xref: /openbmc/linux/fs/inode.c (revision de6e9190)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * (C) 1997 Linus Torvalds
4  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5  */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/backing-dev.h>
10 #include <linux/hash.h>
11 #include <linux/swap.h>
12 #include <linux/security.h>
13 #include <linux/cdev.h>
14 #include <linux/memblock.h>
15 #include <linux/fsnotify.h>
16 #include <linux/mount.h>
17 #include <linux/posix_acl.h>
18 #include <linux/prefetch.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <trace/events/writeback.h>
24 #include "internal.h"
25 
26 /*
27  * Inode locking rules:
28  *
29  * inode->i_lock protects:
30  *   inode->i_state, inode->i_hash, __iget()
31  * Inode LRU list locks protect:
32  *   inode->i_sb->s_inode_lru, inode->i_lru
33  * inode->i_sb->s_inode_list_lock protects:
34  *   inode->i_sb->s_inodes, inode->i_sb_list
35  * bdi->wb.list_lock protects:
36  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
37  * inode_hash_lock protects:
38  *   inode_hashtable, inode->i_hash
39  *
40  * Lock ordering:
41  *
42  * inode->i_sb->s_inode_list_lock
43  *   inode->i_lock
44  *     Inode LRU list locks
45  *
46  * bdi->wb.list_lock
47  *   inode->i_lock
48  *
49  * inode_hash_lock
50  *   inode->i_sb->s_inode_list_lock
51  *   inode->i_lock
52  *
53  * iunique_lock
54  *   inode_hash_lock
55  */
56 
57 static unsigned int i_hash_mask __read_mostly;
58 static unsigned int i_hash_shift __read_mostly;
59 static struct hlist_head *inode_hashtable __read_mostly;
60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
61 
62 /*
63  * Empty aops. Can be used for the cases where the user does not
64  * define any of the address_space operations.
65  */
66 const struct address_space_operations empty_aops = {
67 };
68 EXPORT_SYMBOL(empty_aops);
69 
70 /*
71  * Statistics gathering..
72  */
73 struct inodes_stat_t inodes_stat;
74 
75 static DEFINE_PER_CPU(unsigned long, nr_inodes);
76 static DEFINE_PER_CPU(unsigned long, nr_unused);
77 
78 static struct kmem_cache *inode_cachep __read_mostly;
79 
80 static long get_nr_inodes(void)
81 {
82 	int i;
83 	long sum = 0;
84 	for_each_possible_cpu(i)
85 		sum += per_cpu(nr_inodes, i);
86 	return sum < 0 ? 0 : sum;
87 }
88 
89 static inline long get_nr_inodes_unused(void)
90 {
91 	int i;
92 	long sum = 0;
93 	for_each_possible_cpu(i)
94 		sum += per_cpu(nr_unused, i);
95 	return sum < 0 ? 0 : sum;
96 }
97 
98 long get_nr_dirty_inodes(void)
99 {
100 	/* not actually dirty inodes, but a wild approximation */
101 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
102 	return nr_dirty > 0 ? nr_dirty : 0;
103 }
104 
105 /*
106  * Handle nr_inode sysctl
107  */
108 #ifdef CONFIG_SYSCTL
109 int proc_nr_inodes(struct ctl_table *table, int write,
110 		   void *buffer, size_t *lenp, loff_t *ppos)
111 {
112 	inodes_stat.nr_inodes = get_nr_inodes();
113 	inodes_stat.nr_unused = get_nr_inodes_unused();
114 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115 }
116 #endif
117 
118 static int no_open(struct inode *inode, struct file *file)
119 {
120 	return -ENXIO;
121 }
122 
123 /**
124  * inode_init_always - perform inode structure initialisation
125  * @sb: superblock inode belongs to
126  * @inode: inode to initialise
127  *
128  * These are initializations that need to be done on every inode
129  * allocation as the fields are not initialised by slab allocation.
130  */
131 int inode_init_always(struct super_block *sb, struct inode *inode)
132 {
133 	static const struct inode_operations empty_iops;
134 	static const struct file_operations no_open_fops = {.open = no_open};
135 	struct address_space *const mapping = &inode->i_data;
136 
137 	inode->i_sb = sb;
138 	inode->i_blkbits = sb->s_blocksize_bits;
139 	inode->i_flags = 0;
140 	atomic64_set(&inode->i_sequence, 0);
141 	atomic_set(&inode->i_count, 1);
142 	inode->i_op = &empty_iops;
143 	inode->i_fop = &no_open_fops;
144 	inode->i_ino = 0;
145 	inode->__i_nlink = 1;
146 	inode->i_opflags = 0;
147 	if (sb->s_xattr)
148 		inode->i_opflags |= IOP_XATTR;
149 	i_uid_write(inode, 0);
150 	i_gid_write(inode, 0);
151 	atomic_set(&inode->i_writecount, 0);
152 	inode->i_size = 0;
153 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
154 	inode->i_blocks = 0;
155 	inode->i_bytes = 0;
156 	inode->i_generation = 0;
157 	inode->i_pipe = NULL;
158 	inode->i_cdev = NULL;
159 	inode->i_link = NULL;
160 	inode->i_dir_seq = 0;
161 	inode->i_rdev = 0;
162 	inode->dirtied_when = 0;
163 
164 #ifdef CONFIG_CGROUP_WRITEBACK
165 	inode->i_wb_frn_winner = 0;
166 	inode->i_wb_frn_avg_time = 0;
167 	inode->i_wb_frn_history = 0;
168 #endif
169 
170 	if (security_inode_alloc(inode))
171 		goto out;
172 	spin_lock_init(&inode->i_lock);
173 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
174 
175 	init_rwsem(&inode->i_rwsem);
176 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
177 
178 	atomic_set(&inode->i_dio_count, 0);
179 
180 	mapping->a_ops = &empty_aops;
181 	mapping->host = inode;
182 	mapping->flags = 0;
183 	if (sb->s_type->fs_flags & FS_THP_SUPPORT)
184 		__set_bit(AS_THP_SUPPORT, &mapping->flags);
185 	mapping->wb_err = 0;
186 	atomic_set(&mapping->i_mmap_writable, 0);
187 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
188 	atomic_set(&mapping->nr_thps, 0);
189 #endif
190 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
191 	mapping->private_data = NULL;
192 	mapping->writeback_index = 0;
193 	init_rwsem(&mapping->invalidate_lock);
194 	lockdep_set_class_and_name(&mapping->invalidate_lock,
195 				   &sb->s_type->invalidate_lock_key,
196 				   "mapping.invalidate_lock");
197 	inode->i_private = NULL;
198 	inode->i_mapping = mapping;
199 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
200 #ifdef CONFIG_FS_POSIX_ACL
201 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
202 #endif
203 
204 #ifdef CONFIG_FSNOTIFY
205 	inode->i_fsnotify_mask = 0;
206 #endif
207 	inode->i_flctx = NULL;
208 	this_cpu_inc(nr_inodes);
209 
210 	return 0;
211 out:
212 	return -ENOMEM;
213 }
214 EXPORT_SYMBOL(inode_init_always);
215 
216 void free_inode_nonrcu(struct inode *inode)
217 {
218 	kmem_cache_free(inode_cachep, inode);
219 }
220 EXPORT_SYMBOL(free_inode_nonrcu);
221 
222 static void i_callback(struct rcu_head *head)
223 {
224 	struct inode *inode = container_of(head, struct inode, i_rcu);
225 	if (inode->free_inode)
226 		inode->free_inode(inode);
227 	else
228 		free_inode_nonrcu(inode);
229 }
230 
231 static struct inode *alloc_inode(struct super_block *sb)
232 {
233 	const struct super_operations *ops = sb->s_op;
234 	struct inode *inode;
235 
236 	if (ops->alloc_inode)
237 		inode = ops->alloc_inode(sb);
238 	else
239 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
240 
241 	if (!inode)
242 		return NULL;
243 
244 	if (unlikely(inode_init_always(sb, inode))) {
245 		if (ops->destroy_inode) {
246 			ops->destroy_inode(inode);
247 			if (!ops->free_inode)
248 				return NULL;
249 		}
250 		inode->free_inode = ops->free_inode;
251 		i_callback(&inode->i_rcu);
252 		return NULL;
253 	}
254 
255 	return inode;
256 }
257 
258 void __destroy_inode(struct inode *inode)
259 {
260 	BUG_ON(inode_has_buffers(inode));
261 	inode_detach_wb(inode);
262 	security_inode_free(inode);
263 	fsnotify_inode_delete(inode);
264 	locks_free_lock_context(inode);
265 	if (!inode->i_nlink) {
266 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
267 		atomic_long_dec(&inode->i_sb->s_remove_count);
268 	}
269 
270 #ifdef CONFIG_FS_POSIX_ACL
271 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
272 		posix_acl_release(inode->i_acl);
273 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
274 		posix_acl_release(inode->i_default_acl);
275 #endif
276 	this_cpu_dec(nr_inodes);
277 }
278 EXPORT_SYMBOL(__destroy_inode);
279 
280 static void destroy_inode(struct inode *inode)
281 {
282 	const struct super_operations *ops = inode->i_sb->s_op;
283 
284 	BUG_ON(!list_empty(&inode->i_lru));
285 	__destroy_inode(inode);
286 	if (ops->destroy_inode) {
287 		ops->destroy_inode(inode);
288 		if (!ops->free_inode)
289 			return;
290 	}
291 	inode->free_inode = ops->free_inode;
292 	call_rcu(&inode->i_rcu, i_callback);
293 }
294 
295 /**
296  * drop_nlink - directly drop an inode's link count
297  * @inode: inode
298  *
299  * This is a low-level filesystem helper to replace any
300  * direct filesystem manipulation of i_nlink.  In cases
301  * where we are attempting to track writes to the
302  * filesystem, a decrement to zero means an imminent
303  * write when the file is truncated and actually unlinked
304  * on the filesystem.
