xref: /openbmc/linux/fs/inode.c (revision d4113f2f174aea83f0871cf5d050e0e08dfb9781)
1 /*
2  * (C) 1997 Linus Torvalds
3  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4  */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <trace/events/writeback.h>
22 #include "internal.h"
23 
24 /*
25  * Inode locking rules:
26  *
27  * inode->i_lock protects:
28  *   inode->i_state, inode->i_hash, __iget()
29  * Inode LRU list locks protect:
30  *   inode->i_sb->s_inode_lru, inode->i_lru
31  * inode_sb_list_lock protects:
32  *   sb->s_inodes, inode->i_sb_list
33  * bdi->wb.list_lock protects:
34  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_wb_list
35  * inode_hash_lock protects:
36  *   inode_hashtable, inode->i_hash
37  *
38  * Lock ordering:
39  *
40  * inode_sb_list_lock
41  *   inode->i_lock
42  *     Inode LRU list locks
43  *
44  * bdi->wb.list_lock
45  *   inode->i_lock
46  *
47  * inode_hash_lock
48  *   inode_sb_list_lock
49  *   inode->i_lock
50  *
51  * iunique_lock
52  *   inode_hash_lock
53  */
54 
55 static unsigned int i_hash_mask __read_mostly;
56 static unsigned int i_hash_shift __read_mostly;
57 static struct hlist_head *inode_hashtable __read_mostly;
58 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
59 
60 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
61 
62 /*
63  * Empty aops. Can be used for the cases where the user does not
64  * define any of the address_space operations.
65  */
66 const struct address_space_operations empty_aops = {
67 };
68 EXPORT_SYMBOL(empty_aops);
69 
70 /*
71  * Statistics gathering..
72  */
73 struct inodes_stat_t inodes_stat;
74 
75 static DEFINE_PER_CPU(unsigned long, nr_inodes);
76 static DEFINE_PER_CPU(unsigned long, nr_unused);
77 
78 static struct kmem_cache *inode_cachep __read_mostly;
79 
80 static long get_nr_inodes(void)
81 {
82 	int i;
83 	long sum = 0;
84 	for_each_possible_cpu(i)
85 		sum += per_cpu(nr_inodes, i);
86 	return sum < 0 ? 0 : sum;
87 }
88 
89 static inline long get_nr_inodes_unused(void)
90 {
91 	int i;
92 	long sum = 0;
93 	for_each_possible_cpu(i)
94 		sum += per_cpu(nr_unused, i);
95 	return sum < 0 ? 0 : sum;
96 }
97 
98 long get_nr_dirty_inodes(void)
99 {
100 	/* not actually dirty inodes, but a wild approximation */
101 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
102 	return nr_dirty > 0 ? nr_dirty : 0;
103 }
104 
105 /*
106  * Handle nr_inode sysctl
107  */
108 #ifdef CONFIG_SYSCTL
109 int proc_nr_inodes(struct ctl_table *table, int write,
110 		   void __user *buffer, size_t *lenp, loff_t *ppos)
111 {
112 	inodes_stat.nr_inodes = get_nr_inodes();
113 	inodes_stat.nr_unused = get_nr_inodes_unused();
114 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115 }
116 #endif
117 
118 static int no_open(struct inode *inode, struct file *file)
119 {
120 	return -ENXIO;
121 }
122 
123 /**
124  * inode_init_always - perform inode structure intialisation
125  * @sb: superblock inode belongs to
126  * @inode: inode to initialise
127  *
128  * These are initializations that need to be done on every inode
129  * allocation as the fields are not initialised by slab allocation.
