);
1001 			inode->i_state = I_NEW;
1002 			hlist_add_head(&inode->i_hash, head);
1003 			spin_unlock(&inode->i_lock);
1004 			inode_sb_list_add(inode);
1005 			spin_unlock(&inode_hash_lock);
1006 
1007 			/* Return the locked inode with I_NEW set, the
1008 			 * caller is responsible for filling in the contents
1009 			 */
1010 			return inode;
1011 		}
1012 
1013 		/*
1014 		 * Uhhuh, somebody else created the same inode under
1015 		 * us. Use the old inode instead of the one we just
1016 		 * allocated.
1017 		 */
1018 		spin_unlock(&inode_hash_lock);
1019 		destroy_inode(inode);
1020 		inode = old;
1021 		wait_on_inode(inode);
1022 	}
1023 	return inode;
1024 
1025 set_failed:
1026 	spin_unlock(&inode_hash_lock);
1027 	destroy_inode(inode);
1028 	return NULL;
1029 }
1030 EXPORT_SYMBOL(iget5_locked);
1031 
1032 /**
1033  * iget_locked - obtain an inode from a mounted file system
1034  * @sb:		super block of file system
1035  * @ino:	inode number to get
1036  *
1037  * Search for the inode specified by @ino in the inode cache and if present
1038  * return it with an increased reference count. This is for file systems
1039  * where the inode number is sufficient for unique identification of an inode.
1040  *
1041  * If the inode is not in cache, allocate a new inode and return it locked,
1042  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1043  * before unlocking it via unlock_new_inode().
1044  */
1045 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1046 {
1047 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1048 	struct inode *inode;
1049 
1050 	spin_lock(&inode_hash_lock);
1051 	inode = find_inode_fast(sb, head, ino);
1052 	spin_unlock(&inode_hash_lock);
1053 	if (inode) {
1054 		wait_on_inode(inode);
1055 		return inode;
1056 	}
1057 
1058 	inode = alloc_inode(sb);
1059 	if (inode) {
1060 		struct inode *old;
1061 
1062 		spin_lock(&inode_hash_lock);
1063 		/* We released the lock, so.. */
1064 		old = find_inode_fast(sb, head, ino);
1065 		if (!old) {
1066 			inode->i_ino = ino;
1067 			spin_lock(&inode->i_lock);
1068 			inode->i_state = I_NEW;
1069 			hlist_add_head(&inode->i_hash, head);
1070 			spin_unlock(&inode->i_lock);
1071 			inode_sb_list_add(inode);
1072 			spin_unlock(&inode_hash_lock);
1073 
1074 			/* Return the locked inode with I_NEW set, the
1075 			 * caller is responsible for filling in the contents
1076 			 */
1077 			return inode;
1078 		}
1079 
1080 		/*
1081 		 * Uhhuh, somebody else created the same inode under
1082 		 * us. Use the old inode instead of the one we just
1083 		 * allocated.
1084 		 */
1085 		spin_unlock(&inode_hash_lock);
1086 		destroy_inode(inode);
1087 		inode = old;
1088 		wait_on_inode(inode);
1089 	}
1090 	return inode;
1091 }
1092 EXPORT_SYMBOL(iget_locked);
1093 
1094 /*
1095  * search the inode cache for a matching inode number.
1096  * If we find one, then the inode number we are trying to
1097  * allocate is not unique and so we should not use it.
1098  *
1099  * Returns 1 if the inode number is unique, 0 if it is not.
1100  */
1101 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1102 {
1103 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1104 	struct inode *inode;
1105 
1106 	spin_lock(&inode_hash_lock);
1107 	hlist_for_each_entry(inode, b, i_hash) {
1108 		if (inode->i_ino == ino && inode->i_sb == sb) {
1109 			spin_unlock(&inode_hash_lock);
1110 			return 0;
1111 		}
1112 	}
1113 	spin_unlock(&inode_hash_lock);
1114 
1115 	return 1;
1116 }
1117 
1118 /**
1119  *	iunique - get a unique inode number
1120  *	@sb: superblock
1121  *	@max_reserved: highest reserved inode number
1122  *
1123  *	Obtain an inode number that is unique on the system for a given
1124  *	superblock. This is used by file systems that have no natural
1125  *	permanent inode numbering system. An inode number is returned that
1126  *	is higher than the reserved limit but unique.