305  */
306 void drop_nlink(struct inode *inode)
307 {
308 	WARN_ON(inode->i_nlink == 0);
309 	inode->__i_nlink--;
310 	if (!inode->i_nlink)
311 		atomic_long_inc(&inode->i_sb->s_remove_count);
312 }
313 EXPORT_SYMBOL(drop_nlink);
314 
315 /**
316  * clear_nlink - directly zero an inode's link count
317  * @inode: inode
318  *
319  * This is a low-level filesystem helper to replace any
320  * direct filesystem manipulation of i_nlink.  See
321  * drop_nlink() for why we care about i_nlink hitting zero.
322  */
323 void clear_nlink(struct inode *inode)
324 {
325 	if (inode->i_nlink) {
326 		inode->__i_nlink = 0;
327 		atomic_long_inc(&inode->i_sb->s_remove_count);
328 	}
329 }
330 EXPORT_SYMBOL(clear_nlink);
331 
332 /**
333  * set_nlink - directly set an inode's link count
334  * @inode: inode
335  * @nlink: new nlink (should be non-zero)
336  *
337  * This is a low-level filesystem helper to replace any
338  * direct filesystem manipulation of i_nlink.
339  */
340 void set_nlink(struct inode *inode, unsigned int nlink)
341 {
342 	if (!nlink) {
343 		clear_nlink(inode);
344 	} else {
345 		/* Yes, some filesystems do change nlink from zero to one */
346 		if (inode->i_nlink == 0)
347 			atomic_long_dec(&inode->i_sb->s_remove_count);
348 
349 		inode->__i_nlink = nlink;
350 	}
351 }
352 EXPORT_SYMBOL(set_nlink);
353 
354 /**
355  * inc_nlink - directly increment an inode's link count
356  * @inode: inode
357  *
358  * This is a low-level filesystem helper to replace any
359  * direct filesystem manipulation of i_nlink.  Currently,
360  * it is only here for parity with dec_nlink().
361  */
362 void inc_nlink(struct inode *inode)
363 {
364 	if (unlikely(inode->i_nlink == 0)) {
365 		WARN_ON(!(inode->i_state & I_LINKABLE));
366 		atomic_long_dec(&inode->i_sb->s_remove_count);
367 	}
368 
369 	inode->__i_nlink++;
370 }
371 EXPORT_SYMBOL(inc_nlink);
372 
373 static void __address_space_init_once(struct address_space *mapping)
374 {
375 	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
376 	init_rwsem(&mapping->i_mmap_rwsem);
377 	INIT_LIST_HEAD(&mapping->private_list);
378 	spin_lock_init(&mapping->private_lock);
379 	mapping->i_mmap = RB_ROOT_CACHED;
380 }
381 
382 void address_space_init_once(struct address_space *mapping)
383 {
384 	memset(mapping, 0, sizeof(*mapping));
385 	__address_space_init_once(mapping);
386 }
387 EXPORT_SYMBOL(address_space_init_once);
388 
389 /*
390  * These are initializations that only need to be done
391  * once, because the fields are idempotent across use
392  * of the inode, so let the slab aware of that.
393  */
394 void inode_init_once(struct inode *inode)
395 {
396 	memset(inode, 0, sizeof(*inode));
397 	INIT_HLIST_NODE(&inode->i_hash);
398 	INIT_LIST_HEAD(&inode->i_devices);
399 	INIT_LIST_HEAD(&inode->i_io_list);
400 	INIT_LIST_HEAD(&inode->i_wb_list);
401 	INIT_LIST_HEAD(&inode->i_lru);
402 	__address_space_init_once(&inode->i_data);
403 	i_size_ordered_init(inode);
404 }
405 EXPORT_SYMBOL(inode_init_once);
406 
407 static void init_once(void *foo)
408 {
409 	struct inode *inode = (struct inode *) foo;
410 
411 	inode_init_once(inode);
412 }
413 
414 /*
415  * inode->i_lock must be held
416  */
417 void __iget(struct inode *inode)
418 {
419 	atomic_inc(&inode->i_count);
420 }
421 
422 /*
423  * get additional reference to inode; caller must already hold one.
424  */
425 void ihold(struct inode *inode)
426 {
427 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
428 }
429 EXPORT_SYMBOL(ihold);
430 
431 static void inode_lru_list_add(struct inode *inode)
432 {
433 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
434 		this_cpu_inc(nr_unused);
435 	else
436 		inode->i_state |= I_REFERENCED;
437 }
438 
439 /*
440  * Add inode to LRU if needed (inode is unused and clean).
441  *
442  * Needs inode->i_lock held.
443  */
444 void inode_add_lru(struct inode *inode)
445 {
446 	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
447 				I_FREEING | I_WILL_FREE)) &&
448 	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
449 		inode_lru_list_add(inode);
450 }
451 
452 
453 static void inode_lru_list_del(struct inode *inode)
454 {
455 
456 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
457 		this_cpu_dec(nr_unused);
458 }
459 
460 /**
461  * inode_sb_list_add - add inode to the superblock list of inodes
462  * @inode: inode to add
463  */
464 void inode_sb_list_add(struct inode *inode)
465 {
466 	spin_lock(&inode->i_sb->s_inode_list_lock);
467 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
468 	spin_unlock(&inode->i_sb->s_inode_list_lock);
469 }
470 EXPORT_SYMBOL_GPL(inode_sb_list_add);
471 
472 static inline void inode_sb_list_del(struct inode *inode)
473 {
474 	if (!list_empty(&inode->i_sb_list)) {
475 		spin_lock(&inode->i_sb->s_inode_list_lock);
476 		list_del_init(&inode->i_sb_list);
477 		spin_unlock(&inode->i_sb->s_inode_list_lock);
478 	}
479 }
480 
481 static unsigned long hash(struct super_block *sb, unsigned long hashval)
482 {
483 	unsigned long tmp;
484 
485 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
486 			L1_CACHE_BYTES;
487 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
488 	return tmp & i_hash_mask;
489 }
490 
491 /**
492  *	__insert_inode_hash - hash an inode
493  *	@inode: unhashed inode
494  *	@hashval: unsigned long value used to locate this object in the
495  *		inode_hashtable.
496  *
497  *	Add an inode to the inode hash for this superblock.
498  */
499 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
500 {
501 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
502 
503 	spin_lock(&inode_hash_lock);
504 	spin_lock(&inode->i_lock);
505 	hlist_add_head_rcu(&inode->i_hash, b);
506 	spin_unlock(&inode->i_lock);
507 	spin_unlock(&inode_hash_lock);
508 }
509 EXPORT_SYMBOL(__insert_inode_hash);
510 
511 /**
512  *	__remove_inode_hash - remove an inode from the hash
513  *	@inode: inode to unhash
514  *
515  *	Remove an inode from the superblock.
516  */
517 void __remove_inode_hash(struct inode *inode)
518 {
519 	spin_lock(&inode_hash_lock);
520 	spin_lock(&inode->i_lock);
521 	hlist_del_init_rcu(&inode->i_hash);
522 	spin_unlock(&inode->i_lock);
523 	spin_unlock(&inode_hash_lock);
524 }
525 EXPORT_SYMBOL(__remove_inode_hash);
526 
527 void clear_inode(struct inode *inode)
528 {
529 	/*
530 	 * We have to cycle the i_pages lock here because reclaim can be in the
531 	 * process of removing the last page (in __delete_from_page_cache())
532 	 * and we must not free the mapping under it.
533 	 */
534 	xa_lock_irq(&inode->i_data.i_pages);
535 	BUG_ON(inode->i_data.nrpages);
536 	/*
537 	 * Almost always, mapping_empty(&inode->i_data) here; but there are
538 	 * two known and long-standing ways in which nodes may get left behind
539 	 * (when deep radix-tree node allocation failed partway; or when THP
540 	 * collapse_file() failed). Until those two known cases are cleaned up,
541 	 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
542 	 * nor even WARN_ON(!mapping_empty).
543 	 */
544 	xa_unlock_irq(&inode->i_data.i_pages);
545 	BUG_ON(!list_empty(&inode->i_data.private_list));
546 	BUG_ON(!(inode->i_state & I_FREEING));
547 	BUG_ON(inode->i_state & I_CLEAR);
548 	BUG_ON(!list_empty(&inode->i_wb_list));
549 	/* don't need i_lock here, no concurrent mods to i_state */
550 	inode->i_state = I_FREEING | I_CLEAR;
551 }
552 EXPORT_SYMBOL(clear_inode);
553 
554 /*
555  * Free the inode passed in, removing it from the lists it is still connected
556  * to. We remove any pages still attached to the inode and wait for any IO that
557  * is still in progress before finally destroying the inode.
558  *
559  * An inode must already be marked I_FREEING so that we avoid the inode being
560  * moved back onto lists if we race with other code that manipulates the lists
561  * (e.g. writeback_single_inode). The caller is responsible for setting this.
562  *
563  * An inode must already be removed from the LRU list before being evicted from
564  * the cache. This should occur atomically with setting the I_FREEING state
565  * flag, so no inodes here should ever be on the LRU when being evicted.
566  */
567 static void evict(struct inode *inode)
568 {
569 	const struct super_operations *op = inode->i_sb->s_op;
570 
571 	BUG_ON(!(inode->i_state & I_FREEING));
572 	BUG_ON(!list_empty(&inode->i_lru));
573 
574 	if (!list_empty(&inode->i_io_list))
575 		inode_io_list_del(inode);
576 
577 	inode_sb_list_del(inode);
578 
579 	/*
580 	 * Wait for flusher thread to be done with the inode so that filesystem
581 	 * does not start destroying it while writeback is still running. Since
582 	 * the inode has I_FREEING set, flusher thread won't start new work on
583 	 * the inode.  We just have to wait for running writeback to finish.
