xref: /openbmc/linux/fs/inode.c (revision e149ca29)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * (C) 1997 Linus Torvalds
4  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5  */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/backing-dev.h>
10 #include <linux/hash.h>
11 #include <linux/swap.h>
12 #include <linux/security.h>
13 #include <linux/cdev.h>
14 #include <linux/memblock.h>
15 #include <linux/fscrypt.h>
16 #include <linux/fsnotify.h>
17 #include <linux/mount.h>
18 #include <linux/posix_acl.h>
19 #include <linux/prefetch.h>
20 #include <linux/buffer_head.h> /* for inode_has_buffers */
21 #include <linux/ratelimit.h>
22 #include <linux/list_lru.h>
23 #include <linux/iversion.h>
24 #include <trace/events/writeback.h>
25 #include "internal.h"
26 
27 /*
28  * Inode locking rules:
29  *
30  * inode->i_lock protects:
31  *   inode->i_state, inode->i_hash, __iget()
32  * Inode LRU list locks protect:
33  *   inode->i_sb->s_inode_lru, inode->i_lru
34  * inode->i_sb->s_inode_list_lock protects:
35  *   inode->i_sb->s_inodes, inode->i_sb_list
36  * bdi->wb.list_lock protects:
37  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
38  * inode_hash_lock protects:
39  *   inode_hashtable, inode->i_hash
40  *
41  * Lock ordering:
42  *
43  * inode->i_sb->s_inode_list_lock
44  *   inode->i_lock
45  *     Inode LRU list locks
46  *
47  * bdi->wb.list_lock
48  *   inode->i_lock
49  *
50  * inode_hash_lock
51  *   inode->i_sb->s_inode_list_lock
52  *   inode->i_lock
53  *
54  * iunique_lock
55  *   inode_hash_lock
56  */
57 
58 static unsigned int i_hash_mask __read_mostly;
59 static unsigned int i_hash_shift __read_mostly;
60 static struct hlist_head *inode_hashtable __read_mostly;
61 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
62 
63 /*
64  * Empty aops. Can be used for the cases where the user does not
65  * define any of the address_space operations.
66  */
67 const struct address_space_operations empty_aops = {
68 };
69 EXPORT_SYMBOL(empty_aops);
70 
71 /*
72  * Statistics gathering..
73  */
74 struct inodes_stat_t inodes_stat;
75 
76 static DEFINE_PER_CPU(unsigned long, nr_inodes);
77 static DEFINE_PER_CPU(unsigned long, nr_unused);
78 
79 static struct kmem_cache *inode_cachep __read_mostly;
80 
81 static long get_nr_inodes(void)
82 {
83 	int i;
84 	long sum = 0;
85 	for_each_possible_cpu(i)
86 		sum += per_cpu(nr_inodes, i);
87 	return sum < 0 ? 0 : sum;
88 }
89 
90 static inline long get_nr_inodes_unused(void)
91 {
92 	int i;
93 	long sum = 0;
94 	for_each_possible_cpu(i)
95 		sum += per_cpu(nr_unused, i);
96 	return sum < 0 ? 0 : sum;
97 }
98 
99 long get_nr_dirty_inodes(void)
100 {
101 	/* not actually dirty inodes, but a wild approximation */
102 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
103 	return nr_dirty > 0 ? nr_dirty : 0;
104 }
105 
106 /*
107  * Handle nr_inode sysctl
108  */
109 #ifdef CONFIG_SYSCTL
110 int proc_nr_inodes(struct ctl_table *table, int write,
111 		   void __user *buffer, size_t *lenp, loff_t *ppos)
112 {
113 	inodes_stat.nr_inodes = get_nr_inodes();
114 	inodes_stat.nr_unused = get_nr_inodes_unused();
115 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
116 }
117 #endif
118 
119 static int no_open(struct inode *inode, struct file *file)
120 {
121 	return -ENXIO;
122 }
123 
124 /**
125  * inode_init_always - perform inode structure initialisation
126  * @sb: superblock inode belongs to
127  * @inode: inode to initialise
128  *
129  * These are initializations that need to be done on every inode
130  * allocation as the fields are not initialised by slab allocation.
131  */
132 int inode_init_always(struct super_block *sb, struct inode *inode)
133 {
134 	static const struct inode_operations empty_iops;
135 	static const struct file_operations no_open_fops = {.open = no_open};
136 	struct address_space *const mapping = &inode->i_data;
137 
138 	inode->i_sb = sb;
139 	inode->i_blkbits = sb->s_blocksize_bits;
140 	inode->i_flags = 0;
141 	atomic64_set(&inode->i_sequence, 0);
142 	atomic_set(&inode->i_count, 1);
143 	inode->i_op = &empty_iops;
144 	inode->i_fop = &no_open_fops;
145 	inode->__i_nlink = 1;
146 	inode->i_opflags = 0;
147 	if (sb->s_xattr)
148 		inode->i_opflags |= IOP_XATTR;
149 	i_uid_write(inode, 0);
150 	i_gid_write(inode, 0);
151 	atomic_set(&inode->i_writecount, 0);
152 	inode->i_size = 0;
153 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
154 	inode->i_blocks = 0;
155 	inode->i_bytes = 0;
156 	inode->i_generation = 0;
157 	inode->i_pipe = NULL;
158 	inode->i_bdev = NULL;
159 	inode->i_cdev = NULL;
160 	inode->i_link = NULL;
161 	inode->i_dir_seq = 0;
162 	inode->i_rdev = 0;
163 	inode->dirtied_when = 0;
164 
165 #ifdef CONFIG_CGROUP_WRITEBACK
166 	inode->i_wb_frn_winner = 0;
167 	inode->i_wb_frn_avg_time = 0;
168 	inode->i_wb_frn_history = 0;
169 #endif
170 
171 	if (security_inode_alloc(inode))
172 		goto out;
173 	spin_lock_init(&inode->i_lock);
174 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
175 
176 	init_rwsem(&inode->i_rwsem);
177 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
178 
179 	atomic_set(&inode->i_dio_count, 0);
180 
181 	mapping->a_ops = &empty_aops;
182 	mapping->host = inode;
183 	mapping->flags = 0;
184 	mapping->wb_err = 0;
185 	atomic_set(&mapping->i_mmap_writable, 0);
186 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
187 	atomic_set(&mapping->nr_thps, 0);
188 #endif
189 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
190 	mapping->private_data = NULL;
191 	mapping->writeback_index = 0;
192 	inode->i_private = NULL;
193 	inode->i_mapping = mapping;
194 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
195 #ifdef CONFIG_FS_POSIX_ACL
196 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
197 #endif
198 
199 #ifdef CONFIG_FSNOTIFY
200 	inode->i_fsnotify_mask = 0;
201 #endif
202 	inode->i_flctx = NULL;
203 	this_cpu_inc(nr_inodes);
204 
205 	return 0;
206 out:
207 	return -ENOMEM;
208 }
209 EXPORT_SYMBOL(inode_init_always);
210 
211 void free_inode_nonrcu(struct inode *inode)
212 {
213 	kmem_cache_free(inode_cachep, inode);
214 }
215 EXPORT_SYMBOL(free_inode_nonrcu);
216 
217 static void i_callback(struct rcu_head *head)
218 {
219 	struct inode *inode = container_of(head, struct inode, i_rcu);
220 	if (inode->free_inode)
221 		inode->free_inode(inode);
222 	else
223 		free_inode_nonrcu(inode);
224 }
225 
226 static struct inode *alloc_inode(struct super_block *sb)
227 {
228 	const struct super_operations *ops = sb->s_op;
229 	struct inode *inode;
230 
231 	if (ops->alloc_inode)
232 		inode = ops->alloc_inode(sb);
233 	else
234 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
235 
236 	if (!inode)
237 		return NULL;
238 
239 	if (unlikely(inode_init_always(sb, inode))) {
240 		if (ops->destroy_inode) {
241 			ops->destroy_inode(inode);
242 			if (!ops->free_inode)
243 				return NULL;
244 		}
245 		inode->free_inode = ops->free_inode;
246 		i_callback(&inode->i_rcu);
247 		return NULL;
248 	}
249 
250 	return inode;
251 }
252 
253 void __destroy_inode(struct inode *inode)
254 {
255 	BUG_ON(inode_has_buffers(inode));
256 	inode_detach_wb(inode);
257 	security_inode_free(inode);
258 	fsnotify_inode_delete(inode);
259 	locks_free_lock_context(inode);
260 	if (!inode->i_nlink) {
261 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
262 		atomic_long_dec(&inode->i_sb->s_remove_count);
263 	}
264 
265 #ifdef CONFIG_FS_POSIX_ACL
266 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
267 		posix_acl_release(inode->i_acl);
268 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
269 		posix_acl_release(inode->i_default_acl);
270 #endif
271 	this_cpu_dec(nr_inodes);
272 }
273 EXPORT_SYMBOL(__destroy_inode);
274 
275 static void destroy_inode(struct inode *inode)
276 {
277 	const struct super_operations *ops = inode->i_sb->s_op;
278 
279 	BUG_ON(!list_empty(&inode->i_lru));
280 	__destroy_inode(inode);
281 	if (ops->destroy_inode) {
282 		ops->destroy_inode(inode);
283 		if (!ops->free_inode)
284 			return;
285 	}
286 	inode->free_inode = ops->free_inode;
287 	call_rcu(&inode->i_rcu, i_callback);
288 }
289 
290 /**
291  * drop_nlink - directly drop an inode's link count
292  * @inode: inode
293  *
294  * This is a low-level filesystem helper to replace any
295  * direct filesystem manipulation of i_nlink.  In cases
296  * where we are attempting to track writes to the
297  * filesystem, a decrement to zero means an imminent
298  * write when the file is truncated and actually unlinked
299  * on the filesystem.