1127  *
1128  *	BUGS:
1129  *	With a large number of inodes live on the file system this function
1130  *	currently becomes quite slow.
1131  */
1132 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1133 {
1134 	/*
1135 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1136 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1137 	 * here to attempt to avoid that.
1138 	 */
1139 	static DEFINE_SPINLOCK(iunique_lock);
1140 	static unsigned int counter;
1141 	ino_t res;
1142 
1143 	spin_lock(&iunique_lock);
1144 	do {
1145 		if (counter <= max_reserved)
1146 			counter = max_reserved + 1;
1147 		res = counter++;
1148 	} while (!test_inode_iunique(sb, res));
1149 	spin_unlock(&iunique_lock);
1150 
1151 	return res;
1152 }
1153 EXPORT_SYMBOL(iunique);
1154 
1155 struct inode *igrab(struct inode *inode)
1156 {
1157 	spin_lock(&inode->i_lock);
1158 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1159 		__iget(inode);
1160 		spin_unlock(&inode->i_lock);
1161 	} else {
1162 		spin_unlock(&inode->i_lock);
1163 		/*
1164 		 * Handle the case where s_op->clear_inode is not been
1165 		 * called yet, and somebody is calling igrab
1166 		 * while the inode is getting freed.
1167 		 */
1168 		inode = NULL;
1169 	}
1170 	return inode;
1171 }
1172 EXPORT_SYMBOL(igrab);
1173 
1174 /**
1175  * ilookup5_nowait - search for an inode in the inode cache
1176  * @sb:		super block of file system to search
1177  * @hashval:	hash value (usually inode number) to search for
1178  * @test:	callback used for comparisons between inodes
1179  * @data:	opaque data pointer to pass to @test
1180  *
1181  * Search for the inode specified by @hashval and @data in the inode cache.
1182  * If the inode is in the cache, the inode is returned with an incremented
1183  * reference count.
1184  *
1185  * Note: I_NEW is not waited upon so you have to be very careful what you do
1186  * with the returned inode.  You probably should be using ilookup5() instead.
1187  *
1188  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1189  */
1190 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1191 		int (*test)(struct inode *, void *), void *data)
1192 {
1193 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1194 	struct inode *inode;
1195 
1196 	spin_lock(&inode_hash_lock);
1197 	inode = find_inode(sb, head, test, data);
1198 	spin_unlock(&inode_hash_lock);
1199 
1200 	return inode;
1201 }
1202 EXPORT_SYMBOL(ilookup5_nowait);
1203 
1204 /**
1205  * ilookup5 - search for an inode in the inode cache
1206  * @sb:		super block of file system to search
1207  * @hashval:	hash value (usually inode number) to search for
1208  * @test:	callback used for comparisons between inodes
1209  * @data:	opaque data pointer to pass to @test
1210  *
1211  * Search for the inode specified by @hashval and @data in the inode cache,
1212  * and if the inode is in the cache, return the inode with an incremented
1213  * reference count.  Waits on I_NEW before returning the inode.
1214  * returned with an incremented reference count.
1215  *
1216  * This is a generalized version of ilookup() for file systems where the
1217  * inode number is not sufficient for unique identification of an inode.
1218  *
1219  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1220  */
1221 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1222 		int (*test)(struct inode *, void *), void *data)
1223 {
1224 	struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1225 
1226 	if (inode)
1227 		wait_on_inode(inode);
1228 	return inode;
1229 }
1230 EXPORT_SYMBOL(ilookup5);
1231 
1232 /**
1233  * ilookup - search for an inode in the inode cache
1234  * @sb:		super block of file system to search
1235  * @ino:	inode number to search for
1236  *
1237  * Search for the inode @ino in the inode cache, and if the inode is in the
1238  * cache, the inode is returned with an incremented reference count.