130  */
131 int inode_init_always(struct super_block *sb, struct inode *inode)
132 {
133 	static const struct inode_operations empty_iops;
134 	static const struct file_operations no_open_fops = {.open = no_open};
135 	struct address_space *const mapping = &inode->i_data;
136 
137 	inode->i_sb = sb;
138 	inode->i_blkbits = sb->s_blocksize_bits;
139 	inode->i_flags = 0;
140 	atomic_set(&inode->i_count, 1);
141 	inode->i_op = &empty_iops;
142 	inode->i_fop = &no_open_fops;
143 	inode->__i_nlink = 1;
144 	inode->i_opflags = 0;
145 	i_uid_write(inode, 0);
146 	i_gid_write(inode, 0);
147 	atomic_set(&inode->i_writecount, 0);
148 	inode->i_size = 0;
149 	inode->i_blocks = 0;
150 	inode->i_bytes = 0;
151 	inode->i_generation = 0;
152 	inode->i_pipe = NULL;
153 	inode->i_bdev = NULL;
154 	inode->i_cdev = NULL;
155 	inode->i_link = NULL;
156 	inode->i_rdev = 0;
157 	inode->dirtied_when = 0;
158 
159 	if (security_inode_alloc(inode))
160 		goto out;
161 	spin_lock_init(&inode->i_lock);
162 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
163 
164 	mutex_init(&inode->i_mutex);
165 	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
166 
167 	atomic_set(&inode->i_dio_count, 0);
168 
169 	mapping->a_ops = &empty_aops;
170 	mapping->host = inode;
171 	mapping->flags = 0;
172 	atomic_set(&mapping->i_mmap_writable, 0);
173 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
174 	mapping->private_data = NULL;
175 	mapping->writeback_index = 0;
176 	inode->i_private = NULL;
177 	inode->i_mapping = mapping;
178 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
179 #ifdef CONFIG_FS_POSIX_ACL
180 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
181 #endif
182 
183 #ifdef CONFIG_FSNOTIFY
184 	inode->i_fsnotify_mask = 0;
185 #endif
186 	inode->i_flctx = NULL;
187 	this_cpu_inc(nr_inodes);
188 
189 	return 0;
190 out:
191 	return -ENOMEM;
192 }
193 EXPORT_SYMBOL(inode_init_always);
194 
195 static struct inode *alloc_inode(struct super_block *sb)
196 {
197 	struct inode *inode;
198 
199 	if (sb->s_op->alloc_inode)
200 		inode = sb->s_op->alloc_inode(sb);
201 	else
202 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
203 
204 	if (!inode)
205 		return NULL;
206 
207 	if (unlikely(inode_init_always(sb, inode))) {
208 		if (inode->i_sb->s_op->destroy_inode)
209 			inode->i_sb->s_op->destroy_inode(inode);
210 		else
211 			kmem_cache_free(inode_cachep, inode);
212 		return NULL;
213 	}
214 
215 	return inode;
216 }
217 
218 void free_inode_nonrcu(struct inode *inode)
219 {
220 	kmem_cache_free(inode_cachep, inode);
221 }
222 EXPORT_SYMBOL(free_inode_nonrcu);
223 
224 void __destroy_inode(struct inode *inode)
225 {
226 	BUG_ON(inode_has_buffers(inode));
227 	inode_detach_wb(inode);
228 	security_inode_free(inode);
229 	fsnotify_inode_delete(inode);
230 	locks_free_lock_context(inode->i_flctx);
231 	if (!inode->i_nlink) {
232 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
233 		atomic_long_dec(&inode->i_sb->s_remove_count);
234 	}
235 
236 #ifdef CONFIG_FS_POSIX_ACL
237 	if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
238 		posix_acl_release(inode->i_acl);
239 	if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
240 		posix_acl_release(inode->i_default_acl);
241 #endif
242 	this_cpu_dec(nr_inodes);
243 }
244 EXPORT_SYMBOL(__destroy_inode);
245 
246 static void i_callback(struct rcu_head *head)
247 {
248 	struct inode *inode = container_of(head, struct inode, i_rcu);
249 	kmem_cache_free(inode_cachep, inode);
250 }
251 
252 static void destroy_inode(struct inode *inode)
253 {
254 	BUG_ON(!list_empty(&inode->i_lru));
255 	__destroy_inode(inode);
256 	if (inode->i_sb->s_op->destroy_inode)
257 		inode->i_sb->s_op->destroy_inode(inode);
258 	else
259 		call_rcu(&inode->i_rcu, i_callback);
260 }
261 
262 /**
263  * drop_nlink - directly drop an inode's link count
264  * @inode: inode
265  *
266  * This is a low-level filesystem helper to replace any
267  * direct filesystem manipulation of i_nlink.  In cases
268  * where we are attempting to track writes to the
269  * filesystem, a decrement to zero means an imminent
270  * write when the file is truncated and actually unlinked
271  * on the filesystem.