300  */
301 void drop_nlink(struct inode *inode)
302 {
303 	WARN_ON(inode->i_nlink == 0);
304 	inode->__i_nlink--;
305 	if (!inode->i_nlink)
306 		atomic_long_inc(&inode->i_sb->s_remove_count);
307 }
308 EXPORT_SYMBOL(drop_nlink);
309 
310 /**
311  * clear_nlink - directly zero an inode's link count
312  * @inode: inode
313  *
314  * This is a low-level filesystem helper to replace any
315  * direct filesystem manipulation of i_nlink.  See
316  * drop_nlink() for why we care about i_nlink hitting zero.
317  */
318 void clear_nlink(struct inode *inode)
319 {
320 	if (inode->i_nlink) {
321 		inode->__i_nlink = 0;
322 		atomic_long_inc(&inode->i_sb->s_remove_count);
323 	}
324 }
325 EXPORT_SYMBOL(clear_nlink);
326 
327 /**
328  * set_nlink - directly set an inode's link count
329  * @inode: inode
330  * @nlink: new nlink (should be non-zero)
331  *
332  * This is a low-level filesystem helper to replace any
333  * direct filesystem manipulation of i_nlink.
334  */
335 void set_nlink(struct inode *inode, unsigned int nlink)
336 {
337 	if (!nlink) {
338 		clear_nlink(inode);
339 	} else {
340 		/* Yes, some filesystems do change nlink from zero to one */
341 		if (inode->i_nlink == 0)
342 			atomic_long_dec(&inode->i_sb->s_remove_count);
343 
344 		inode->__i_nlink = nlink;
345 	}
346 }
347 EXPORT_SYMBOL(set_nlink);
348 
349 /**
350  * inc_nlink - directly increment an inode's link count
351  * @inode: inode
352  *
353  * This is a low-level filesystem helper to replace any
354  * direct filesystem manipulation of i_nlink.  Currently,
355  * it is only here for parity with dec_nlink().
356  */
357 void inc_nlink(struct inode *inode)
358 {
359 	if (unlikely(inode->i_nlink == 0)) {
360 		WARN_ON(!(inode->i_state & I_LINKABLE));
361 		atomic_long_dec(&inode->i_sb->s_remove_count);
362 	}
363 
364 	inode->__i_nlink++;
365 }
366 EXPORT_SYMBOL(inc_nlink);
367 
368 static void __address_space_init_once(struct address_space *mapping)
369 {
370 	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
371 	init_rwsem(&mapping->i_mmap_rwsem);
372 	INIT_LIST_HEAD(&mapping->private_list);
373 	spin_lock_init(&mapping->private_lock);
374 	mapping->i_mmap = RB_ROOT_CACHED;
375 }
376 
377 void address_space_init_once(struct address_space *mapping)
378 {
379 	memset(mapping, 0, sizeof(*mapping));
380 	__address_space_init_once(mapping);
381 }
382 EXPORT_SYMBOL(address_space_init_once);
383 
384 /*
385  * These are initializations that only need to be done
386  * once, because the fields are idempotent across use
387  * of the inode, so let the slab aware of that.
388  */
389 void inode_init_once(struct inode *inode)
390 {
391 	memset(inode, 0, sizeof(*inode));
392 	INIT_HLIST_NODE(&inode->i_hash);
393 	INIT_LIST_HEAD(&inode->i_devices);
394 	INIT_LIST_HEAD(&inode->i_io_list);
395 	INIT_LIST_HEAD(&inode->i_wb_list);
396 	INIT_LIST_HEAD(&inode->i_lru);
397 	__address_space_init_once(&inode->i_data);
398 	i_size_ordered_init(inode);
399 }
400 EXPORT_SYMBOL(inode_init_once);
401 
402 static void init_once(void *foo)
403 {
404 	struct inode *inode = (struct inode *) foo;
405 
406 	inode_init_once(inode);
407 }
408 
409 /*
410  * inode->i_lock must be held
411  */
412 void __iget(struct inode *inode)
413 {
414 	atomic_inc(&inode->i_count);
415 }
416 
417 /*
418  * get additional reference to inode; caller must already hold one.
419  */
420 void ihold(struct inode *inode)
421 {
422 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
423 }
424 EXPORT_SYMBOL(ihold);
425 
426 static void inode_lru_list_add(struct inode *inode)
427 {
428 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
429 		this_cpu_inc(nr_unused);
430 	else
431 		inode->i_state |= I_REFERENCED;
432 }
433 
434 /*
435  * Add inode to LRU if needed (inode is unused and clean).
436  *
437  * Needs inode->i_lock held.
438  */
439 void inode_add_lru(struct inode *inode)
440 {
441 	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
442 				I_FREEING | I_WILL_FREE)) &&
443 	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
444 		inode_lru_list_add(inode);
445 }
446 
447 
448 static void inode_lru_list_del(struct inode *inode)
449 {
450 
451 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
452 		this_cpu_dec(nr_unused);
453 }
454 
455 /**
456  * inode_sb_list_add - add inode to the superblock list of inodes
457  * @inode: inode to add
458  */
459 void inode_sb_list_add(struct inode *inode)
460 {
461 	spin_lock(&inode->i_sb->s_inode_list_lock);
462 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
463 	spin_unlock(&inode->i_sb->s_inode_list_lock);
464 }
465 EXPORT_SYMBOL_GPL(inode_sb_list_add);
466 
467 static inline void inode_sb_list_del(struct inode *inode)
468 {
469 	if (!list_empty(&inode->i_sb_list)) {
470 		spin_lock(&inode->i_sb->s_inode_list_lock);
471 		list_del_init(&inode->i_sb_list);
472 		spin_unlock(&inode->i_sb->s_inode_list_lock);
473 	}
474 }
475 
476 static unsigned long hash(struct super_block *sb, unsigned long hashval)
477 {
478 	unsigned long tmp;
479 
480 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
481 			L1_CACHE_BYTES;
482 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
483 	return tmp & i_hash_mask;
484 }
485 
486 /**
487  *	__insert_inode_hash - hash an inode
488  *	@inode: unhashed inode
489  *	@hashval: unsigned long value used to locate this object in the
490  *		inode_hashtable.
491  *
492  *	Add an inode to the inode hash for this superblock.
493  */
494 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
495 {
496 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
497 
498 	spin_lock(&inode_hash_lock);
499 	spin_lock(&inode->i_lock);
500 	hlist_add_head(&inode->i_hash, b);
501 	spin_unlock(&inode->i_lock);
502 	spin_unlock(&inode_hash_lock);
503 }
504 EXPORT_SYMBOL(__insert_inode_hash);
505 
506 /**
507  *	__remove_inode_hash - remove an inode from the hash
508  *	@inode: inode to unhash
509  *
510  *	Remove an inode from the superblock.
511  */
512 void __remove_inode_hash(struct inode *inode)
513 {
514 	spin_lock(&inode_hash_lock);
515 	spin_lock(&inode->i_lock);
516 	hlist_del_init(&inode->i_hash);
517 	spin_unlock(&inode->i_lock);
518 	spin_unlock(&inode_hash_lock);
519 }
520 EXPORT_SYMBOL(__remove_inode_hash);
521 
522 void clear_inode(struct inode *inode)
523 {
524 	/*
525 	 * We have to cycle the i_pages lock here because reclaim can be in the
526 	 * process of removing the last page (in __delete_from_page_cache())
527 	 * and we must not free the mapping under it.
528 	 */
529 	xa_lock_irq(&inode->i_data.i_pages);
530 	BUG_ON(inode->i_data.nrpages);
531 	BUG_ON(inode->i_data.nrexceptional);
532 	xa_unlock_irq(&inode->i_data.i_pages);
533 	BUG_ON(!list_empty(&inode->i_data.private_list));
534 	BUG_ON(!(inode->i_state & I_FREEING));
535 	BUG_ON(inode->i_state & I_CLEAR);
536 	BUG_ON(!list_empty(&inode->i_wb_list));
537 	/* don't need i_lock here, no concurrent mods to i_state */
538 	inode->i_state = I_FREEING | I_CLEAR;
539 }
540 EXPORT_SYMBOL(clear_inode);
541 
542 /*
543  * Free the inode passed in, removing it from the lists it is still connected
544  * to. We remove any pages still attached to the inode and wait for any IO that
545  * is still in progress before finally destroying the inode.
546  *
547  * An inode must already be marked I_FREEING so that we avoid the inode being
548  * moved back onto lists if we race with other code that manipulates the lists
549  * (e.g. writeback_single_inode). The caller is responsible for setting this.
550  *
551  * An inode must already be removed from the LRU list before being evicted from
552  * the cache. This should occur atomically with setting the I_FREEING state
553  * flag, so no inodes here should ever be on the LRU when being evicted.
554  */
555 static void evict(struct inode *inode)
556 {
557 	const struct super_operations *op = inode->i_sb->s_op;
558 
559 	BUG_ON(!(inode->i_state & I_FREEING));
560 	BUG_ON(!list_empty(&inode->i_lru));
561 
562 	if (!list_empty(&inode->i_io_list))
563 		inode_io_list_del(inode);
564 
565 	inode_sb_list_del(inode);
566 
567 	/*
568 	 * Wait for flusher thread to be done with the inode so that filesystem
569 	 * does not start destroying it while writeback is still running. Since
570 	 * the inode has I_FREEING set, flusher thread won't start new work on
571 	 * the inode.  We just have to wait for running writeback to finish.