1239  */
1240 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1241 {
1242 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1243 	struct inode *inode;
1244 
1245 	spin_lock(&inode_hash_lock);
1246 	inode = find_inode_fast(sb, head, ino);
1247 	spin_unlock(&inode_hash_lock);
1248 
1249 	if (inode)
1250 		wait_on_inode(inode);
1251 	return inode;
1252 }
1253 EXPORT_SYMBOL(ilookup);
1254 
1255 int insert_inode_locked(struct inode *inode)
1256 {
1257 	struct super_block *sb = inode->i_sb;
1258 	ino_t ino = inode->i_ino;
1259 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1260 
1261 	while (1) {
1262 		struct inode *old = NULL;
1263 		spin_lock(&inode_hash_lock);
1264 		hlist_for_each_entry(old, head, i_hash) {
1265 			if (old->i_ino != ino)
1266 				continue;
1267 			if (old->i_sb != sb)
1268 				continue;
1269 			spin_lock(&old->i_lock);
1270 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1271 				spin_unlock(&old->i_lock);
1272 				continue;
1273 			}
1274 			break;
1275 		}
1276 		if (likely(!old)) {
1277 			spin_lock(&inode->i_lock);
1278 			inode->i_state |= I_NEW;
1279 			hlist_add_head(&inode->i_hash, head);
1280 			spin_unlock(&inode->i_lock);
1281 			spin_unlock(&inode_hash_lock);
1282 			return 0;
1283 		}
1284 		__iget(old);
1285 		spin_unlock(&old->i_lock);
1286 		spin_unlock(&inode_hash_lock);
1287 		wait_on_inode(old);
1288 		if (unlikely(!inode_unhashed(old))) {
1289 			iput(old);
1290 			return -EBUSY;
1291 		}
1292 		iput(old);
1293 	}
1294 }
1295 EXPORT_SYMBOL(insert_inode_locked);
1296 
1297 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1298 		int (*test)(struct inode *, void *), void *data)
1299 {
1300 	struct super_block *sb = inode->i_sb;
1301 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1302 
1303 	while (1) {
1304 		struct inode *old = NULL;
1305 
1306 		spin_lock(&inode_hash_lock);
1307 		hlist_for_each_entry(old, head, i_hash) {
1308 			if (old->i_sb != sb)
1309 				continue;
1310 			if (!test(old, data))
1311 				continue;
1312 			spin_lock(&old->i_lock);
1313 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1314 				spin_unlock(&old->i_lock);
1315 				continue;
1316 			}
1317 			break;
1318 		}
1319 		if (likely(!old)) {
1320 			spin_lock(&inode->i_lock);
1321 			inode->i_state |= I_NEW;
1322 			hlist_add_head(&inode->i_hash, head);
1323 			spin_unlock(&inode->i_lock);
1324 			spin_unlock(&inode_hash_lock);
1325 			return 0;
1326 		}
1327 		__iget(old);
1328 		spin_unlock(&old->i_lock);
1329 		spin_unlock(&inode_hash_lock);
1330 		wait_on_inode(old);
1331 		if (unlikely(!inode_unhashed(old))) {
1332 			iput(old);
1333 			return -EBUSY;
1334 		}
1335 		iput(old);
1336 	}
1337 }
1338 EXPORT_SYMBOL(insert_inode_locked4);
1339 
1340 
1341 int generic_delete_inode(struct inode *inode)
1342 {
1343 	return 1;
1344 }
1345 EXPORT_SYMBOL(generic_delete_inode);
1346 
1347 /*
1348  * Called when we're dropping the last reference
1349  * to an inode.
1350  *
1351  * Call the FS "drop_inode()" function, defaulting to
1352  * the legacy UNIX filesystem behaviour.  If it tells
1353  * us to evict inode, do so.  Otherwise, retain inode
1354  * in cache if fs is alive, sync and evict if fs is
1355  * shutting down.