584 	 */
585 	inode_wait_for_writeback(inode);
586 
587 	if (op->evict_inode) {
588 		op->evict_inode(inode);
589 	} else {
590 		truncate_inode_pages_final(&inode->i_data);
591 		clear_inode(inode);
592 	}
593 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
594 		cd_forget(inode);
595 
596 	remove_inode_hash(inode);
597 
598 	spin_lock(&inode->i_lock);
599 	wake_up_bit(&inode->i_state, __I_NEW);
600 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
601 	spin_unlock(&inode->i_lock);
602 
603 	destroy_inode(inode);
604 }
605 
606 /*
607  * dispose_list - dispose of the contents of a local list
608  * @head: the head of the list to free
609  *
610  * Dispose-list gets a local list with local inodes in it, so it doesn't
611  * need to worry about list corruption and SMP locks.
612  */
613 static void dispose_list(struct list_head *head)
614 {
615 	while (!list_empty(head)) {
616 		struct inode *inode;
617 
618 		inode = list_first_entry(head, struct inode, i_lru);
619 		list_del_init(&inode->i_lru);
620 
621 		evict(inode);
622 		cond_resched();
623 	}
624 }
625 
626 /**
627  * evict_inodes	- evict all evictable inodes for a superblock
628  * @sb:		superblock to operate on
629  *
630  * Make sure that no inodes with zero refcount are retained.  This is
631  * called by superblock shutdown after having SB_ACTIVE flag removed,
632  * so any inode reaching zero refcount during or after that call will
633  * be immediately evicted.
634  */
635 void evict_inodes(struct super_block *sb)
636 {
637 	struct inode *inode, *next;
638 	LIST_HEAD(dispose);
639 
640 again:
641 	spin_lock(&sb->s_inode_list_lock);
642 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
643 		if (atomic_read(&inode->i_count))
644 			continue;
645 
646 		spin_lock(&inode->i_lock);
647 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
648 			spin_unlock(&inode->i_lock);
649 			continue;
650 		}
651 
652 		inode->i_state |= I_FREEING;
653 		inode_lru_list_del(inode);
654 		spin_unlock(&inode->i_lock);
655 		list_add(&inode->i_lru, &dispose);
656 
657 		/*
658 		 * We can have a ton of inodes to evict at unmount time given
659 		 * enough memory, check to see if we need to go to sleep for a
660 		 * bit so we don't livelock.
661 		 */
662 		if (need_resched()) {
663 			spin_unlock(&sb->s_inode_list_lock);
664 			cond_resched();
665 			dispose_list(&dispose);
666 			goto again;
667 		}
668 	}
669 	spin_unlock(&sb->s_inode_list_lock);
670 
671 	dispose_list(&dispose);
672 }
673 EXPORT_SYMBOL_GPL(evict_inodes);
674 
675 /**
676  * invalidate_inodes	- attempt to free all inodes on a superblock
677  * @sb:		superblock to operate on
678  * @kill_dirty: flag to guide handling of dirty inodes
679  *
680  * Attempts to free all inodes for a given superblock.  If there were any
681  * busy inodes return a non-zero value, else zero.
682  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
683  * them as busy.
684  */
685 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
686 {
687 	int busy = 0;
688 	struct inode *inode, *next;
689 	LIST_HEAD(dispose);
690 
691 again:
692 	spin_lock(&sb->s_inode_list_lock);
693 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
694 		spin_lock(&inode->i_lock);
695 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
696 			spin_unlock(&inode->i_lock);
697 			continue;
698 		}
699 		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
700 			spin_unlock(&inode->i_lock);
701 			busy = 1;
702 			continue;
703 		}
704 		if (atomic_read(&inode->i_count)) {
705 			spin_unlock(&inode->i_lock);
706 			busy = 1;
707 			continue;
708 		}
709 
710 		inode->i_state |= I_FREEING;
711 		inode_lru_list_del(inode);
712 		spin_unlock(&inode->i_lock);
713 		list_add(&inode->i_lru, &dispose);
714 		if (need_resched()) {
715 			spin_unlock(&sb->s_inode_list_lock);
716 			cond_resched();
717 			dispose_list(&dispose);
718 			goto again;
719 		}
720 	}
721 	spin_unlock(&sb->s_inode_list_lock);
722 
723 	dispose_list(&dispose);
724 
725 	return busy;
726 }
727 
728 /*
729  * Isolate the inode from the LRU in preparation for freeing it.
730  *
731  * Any inodes which are pinned purely because of attached pagecache have their
732  * pagecache removed.  If the inode has metadata buffers attached to
733  * mapping->private_list then try to remove them.
734  *
735  * If the inode has the I_REFERENCED flag set, then it means that it has been
736  * used recently - the flag is set in iput_final(). When we encounter such an
737  * inode, clear the flag and move it to the back of the LRU so it gets another
738  * pass through the LRU before it gets reclaimed. This is necessary because of
739  * the fact we are doing lazy LRU updates to minimise lock contention so the
740  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
741  * with this flag set because they are the inodes that are out of order.
742  */
743 static enum lru_status inode_lru_isolate(struct list_head *item,
744 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
745 {
746 	struct list_head *freeable = arg;
747 	struct inode	*inode = container_of(item, struct inode, i_lru);
748 
749 	/*
750 	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
751 	 * If we fail to get the lock, just skip it.
752 	 */
753 	if (!spin_trylock(&inode->i_lock))
754 		return LRU_SKIP;
755 
756 	/*
757 	 * Referenced or dirty inodes are still in use. Give them another pass
758 	 * through the LRU as we canot reclaim them now.
759 	 */
760 	if (atomic_read(&inode->i_count) ||
761 	    (inode->i_state & ~I_REFERENCED)) {
762 		list_lru_isolate(lru, &inode->i_lru);
763 		spin_unlock(&inode->i_lock);
764 		this_cpu_dec(nr_unused);
765 		return LRU_REMOVED;
766 	}
767 
768 	/* recently referenced inodes get one more pass */
769 	if (inode->i_state & I_REFERENCED) {
770 		inode->i_state &= ~I_REFERENCED;
771 		spin_unlock(&inode->i_lock);
772 		return LRU_ROTATE;
773 	}
774 
775 	if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
776 		__iget(inode);
777 		spin_unlock(&inode->i_lock);
778 		spin_unlock(lru_lock);
779 		if (remove_inode_buffers(inode)) {
780 			unsigned long reap;
781 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
782 			if (current_is_kswapd())
783 				__count_vm_events(KSWAPD_INODESTEAL, reap);
784 			else
785 				__count_vm_events(PGINODESTEAL, reap);
786 			if (current->reclaim_state)
787 				current->reclaim_state->reclaimed_slab += reap;
788 		}
789 		iput(inode);
790 		spin_lock(lru_lock);
791 		return LRU_RETRY;
792 	}
793 
794 	WARN_ON(inode->i_state & I_NEW);
795 	inode->i_state |= I_FREEING;
796 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
797 	spin_unlock(&inode->i_lock);
798 
799 	this_cpu_dec(nr_unused);
800 	return LRU_REMOVED;
801 }
802 
803 /*
804  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
805  * This is called from the superblock shrinker function with a number of inodes
806  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
807  * then are freed outside inode_lock by dispose_list().
808  */
809 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
810 {
811 	LIST_HEAD(freeable);
812 	long freed;
813 
814 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
815 				     inode_lru_isolate, &freeable);
816 	dispose_list(&freeable);
817 	return freed;
818 }
819 
820 static void __wait_on_freeing_inode(struct inode *inode);
821 /*
822  * Called with the inode lock held.
823  */
824 static struct inode *find_inode(struct super_block *sb,
825 				struct hlist_head *head,
826 				int (*test)(struct inode *, void *),
827 				void *data)
828 {
829 	struct inode *inode = NULL;
830 
831 repeat:
832 	hlist_for_each_entry(inode, head, i_hash) {
833 		if (inode->i_sb != sb)
834 			continue;
835 		if (!test(inode, data))
836 			continue;
837 		spin_lock(&inode->i_lock);
838 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
839 			__wait_on_freeing_inode(inode);
840 			goto repeat;
841 		}
842 		if (unlikely(inode->i_state & I_CREATING)) {
843 			spin_unlock(&inode->i_lock);
844 			return ERR_PTR(-ESTALE);
845 		}
846 		__iget(inode);
847 		spin_unlock(&inode->i_lock);
848 		return inode;
849 	}
850 	return NULL;
851 }
852 
853 /*
854  * find_inode_fast is the fast path version of find_inode, see the comment at
855  * iget_locked for details.
856  */
857 static struct inode *find_inode_fast(struct super_block *sb,
858 				struct hlist_head *head, unsigned long ino)
859 {
860 	struct inode *inode = NULL;
861 
862 repeat:
863 	hlist_for_each_entry(inode, head, i_hash) {
864 		if (inode->i_ino != ino)
865 			continue;
866 		if (inode->i_sb != sb)
867 			continue;
868 		spin_lock(&inode->i_lock);
869 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
870 			__wait_on_freeing_inode(inode);
871 			goto repeat;
872 		}
873 		if (unlikely(inode->i_state & I_CREATING)) {
874 			spin_unlock(&inode->i_lock);
875 			return ERR_PTR(-ESTALE);
876 		}
877 		__iget(inode);
878 		spin_unlock(&inode->i_lock);
879 		return inode;
880 	}
881 	return NULL;
882 }
883 
884 /*
885  * Each cpu owns a range of LAST_INO_BATCH numbers.
886  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
887  * to renew the exhausted range.
888  *
889  * This does not significantly increase overflow rate because every CPU can
890  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
891  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
892  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
893  * overflow rate by 2x, which does not seem too significant.