572 	 */
573 	inode_wait_for_writeback(inode);
574 
575 	if (op->evict_inode) {
576 		op->evict_inode(inode);
577 	} else {
578 		truncate_inode_pages_final(&inode->i_data);
579 		clear_inode(inode);
580 	}
581 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
582 		bd_forget(inode);
583 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
584 		cd_forget(inode);
585 
586 	remove_inode_hash(inode);
587 
588 	spin_lock(&inode->i_lock);
589 	wake_up_bit(&inode->i_state, __I_NEW);
590 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
591 	spin_unlock(&inode->i_lock);
592 
593 	destroy_inode(inode);
594 }
595 
596 /*
597  * dispose_list - dispose of the contents of a local list
598  * @head: the head of the list to free
599  *
600  * Dispose-list gets a local list with local inodes in it, so it doesn't
601  * need to worry about list corruption and SMP locks.
602  */
603 static void dispose_list(struct list_head *head)
604 {
605 	while (!list_empty(head)) {
606 		struct inode *inode;
607 
608 		inode = list_first_entry(head, struct inode, i_lru);
609 		list_del_init(&inode->i_lru);
610 
611 		evict(inode);
612 		cond_resched();
613 	}
614 }
615 
616 /**
617  * evict_inodes	- evict all evictable inodes for a superblock
618  * @sb:		superblock to operate on
619  *
620  * Make sure that no inodes with zero refcount are retained.  This is
621  * called by superblock shutdown after having SB_ACTIVE flag removed,
622  * so any inode reaching zero refcount during or after that call will
623  * be immediately evicted.
624  */
625 void evict_inodes(struct super_block *sb)
626 {
627 	struct inode *inode, *next;
628 	LIST_HEAD(dispose);
629 
630 again:
631 	spin_lock(&sb->s_inode_list_lock);
632 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
633 		if (atomic_read(&inode->i_count))
634 			continue;
635 
636 		spin_lock(&inode->i_lock);
637 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
638 			spin_unlock(&inode->i_lock);
639 			continue;
640 		}
641 
642 		inode->i_state |= I_FREEING;
643 		inode_lru_list_del(inode);
644 		spin_unlock(&inode->i_lock);
645 		list_add(&inode->i_lru, &dispose);
646 
647 		/*
648 		 * We can have a ton of inodes to evict at unmount time given
649 		 * enough memory, check to see if we need to go to sleep for a
650 		 * bit so we don't livelock.
651 		 */
652 		if (need_resched()) {
653 			spin_unlock(&sb->s_inode_list_lock);
654 			cond_resched();
655 			dispose_list(&dispose);
656 			goto again;
657 		}
658 	}
659 	spin_unlock(&sb->s_inode_list_lock);
660 
661 	dispose_list(&dispose);
662 }
663 EXPORT_SYMBOL_GPL(evict_inodes);
664 
665 /**
666  * invalidate_inodes	- attempt to free all inodes on a superblock
667  * @sb:		superblock to operate on
668  * @kill_dirty: flag to guide handling of dirty inodes
669  *
670  * Attempts to free all inodes for a given superblock.  If there were any
671  * busy inodes return a non-zero value, else zero.
672  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
673  * them as busy.
674  */
675 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
676 {
677 	int busy = 0;
678 	struct inode *inode, *next;
679 	LIST_HEAD(dispose);
680 
681 again:
682 	spin_lock(&sb->s_inode_list_lock);
683 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
684 		spin_lock(&inode->i_lock);
685 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
686 			spin_unlock(&inode->i_lock);
687 			continue;
688 		}
689 		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
690 			spin_unlock(&inode->i_lock);
691 			busy = 1;
692 			continue;
693 		}
694 		if (atomic_read(&inode->i_count)) {
695 			spin_unlock(&inode->i_lock);
696 			busy = 1;
697 			continue;
698 		}
699 
700 		inode->i_state |= I_FREEING;
701 		inode_lru_list_del(inode);
702 		spin_unlock(&inode->i_lock);
703 		list_add(&inode->i_lru, &dispose);
704 		if (need_resched()) {
705 			spin_unlock(&sb->s_inode_list_lock);
706 			cond_resched();
707 			dispose_list(&dispose);
708 			goto again;
709 		}
710 	}
711 	spin_unlock(&sb->s_inode_list_lock);
712 
713 	dispose_list(&dispose);
714 
715 	return busy;
716 }
717 
718 /*
719  * Isolate the inode from the LRU in preparation for freeing it.
720  *
721  * Any inodes which are pinned purely because of attached pagecache have their
722  * pagecache removed.  If the inode has metadata buffers attached to
723  * mapping->private_list then try to remove them.
724  *
725  * If the inode has the I_REFERENCED flag set, then it means that it has been
726  * used recently - the flag is set in iput_final(). When we encounter such an
727  * inode, clear the flag and move it to the back of the LRU so it gets another
728  * pass through the LRU before it gets reclaimed. This is necessary because of
729  * the fact we are doing lazy LRU updates to minimise lock contention so the
730  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
731  * with this flag set because they are the inodes that are out of order.
732  */
733 static enum lru_status inode_lru_isolate(struct list_head *item,
734 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
735 {
736 	struct list_head *freeable = arg;
737 	struct inode	*inode = container_of(item, struct inode, i_lru);
738 
739 	/*
740 	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
741 	 * If we fail to get the lock, just skip it.
742 	 */
743 	if (!spin_trylock(&inode->i_lock))
744 		return LRU_SKIP;
745 
746 	/*
747 	 * Referenced or dirty inodes are still in use. Give them another pass
748 	 * through the LRU as we canot reclaim them now.
749 	 */
750 	if (atomic_read(&inode->i_count) ||
751 	    (inode->i_state & ~I_REFERENCED)) {
752 		list_lru_isolate(lru, &inode->i_lru);
753 		spin_unlock(&inode->i_lock);
754 		this_cpu_dec(nr_unused);
755 		return LRU_REMOVED;
756 	}
757 
758 	/* recently referenced inodes get one more pass */
759 	if (inode->i_state & I_REFERENCED) {
760 		inode->i_state &= ~I_REFERENCED;
761 		spin_unlock(&inode->i_lock);
762 		return LRU_ROTATE;
763 	}
764 
765 	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
766 		__iget(inode);
767 		spin_unlock(&inode->i_lock);
768 		spin_unlock(lru_lock);
769 		if (remove_inode_buffers(inode)) {
770 			unsigned long reap;
771 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
772 			if (current_is_kswapd())
773 				__count_vm_events(KSWAPD_INODESTEAL, reap);
774 			else
775 				__count_vm_events(PGINODESTEAL, reap);
776 			if (current->reclaim_state)
777 				current->reclaim_state->reclaimed_slab += reap;
778 		}
779 		iput(inode);
780 		spin_lock(lru_lock);
781 		return LRU_RETRY;
782 	}
783 
784 	WARN_ON(inode->i_state & I_NEW);
785 	inode->i_state |= I_FREEING;
786 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
787 	spin_unlock(&inode->i_lock);
788 
789 	this_cpu_dec(nr_unused);
790 	return LRU_REMOVED;
791 }
792 
793 /*
794  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
795  * This is called from the superblock shrinker function with a number of inodes
796  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
797  * then are freed outside inode_lock by dispose_list().
798  */
799 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
800 {
801 	LIST_HEAD(freeable);
802 	long freed;
803 
804 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
805 				     inode_lru_isolate, &freeable);
806 	dispose_list(&freeable);
807 	return freed;
808 }
809 
810 static void __wait_on_freeing_inode(struct inode *inode);
811 /*
812  * Called with the inode lock held.
813  */
814 static struct inode *find_inode(struct super_block *sb,
815 				struct hlist_head *head,
816 				int (*test)(struct inode *, void *),
817 				void *data)
818 {
819 	struct inode *inode = NULL;
820 
821 repeat:
822 	hlist_for_each_entry(inode, head, i_hash) {
823 		if (inode->i_sb != sb)
824 			continue;
825 		if (!test(inode, data))
826 			continue;
827 		spin_lock(&inode->i_lock);
828 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
829 			__wait_on_freeing_inode(inode);
830 			goto repeat;
831 		}
832 		if (unlikely(inode->i_state & I_CREATING)) {
833 			spin_unlock(&inode->i_lock);
834 			return ERR_PTR(-ESTALE);
835 		}
836 		__iget(inode);
837 		spin_unlock(&inode->i_lock);
838 		return inode;
839 	}
840 	return NULL;
841 }
842 
843 /*
844  * find_inode_fast is the fast path version of find_inode, see the comment at
845  * iget_locked for details.
846  */
847 static struct inode *find_inode_fast(struct super_block *sb,
848 				struct hlist_head *head, unsigned long ino)
849 {
850 	struct inode *inode = NULL;
851 
852 repeat:
853 	hlist_for_each_entry(inode, head, i_hash) {
854 		if (inode->i_ino != ino)
855 			continue;
856 		if (inode->i_sb != sb)
857 			continue;
858 		spin_lock(&inode->i_lock);
859 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
860 			__wait_on_freeing_inode(inode);
861 			goto repeat;
862 		}
863 		if (unlikely(inode->i_state & I_CREATING)) {
864 			spin_unlock(&inode->i_lock);
865 			return ERR_PTR(-ESTALE);
866 		}
867 		__iget(inode);
868 		spin_unlock(&inode->i_lock);
869 		return inode;
870 	}
871 	return NULL;
872 }
873 
874 /*
875  * Each cpu owns a range of LAST_INO_BATCH numbers.
876  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
877  * to renew the exhausted range.
878  *
879  * This does not significantly increase overflow rate because every CPU can
880  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
881  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
882  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
883  * overflow rate by 2x, which does not seem too significant.
884  *
885  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
886  * error if st_ino won't fit in target struct field. Use 32bit counter
887  * here to attempt to avoid that.