1356  */
1357 static void iput_final(struct inode *inode)
1358 {
1359 	struct super_block *sb = inode->i_sb;
1360 	const struct super_operations *op = inode->i_sb->s_op;
1361 	int drop;
1362 
1363 	WARN_ON(inode->i_state & I_NEW);
1364 
1365 	if (op->drop_inode)
1366 		drop = op->drop_inode(inode);
1367 	else
1368 		drop = generic_drop_inode(inode);
1369 
1370 	if (!drop && (sb->s_flags & MS_ACTIVE)) {
1371 		inode->i_state |= I_REFERENCED;
1372 		inode_add_lru(inode);
1373 		spin_unlock(&inode->i_lock);
1374 		return;
1375 	}
1376 
1377 	if (!drop) {
1378 		inode->i_state |= I_WILL_FREE;
1379 		spin_unlock(&inode->i_lock);
1380 		write_inode_now(inode, 1);
1381 		spin_lock(&inode->i_lock);
1382 		WARN_ON(inode->i_state & I_NEW);
1383 		inode->i_state &= ~I_WILL_FREE;
1384 	}
1385 
1386 	inode->i_state |= I_FREEING;
1387 	if (!list_empty(&inode->i_lru))
1388 		inode_lru_list_del(inode);
1389 	spin_unlock(&inode->i_lock);
1390 
1391 	evict(inode);
1392 }
1393 
1394 /**
1395  *	iput	- put an inode
1396  *	@inode: inode to put
1397  *
1398  *	Puts an inode, dropping its usage count. If the inode use count hits
1399  *	zero, the inode is then freed and may also be destroyed.
1400  *
1401  *	Consequently, iput() can sleep.
1402  */
1403 void iput(struct inode *inode)
1404 {
1405 	if (inode) {
1406 		BUG_ON(inode->i_state & I_CLEAR);
1407 
1408 		if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1409 			iput_final(inode);
1410 	}
1411 }
1412 EXPORT_SYMBOL(iput);
1413 
1414 /**
1415  *	bmap	- find a block number in a file
1416  *	@inode: inode of file
1417  *	@block: block to find
1418  *
1419  *	Returns the block number on the device holding the inode that
1420  *	is the disk block number for the block of the file requested.
1421  *	That is, asked for block 4 of inode 1 the function will return the
1422  *	disk block relative to the disk start that holds that block of the
1423  *	file.
1424  */
1425 sector_t bmap(struct inode *inode, sector_t block)
1426 {
1427 	sector_t res = 0;
1428 	if (inode->i_mapping->a_ops->bmap)
1429 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1430 	return res;
1431 }
1432 EXPORT_SYMBOL(bmap);
1433 
1434 /*
1435  * With relative atime, only update atime if the previous atime is
1436  * earlier than either the ctime or mtime or if at least a day has
1437  * passed since the last atime update.
1438  */
1439 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1440 			     struct timespec now)
1441 {
1442 
1443 	if (!(mnt->mnt_flags & MNT_RELATIME))
1444 		return 1;
1445 	/*
1446 	 * Is mtime younger than atime? If yes, update atime:
1447 	 */
1448 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1449 		return 1;
1450 	/*
1451 	 * Is ctime younger than atime? If yes, update atime:
1452 	 */
1453 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1454 		return 1;
1455 
1456 	/*
1457 	 * Is the previous atime value older than a day? If yes,
1458 	 * update atime:
1459 	 */
1460 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1461 		return 1;
1462 	/*
1463 	 * Good, we can skip the atime update:
1464 	 */
1465 	return 0;
1466 }
1467 
1468 /*
1469  * This does the actual work of updating an inodes time or version.  Must have
1470  * had called mnt_want_write() before calling this.
1471  */
1472 static int update_time(struct inode *inode, struct timespec *time, int flags)
1473 {
1474 	if (inode->i_op->update_time)
1475 		return inode->i_op->update_time(inode, time, flags);
1476 
1477 	if (flags & S_ATIME)
1478 		inode->i_atime = *time;
1479 	if (flags & S_VERSION)
1480 		inode_inc_iversion(inode);
1481 	if (flags & S_CTIME)
1482 		inode->i_ctime = *time;
1483 	if (flags & S_MTIME)
1484 		inode->i_mtime = *time;
1485 	mark_inode_dirty_sync(inode);
1486 	return 0;
1487 }
1488 
1489 /**
1490  *	touch_atime	-	update the access time
1491  *	@path: the &struct path to update
1492  *
1493  *	Update the accessed time on an inode and mark it for writeback.
1494  *	This function automatically handles read only file systems and media,
1495  *	as well as the "noatime" flag and inode specific "noatime" markers.