894  *
895  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
896  * error if st_ino won't fit in target struct field. Use 32bit counter
897  * here to attempt to avoid that.
898  */
899 #define LAST_INO_BATCH 1024
900 static DEFINE_PER_CPU(unsigned int, last_ino);
901 
902 unsigned int get_next_ino(void)
903 {
904 	unsigned int *p = &get_cpu_var(last_ino);
905 	unsigned int res = *p;
906 
907 #ifdef CONFIG_SMP
908 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
909 		static atomic_t shared_last_ino;
910 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
911 
912 		res = next - LAST_INO_BATCH;
913 	}
914 #endif
915 
916 	res++;
917 	/* get_next_ino should not provide a 0 inode number */
918 	if (unlikely(!res))
919 		res++;
920 	*p = res;
921 	put_cpu_var(last_ino);
922 	return res;
923 }
924 EXPORT_SYMBOL(get_next_ino);
925 
926 /**
927  *	new_inode_pseudo 	- obtain an inode
928  *	@sb: superblock
929  *
930  *	Allocates a new inode for given superblock.
931  *	Inode wont be chained in superblock s_inodes list
932  *	This means :
933  *	- fs can't be unmount
934  *	- quotas, fsnotify, writeback can't work
935  */
936 struct inode *new_inode_pseudo(struct super_block *sb)
937 {
938 	struct inode *inode = alloc_inode(sb);
939 
940 	if (inode) {
941 		spin_lock(&inode->i_lock);
942 		inode->i_state = 0;
943 		spin_unlock(&inode->i_lock);
944 		INIT_LIST_HEAD(&inode->i_sb_list);
945 	}
946 	return inode;
947 }
948 
949 /**
950  *	new_inode 	- obtain an inode
951  *	@sb: superblock
952  *
953  *	Allocates a new inode for given superblock. The default gfp_mask
954  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
955  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
956  *	for the page cache are not reclaimable or migratable,
957  *	mapping_set_gfp_mask() must be called with suitable flags on the
958  *	newly created inode's mapping
959  *
960  */
961 struct inode *new_inode(struct super_block *sb)
962 {
963 	struct inode *inode;
964 
965 	spin_lock_prefetch(&sb->s_inode_list_lock);
966 
967 	inode = new_inode_pseudo(sb);
968 	if (inode)
969 		inode_sb_list_add(inode);
970 	return inode;
971 }
972 EXPORT_SYMBOL(new_inode);
973 
974 #ifdef CONFIG_DEBUG_LOCK_ALLOC
975 void lockdep_annotate_inode_mutex_key(struct inode *inode)
976 {
977 	if (S_ISDIR(inode->i_mode)) {
978 		struct file_system_type *type = inode->i_sb->s_type;
979 
980 		/* Set new key only if filesystem hasn't already changed it */
981 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
982 			/*
983 			 * ensure nobody is actually holding i_mutex
984 			 */
985 			// mutex_destroy(&inode->i_mutex);
986 			init_rwsem(&inode->i_rwsem);
987 			lockdep_set_class(&inode->i_rwsem,
988 					  &type->i_mutex_dir_key);
989 		}
990 	}
991 }
992 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
993 #endif
994 
995 /**
996  * unlock_new_inode - clear the I_NEW state and wake up any waiters
997  * @inode:	new inode to unlock
998  *
999  * Called when the inode is fully initialised to clear the new state of the
1000  * inode and wake up anyone waiting for the inode to finish initialisation.
1001  */
1002 void unlock_new_inode(struct inode *inode)
1003 {
1004 	lockdep_annotate_inode_mutex_key(inode);
1005 	spin_lock(&inode->i_lock);
1006 	WARN_ON(!(inode->i_state & I_NEW));
1007 	inode->i_state &= ~I_NEW & ~I_CREATING;
1008 	smp_mb();
1009 	wake_up_bit(&inode->i_state, __I_NEW);
1010 	spin_unlock(&inode->i_lock);
1011 }
1012 EXPORT_SYMBOL(unlock_new_inode);
1013 
1014 void discard_new_inode(struct inode *inode)
1015 {
1016 	lockdep_annotate_inode_mutex_key(inode);
1017 	spin_lock(&inode->i_lock);
1018 	WARN_ON(!(inode->i_state & I_NEW));
1019 	inode->i_state &= ~I_NEW;
1020 	smp_mb();
1021 	wake_up_bit(&inode->i_state, __I_NEW);
1022 	spin_unlock(&inode->i_lock);
1023 	iput(inode);
1024 }
1025 EXPORT_SYMBOL(discard_new_inode);
1026 
1027 /**
1028  * lock_two_nondirectories - take two i_mutexes on non-directory objects
1029  *
1030  * Lock any non-NULL argument that is not a directory.
1031  * Zero, one or two objects may be locked by this function.
1032  *
1033  * @inode1: first inode to lock
1034  * @inode2: second inode to lock
1035  */
1036 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1037 {
1038 	if (inode1 > inode2)
1039 		swap(inode1, inode2);
1040 
1041 	if (inode1 && !S_ISDIR(inode1->i_mode))
1042 		inode_lock(inode1);
1043 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1044 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1045 }
1046 EXPORT_SYMBOL(lock_two_nondirectories);
1047 
1048 /**
1049  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1050  * @inode1: first inode to unlock
1051  * @inode2: second inode to unlock
1052  */
1053 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1054 {
1055 	if (inode1 && !S_ISDIR(inode1->i_mode))
1056 		inode_unlock(inode1);
1057 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1058 		inode_unlock(inode2);
1059 }
1060 EXPORT_SYMBOL(unlock_two_nondirectories);
1061 
1062 /**
1063  * inode_insert5 - obtain an inode from a mounted file system
1064  * @inode:	pre-allocated inode to use for insert to cache
1065  * @hashval:	hash value (usually inode number) to get
1066  * @test:	callback used for comparisons between inodes
1067  * @set:	callback used to initialize a new struct inode
1068  * @data:	opaque data pointer to pass to @test and @set
1069  *
1070  * Search for the inode specified by @hashval and @data in the inode cache,
1071  * and if present it is return it with an increased reference count. This is
1072  * a variant of iget5_locked() for callers that don't want to fail on memory
1073  * allocation of inode.
1074  *
1075  * If the inode is not in cache, insert the pre-allocated inode to cache and
1076  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1077  * to fill it in before unlocking it via unlock_new_inode().
1078  *
1079  * Note both @test and @set are called with the inode_hash_lock held, so can't
1080  * sleep.
1081  */
1082 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1083 			    int (*test)(struct inode *, void *),
1084 			    int (*set)(struct inode *, void *), void *data)
1085 {
1086 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1087 	struct inode *old;
1088 	bool creating = inode->i_state & I_CREATING;
1089 
1090 again:
1091 	spin_lock(&inode_hash_lock);
1092 	old = find_inode(inode->i_sb, head, test, data);
1093 	if (unlikely(old)) {
1094 		/*
1095 		 * Uhhuh, somebody else created the same inode under us.
1096 		 * Use the old inode instead of the preallocated one.
1097 		 */
1098 		spin_unlock(&inode_hash_lock);
1099 		if (IS_ERR(old))
1100 			return NULL;
1101 		wait_on_inode(old);
1102 		if (unlikely(inode_unhashed(old))) {
1103 			iput(old);
1104 			goto again;
1105 		}
1106 		return old;
1107 	}
1108 
1109 	if (set && unlikely(set(inode, data))) {
1110 		inode = NULL;
1111 		goto unlock;
1112 	}
1113 
1114 	/*
1115 	 * Return the locked inode with I_NEW set, the
1116 	 * caller is responsible for filling in the contents
1117 	 */
1118 	spin_lock(&inode->i_lock);
1119 	inode->i_state |= I_NEW;
1120 	hlist_add_head_rcu(&inode->i_hash, head);
1121 	spin_unlock(&inode->i_lock);
1122 	if (!creating)
1123 		inode_sb_list_add(inode);
1124 unlock:
1125 	spin_unlock(&inode_hash_lock);
1126 
1127 	return inode;
1128 }
1129 EXPORT_SYMBOL(inode_insert5);
1130 
1131 /**
1132  * iget5_locked - obtain an inode from a mounted file system
1133  * @sb:		super block of file system
1134  * @hashval:	hash value (usually inode number) to get
1135  * @test:	callback used for comparisons between inodes
1136  * @set:	callback used to initialize a new struct inode
1137  * @data:	opaque data pointer to pass to @test and @set
1138  *
1139  * Search for the inode specified by @hashval and @data in the inode cache,
1140  * and if present it is return it with an increased reference count. This is
1141  * a generalized version of iget_locked() for file systems where the inode
1142  * number is not sufficient for unique identification of an inode.
1143  *
1144  * If the inode is not in cache, allocate a new inode and return it locked,
1145  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1146  * before unlocking it via unlock_new_inode().
1147  *
1148  * Note both @test and @set are called with the inode_hash_lock held, so can't
1149  * sleep.
1150  */
1151 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1152 		int (*test)(struct inode *, void *),
1153 		int (*set)(struct inode *, void *), void *data)
1154 {
1155 	struct inode *inode = ilookup5(sb, hashval, test, data);
1156 
1157 	if (!inode) {
1158 		struct inode *new = alloc_inode(sb);
1159 
1160 		if (new) {
1161 			new->i_state = 0;
1162 			inode = inode_insert5(new, hashval, test, set, data);
1163 			if (unlikely(inode != new))
1164 				destroy_inode(new);
1165 		}
1166 	}
1167 	return inode;
1168 }
1169 EXPORT_SYMBOL(iget5_locked);
1170 
1171 /**
1172  * iget_locked - obtain an inode from a mounted file system
1173  * @sb:		super block of file system
1174  * @ino:	inode number to get
1175  *
1176  * Search for the inode specified by @ino in the inode cache and if present
1177  * return it with an increased reference count. This is for file systems
1178  * where the inode number is sufficient for unique identification of an inode.