888  */
889 #define LAST_INO_BATCH 1024
890 static DEFINE_PER_CPU(unsigned int, last_ino);
891 
892 unsigned int get_next_ino(void)
893 {
894 	unsigned int *p = &get_cpu_var(last_ino);
895 	unsigned int res = *p;
896 
897 #ifdef CONFIG_SMP
898 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
899 		static atomic_t shared_last_ino;
900 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
901 
902 		res = next - LAST_INO_BATCH;
903 	}
904 #endif
905 
906 	res++;
907 	/* get_next_ino should not provide a 0 inode number */
908 	if (unlikely(!res))
909 		res++;
910 	*p = res;
911 	put_cpu_var(last_ino);
912 	return res;
913 }
914 EXPORT_SYMBOL(get_next_ino);
915 
916 /**
917  *	new_inode_pseudo 	- obtain an inode
918  *	@sb: superblock
919  *
920  *	Allocates a new inode for given superblock.
921  *	Inode wont be chained in superblock s_inodes list
922  *	This means :
923  *	- fs can't be unmount
924  *	- quotas, fsnotify, writeback can't work
925  */
926 struct inode *new_inode_pseudo(struct super_block *sb)
927 {
928 	struct inode *inode = alloc_inode(sb);
929 
930 	if (inode) {
931 		spin_lock(&inode->i_lock);
932 		inode->i_state = 0;
933 		spin_unlock(&inode->i_lock);
934 		INIT_LIST_HEAD(&inode->i_sb_list);
935 	}
936 	return inode;
937 }
938 
939 /**
940  *	new_inode 	- obtain an inode
941  *	@sb: superblock
942  *
943  *	Allocates a new inode for given superblock. The default gfp_mask
944  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
945  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
946  *	for the page cache are not reclaimable or migratable,
947  *	mapping_set_gfp_mask() must be called with suitable flags on the
948  *	newly created inode's mapping
949  *
950  */
951 struct inode *new_inode(struct super_block *sb)
952 {
953 	struct inode *inode;
954 
955 	spin_lock_prefetch(&sb->s_inode_list_lock);
956 
957 	inode = new_inode_pseudo(sb);
958 	if (inode)
959 		inode_sb_list_add(inode);
960 	return inode;
961 }
962 EXPORT_SYMBOL(new_inode);
963 
964 #ifdef CONFIG_DEBUG_LOCK_ALLOC
965 void lockdep_annotate_inode_mutex_key(struct inode *inode)
966 {
967 	if (S_ISDIR(inode->i_mode)) {
968 		struct file_system_type *type = inode->i_sb->s_type;
969 
970 		/* Set new key only if filesystem hasn't already changed it */
971 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
972 			/*
973 			 * ensure nobody is actually holding i_mutex
974 			 */
975 			// mutex_destroy(&inode->i_mutex);
976 			init_rwsem(&inode->i_rwsem);
977 			lockdep_set_class(&inode->i_rwsem,
978 					  &type->i_mutex_dir_key);
979 		}
980 	}
981 }
982 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
983 #endif
984 
985 /**
986  * unlock_new_inode - clear the I_NEW state and wake up any waiters
987  * @inode:	new inode to unlock
988  *
989  * Called when the inode is fully initialised to clear the new state of the
990  * inode and wake up anyone waiting for the inode to finish initialisation.
991  */
992 void unlock_new_inode(struct inode *inode)
993 {
994 	lockdep_annotate_inode_mutex_key(inode);
995 	spin_lock(&inode->i_lock);
996 	WARN_ON(!(inode->i_state & I_NEW));
997 	inode->i_state &= ~I_NEW & ~I_CREATING;
998 	smp_mb();
999 	wake_up_bit(&inode->i_state, __I_NEW);
1000 	spin_unlock(&inode->i_lock);
1001 }
1002 EXPORT_SYMBOL(unlock_new_inode);
1003 
1004 void discard_new_inode(struct inode *inode)
1005 {
1006 	lockdep_annotate_inode_mutex_key(inode);
1007 	spin_lock(&inode->i_lock);
1008 	WARN_ON(!(inode->i_state & I_NEW));
1009 	inode->i_state &= ~I_NEW;
1010 	smp_mb();
1011 	wake_up_bit(&inode->i_state, __I_NEW);
1012 	spin_unlock(&inode->i_lock);
1013 	iput(inode);
1014 }
1015 EXPORT_SYMBOL(discard_new_inode);
1016 
1017 /**
1018  * lock_two_nondirectories - take two i_mutexes on non-directory objects
1019  *
1020  * Lock any non-NULL argument that is not a directory.
1021  * Zero, one or two objects may be locked by this function.
1022  *
1023  * @inode1: first inode to lock
1024  * @inode2: second inode to lock
1025  */
1026 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1027 {
1028 	if (inode1 > inode2)
1029 		swap(inode1, inode2);
1030 
1031 	if (inode1 && !S_ISDIR(inode1->i_mode))
1032 		inode_lock(inode1);
1033 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1034 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1035 }
1036 EXPORT_SYMBOL(lock_two_nondirectories);
1037 
1038 /**
1039  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1040  * @inode1: first inode to unlock
1041  * @inode2: second inode to unlock
1042  */
1043 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1044 {
1045 	if (inode1 && !S_ISDIR(inode1->i_mode))
1046 		inode_unlock(inode1);
1047 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1048 		inode_unlock(inode2);
1049 }
1050 EXPORT_SYMBOL(unlock_two_nondirectories);
1051 
1052 /**
1053  * inode_insert5 - obtain an inode from a mounted file system
1054  * @inode:	pre-allocated inode to use for insert to cache
1055  * @hashval:	hash value (usually inode number) to get
1056  * @test:	callback used for comparisons between inodes
1057  * @set:	callback used to initialize a new struct inode
1058  * @data:	opaque data pointer to pass to @test and @set
1059  *
1060  * Search for the inode specified by @hashval and @data in the inode cache,
1061  * and if present it is return it with an increased reference count. This is
1062  * a variant of iget5_locked() for callers that don't want to fail on memory
1063  * allocation of inode.
1064  *
1065  * If the inode is not in cache, insert the pre-allocated inode to cache and
1066  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1067  * to fill it in before unlocking it via unlock_new_inode().
1068  *
1069  * Note both @test and @set are called with the inode_hash_lock held, so can't
1070  * sleep.
1071  */
1072 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1073 			    int (*test)(struct inode *, void *),
1074 			    int (*set)(struct inode *, void *), void *data)
1075 {
1076 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1077 	struct inode *old;
1078 	bool creating = inode->i_state & I_CREATING;
1079 
1080 again:
1081 	spin_lock(&inode_hash_lock);
1082 	old = find_inode(inode->i_sb, head, test, data);
1083 	if (unlikely(old)) {
1084 		/*
1085 		 * Uhhuh, somebody else created the same inode under us.
1086 		 * Use the old inode instead of the preallocated one.
1087 		 */
1088 		spin_unlock(&inode_hash_lock);
1089 		if (IS_ERR(old))
1090 			return NULL;
1091 		wait_on_inode(old);
1092 		if (unlikely(inode_unhashed(old))) {
1093 			iput(old);
1094 			goto again;
1095 		}
1096 		return old;
1097 	}
1098 
1099 	if (set && unlikely(set(inode, data))) {
1100 		inode = NULL;
1101 		goto unlock;
1102 	}
1103 
1104 	/*
1105 	 * Return the locked inode with I_NEW set, the
1106 	 * caller is responsible for filling in the contents
1107 	 */
1108 	spin_lock(&inode->i_lock);
1109 	inode->i_state |= I_NEW;
1110 	hlist_add_head(&inode->i_hash, head);
1111 	spin_unlock(&inode->i_lock);
1112 	if (!creating)
1113 		inode_sb_list_add(inode);
1114 unlock:
1115 	spin_unlock(&inode_hash_lock);
1116 
1117 	return inode;
1118 }
1119 EXPORT_SYMBOL(inode_insert5);
1120 
1121 /**
1122  * iget5_locked - obtain an inode from a mounted file system
1123  * @sb:		super block of file system
1124  * @hashval:	hash value (usually inode number) to get
1125  * @test:	callback used for comparisons between inodes
1126  * @set:	callback used to initialize a new struct inode
1127  * @data:	opaque data pointer to pass to @test and @set
1128  *
1129  * Search for the inode specified by @hashval and @data in the inode cache,
1130  * and if present it is return it with an increased reference count. This is
1131  * a generalized version of iget_locked() for file systems where the inode
1132  * number is not sufficient for unique identification of an inode.
1133  *
1134  * If the inode is not in cache, allocate a new inode and return it locked,
1135  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1136  * before unlocking it via unlock_new_inode().
1137  *
1138  * Note both @test and @set are called with the inode_hash_lock held, so can't
1139  * sleep.
1140  */
1141 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1142 		int (*test)(struct inode *, void *),
1143 		int (*set)(struct inode *, void *), void *data)
1144 {
1145 	struct inode *inode = ilookup5(sb, hashval, test, data);
1146 
1147 	if (!inode) {
1148 		struct inode *new = alloc_inode(sb);
1149 
1150 		if (new) {
1151 			new->i_state = 0;
1152 			inode = inode_insert5(new, hashval, test, set, data);
1153 			if (unlikely(inode != new))
1154 				destroy_inode(new);
1155 		}
1156 	}
1157 	return inode;
1158 }
1159 EXPORT_SYMBOL(iget5_locked);
1160 
1161 /**
1162  * iget_locked - obtain an inode from a mounted file system
1163  * @sb:		super block of file system
1164  * @ino:	inode number to get
1165  *
1166  * Search for the inode specified by @ino in the inode cache and if present
1167  * return it with an increased reference count. This is for file systems
1168  * where the inode number is sufficient for unique identification of an inode.