1496  */
1497 void touch_atime(const struct path *path)
1498 {
1499 	struct vfsmount *mnt = path->mnt;
1500 	struct inode *inode = path->dentry->d_inode;
1501 	struct timespec now;
1502 
1503 	if (inode->i_flags & S_NOATIME)
1504 		return;
1505 	if (IS_NOATIME(inode))
1506 		return;
1507 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1508 		return;
1509 
1510 	if (mnt->mnt_flags & MNT_NOATIME)
1511 		return;
1512 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1513 		return;
1514 
1515 	now = current_fs_time(inode->i_sb);
1516 
1517 	if (!relatime_need_update(mnt, inode, now))
1518 		return;
1519 
1520 	if (timespec_equal(&inode->i_atime, &now))
1521 		return;
1522 
1523 	if (!sb_start_write_trylock(inode->i_sb))
1524 		return;
1525 
1526 	if (__mnt_want_write(mnt))
1527 		goto skip_update;
1528 	/*
1529 	 * File systems can error out when updating inodes if they need to
1530 	 * allocate new space to modify an inode (such is the case for
1531 	 * Btrfs), but since we touch atime while walking down the path we
1532 	 * really don't care if we failed to update the atime of the file,
1533 	 * so just ignore the return value.
1534 	 * We may also fail on filesystems that have the ability to make parts
1535 	 * of the fs read only, e.g. subvolumes in Btrfs.
1536 	 */
1537 	update_time(inode, &now, S_ATIME);
1538 	__mnt_drop_write(mnt);
1539 skip_update:
1540 	sb_end_write(inode->i_sb);
1541 }
1542 EXPORT_SYMBOL(touch_atime);
1543 
1544 /*
1545  * The logic we want is
1546  *
1547  *	if suid or (sgid and xgrp)
1548  *		remove privs
1549  */
1550 int should_remove_suid(struct dentry *dentry)
1551 {
1552 	umode_t mode = dentry->d_inode->i_mode;
1553 	int kill = 0;
1554 
1555 	/* suid always must be killed */
1556 	if (unlikely(mode & S_ISUID))
1557 		kill = ATTR_KILL_SUID;
1558 
1559 	/*
1560 	 * sgid without any exec bits is just a mandatory locking mark; leave
1561 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1562 	 */
1563 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1564 		kill |= ATTR_KILL_SGID;
1565 
1566 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1567 		return kill;
1568 
1569 	return 0;
1570 }
1571 EXPORT_SYMBOL(should_remove_suid);
1572 
1573 static int __remove_suid(struct dentry *dentry, int kill)
1574 {
1575 	struct iattr newattrs;
1576 
1577 	newattrs.ia_valid = ATTR_FORCE | kill;
1578 	return notify_change(dentry, &newattrs);
1579 }
1580 
1581 int file_remove_suid(struct file *file)
1582 {
1583 	struct dentry *dentry = file->f_path.dentry;
1584 	struct inode *inode = dentry->d_inode;
1585 	int killsuid;
1586 	int killpriv;
1587 	int error = 0;
1588 
1589 	/* Fast path for nothing security related */
1590 	if (IS_NOSEC(inode))
1591 		return 0;
1592 
1593 	killsuid = should_remove_suid(dentry);
1594 	killpriv = security_inode_need_killpriv(dentry);
1595 
1596 	if (killpriv < 0)
1597 		return killpriv;
1598 	if (killpriv)
1599 		error = security_inode_killpriv(dentry);
1600 	if (!error && killsuid)
1601 		error = __remove_suid(dentry, killsuid);
1602 	if (!error && (inode->i_sb->s_flags & MS_NOSEC))
1603 		inode->i_flags |= S_NOSEC;
1604 
1605 	return error;
1606 }
1607 EXPORT_SYMBOL(file_remove_suid);
1608 
1609 /**
1610  *	file_update_time	-	update mtime and ctime time
1611  *	@file: file accessed
1612  *
1613  *	Update the mtime and ctime members of an inode and mark the inode
1614  *	for writeback.  Note that this function is meant exclusively for
1615  *	usage in the file write path of filesystems, and filesystems may
1616  *	choose to explicitly ignore update via this function with the
1617  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1618  *	timestamps are handled by the server.  This can return an error for
1619  *	file systems who need to allocate space in order to update an inode.