1179  *
1180  * If the inode is not in cache, allocate a new inode and return it locked,
1181  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1182  * before unlocking it via unlock_new_inode().
1183  */
1184 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1185 {
1186 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1187 	struct inode *inode;
1188 again:
1189 	spin_lock(&inode_hash_lock);
1190 	inode = find_inode_fast(sb, head, ino);
1191 	spin_unlock(&inode_hash_lock);
1192 	if (inode) {
1193 		if (IS_ERR(inode))
1194 			return NULL;
1195 		wait_on_inode(inode);
1196 		if (unlikely(inode_unhashed(inode))) {
1197 			iput(inode);
1198 			goto again;
1199 		}
1200 		return inode;
1201 	}
1202 
1203 	inode = alloc_inode(sb);
1204 	if (inode) {
1205 		struct inode *old;
1206 
1207 		spin_lock(&inode_hash_lock);
1208 		/* We released the lock, so.. */
1209 		old = find_inode_fast(sb, head, ino);
1210 		if (!old) {
1211 			inode->i_ino = ino;
1212 			spin_lock(&inode->i_lock);
1213 			inode->i_state = I_NEW;
1214 			hlist_add_head_rcu(&inode->i_hash, head);
1215 			spin_unlock(&inode->i_lock);
1216 			inode_sb_list_add(inode);
1217 			spin_unlock(&inode_hash_lock);
1218 
1219 			/* Return the locked inode with I_NEW set, the
1220 			 * caller is responsible for filling in the contents
1221 			 */
1222 			return inode;
1223 		}
1224 
1225 		/*
1226 		 * Uhhuh, somebody else created the same inode under
1227 		 * us. Use the old inode instead of the one we just
1228 		 * allocated.
1229 		 */
1230 		spin_unlock(&inode_hash_lock);
1231 		destroy_inode(inode);
1232 		if (IS_ERR(old))
1233 			return NULL;
1234 		inode = old;
1235 		wait_on_inode(inode);
1236 		if (unlikely(inode_unhashed(inode))) {
1237 			iput(inode);
1238 			goto again;
1239 		}
1240 	}
1241 	return inode;
1242 }
1243 EXPORT_SYMBOL(iget_locked);
1244 
1245 /*
1246  * search the inode cache for a matching inode number.
1247  * If we find one, then the inode number we are trying to
1248  * allocate is not unique and so we should not use it.
1249  *
1250  * Returns 1 if the inode number is unique, 0 if it is not.
1251  */
1252 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1253 {
1254 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1255 	struct inode *inode;
1256 
1257 	hlist_for_each_entry_rcu(inode, b, i_hash) {
1258 		if (inode->i_ino == ino && inode->i_sb == sb)
1259 			return 0;
1260 	}
1261 	return 1;
1262 }
1263 
1264 /**
1265  *	iunique - get a unique inode number
1266  *	@sb: superblock
1267  *	@max_reserved: highest reserved inode number
1268  *
1269  *	Obtain an inode number that is unique on the system for a given
1270  *	superblock. This is used by file systems that have no natural
1271  *	permanent inode numbering system. An inode number is returned that
1272  *	is higher than the reserved limit but unique.
1273  *
1274  *	BUGS:
1275  *	With a large number of inodes live on the file system this function
1276  *	currently becomes quite slow.
1277  */
1278 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1279 {
1280 	/*
1281 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1282 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1283 	 * here to attempt to avoid that.
1284 	 */
1285 	static DEFINE_SPINLOCK(iunique_lock);
1286 	static unsigned int counter;
1287 	ino_t res;
1288 
1289 	rcu_read_lock();
1290 	spin_lock(&iunique_lock);
1291 	do {
1292 		if (counter <= max_reserved)
1293 			counter = max_reserved + 1;
1294 		res = counter++;
1295 	} while (!test_inode_iunique(sb, res));
1296 	spin_unlock(&iunique_lock);
1297 	rcu_read_unlock();
1298 
1299 	return res;
1300 }
1301 EXPORT_SYMBOL(iunique);
1302 
1303 struct inode *igrab(struct inode *inode)
1304 {
1305 	spin_lock(&inode->i_lock);
1306 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1307 		__iget(inode);
1308 		spin_unlock(&inode->i_lock);
1309 	} else {
1310 		spin_unlock(&inode->i_lock);
1311 		/*
1312 		 * Handle the case where s_op->clear_inode is not been
1313 		 * called yet, and somebody is calling igrab
1314 		 * while the inode is getting freed.
1315 		 */
1316 		inode = NULL;
1317 	}
1318 	return inode;
1319 }
1320 EXPORT_SYMBOL(igrab);
1321 
1322 /**
1323  * ilookup5_nowait - search for an inode in the inode cache
1324  * @sb:		super block of file system to search
1325  * @hashval:	hash value (usually inode number) to search for
1326  * @test:	callback used for comparisons between inodes
1327  * @data:	opaque data pointer to pass to @test
1328  *
1329  * Search for the inode specified by @hashval and @data in the inode cache.
1330  * If the inode is in the cache, the inode is returned with an incremented
1331  * reference count.
1332  *
1333  * Note: I_NEW is not waited upon so you have to be very careful what you do
1334  * with the returned inode.  You probably should be using ilookup5() instead.
1335  *
1336  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1337  */
1338 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1339 		int (*test)(struct inode *, void *), void *data)
1340 {
1341 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1342 	struct inode *inode;
1343 
1344 	spin_lock(&inode_hash_lock);
1345 	inode = find_inode(sb, head, test, data);
1346 	spin_unlock(&inode_hash_lock);
1347 
1348 	return IS_ERR(inode) ? NULL : inode;
1349 }
1350 EXPORT_SYMBOL(ilookup5_nowait);
1351 
1352 /**
1353  * ilookup5 - search for an inode in the inode cache
1354  * @sb:		super block of file system to search
1355  * @hashval:	hash value (usually inode number) to search for
1356  * @test:	callback used for comparisons between inodes
1357  * @data:	opaque data pointer to pass to @test
1358  *
1359  * Search for the inode specified by @hashval and @data in the inode cache,
1360  * and if the inode is in the cache, return the inode with an incremented
1361  * reference count.  Waits on I_NEW before returning the inode.
1362  * returned with an incremented reference count.
1363  *
1364  * This is a generalized version of ilookup() for file systems where the
1365  * inode number is not sufficient for unique identification of an inode.
1366  *
1367  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1368  */
1369 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1370 		int (*test)(struct inode *, void *), void *data)
1371 {
1372 	struct inode *inode;
1373 again:
1374 	inode = ilookup5_nowait(sb, hashval, test, data);
1375 	if (inode) {
1376 		wait_on_inode(inode);
1377 		if (unlikely(inode_unhashed(inode))) {
1378 			iput(inode);
1379 			goto again;
1380 		}
1381 	}
1382 	return inode;
1383 }
1384 EXPORT_SYMBOL(ilookup5);
1385 
1386 /**
1387  * ilookup - search for an inode in the inode cache
1388  * @sb:		super block of file system to search
1389  * @ino:	inode number to search for
1390  *
1391  * Search for the inode @ino in the inode cache, and if the inode is in the
1392  * cache, the inode is returned with an incremented reference count.
1393  */
1394 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1395 {
1396 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1397 	struct inode *inode;
1398 again:
1399 	spin_lock(&inode_hash_lock);
1400 	inode = find_inode_fast(sb, head, ino);
1401 	spin_unlock(&inode_hash_lock);
1402 
1403 	if (inode) {
1404 		if (IS_ERR(inode))
1405 			return NULL;
1406 		wait_on_inode(inode);
1407 		if (unlikely(inode_unhashed(inode))) {
1408 			iput(inode);
1409 			goto again;
1410 		}
1411 	}
1412 	return inode;
1413 }
1414 EXPORT_SYMBOL(ilookup);
1415 
1416 /**
1417  * find_inode_nowait - find an inode in the inode cache
1418  * @sb:		super block of file system to search
1419  * @hashval:	hash value (usually inode number) to search for
1420  * @match:	callback used for comparisons between inodes
1421  * @data:	opaque data pointer to pass to @match
1422  *
1423  * Search for the inode specified by @hashval and @data in the inode
1424  * cache, where the helper function @match will return 0 if the inode
1425  * does not match, 1 if the inode does match, and -1 if the search
1426  * should be stopped.  The @match function must be responsible for
1427  * taking the i_lock spin_lock and checking i_state for an inode being
1428  * freed or being initialized, and incrementing the reference count
1429  * before returning 1.  It also must not sleep, since it is called with
1430  * the inode_hash_lock spinlock held.
1431  *
1432  * This is a even more generalized version of ilookup5() when the
1433  * function must never block --- find_inode() can block in
1434  * __wait_on_freeing_inode() --- or when the caller can not increment
1435  * the reference count because the resulting iput() might cause an
1436  * inode eviction.  The tradeoff is that the @match funtion must be
1437  * very carefully implemented.
1438  */
1439 struct inode *find_inode_nowait(struct super_block *sb,
1440 				unsigned long hashval,
1441 				int (*match)(struct inode *, unsigned long,
1442 					     void *),
1443 				void *data)
1444 {
1445 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1446 	struct inode *inode, *ret_inode = NULL;
1447 	int mval;
1448 
1449 	spin_lock(&inode_hash_lock);
1450 	hlist_for_each_entry(inode, head, i_hash) {
1451 		if (inode->i_sb != sb)
1452 			continue;
1453 		mval = match(inode, hashval, data);
1454 		if (mval == 0)
1455 			continue;
1456 		if (mval == 1)
1457 			ret_inode = inode;
1458 		goto out;
1459 	}
1460 out:
1461 	spin_unlock(&inode_hash_lock);
1462 	return ret_inode;
1463 }
1464 EXPORT_SYMBOL(find_inode_nowait);
1465 
1466 /**
1467  * find_inode_rcu - find an inode in the inode cache
1468  * @sb:		Super block of file system to search
1469  * @hashval:	Key to hash
1470  * @test:	Function to test match on an inode
1471  * @data:	Data for test function
1472  *
1473  * Search for the inode specified by @hashval and @data in the inode cache,
1474  * where the helper function @test will return 0 if the inode does not match
1475  * and 1 if it does.  The @test function must be responsible for taking the
1476  * i_lock spin_lock and checking i_state for an inode being freed or being
1477  * initialized.