1169  *
1170  * If the inode is not in cache, allocate a new inode and return it locked,
1171  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1172  * before unlocking it via unlock_new_inode().
1173  */
1174 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1175 {
1176 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1177 	struct inode *inode;
1178 again:
1179 	spin_lock(&inode_hash_lock);
1180 	inode = find_inode_fast(sb, head, ino);
1181 	spin_unlock(&inode_hash_lock);
1182 	if (inode) {
1183 		if (IS_ERR(inode))
1184 			return NULL;
1185 		wait_on_inode(inode);
1186 		if (unlikely(inode_unhashed(inode))) {
1187 			iput(inode);
1188 			goto again;
1189 		}
1190 		return inode;
1191 	}
1192 
1193 	inode = alloc_inode(sb);
1194 	if (inode) {
1195 		struct inode *old;
1196 
1197 		spin_lock(&inode_hash_lock);
1198 		/* We released the lock, so.. */
1199 		old = find_inode_fast(sb, head, ino);
1200 		if (!old) {
1201 			inode->i_ino = ino;
1202 			spin_lock(&inode->i_lock);
1203 			inode->i_state = I_NEW;
1204 			hlist_add_head(&inode->i_hash, head);
1205 			spin_unlock(&inode->i_lock);
1206 			inode_sb_list_add(inode);
1207 			spin_unlock(&inode_hash_lock);
1208 
1209 			/* Return the locked inode with I_NEW set, the
1210 			 * caller is responsible for filling in the contents
1211 			 */
1212 			return inode;
1213 		}
1214 
1215 		/*
1216 		 * Uhhuh, somebody else created the same inode under
1217 		 * us. Use the old inode instead of the one we just
1218 		 * allocated.
1219 		 */
1220 		spin_unlock(&inode_hash_lock);
1221 		destroy_inode(inode);
1222 		if (IS_ERR(old))
1223 			return NULL;
1224 		inode = old;
1225 		wait_on_inode(inode);
1226 		if (unlikely(inode_unhashed(inode))) {
1227 			iput(inode);
1228 			goto again;
1229 		}
1230 	}
1231 	return inode;
1232 }
1233 EXPORT_SYMBOL(iget_locked);
1234 
1235 /*
1236  * search the inode cache for a matching inode number.
1237  * If we find one, then the inode number we are trying to
1238  * allocate is not unique and so we should not use it.
1239  *
1240  * Returns 1 if the inode number is unique, 0 if it is not.
1241  */
1242 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1243 {
1244 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1245 	struct inode *inode;
1246 
1247 	spin_lock(&inode_hash_lock);
1248 	hlist_for_each_entry(inode, b, i_hash) {
1249 		if (inode->i_ino == ino && inode->i_sb == sb) {
1250 			spin_unlock(&inode_hash_lock);
1251 			return 0;
1252 		}
1253 	}
1254 	spin_unlock(&inode_hash_lock);
1255 
1256 	return 1;
1257 }
1258 
1259 /**
1260  *	iunique - get a unique inode number
1261  *	@sb: superblock
1262  *	@max_reserved: highest reserved inode number
1263  *
1264  *	Obtain an inode number that is unique on the system for a given
1265  *	superblock. This is used by file systems that have no natural
1266  *	permanent inode numbering system. An inode number is returned that
1267  *	is higher than the reserved limit but unique.
1268  *
1269  *	BUGS:
1270  *	With a large number of inodes live on the file system this function
1271  *	currently becomes quite slow.
1272  */
1273 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1274 {
1275 	/*
1276 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1277 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1278 	 * here to attempt to avoid that.
1279 	 */
1280 	static DEFINE_SPINLOCK(iunique_lock);
1281 	static unsigned int counter;
1282 	ino_t res;
1283 
1284 	spin_lock(&iunique_lock);
1285 	do {
1286 		if (counter <= max_reserved)
1287 			counter = max_reserved + 1;
1288 		res = counter++;
1289 	} while (!test_inode_iunique(sb, res));
1290 	spin_unlock(&iunique_lock);
1291 
1292 	return res;
1293 }
1294 EXPORT_SYMBOL(iunique);
1295 
1296 struct inode *igrab(struct inode *inode)
1297 {
1298 	spin_lock(&inode->i_lock);
1299 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1300 		__iget(inode);
1301 		spin_unlock(&inode->i_lock);
1302 	} else {
1303 		spin_unlock(&inode->i_lock);
1304 		/*
1305 		 * Handle the case where s_op->clear_inode is not been
1306 		 * called yet, and somebody is calling igrab
1307 		 * while the inode is getting freed.
1308 		 */
1309 		inode = NULL;
1310 	}
1311 	return inode;
1312 }
1313 EXPORT_SYMBOL(igrab);
1314 
1315 /**
1316  * ilookup5_nowait - search for an inode in the inode cache
1317  * @sb:		super block of file system to search
1318  * @hashval:	hash value (usually inode number) to search for
1319  * @test:	callback used for comparisons between inodes
1320  * @data:	opaque data pointer to pass to @test
1321  *
1322  * Search for the inode specified by @hashval and @data in the inode cache.
1323  * If the inode is in the cache, the inode is returned with an incremented
1324  * reference count.
1325  *
1326  * Note: I_NEW is not waited upon so you have to be very careful what you do
1327  * with the returned inode.  You probably should be using ilookup5() instead.
1328  *
1329  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1330  */
1331 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1332 		int (*test)(struct inode *, void *), void *data)
1333 {
1334 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1335 	struct inode *inode;
1336 
1337 	spin_lock(&inode_hash_lock);
1338 	inode = find_inode(sb, head, test, data);
1339 	spin_unlock(&inode_hash_lock);
1340 
1341 	return IS_ERR(inode) ? NULL : inode;
1342 }
1343 EXPORT_SYMBOL(ilookup5_nowait);
1344 
1345 /**
1346  * ilookup5 - search for an inode in the inode cache
1347  * @sb:		super block of file system to search
1348  * @hashval:	hash value (usually inode number) to search for
1349  * @test:	callback used for comparisons between inodes
1350  * @data:	opaque data pointer to pass to @test
1351  *
1352  * Search for the inode specified by @hashval and @data in the inode cache,
1353  * and if the inode is in the cache, return the inode with an incremented
1354  * reference count.  Waits on I_NEW before returning the inode.
1355  * returned with an incremented reference count.
1356  *
1357  * This is a generalized version of ilookup() for file systems where the
1358  * inode number is not sufficient for unique identification of an inode.
1359  *
1360  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1361  */
1362 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1363 		int (*test)(struct inode *, void *), void *data)
1364 {
1365 	struct inode *inode;
1366 again:
1367 	inode = ilookup5_nowait(sb, hashval, test, data);
1368 	if (inode) {
1369 		wait_on_inode(inode);
1370 		if (unlikely(inode_unhashed(inode))) {
1371 			iput(inode);
1372 			goto again;
1373 		}
1374 	}
1375 	return inode;
1376 }
1377 EXPORT_SYMBOL(ilookup5);
1378 
1379 /**
1380  * ilookup - search for an inode in the inode cache
1381  * @sb:		super block of file system to search
1382  * @ino:	inode number to search for
1383  *
1384  * Search for the inode @ino in the inode cache, and if the inode is in the
1385  * cache, the inode is returned with an incremented reference count.
1386  */
1387 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1388 {
1389 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1390 	struct inode *inode;
1391 again:
1392 	spin_lock(&inode_hash_lock);
1393 	inode = find_inode_fast(sb, head, ino);
1394 	spin_unlock(&inode_hash_lock);
1395 
1396 	if (inode) {
1397 		if (IS_ERR(inode))
1398 			return NULL;
1399 		wait_on_inode(inode);
1400 		if (unlikely(inode_unhashed(inode))) {
1401 			iput(inode);
1402 			goto again;
1403 		}
1404 	}
1405 	return inode;
1406 }
1407 EXPORT_SYMBOL(ilookup);
1408 
1409 /**
1410  * find_inode_nowait - find an inode in the inode cache
1411  * @sb:		super block of file system to search
1412  * @hashval:	hash value (usually inode number) to search for
1413  * @match:	callback used for comparisons between inodes
1414  * @data:	opaque data pointer to pass to @match
1415  *
1416  * Search for the inode specified by @hashval and @data in the inode
1417  * cache, where the helper function @match will return 0 if the inode
1418  * does not match, 1 if the inode does match, and -1 if the search
1419  * should be stopped.  The @match function must be responsible for
1420  * taking the i_lock spin_lock and checking i_state for an inode being
1421  * freed or being initialized, and incrementing the reference count
1422  * before returning 1.  It also must not sleep, since it is called with
1423  * the inode_hash_lock spinlock held.
1424  *
1425  * This is a even more generalized version of ilookup5() when the
1426  * function must never block --- find_inode() can block in
1427  * __wait_on_freeing_inode() --- or when the caller can not increment
1428  * the reference count because the resulting iput() might cause an
1429  * inode eviction.  The tradeoff is that the @match funtion must be
1430  * very carefully implemented.