272  */
273 void drop_nlink(struct inode *inode)
274 {
275 	WARN_ON(inode->i_nlink == 0);
276 	inode->__i_nlink--;
277 	if (!inode->i_nlink)
278 		atomic_long_inc(&inode->i_sb->s_remove_count);
279 }
280 EXPORT_SYMBOL(drop_nlink);
281 
282 /**
283  * clear_nlink - directly zero an inode's link count
284  * @inode: inode
285  *
286  * This is a low-level filesystem helper to replace any
287  * direct filesystem manipulation of i_nlink.  See
288  * drop_nlink() for why we care about i_nlink hitting zero.
289  */
290 void clear_nlink(struct inode *inode)
291 {
292 	if (inode->i_nlink) {
293 		inode->__i_nlink = 0;
294 		atomic_long_inc(&inode->i_sb->s_remove_count);
295 	}
296 }
297 EXPORT_SYMBOL(clear_nlink);
298 
299 /**
300  * set_nlink - directly set an inode's link count
301  * @inode: inode
302  * @nlink: new nlink (should be non-zero)
303  *
304  * This is a low-level filesystem helper to replace any
305  * direct filesystem manipulation of i_nlink.
306  */
307 void set_nlink(struct inode *inode, unsigned int nlink)
308 {
309 	if (!nlink) {
310 		clear_nlink(inode);
311 	} else {
312 		/* Yes, some filesystems do change nlink from zero to one */
313 		if (inode->i_nlink == 0)
314 			atomic_long_dec(&inode->i_sb->s_remove_count);
315 
316 		inode->__i_nlink = nlink;
317 	}
318 }
319 EXPORT_SYMBOL(set_nlink);
320 
321 /**
322  * inc_nlink - directly increment an inode's link count
323  * @inode: inode
324  *
325  * This is a low-level filesystem helper to replace any
326  * direct filesystem manipulation of i_nlink.  Currently,
327  * it is only here for parity with dec_nlink().
328  */
329 void inc_nlink(struct inode *inode)
330 {
331 	if (unlikely(inode->i_nlink == 0)) {
332 		WARN_ON(!(inode->i_state & I_LINKABLE));
333 		atomic_long_dec(&inode->i_sb->s_remove_count);
334 	}
335 
336 	inode->__i_nlink++;
337 }
338 EXPORT_SYMBOL(inc_nlink);
339 
340 void address_space_init_once(struct address_space *mapping)
341 {
342 	memset(mapping, 0, sizeof(*mapping));
343 	INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
344 	spin_lock_init(&mapping->tree_lock);
345 	init_rwsem(&mapping->i_mmap_rwsem);
346 	INIT_LIST_HEAD(&mapping->private_list);
347 	spin_lock_init(&mapping->private_lock);
348 	mapping->i_mmap = RB_ROOT;
349 }
350 EXPORT_SYMBOL(address_space_init_once);
351 
352 /*
353  * These are initializations that only need to be done
354  * once, because the fields are idempotent across use
355  * of the inode, so let the slab aware of that.