1478  *
1479  * If successful, this will return the inode for which the @test function
1480  * returned 1 and NULL otherwise.
1481  *
1482  * The @test function is not permitted to take a ref on any inode presented.
1483  * It is also not permitted to sleep.
1484  *
1485  * The caller must hold the RCU read lock.
1486  */
1487 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1488 			     int (*test)(struct inode *, void *), void *data)
1489 {
1490 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1491 	struct inode *inode;
1492 
1493 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1494 			 "suspicious find_inode_rcu() usage");
1495 
1496 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1497 		if (inode->i_sb == sb &&
1498 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1499 		    test(inode, data))
1500 			return inode;
1501 	}
1502 	return NULL;
1503 }
1504 EXPORT_SYMBOL(find_inode_rcu);
1505 
1506 /**
1507  * find_inode_by_ino_rcu - Find an inode in the inode cache
1508  * @sb:		Super block of file system to search
1509  * @ino:	The inode number to match
1510  *
1511  * Search for the inode specified by @hashval and @data in the inode cache,
1512  * where the helper function @test will return 0 if the inode does not match
1513  * and 1 if it does.  The @test function must be responsible for taking the
1514  * i_lock spin_lock and checking i_state for an inode being freed or being
1515  * initialized.
1516  *
1517  * If successful, this will return the inode for which the @test function
1518  * returned 1 and NULL otherwise.
1519  *
1520  * The @test function is not permitted to take a ref on any inode presented.
1521  * It is also not permitted to sleep.
1522  *
1523  * The caller must hold the RCU read lock.
1524  */
1525 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1526 				    unsigned long ino)
1527 {
1528 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1529 	struct inode *inode;
1530 
1531 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1532 			 "suspicious find_inode_by_ino_rcu() usage");
1533 
1534 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1535 		if (inode->i_ino == ino &&
1536 		    inode->i_sb == sb &&
1537 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1538 		    return inode;
1539 	}
1540 	return NULL;
1541 }
1542 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1543 
1544 int insert_inode_locked(struct inode *inode)
1545 {
1546 	struct super_block *sb = inode->i_sb;
1547 	ino_t ino = inode->i_ino;
1548 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1549 
1550 	while (1) {
1551 		struct inode *old = NULL;
1552 		spin_lock(&inode_hash_lock);
1553 		hlist_for_each_entry(old, head, i_hash) {
1554 			if (old->i_ino != ino)
1555 				continue;
1556 			if (old->i_sb != sb)
1557 				continue;
1558 			spin_lock(&old->i_lock);
1559 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1560 				spin_unlock(&old->i_lock);
1561 				continue;
1562 			}
1563 			break;
1564 		}
1565 		if (likely(!old)) {
1566 			spin_lock(&inode->i_lock);
1567 			inode->i_state |= I_NEW | I_CREATING;
1568 			hlist_add_head_rcu(&inode->i_hash, head);
1569 			spin_unlock(&inode->i_lock);
1570 			spin_unlock(&inode_hash_lock);
1571 			return 0;
1572 		}
1573 		if (unlikely(old->i_state & I_CREATING)) {
1574 			spin_unlock(&old->i_lock);
1575 			spin_unlock(&inode_hash_lock);
1576 			return -EBUSY;
1577 		}
1578 		__iget(old);
1579 		spin_unlock(&old->i_lock);
1580 		spin_unlock(&inode_hash_lock);
1581 		wait_on_inode(old);
1582 		if (unlikely(!inode_unhashed(old))) {
1583 			iput(old);
1584 			return -EBUSY;
1585 		}
1586 		iput(old);
1587 	}
1588 }
1589 EXPORT_SYMBOL(insert_inode_locked);
1590 
1591 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1592 		int (*test)(struct inode *, void *), void *data)
1593 {
1594 	struct inode *old;
1595 
1596 	inode->i_state |= I_CREATING;
1597 	old = inode_insert5(inode, hashval, test, NULL, data);
1598 
1599 	if (old != inode) {
1600 		iput(old);
1601 		return -EBUSY;
1602 	}
1603 	return 0;
1604 }
1605 EXPORT_SYMBOL(insert_inode_locked4);
1606 
1607 
1608 int generic_delete_inode(struct inode *inode)
1609 {
1610 	return 1;
1611 }
1612 EXPORT_SYMBOL(generic_delete_inode);
1613 
1614 /*
1615  * Called when we're dropping the last reference
1616  * to an inode.
1617  *
1618  * Call the FS "drop_inode()" function, defaulting to
1619  * the legacy UNIX filesystem behaviour.  If it tells
1620  * us to evict inode, do so.  Otherwise, retain inode
1621  * in cache if fs is alive, sync and evict if fs is
1622  * shutting down.
1623  */
1624 static void iput_final(struct inode *inode)
1625 {
1626 	struct super_block *sb = inode->i_sb;
1627 	const struct super_operations *op = inode->i_sb->s_op;
1628 	unsigned long state;
1629 	int drop;
1630 
1631 	WARN_ON(inode->i_state & I_NEW);
1632 
1633 	if (op->drop_inode)
1634 		drop = op->drop_inode(inode);
1635 	else
1636 		drop = generic_drop_inode(inode);
1637 
1638 	if (!drop &&
1639 	    !(inode->i_state & I_DONTCACHE) &&
1640 	    (sb->s_flags & SB_ACTIVE)) {
1641 		inode_add_lru(inode);
1642 		spin_unlock(&inode->i_lock);
1643 		return;
1644 	}
1645 
1646 	state = inode->i_state;
1647 	if (!drop) {
1648 		WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1649 		spin_unlock(&inode->i_lock);
1650 
1651 		write_inode_now(inode, 1);
1652 
1653 		spin_lock(&inode->i_lock);
1654 		state = inode->i_state;
1655 		WARN_ON(state & I_NEW);
1656 		state &= ~I_WILL_FREE;
1657 	}
1658 
1659 	WRITE_ONCE(inode->i_state, state | I_FREEING);
1660 	if (!list_empty(&inode->i_lru))
1661 		inode_lru_list_del(inode);
1662 	spin_unlock(&inode->i_lock);
1663 
1664 	evict(inode);
1665 }
1666 
1667 /**
1668  *	iput	- put an inode
1669  *	@inode: inode to put
1670  *
1671  *	Puts an inode, dropping its usage count. If the inode use count hits
1672  *	zero, the inode is then freed and may also be destroyed.
1673  *
1674  *	Consequently, iput() can sleep.
1675  */
1676 void iput(struct inode *inode)
1677 {
1678 	if (!inode)
1679 		return;
1680 	BUG_ON(inode->i_state & I_CLEAR);
1681 retry:
1682 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1683 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1684 			atomic_inc(&inode->i_count);
1685 			spin_unlock(&inode->i_lock);
1686 			trace_writeback_lazytime_iput(inode);
1687 			mark_inode_dirty_sync(inode);
1688 			goto retry;
1689 		}
1690 		iput_final(inode);
1691 	}
1692 }
1693 EXPORT_SYMBOL(iput);
1694 
1695 #ifdef CONFIG_BLOCK
1696 /**
1697  *	bmap	- find a block number in a file
1698  *	@inode:  inode owning the block number being requested
1699  *	@block: pointer containing the block to find
1700  *
1701  *	Replaces the value in ``*block`` with the block number on the device holding
1702  *	corresponding to the requested block number in the file.
1703  *	That is, asked for block 4 of inode 1 the function will replace the
1704  *	4 in ``*block``, with disk block relative to the disk start that holds that
1705  *	block of the file.
1706  *
1707  *	Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1708  *	hole, returns 0 and ``*block`` is also set to 0.
1709  */
1710 int bmap(struct inode *inode, sector_t *block)
1711 {
1712 	if (!inode->i_mapping->a_ops->bmap)
1713 		return -EINVAL;
1714 
1715 	*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1716 	return 0;
1717 }
1718 EXPORT_SYMBOL(bmap);
1719 #endif
1720 
1721 /*
1722  * With relative atime, only update atime if the previous atime is
1723  * earlier than either the ctime or mtime or if at least a day has
1724  * passed since the last atime update.
1725  */
1726 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1727 			     struct timespec64 now)
1728 {
1729 
1730 	if (!(mnt->mnt_flags & MNT_RELATIME))
1731 		return 1;
1732 	/*
1733 	 * Is mtime younger than atime? If yes, update atime:
1734 	 */
1735 	if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1736 		return 1;
1737 	/*
1738 	 * Is ctime younger than atime? If yes, update atime:
1739 	 */
1740 	if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1741 		return 1;
1742 
1743 	/*
1744 	 * Is the previous atime value older than a day? If yes,
1745 	 * update atime:
1746 	 */
1747 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1748 		return 1;
1749 	/*
1750 	 * Good, we can skip the atime update:
1751 	 */
1752 	return 0;
1753 }
1754 
1755 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1756 {
1757 	int dirty_flags = 0;
1758 
1759 	if (flags & (S_ATIME | S_CTIME | S_MTIME)) {
1760 		if (flags & S_ATIME)
1761 			inode->i_atime = *time;
1762 		if (flags & S_CTIME)
1763 			inode->i_ctime = *time;
1764 		if (flags & S_MTIME)
1765 			inode->i_mtime = *time;
1766 
1767 		if (inode->i_sb->s_flags & SB_LAZYTIME)
1768 			dirty_flags |= I_DIRTY_TIME;
1769 		else
1770 			dirty_flags |= I_DIRTY_SYNC;
1771 	}
1772 
1773 	if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false))
1774 		dirty_flags |= I_DIRTY_SYNC;
1775 
1776 	__mark_inode_dirty(inode, dirty_flags);
1777 	return 0;
1778 }
1779 EXPORT_SYMBOL(generic_update_time);
1780 
1781 /*
1782  * This does the actual work of updating an inodes time or version.  Must have
1783  * had called mnt_want_write() before calling this.