1431  */
1432 struct inode *find_inode_nowait(struct super_block *sb,
1433 				unsigned long hashval,
1434 				int (*match)(struct inode *, unsigned long,
1435 					     void *),
1436 				void *data)
1437 {
1438 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1439 	struct inode *inode, *ret_inode = NULL;
1440 	int mval;
1441 
1442 	spin_lock(&inode_hash_lock);
1443 	hlist_for_each_entry(inode, head, i_hash) {
1444 		if (inode->i_sb != sb)
1445 			continue;
1446 		mval = match(inode, hashval, data);
1447 		if (mval == 0)
1448 			continue;
1449 		if (mval == 1)
1450 			ret_inode = inode;
1451 		goto out;
1452 	}
1453 out:
1454 	spin_unlock(&inode_hash_lock);
1455 	return ret_inode;
1456 }
1457 EXPORT_SYMBOL(find_inode_nowait);
1458 
1459 int insert_inode_locked(struct inode *inode)
1460 {
1461 	struct super_block *sb = inode->i_sb;
1462 	ino_t ino = inode->i_ino;
1463 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1464 
1465 	while (1) {
1466 		struct inode *old = NULL;
1467 		spin_lock(&inode_hash_lock);
1468 		hlist_for_each_entry(old, head, i_hash) {
1469 			if (old->i_ino != ino)
1470 				continue;
1471 			if (old->i_sb != sb)
1472 				continue;
1473 			spin_lock(&old->i_lock);
1474 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1475 				spin_unlock(&old->i_lock);
1476 				continue;
1477 			}
1478 			break;
1479 		}
1480 		if (likely(!old)) {
1481 			spin_lock(&inode->i_lock);
1482 			inode->i_state |= I_NEW | I_CREATING;
1483 			hlist_add_head(&inode->i_hash, head);
1484 			spin_unlock(&inode->i_lock);
1485 			spin_unlock(&inode_hash_lock);
1486 			return 0;
1487 		}
1488 		if (unlikely(old->i_state & I_CREATING)) {
1489 			spin_unlock(&old->i_lock);
1490 			spin_unlock(&inode_hash_lock);
1491 			return -EBUSY;
1492 		}
1493 		__iget(old);
1494 		spin_unlock(&old->i_lock);
1495 		spin_unlock(&inode_hash_lock);
1496 		wait_on_inode(old);
1497 		if (unlikely(!inode_unhashed(old))) {
1498 			iput(old);
1499 			return -EBUSY;
1500 		}
1501 		iput(old);
1502 	}
1503 }
1504 EXPORT_SYMBOL(insert_inode_locked);
1505 
1506 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1507 		int (*test)(struct inode *, void *), void *data)
1508 {
1509 	struct inode *old;
1510 
1511 	inode->i_state |= I_CREATING;
1512 	old = inode_insert5(inode, hashval, test, NULL, data);
1513 
1514 	if (old != inode) {
1515 		iput(old);
1516 		return -EBUSY;
1517 	}
1518 	return 0;
1519 }
1520 EXPORT_SYMBOL(insert_inode_locked4);
1521 
1522 
1523 int generic_delete_inode(struct inode *inode)
1524 {
1525 	return 1;
1526 }
1527 EXPORT_SYMBOL(generic_delete_inode);
1528 
1529 /*
1530  * Called when we're dropping the last reference
1531  * to an inode.
1532  *
1533  * Call the FS "drop_inode()" function, defaulting to
1534  * the legacy UNIX filesystem behaviour.  If it tells
1535  * us to evict inode, do so.  Otherwise, retain inode
1536  * in cache if fs is alive, sync and evict if fs is
1537  * shutting down.
1538  */
1539 static void iput_final(struct inode *inode)
1540 {
1541 	struct super_block *sb = inode->i_sb;
1542 	const struct super_operations *op = inode->i_sb->s_op;
1543 	int drop;
1544 
1545 	WARN_ON(inode->i_state & I_NEW);
1546 
1547 	if (op->drop_inode)
1548 		drop = op->drop_inode(inode);
1549 	else
1550 		drop = generic_drop_inode(inode);
1551 
1552 	if (!drop && (sb->s_flags & SB_ACTIVE)) {
1553 		inode_add_lru(inode);
1554 		spin_unlock(&inode->i_lock);
1555 		return;
1556 	}
1557 
1558 	if (!drop) {
1559 		inode->i_state |= I_WILL_FREE;
1560 		spin_unlock(&inode->i_lock);
1561 		write_inode_now(inode, 1);
1562 		spin_lock(&inode->i_lock);
1563 		WARN_ON(inode->i_state & I_NEW);
1564 		inode->i_state &= ~I_WILL_FREE;
1565 	}
1566 
1567 	inode->i_state |= I_FREEING;
1568 	if (!list_empty(&inode->i_lru))
1569 		inode_lru_list_del(inode);
1570 	spin_unlock(&inode->i_lock);
1571 
1572 	evict(inode);
1573 }
1574 
1575 /**
1576  *	iput	- put an inode
1577  *	@inode: inode to put
1578  *
1579  *	Puts an inode, dropping its usage count. If the inode use count hits
1580  *	zero, the inode is then freed and may also be destroyed.
1581  *
1582  *	Consequently, iput() can sleep.
1583  */
1584 void iput(struct inode *inode)
1585 {
1586 	if (!inode)
1587 		return;
1588 	BUG_ON(inode->i_state & I_CLEAR);
1589 retry:
1590 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1591 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1592 			atomic_inc(&inode->i_count);
1593 			spin_unlock(&inode->i_lock);
1594 			trace_writeback_lazytime_iput(inode);
1595 			mark_inode_dirty_sync(inode);
1596 			goto retry;
1597 		}
1598 		iput_final(inode);
1599 	}
1600 }
1601 EXPORT_SYMBOL(iput);
1602 
1603 #ifdef CONFIG_BLOCK
1604 /**
1605  *	bmap	- find a block number in a file
1606  *	@inode:  inode owning the block number being requested
1607  *	@block: pointer containing the block to find
1608  *
1609  *	Replaces the value in *block with the block number on the device holding
1610  *	corresponding to the requested block number in the file.
1611  *	That is, asked for block 4 of inode 1 the function will replace the
1612  *	4 in *block, with disk block relative to the disk start that holds that
1613  *	block of the file.
1614  *
1615  *	Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1616  *	hole, returns 0 and *block is also set to 0.
1617  */
1618 int bmap(struct inode *inode, sector_t *block)
1619 {
1620 	if (!inode->i_mapping->a_ops->bmap)
1621 		return -EINVAL;
1622 
1623 	*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1624 	return 0;
1625 }
1626 EXPORT_SYMBOL(bmap);
1627 #endif
1628 
1629 /*
1630  * With relative atime, only update atime if the previous atime is
1631  * earlier than either the ctime or mtime or if at least a day has
1632  * passed since the last atime update.
1633  */
1634 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1635 			     struct timespec64 now)
1636 {
1637 
1638 	if (!(mnt->mnt_flags & MNT_RELATIME))
1639 		return 1;
1640 	/*
1641 	 * Is mtime younger than atime? If yes, update atime:
1642 	 */
1643 	if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1644 		return 1;
1645 	/*
1646 	 * Is ctime younger than atime? If yes, update atime:
1647 	 */
1648 	if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1649 		return 1;
1650 
1651 	/*
1652 	 * Is the previous atime value older than a day? If yes,
1653 	 * update atime:
1654 	 */
1655 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1656 		return 1;
1657 	/*
1658 	 * Good, we can skip the atime update:
1659 	 */
1660 	return 0;
1661 }
1662 
1663 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1664 {
1665 	int iflags = I_DIRTY_TIME;
1666 	bool dirty = false;
1667 
1668 	if (flags & S_ATIME)
1669 		inode->i_atime = *time;
1670 	if (flags & S_VERSION)
1671 		dirty = inode_maybe_inc_iversion(inode, false);
1672 	if (flags & S_CTIME)
1673 		inode->i_ctime = *time;
1674 	if (flags & S_MTIME)
1675 		inode->i_mtime = *time;
1676 	if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1677 	    !(inode->i_sb->s_flags & SB_LAZYTIME))
1678 		dirty = true;
1679 
1680 	if (dirty)
1681 		iflags |= I_DIRTY_SYNC;
1682 	__mark_inode_dirty(inode, iflags);
1683 	return 0;
1684 }
1685 EXPORT_SYMBOL(generic_update_time);
1686 
1687 /*
1688  * This does the actual work of updating an inodes time or version.  Must have
1689  * had called mnt_want_write() before calling this.
1690  */
1691 static int update_time(struct inode *inode, struct timespec64 *time, int flags)
1692 {
1693 	if (inode->i_op->update_time)
1694 		return inode->i_op->update_time(inode, time, flags);
1695 	return generic_update_time(inode, time, flags);
1696 }
1697 
1698 /**
1699  *	touch_atime	-	update the access time
1700  *	@path: the &struct path to update
1701  *	@inode: inode to update
1702  *
1703  *	Update the accessed time on an inode and mark it for writeback.
1704  *	This function automatically handles read only file systems and media,
1705  *	as well as the "noatime" flag and inode specific "noatime" markers.
1706  */
1707 bool atime_needs_update(const struct path *path, struct inode *inode)
1708 {
1709 	struct vfsmount *mnt = path->mnt;
1710 	struct timespec64 now;
1711 
1712 	if (inode->i_flags & S_NOATIME)
1713 		return false;
1714 
1715 	/* Atime updates will likely cause i_uid and i_gid to be written
1716 	 * back improprely if their true value is unknown to the vfs.
1717 	 */
1718 	if (HAS_UNMAPPED_ID(inode))
1719 		return false;
1720 
1721 	if (IS_NOATIME(inode))
1722 		return false;
1723 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1724 		return false;
1725 
1726 	if (mnt->mnt_flags & MNT_NOATIME)
1727 		return false;
1728 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1729 		return false;
1730 
1731 	now = current_time(inode);
1732 
1733 	if (!relatime_need_update(mnt, inode, now))
1734 		return false;
1735 
1736 	if (timespec64_equal(&inode->i_atime, &now))
1737 		return false;
1738 
1739 	return true;
1740 }
1741 
1742 void touch_atime(const struct path *path)
1743 {
1744 	struct vfsmount *mnt = path->mnt;
1745 	struct inode *inode = d_inode(path->dentry);
1746 	struct timespec64 now;
1747 
1748 	if (!atime_needs_update(path, inode))
1749 		return;
1750 
1751 	if (!sb_start_write_trylock(inode->i_sb))
1752 		return;
1753 
1754 	if (__mnt_want_write(mnt) != 0)
1755 		goto skip_update;
1756 	/*
1757 	 * File systems can error out when updating inodes if they need to
1758 	 * allocate new space to modify an inode (such is the case for
1759 	 * Btrfs), but since we touch atime while walking down the path we
1760 	 * really don't care if we failed to update the atime of the file,
1761 	 * so just ignore the return value.