1620  */
1621 
1622 int file_update_time(struct file *file)
1623 {
1624 	struct inode *inode = file_inode(file);
1625 	struct timespec now;
1626 	int sync_it = 0;
1627 	int ret;
1628 
1629 	/* First try to exhaust all avenues to not sync */
1630 	if (IS_NOCMTIME(inode))
1631 		return 0;
1632 
1633 	now = current_fs_time(inode->i_sb);
1634 	if (!timespec_equal(&inode->i_mtime, &now))
1635 		sync_it = S_MTIME;
1636 
1637 	if (!timespec_equal(&inode->i_ctime, &now))
1638 		sync_it |= S_CTIME;
1639 
1640 	if (IS_I_VERSION(inode))
1641 		sync_it |= S_VERSION;
1642 
1643 	if (!sync_it)
1644 		return 0;
1645 
1646 	/* Finally allowed to write? Takes lock. */
1647 	if (__mnt_want_write_file(file))
1648 		return 0;
1649 
1650 	ret = update_time(inode, &now, sync_it);
1651 	__mnt_drop_write_file(file);
1652 
1653 	return ret;
1654 }
1655 EXPORT_SYMBOL(file_update_time);
1656 
1657 int inode_needs_sync(struct inode *inode)
1658 {
1659 	if (IS_SYNC(inode))
1660 		return 1;
1661 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1662 		return 1;
1663 	return 0;
1664 }
1665 EXPORT_SYMBOL(inode_needs_sync);
1666 
1667 int inode_wait(void *word)
1668 {
1669 	schedule();
1670 	return 0;
1671 }
1672 EXPORT_SYMBOL(inode_wait);
1673 
1674 /*
1675  * If we try to find an inode in the inode hash while it is being
1676  * deleted, we have to wait until the filesystem completes its
1677  * deletion before reporting that it isn't found.  This function waits
1678  * until the deletion _might_ have completed.  Callers are responsible
1679  * to recheck inode state.
1680  *
1681  * It doesn't matter if I_NEW is not set initially, a call to
1682  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1683  * will DTRT.
1684  */
1685 static void __wait_on_freeing_inode(struct inode *inode)
1686 {
1687 	wait_queue_head_t *wq;
1688 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1689 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1690 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1691 	spin_unlock(&inode->i_lock);
1692 	spin_unlock(&inode_hash_lock);
1693 	schedule();
1694 	finish_wait(wq, &wait.wait);
1695 	spin_lock(&inode_hash_lock);
1696 }
1697 
1698 static __initdata unsigned long ihash_entries;
1699 static int __init set_ihash_entries(char *str)
1700 {
1701 	if (!str)
1702 		return 0;
1703 	ihash_entries = simple_strtoul(str, &str, 0);
1704 	return 1;
1705 }
1706 __setup("ihash_entries=", set_ihash_entries);
1707 
1708 /*
1709  * Initialize the waitqueues and inode hash table.
1710  */
1711 void __init inode_init_early(void)
1712 {
1713 	unsigned int loop;
1714 
1715 	/* If hashes are distributed across NUMA nodes, defer
1716 	 * hash allocation until vmalloc space is available.