1784  */
1785 static int update_time(struct inode *inode, struct timespec64 *time, int flags)
1786 {
1787 	if (inode->i_op->update_time)
1788 		return inode->i_op->update_time(inode, time, flags);
1789 	return generic_update_time(inode, time, flags);
1790 }
1791 
1792 /**
1793  *	atime_needs_update	-	update the access time
1794  *	@path: the &struct path to update
1795  *	@inode: inode to update
1796  *
1797  *	Update the accessed time on an inode and mark it for writeback.
1798  *	This function automatically handles read only file systems and media,
1799  *	as well as the "noatime" flag and inode specific "noatime" markers.
1800  */
1801 bool atime_needs_update(const struct path *path, struct inode *inode)
1802 {
1803 	struct vfsmount *mnt = path->mnt;
1804 	struct timespec64 now;
1805 
1806 	if (inode->i_flags & S_NOATIME)
1807 		return false;
1808 
1809 	/* Atime updates will likely cause i_uid and i_gid to be written
1810 	 * back improprely if their true value is unknown to the vfs.
1811 	 */
1812 	if (HAS_UNMAPPED_ID(mnt_user_ns(mnt), inode))
1813 		return false;
1814 
1815 	if (IS_NOATIME(inode))
1816 		return false;
1817 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1818 		return false;
1819 
1820 	if (mnt->mnt_flags & MNT_NOATIME)
1821 		return false;
1822 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1823 		return false;
1824 
1825 	now = current_time(inode);
1826 
1827 	if (!relatime_need_update(mnt, inode, now))
1828 		return false;
1829 
1830 	if (timespec64_equal(&inode->i_atime, &now))
1831 		return false;
1832 
1833 	return true;
1834 }
1835 
1836 void touch_atime(const struct path *path)
1837 {
1838 	struct vfsmount *mnt = path->mnt;
1839 	struct inode *inode = d_inode(path->dentry);
1840 	struct timespec64 now;
1841 
1842 	if (!atime_needs_update(path, inode))
1843 		return;
1844 
1845 	if (!sb_start_write_trylock(inode->i_sb))
1846 		return;
1847 
1848 	if (__mnt_want_write(mnt) != 0)
1849 		goto skip_update;
1850 	/*
1851 	 * File systems can error out when updating inodes if they need to
1852 	 * allocate new space to modify an inode (such is the case for
1853 	 * Btrfs), but since we touch atime while walking down the path we
1854 	 * really don't care if we failed to update the atime of the file,
1855 	 * so just ignore the return value.
1856 	 * We may also fail on filesystems that have the ability to make parts
1857 	 * of the fs read only, e.g. subvolumes in Btrfs.
1858 	 */
1859 	now = current_time(inode);
1860 	update_time(inode, &now, S_ATIME);
1861 	__mnt_drop_write(mnt);
1862 skip_update:
1863 	sb_end_write(inode->i_sb);
1864 }
1865 EXPORT_SYMBOL(touch_atime);
1866 
1867 /*
1868  * The logic we want is
1869  *
1870  *	if suid or (sgid and xgrp)
1871  *		remove privs
1872  */
1873 int should_remove_suid(struct dentry *dentry)
1874 {
1875 	umode_t mode = d_inode(dentry)->i_mode;
1876 	int kill = 0;
1877 
1878 	/* suid always must be killed */
1879 	if (unlikely(mode & S_ISUID))
1880 		kill = ATTR_KILL_SUID;
1881 
1882 	/*
1883 	 * sgid without any exec bits is just a mandatory locking mark; leave
1884 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1885 	 */
1886 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1887 		kill |= ATTR_KILL_SGID;
1888 
1889 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1890 		return kill;
1891 
1892 	return 0;
1893 }
1894 EXPORT_SYMBOL(should_remove_suid);
1895 
1896 /*
1897  * Return mask of changes for notify_change() that need to be done as a
1898  * response to write or truncate. Return 0 if nothing has to be changed.
1899  * Negative value on error (change should be denied).
1900  */
1901 int dentry_needs_remove_privs(struct dentry *dentry)
1902 {
1903 	struct inode *inode = d_inode(dentry);
1904 	int mask = 0;
1905 	int ret;
1906 
1907 	if (IS_NOSEC(inode))
1908 		return 0;
1909 
1910 	mask = should_remove_suid(dentry);
1911 	ret = security_inode_need_killpriv(dentry);
1912 	if (ret < 0)
1913 		return ret;
1914 	if (ret)
1915 		mask |= ATTR_KILL_PRIV;
1916 	return mask;
1917 }
1918 
1919 static int __remove_privs(struct user_namespace *mnt_userns,
1920 			  struct dentry *dentry, int kill)
1921 {
1922 	struct iattr newattrs;
1923 
1924 	newattrs.ia_valid = ATTR_FORCE | kill;
1925 	/*
1926 	 * Note we call this on write, so notify_change will not
1927 	 * encounter any conflicting delegations:
1928 	 */
1929 	return notify_change(mnt_userns, dentry, &newattrs, NULL);
1930 }
1931 
1932 /*
1933  * Remove special file priviledges (suid, capabilities) when file is written
1934  * to or truncated.
1935  */
1936 int file_remove_privs(struct file *file)
1937 {
1938 	struct dentry *dentry = file_dentry(file);
1939 	struct inode *inode = file_inode(file);
1940 	int kill;
1941 	int error = 0;
1942 
1943 	/*
1944 	 * Fast path for nothing security related.
1945 	 * As well for non-regular files, e.g. blkdev inodes.
1946 	 * For example, blkdev_write_iter() might get here
1947 	 * trying to remove privs which it is not allowed to.
1948 	 */
1949 	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1950 		return 0;
1951 
1952 	kill = dentry_needs_remove_privs(dentry);
1953 	if (kill < 0)
1954 		return kill;
1955 	if (kill)
1956 		error = __remove_privs(file_mnt_user_ns(file), dentry, kill);
1957 	if (!error)
1958 		inode_has_no_xattr(inode);
1959 
1960 	return error;
1961 }
1962 EXPORT_SYMBOL(file_remove_privs);
1963 
1964 /**
1965  *	file_update_time	-	update mtime and ctime time
1966  *	@file: file accessed
1967  *
1968  *	Update the mtime and ctime members of an inode and mark the inode
1969  *	for writeback.  Note that this function is meant exclusively for
1970  *	usage in the file write path of filesystems, and filesystems may
1971  *	choose to explicitly ignore update via this function with the
1972  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1973  *	timestamps are handled by the server.  This can return an error for
1974  *	file systems who need to allocate space in order to update an inode.
1975  */
1976 
1977 int file_update_time(struct file *file)
1978 {
1979 	struct inode *inode = file_inode(file);
1980 	struct timespec64 now;
1981 	int sync_it = 0;
1982 	int ret;
1983 
1984 	/* First try to exhaust all avenues to not sync */
1985 	if (IS_NOCMTIME(inode))
1986 		return 0;
1987 
1988 	now = current_time(inode);
1989 	if (!timespec64_equal(&inode->i_mtime, &now))
1990 		sync_it = S_MTIME;
1991 
1992 	if (!timespec64_equal(&inode->i_ctime, &now))
1993 		sync_it |= S_CTIME;
1994 
1995 	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1996 		sync_it |= S_VERSION;
1997 
1998 	if (!sync_it)
1999 		return 0;
2000 
2001 	/* Finally allowed to write? Takes lock. */
2002 	if (__mnt_want_write_file(file))
2003 		return 0;
2004 
2005 	ret = update_time(inode, &now, sync_it);
2006 	__mnt_drop_write_file(file);
2007 
2008 	return ret;
2009 }
2010 EXPORT_SYMBOL(file_update_time);
2011 
2012 /* Caller must hold the file's inode lock */
2013 int file_modified(struct file *file)
2014 {
2015 	int err;
2016 
2017 	/*
2018 	 * Clear the security bits if the process is not being run by root.
2019 	 * This keeps people from modifying setuid and setgid binaries.
2020 	 */
2021 	err = file_remove_privs(file);
2022 	if (err)
2023 		return err;
2024 
2025 	if (unlikely(file->f_mode & FMODE_NOCMTIME))
2026 		return 0;
2027 
2028 	return file_update_time(file);
2029 }
2030 EXPORT_SYMBOL(file_modified);
2031 
2032 int inode_needs_sync(struct inode *inode)
2033 {
2034 	if (IS_SYNC(inode))
2035 		return 1;
2036 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2037 		return 1;
2038 	return 0;
2039 }
2040 EXPORT_SYMBOL(inode_needs_sync);
2041 
2042 /*
2043  * If we try to find an inode in the inode hash while it is being
2044  * deleted, we have to wait until the filesystem completes its
2045  * deletion before reporting that it isn't found.  This function waits
2046  * until the deletion _might_ have completed.  Callers are responsible
2047  * to recheck inode state.
2048  *
2049  * It doesn't matter if I_NEW is not set initially, a call to
2050  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2051  * will DTRT.