1762 	 * We may also fail on filesystems that have the ability to make parts
1763 	 * of the fs read only, e.g. subvolumes in Btrfs.
1764 	 */
1765 	now = current_time(inode);
1766 	update_time(inode, &now, S_ATIME);
1767 	__mnt_drop_write(mnt);
1768 skip_update:
1769 	sb_end_write(inode->i_sb);
1770 }
1771 EXPORT_SYMBOL(touch_atime);
1772 
1773 /*
1774  * The logic we want is
1775  *
1776  *	if suid or (sgid and xgrp)
1777  *		remove privs
1778  */
1779 int should_remove_suid(struct dentry *dentry)
1780 {
1781 	umode_t mode = d_inode(dentry)->i_mode;
1782 	int kill = 0;
1783 
1784 	/* suid always must be killed */
1785 	if (unlikely(mode & S_ISUID))
1786 		kill = ATTR_KILL_SUID;
1787 
1788 	/*
1789 	 * sgid without any exec bits is just a mandatory locking mark; leave
1790 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1791 	 */
1792 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1793 		kill |= ATTR_KILL_SGID;
1794 
1795 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1796 		return kill;
1797 
1798 	return 0;
1799 }
1800 EXPORT_SYMBOL(should_remove_suid);
1801 
1802 /*
1803  * Return mask of changes for notify_change() that need to be done as a
1804  * response to write or truncate. Return 0 if nothing has to be changed.
1805  * Negative value on error (change should be denied).
1806  */
1807 int dentry_needs_remove_privs(struct dentry *dentry)
1808 {
1809 	struct inode *inode = d_inode(dentry);
1810 	int mask = 0;
1811 	int ret;
1812 
1813 	if (IS_NOSEC(inode))
1814 		return 0;
1815 
1816 	mask = should_remove_suid(dentry);
1817 	ret = security_inode_need_killpriv(dentry);
1818 	if (ret < 0)
1819 		return ret;
1820 	if (ret)
1821 		mask |= ATTR_KILL_PRIV;
1822 	return mask;
1823 }
1824 
1825 static int __remove_privs(struct dentry *dentry, int kill)
1826 {
1827 	struct iattr newattrs;
1828 
1829 	newattrs.ia_valid = ATTR_FORCE | kill;
1830 	/*
1831 	 * Note we call this on write, so notify_change will not
1832 	 * encounter any conflicting delegations:
1833 	 */
1834 	return notify_change(dentry, &newattrs, NULL);
1835 }
1836 
1837 /*
1838  * Remove special file priviledges (suid, capabilities) when file is written
1839  * to or truncated.
1840  */
1841 int file_remove_privs(struct file *file)
1842 {
1843 	struct dentry *dentry = file_dentry(file);
1844 	struct inode *inode = file_inode(file);
1845 	int kill;
1846 	int error = 0;
1847 
1848 	/*
1849 	 * Fast path for nothing security related.
1850 	 * As well for non-regular files, e.g. blkdev inodes.
1851 	 * For example, blkdev_write_iter() might get here
1852 	 * trying to remove privs which it is not allowed to.
1853 	 */
1854 	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1855 		return 0;
1856 
1857 	kill = dentry_needs_remove_privs(dentry);
1858 	if (kill < 0)
1859 		return kill;
1860 	if (kill)
1861 		error = __remove_privs(dentry, kill);
1862 	if (!error)
1863 		inode_has_no_xattr(inode);
1864 
1865 	return error;
1866 }
1867 EXPORT_SYMBOL(file_remove_privs);
1868 
1869 /**
1870  *	file_update_time	-	update mtime and ctime time
1871  *	@file: file accessed
1872  *
1873  *	Update the mtime and ctime members of an inode and mark the inode
1874  *	for writeback.  Note that this function is meant exclusively for
1875  *	usage in the file write path of filesystems, and filesystems may
1876  *	choose to explicitly ignore update via this function with the
1877  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1878  *	timestamps are handled by the server.  This can return an error for
1879  *	file systems who need to allocate space in order to update an inode.
1880  */
1881 
1882 int file_update_time(struct file *file)
1883 {
1884 	struct inode *inode = file_inode(file);
1885 	struct timespec64 now;
1886 	int sync_it = 0;
1887 	int ret;
1888 
1889 	/* First try to exhaust all avenues to not sync */
1890 	if (IS_NOCMTIME(inode))
1891 		return 0;
1892 
1893 	now = current_time(inode);
1894 	if (!timespec64_equal(&inode->i_mtime, &now))
1895 		sync_it = S_MTIME;
1896 
1897 	if (!timespec64_equal(&inode->i_ctime, &now))
1898 		sync_it |= S_CTIME;
1899 
1900 	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1901 		sync_it |= S_VERSION;
1902 
1903 	if (!sync_it)
1904 		return 0;
1905 
1906 	/* Finally allowed to write? Takes lock. */
1907 	if (__mnt_want_write_file(file))
1908 		return 0;
1909 
1910 	ret = update_time(inode, &now, sync_it);
1911 	__mnt_drop_write_file(file);
1912 
1913 	return ret;
1914 }
1915 EXPORT_SYMBOL(file_update_time);
1916 
1917 /* Caller must hold the file's inode lock */
1918 int file_modified(struct file *file)
1919 {
1920 	int err;
1921 
1922 	/*
1923 	 * Clear the security bits if the process is not being run by root.
1924 	 * This keeps people from modifying setuid and setgid binaries.
1925 	 */
1926 	err = file_remove_privs(file);
1927 	if (err)
1928 		return err;
1929 
1930 	if (unlikely(file->f_mode & FMODE_NOCMTIME))
1931 		return 0;
1932 
1933 	return file_update_time(file);
1934 }
1935 EXPORT_SYMBOL(file_modified);
1936 
1937 int inode_needs_sync(struct inode *inode)
1938 {
1939 	if (IS_SYNC(inode))
1940 		return 1;
1941 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1942 		return 1;
1943 	return 0;
1944 }
1945 EXPORT_SYMBOL(inode_needs_sync);
1946 
1947 /*
1948  * If we try to find an inode in the inode hash while it is being
1949  * deleted, we have to wait until the filesystem completes its
1950  * deletion before reporting that it isn't found.  This function waits
1951  * until the deletion _might_ have completed.  Callers are responsible
1952  * to recheck inode state.
1953  *
1954  * It doesn't matter if I_NEW is not set initially, a call to
1955  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1956  * will DTRT.
1957  */
1958 static void __wait_on_freeing_inode(struct inode *inode)
1959 {
1960 	wait_queue_head_t *wq;
1961 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1962 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1963 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1964 	spin_unlock(&inode->i_lock);
1965 	spin_unlock(&inode_hash_lock);
1966 	schedule();
1967 	finish_wait(wq, &wait.wq_entry);
1968 	spin_lock(&inode_hash_lock);
1969 }
1970 
1971 static __initdata unsigned long ihash_entries;
1972 static int __init set_ihash_entries(char *str)
1973 {
1974 	if (!str)
1975 		return 0;
1976 	ihash_entries = simple_strtoul(str, &str, 0);
1977 	return 1;
1978 }
1979 __setup("ihash_entries=", set_ihash_entries);
1980 
1981 /*
1982  * Initialize the waitqueues and inode hash table.
1983  */
1984 void __init inode_init_early(void)
1985 {
1986 	/* If hashes are distributed across NUMA nodes, defer
1987 	 * hash allocation until vmalloc space is available.
1988 	 */
1989 	if (hashdist)
1990 		return;
1991 
1992 	inode_hashtable =
1993 		alloc_large_system_hash("Inode-cache",
1994 					sizeof(struct hlist_head),
1995 					ihash_entries,
1996 					14,
1997 					HASH_EARLY | HASH_ZERO,
1998 					&i_hash_shift,
1999 					&i_hash_mask,
2000 					0,
2001 					0);
2002 }
2003 
2004 void __init inode_init(void)
2005 {
2006 	/* inode slab cache */
2007 	inode_cachep = kmem_cache_create("inode_cache",
2008 					 sizeof(struct inode),
2009 					 0,
2010 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2011 					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2012 					 init_once);
2013 
2014 	/* Hash may have been set up in inode_init_early */
2015 	if (!hashdist)
2016 		return;
2017 
2018 	inode_hashtable =
2019 		alloc_large_system_hash("Inode-cache",
2020 					sizeof(struct hlist_head),
2021 					ihash_entries,
2022 					14,
2023 					HASH_ZERO,
2024 					&i_hash_shift,
2025 					&i_hash_mask,
2026 					0,
2027 					0);
2028 }
2029 
2030 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2031 {
2032 	inode->i_mode = mode;
2033 	if (S_ISCHR(mode)) {
2034 		inode->i_fop = &def_chr_fops;
2035 		inode->i_rdev = rdev;
2036 	} else if (S_ISBLK(mode)) {
2037 		inode->i_fop = &def_blk_fops;
2038 		inode->i_rdev = rdev;
2039 	} else if (S_ISFIFO(mode))
2040 		inode->i_fop = &pipefifo_fops;
2041 	else if (S_ISSOCK(mode))
2042 		;	/* leave it no_open_fops */
2043 	else
2044 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2045 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2046 				  inode->i_ino);
2047 }
2048 EXPORT_SYMBOL(init_special_inode);
2049 
2050 /**
2051  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2052  * @inode: New inode
2053  * @dir: Directory inode
2054  * @mode: mode of the new inode
2055  */
2056 void inode_init_owner(struct inode *inode, const struct inode *dir,
2057 			umode_t mode)
2058 {
2059 	inode->i_uid = current_fsuid();
2060 	if (dir && dir->i_mode & S_ISGID) {
2061 		inode->i_gid = dir->i_gid;
2062 
2063 		/* Directories are special, and always inherit S_ISGID */
2064 		if (S_ISDIR(mode))
2065 			mode |= S_ISGID;
2066 		else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2067 			 !in_group_p(inode->i_gid) &&
2068 			 !capable_wrt_inode_uidgid(dir, CAP_FSETID))
2069 			mode &= ~S_ISGID;
2070 	} else
2071 		inode->i_gid = current_fsgid();
2072 	inode->i_mode = mode;
2073 }
2074 EXPORT_SYMBOL(inode_init_owner);
2075 
2076 /**
2077  * inode_owner_or_capable - check current task permissions to inode
2078  * @inode: inode being checked
2079  *
2080  * Return true if current either has CAP_FOWNER in a namespace with the
2081  * inode owner uid mapped, or owns the file.