1717 	 */
1718 	if (hashdist)
1719 		return;
1720 
1721 	inode_hashtable =
1722 		alloc_large_system_hash("Inode-cache",
1723 					sizeof(struct hlist_head),
1724 					ihash_entries,
1725 					14,
1726 					HASH_EARLY,
1727 					&i_hash_shift,
1728 					&i_hash_mask,
1729 					0,
1730 					0);
1731 
1732 	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1733 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1734 }
1735 
1736 void __init inode_init(void)
1737 {
1738 	unsigned int loop;
1739 
1740 	/* inode slab cache */
1741 	inode_cachep = kmem_cache_create("inode_cache",
1742 					 sizeof(struct inode),
1743 					 0,
1744 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1745 					 SLAB_MEM_SPREAD),
1746 					 init_once);
1747 
1748 	/* Hash may have been set up in inode_init_early */
1749 	if (!hashdist)
1750 		return;
1751 
1752 	inode_hashtable =
1753 		alloc_large_system_hash("Inode-cache",
1754 					sizeof(struct hlist_head),
1755 					ihash_entries,
1756 					14,
1757 					0,
1758 					&i_hash_shift,
1759 					&i_hash_mask,
1760 					0,
1761 					0);
1762 
1763 	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1764 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1765 }
1766 
1767 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1768 {
1769 	inode->i_mode = mode;
1770 	if (S_ISCHR(mode)) {
1771 		inode->i_fop = &def_chr_fops;
1772 		inode->i_rdev = rdev;
1773 	} else if (S_ISBLK(mode)) {
1774 		inode->i_fop = &def_blk_fops;
1775 		inode->i_rdev = rdev;
1776 	} else if (S_ISFIFO(mode))
1777 		inode->i_fop = &pipefifo_fops;
1778 	else if (S_ISSOCK(mode))
1779 		inode->i_fop = &bad_sock_fops;
1780 	else
1781 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1782 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1783 				  inode->i_ino);
1784 }
1785 EXPORT_SYMBOL(init_special_inode);
1786 
1787 /**
1788  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1789  * @inode: New inode
1790  * @dir: Directory inode
1791  * @mode: mode of the new inode
1792  */
1793 void inode_init_owner(struct inode *inode, const struct inode *dir,
1794 			umode_t mode)
1795 {
1796 	inode->i_uid = current_fsuid();
1797 	if (dir && dir->i_mode & S_ISGID) {
1798 		inode->i_gid = dir->i_gid;
1799 		if (S_ISDIR(mode))
1800 			mode |= S_ISGID;
1801 	} else
1802 		inode->i_gid = current_fsgid();
1803 	inode->i_mode = mode;
1804 }
1805 EXPORT_SYMBOL(inode_init_owner);
1806 
1807 /**
1808  * inode_owner_or_capable - check current task permissions to inode
1809  * @inode: inode being checked
1810  *
1811  * Return true if current either has CAP_FOWNER to the inode, or
1812  * owns the file.
1813  */
1814 bool inode_owner_or_capable(const struct inode *inode)
1815 {
1816 	if (uid_eq(current_fsuid(), inode->i_uid))
1817 		return true;
1818 	if (inode_capable(inode, CAP_FOWNER))
1819 		return true;
1820 	return false;
1821 }
1822 EXPORT_SYMBOL(inode_owner_or_capable);
1823 
1824 /*
1825  * Direct i/o helper functions
1826  */
1827 static void __inode_dio_wait(struct inode *inode)
1828 {
1829 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1830 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1831 
1832 	do {
1833 		prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1834 		if (atomic_read(&inode->i_dio_count))
1835 			schedule();
1836 	} while (atomic_read(&inode->i_dio_count));
1837 	finish_wait(wq, &q.wait);
1838 }
1839 
1840 /**
1841  * inode_dio_wait - wait for outstanding DIO requests to finish
1842  * @inode: inode to wait for
1843  *
1844  * Waits for all pending direct I/O requests to finish so that we can
1845  * proceed with a truncate or equivalent operation.
1846  *
1847  * Must be called under a lock that serializes taking new references
1848  * to i_dio_count, usually by inode->i_mutex.
1849  */
1850 void inode_dio_wait(struct inode *inode)
1851 {
1852 	if (atomic_read(&inode->i_dio_count))
1853 		__inode_dio_wait(inode);
1854 }
1855 EXPORT_SYMBOL(inode_dio_wait);
1856 
1857 /*
1858  * inode_dio_done - signal finish of a direct I/O requests
1859  * @inode: inode the direct I/O happens on
1860  *
1861  * This is called once we've finished processing a direct I/O request,
1862  * and is used to wake up callers waiting for direct I/O to be quiesced.
1863  */
1864 void inode_dio_done(struct inode *inode)
1865 {
1866 	if (atomic_dec_and_test(&inode->i_dio_count))
1867 		wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
1868 }
1869 EXPORT_SYMBOL(inode_dio_done);
1870