2052  */
2053 static void __wait_on_freeing_inode(struct inode *inode)
2054 {
2055 	wait_queue_head_t *wq;
2056 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2057 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
2058 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2059 	spin_unlock(&inode->i_lock);
2060 	spin_unlock(&inode_hash_lock);
2061 	schedule();
2062 	finish_wait(wq, &wait.wq_entry);
2063 	spin_lock(&inode_hash_lock);
2064 }
2065 
2066 static __initdata unsigned long ihash_entries;
2067 static int __init set_ihash_entries(char *str)
2068 {
2069 	if (!str)
2070 		return 0;
2071 	ihash_entries = simple_strtoul(str, &str, 0);
2072 	return 1;
2073 }
2074 __setup("ihash_entries=", set_ihash_entries);
2075 
2076 /*
2077  * Initialize the waitqueues and inode hash table.
2078  */
2079 void __init inode_init_early(void)
2080 {
2081 	/* If hashes are distributed across NUMA nodes, defer
2082 	 * hash allocation until vmalloc space is available.
2083 	 */
2084 	if (hashdist)
2085 		return;
2086 
2087 	inode_hashtable =
2088 		alloc_large_system_hash("Inode-cache",
2089 					sizeof(struct hlist_head),
2090 					ihash_entries,
2091 					14,
2092 					HASH_EARLY | HASH_ZERO,
2093 					&i_hash_shift,
2094 					&i_hash_mask,
2095 					0,
2096 					0);
2097 }
2098 
2099 void __init inode_init(void)
2100 {
2101 	/* inode slab cache */
2102 	inode_cachep = kmem_cache_create("inode_cache",
2103 					 sizeof(struct inode),
2104 					 0,
2105 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2106 					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2107 					 init_once);
2108 
2109 	/* Hash may have been set up in inode_init_early */
2110 	if (!hashdist)
2111 		return;
2112 
2113 	inode_hashtable =
2114 		alloc_large_system_hash("Inode-cache",
2115 					sizeof(struct hlist_head),
2116 					ihash_entries,
2117 					14,
2118 					HASH_ZERO,
2119 					&i_hash_shift,
2120 					&i_hash_mask,
2121 					0,
2122 					0);
2123 }
2124 
2125 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2126 {
2127 	inode->i_mode = mode;
2128 	if (S_ISCHR(mode)) {
2129 		inode->i_fop = &def_chr_fops;
2130 		inode->i_rdev = rdev;
2131 	} else if (S_ISBLK(mode)) {
2132 		inode->i_fop = &def_blk_fops;
2133 		inode->i_rdev = rdev;
2134 	} else if (S_ISFIFO(mode))
2135 		inode->i_fop = &pipefifo_fops;
2136 	else if (S_ISSOCK(mode))
2137 		;	/* leave it no_open_fops */
2138 	else
2139 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2140 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2141 				  inode->i_ino);
2142 }
2143 EXPORT_SYMBOL(init_special_inode);
2144 
2145 /**
2146  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2147  * @mnt_userns:	User namespace of the mount the inode was created from
2148  * @inode: New inode
2149  * @dir: Directory inode
2150  * @mode: mode of the new inode
2151  *
2152  * If the inode has been created through an idmapped mount the user namespace of
2153  * the vfsmount must be passed through @mnt_userns. This function will then take
2154  * care to map the inode according to @mnt_userns before checking permissions
2155  * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2156  * checking is to be performed on the raw inode simply passs init_user_ns.
2157  */
2158 void inode_init_owner(struct user_namespace *mnt_userns, struct inode *inode,
2159 		      const struct inode *dir, umode_t mode)
2160 {
2161 	inode_fsuid_set(inode, mnt_userns);
2162 	if (dir && dir->i_mode & S_ISGID) {
2163 		inode->i_gid = dir->i_gid;
2164 
2165 		/* Directories are special, and always inherit S_ISGID */
2166 		if (S_ISDIR(mode))
2167 			mode |= S_ISGID;
2168 		else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2169 			 !in_group_p(i_gid_into_mnt(mnt_userns, dir)) &&
2170 			 !capable_wrt_inode_uidgid(mnt_userns, dir, CAP_FSETID))
2171 			mode &= ~S_ISGID;
2172 	} else
2173 		inode_fsgid_set(inode, mnt_userns);
2174 	inode->i_mode = mode;
2175 }
2176 EXPORT_SYMBOL(inode_init_owner);
2177 
2178 /**
2179  * inode_owner_or_capable - check current task permissions to inode
2180  * @mnt_userns:	user namespace of the mount the inode was found from
2181  * @inode: inode being checked
2182  *
2183  * Return true if current either has CAP_FOWNER in a namespace with the
2184  * inode owner uid mapped, or owns the file.
2185  *
2186  * If the inode has been found through an idmapped mount the user namespace of
2187  * the vfsmount must be passed through @mnt_userns. This function will then take
2188  * care to map the inode according to @mnt_userns before checking permissions.
2189  * On non-idmapped mounts or if permission checking is to be performed on the
2190  * raw inode simply passs init_user_ns.
2191  */
2192 bool inode_owner_or_capable(struct user_namespace *mnt_userns,
2193 			    const struct inode *inode)
2194 {
2195 	kuid_t i_uid;
2196 	struct user_namespace *ns;
2197 
2198 	i_uid = i_uid_into_mnt(mnt_userns, inode);
2199 	if (uid_eq(current_fsuid(), i_uid))
2200 		return true;
2201 
2202 	ns = current_user_ns();
2203 	if (kuid_has_mapping(ns, i_uid) && ns_capable(ns, CAP_FOWNER))
2204 		return true;
2205 	return false;
2206 }
2207 EXPORT_SYMBOL(inode_owner_or_capable);
2208 
2209 /*
2210  * Direct i/o helper functions
2211  */
2212 static void __inode_dio_wait(struct inode *inode)
2213 {
2214 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2215 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2216 
2217 	do {
2218 		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2219 		if (atomic_read(&inode->i_dio_count))
2220 			schedule();
2221 	} while (atomic_read(&inode->i_dio_count));
2222 	finish_wait(wq, &q.wq_entry);
2223 }
2224 
2225 /**
2226  * inode_dio_wait - wait for outstanding DIO requests to finish
2227  * @inode: inode to wait for
2228  *
2229  * Waits for all pending direct I/O requests to finish so that we can
2230  * proceed with a truncate or equivalent operation.
2231  *
2232  * Must be called under a lock that serializes taking new references
2233  * to i_dio_count, usually by inode->i_mutex.
2234  */
2235 void inode_dio_wait(struct inode *inode)
2236 {
2237 	if (atomic_read(&inode->i_dio_count))
2238 		__inode_dio_wait(inode);
2239 }
2240 EXPORT_SYMBOL(inode_dio_wait);
2241 
2242 /*
2243  * inode_set_flags - atomically set some inode flags
2244  *
2245  * Note: the caller should be holding i_mutex, or else be sure that
2246  * they have exclusive access to the inode structure (i.e., while the
2247  * inode is being instantiated).  The reason for the cmpxchg() loop
2248  * --- which wouldn't be necessary if all code paths which modify
2249  * i_flags actually followed this rule, is that there is at least one
2250  * code path which doesn't today so we use cmpxchg() out of an abundance
2251  * of caution.
2252  *
2253  * In the long run, i_mutex is overkill, and we should probably look
2254  * at using the i_lock spinlock to protect i_flags, and then make sure
2255  * it is so documented in include/linux/fs.h and that all code follows
2256  * the locking convention!!
2257  */
2258 void inode_set_flags(struct inode *inode, unsigned int flags,
2259 		     unsigned int mask)
2260 {
2261 	WARN_ON_ONCE(flags & ~mask);
2262 	set_mask_bits(&inode->i_flags, mask, flags);
2263 }
2264 EXPORT_SYMBOL(inode_set_flags);
2265 
2266 void inode_nohighmem(struct inode *inode)
2267 {
2268 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2269 }
2270 EXPORT_SYMBOL(inode_nohighmem);
2271 
2272 /**
2273  * timestamp_truncate - Truncate timespec to a granularity
2274  * @t: Timespec
2275  * @inode: inode being updated
2276  *
2277  * Truncate a timespec to the granularity supported by the fs
2278  * containing the inode. Always rounds down. gran must
2279  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2280  */
2281 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2282 {
2283 	struct super_block *sb = inode->i_sb;
2284 	unsigned int gran = sb->s_time_gran;
2285 
2286 	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2287 	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2288 		t.tv_nsec = 0;
2289 
2290 	/* Avoid division in the common cases 1 ns and 1 s. */
2291 	if (gran == 1)
2292 		; /* nothing */
2293 	else if (gran == NSEC_PER_SEC)
2294 		t.tv_nsec = 0;
2295 	else if (gran > 1 && gran < NSEC_PER_SEC)
2296 		t.tv_nsec -= t.tv_nsec % gran;
2297 	else
2298 		WARN(1, "invalid file time granularity: %u", gran);
2299 	return t;
2300 }
2301 EXPORT_SYMBOL(timestamp_truncate);
2302 
2303 /**
2304  * current_time - Return FS time
2305  * @inode: inode.
2306  *
2307  * Return the current time truncated to the time granularity supported by
2308  * the fs.
2309  *
2310  * Note that inode and inode->sb cannot be NULL.
2311  * Otherwise, the function warns and returns time without truncation.
2312  */
2313 struct timespec64 current_time(struct inode *inode)
2314 {
2315 	struct timespec64 now;
2316 
2317 	ktime_get_coarse_real_ts64(&now);
2318 
2319 	if (unlikely(!inode->i_sb)) {
2320 		WARN(1, "current_time() called with uninitialized super_block in the inode");
2321 		return now;
2322 	}
2323 
2324 	return timestamp_truncate(now, inode);
2325 }
2326 EXPORT_SYMBOL(current_time);
2327