2082  */
2083 bool inode_owner_or_capable(const struct inode *inode)
2084 {
2085 	struct user_namespace *ns;
2086 
2087 	if (uid_eq(current_fsuid(), inode->i_uid))
2088 		return true;
2089 
2090 	ns = current_user_ns();
2091 	if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2092 		return true;
2093 	return false;
2094 }
2095 EXPORT_SYMBOL(inode_owner_or_capable);
2096 
2097 /*
2098  * Direct i/o helper functions
2099  */
2100 static void __inode_dio_wait(struct inode *inode)
2101 {
2102 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2103 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2104 
2105 	do {
2106 		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2107 		if (atomic_read(&inode->i_dio_count))
2108 			schedule();
2109 	} while (atomic_read(&inode->i_dio_count));
2110 	finish_wait(wq, &q.wq_entry);
2111 }
2112 
2113 /**
2114  * inode_dio_wait - wait for outstanding DIO requests to finish
2115  * @inode: inode to wait for
2116  *
2117  * Waits for all pending direct I/O requests to finish so that we can
2118  * proceed with a truncate or equivalent operation.
2119  *
2120  * Must be called under a lock that serializes taking new references
2121  * to i_dio_count, usually by inode->i_mutex.
2122  */
2123 void inode_dio_wait(struct inode *inode)
2124 {
2125 	if (atomic_read(&inode->i_dio_count))
2126 		__inode_dio_wait(inode);
2127 }
2128 EXPORT_SYMBOL(inode_dio_wait);
2129 
2130 /*
2131  * inode_set_flags - atomically set some inode flags
2132  *
2133  * Note: the caller should be holding i_mutex, or else be sure that
2134  * they have exclusive access to the inode structure (i.e., while the
2135  * inode is being instantiated).  The reason for the cmpxchg() loop
2136  * --- which wouldn't be necessary if all code paths which modify
2137  * i_flags actually followed this rule, is that there is at least one
2138  * code path which doesn't today so we use cmpxchg() out of an abundance
2139  * of caution.
2140  *
2141  * In the long run, i_mutex is overkill, and we should probably look
2142  * at using the i_lock spinlock to protect i_flags, and then make sure
2143  * it is so documented in include/linux/fs.h and that all code follows
2144  * the locking convention!!
2145  */
2146 void inode_set_flags(struct inode *inode, unsigned int flags,
2147 		     unsigned int mask)
2148 {
2149 	WARN_ON_ONCE(flags & ~mask);
2150 	set_mask_bits(&inode->i_flags, mask, flags);
2151 }
2152 EXPORT_SYMBOL(inode_set_flags);
2153 
2154 void inode_nohighmem(struct inode *inode)
2155 {
2156 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2157 }
2158 EXPORT_SYMBOL(inode_nohighmem);
2159 
2160 /**
2161  * timestamp_truncate - Truncate timespec to a granularity
2162  * @t: Timespec
2163  * @inode: inode being updated
2164  *
2165  * Truncate a timespec to the granularity supported by the fs
2166  * containing the inode. Always rounds down. gran must
2167  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2168  */
2169 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2170 {
2171 	struct super_block *sb = inode->i_sb;
2172 	unsigned int gran = sb->s_time_gran;
2173 
2174 	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2175 	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2176 		t.tv_nsec = 0;
2177 
2178 	/* Avoid division in the common cases 1 ns and 1 s. */
2179 	if (gran == 1)
2180 		; /* nothing */
2181 	else if (gran == NSEC_PER_SEC)
2182 		t.tv_nsec = 0;
2183 	else if (gran > 1 && gran < NSEC_PER_SEC)
2184 		t.tv_nsec -= t.tv_nsec % gran;
2185 	else
2186 		WARN(1, "invalid file time granularity: %u", gran);
2187 	return t;
2188 }
2189 EXPORT_SYMBOL(timestamp_truncate);
2190 
2191 /**
2192  * current_time - Return FS time
2193  * @inode: inode.
2194  *
2195  * Return the current time truncated to the time granularity supported by
2196  * the fs.
2197  *
2198  * Note that inode and inode->sb cannot be NULL.
2199  * Otherwise, the function warns and returns time without truncation.
2200  */
2201 struct timespec64 current_time(struct inode *inode)
2202 {
2203 	struct timespec64 now;
2204 
2205 	ktime_get_coarse_real_ts64(&now);
2206 
2207 	if (unlikely(!inode->i_sb)) {
2208 		WARN(1, "current_time() called with uninitialized super_block in the inode");
2209 		return now;
2210 	}
2211 
2212 	return timestamp_truncate(now, inode);
2213 }
2214 EXPORT_SYMBOL(current_time);
2215 
2216 /*
2217  * Generic function to check FS_IOC_SETFLAGS values and reject any invalid
2218  * configurations.
2219  *
2220  * Note: the caller should be holding i_mutex, or else be sure that they have
2221  * exclusive access to the inode structure.
2222  */
2223 int vfs_ioc_setflags_prepare(struct inode *inode, unsigned int oldflags,
2224 			     unsigned int flags)
2225 {
2226 	/*
2227 	 * The IMMUTABLE and APPEND_ONLY flags can only be changed by
2228 	 * the relevant capability.
2229 	 *
2230 	 * This test looks nicer. Thanks to Pauline Middelink
2231 	 */
2232 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL) &&
2233 	    !capable(CAP_LINUX_IMMUTABLE))
2234 		return -EPERM;
2235 
2236 	return fscrypt_prepare_setflags(inode, oldflags, flags);
2237 }
2238 EXPORT_SYMBOL(vfs_ioc_setflags_prepare);
2239 
2240 /*
2241  * Generic function to check FS_IOC_FSSETXATTR values and reject any invalid
2242  * configurations.
2243  *
2244  * Note: the caller should be holding i_mutex, or else be sure that they have
2245  * exclusive access to the inode structure.
2246  */
2247 int vfs_ioc_fssetxattr_check(struct inode *inode, const struct fsxattr *old_fa,
2248 			     struct fsxattr *fa)
2249 {
2250 	/*
2251 	 * Can't modify an immutable/append-only file unless we have
2252 	 * appropriate permission.
2253 	 */
2254 	if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2255 			(FS_XFLAG_IMMUTABLE | FS_XFLAG_APPEND) &&
2256 	    !capable(CAP_LINUX_IMMUTABLE))
2257 		return -EPERM;
2258 
2259 	/*
2260 	 * Project Quota ID state is only allowed to change from within the init
2261 	 * namespace. Enforce that restriction only if we are trying to change
2262 	 * the quota ID state. Everything else is allowed in user namespaces.
2263 	 */
2264 	if (current_user_ns() != &init_user_ns) {
2265 		if (old_fa->fsx_projid != fa->fsx_projid)
2266 			return -EINVAL;
2267 		if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2268 				FS_XFLAG_PROJINHERIT)
2269 			return -EINVAL;
2270 	}
2271 
2272 	/* Check extent size hints. */
2273 	if ((fa->fsx_xflags & FS_XFLAG_EXTSIZE) && !S_ISREG(inode->i_mode))
2274 		return -EINVAL;
2275 
2276 	if ((fa->fsx_xflags & FS_XFLAG_EXTSZINHERIT) &&
2277 			!S_ISDIR(inode->i_mode))
2278 		return -EINVAL;
2279 
2280 	if ((fa->fsx_xflags & FS_XFLAG_COWEXTSIZE) &&
2281 	    !S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode))
2282 		return -EINVAL;
2283 
2284 	/*
2285 	 * It is only valid to set the DAX flag on regular files and
2286 	 * directories on filesystems.
2287 	 */
2288 	if ((fa->fsx_xflags & FS_XFLAG_DAX) &&
2289 	    !(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
2290 		return -EINVAL;
2291 
2292 	/* Extent size hints of zero turn off the flags. */
2293 	if (fa->fsx_extsize == 0)
2294 		fa->fsx_xflags &= ~(FS_XFLAG_EXTSIZE | FS_XFLAG_EXTSZINHERIT);
2295 	if (fa->fsx_cowextsize == 0)
2296 		fa->fsx_xflags &= ~FS_XFLAG_COWEXTSIZE;
2297 
2298 	return 0;
2299 }
2300 EXPORT_SYMBOL(vfs_ioc_fssetxattr_check);
2301