356  */
357 void inode_init_once(struct inode *inode)
358 {
359 	memset(inode, 0, sizeof(*inode));
360 	INIT_HLIST_NODE(&inode->i_hash);
361 	INIT_LIST_HEAD(&inode->i_devices);
362 	INIT_LIST_HEAD(&inode->i_wb_list);
363 	INIT_LIST_HEAD(&inode->i_lru);
364 	address_space_init_once(&inode->i_data);
365 	i_size_ordered_init(inode);
366 #ifdef CONFIG_FSNOTIFY
367 	INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
368 #endif
369 }
370 EXPORT_SYMBOL(inode_init_once);
371 
372 static void init_once(void *foo)
373 {
374 	struct inode *inode = (struct inode *) foo;
375 
376 	inode_init_once(inode);
377 }
378 
379 /*
380  * inode->i_lock must be held
381  */
382 void __iget(struct inode *inode)
383 {
384 	atomic_inc(&inode->i_count);
385 }
386 
387 /*
388  * get additional reference to inode; caller must already hold one.
389  */
390 void ihold(struct inode *inode)
391 {
392 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
393 }
394 EXPORT_SYMBOL(ihold);
395 
396 static void inode_lru_list_add(struct inode *inode)
397 {
398 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
399 		this_cpu_inc(nr_unused);
400 }
401 
402 /*
403  * Add inode to LRU if needed (inode is unused and clean).
404  *
405  * Needs inode->i_lock held.
406  */
407 void inode_add_lru(struct inode *inode)
408 {
409 	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
410 				I_FREEING | I_WILL_FREE)) &&
411 	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
412 		inode_lru_list_add(inode);
413 }
414 
415 
416 static void inode_lru_list_del(struct inode *inode)
417 {
418 
419 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
420 		this_cpu_dec(nr_unused);
421 }
422 
423 /**
424  * inode_sb_list_add - add inode to the superblock list of inodes
425  * @inode: inode to add
426  */
427 void inode_sb_list_add(struct inode *inode)
428 {
429 	spin_lock(&inode_sb_list_lock);
430 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
431 	spin_unlock(&inode_sb_list_lock);
432 }
433 EXPORT_SYMBOL_GPL(inode_sb_list_add);
434 
435 static inline void inode_sb_list_del(struct inode *inode)
436 {
437 	if (!list_empty(&inode->i_sb_list)) {
438 		spin_lock(&inode_sb_list_lock);
439 		list_del_init(&inode->i_sb_list);
440 		spin_unlock(&inode_sb_list_lock);
441 	}
442 }
443 
444 static unsigned long hash(struct super_block *sb, unsigned long hashval)
445 {
446 	unsigned long tmp;
447 
448 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
449 			L1_CACHE_BYTES;
450 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
451 	return tmp & i_hash_mask;
452 }
453 
454 /**
455  *	__insert_inode_hash - hash an inode
456  *	@inode: unhashed inode
457  *	@hashval: unsigned long value used to locate this object in the
458  *		inode_hashtable.
459  *
460  *	Add an inode to the inode hash for this superblock.
461  */
462 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
463 {
464 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
465 
466 	spin_lock(&inode_hash_lock);
467 	spin_lock(&inode->i_lock);
468 	hlist_add_head(&inode->i_hash, b);
469 	spin_unlock(&inode->i_lock);
470 	spin_unlock(&inode_hash_lock);
471 }
472 EXPORT_SYMBOL(__insert_inode_hash);
473 
474 /**
475  *	__remove_inode_hash - remove an inode from the hash
476  *	@inode: inode to unhash
477  *
478  *	Remove an inode from the superblock.
479  */
480 void __remove_inode_hash(struct inode *inode)
481 {
482 	spin_lock(&inode_hash_lock);
483 	spin_lock(&inode->i_lock);
484 	hlist_del_init(&inode->i_hash);
485 	spin_unlock(&inode->i_lock);
486 	spin_unlock(&inode_hash_lock);
487 }
488 EXPORT_SYMBOL(__remove_inode_hash);
489 
490 void clear_inode(struct inode *inode)
491 {
492 	might_sleep();
493 	/*
494 	 * We have to cycle tree_lock here because reclaim can be still in the
495 	 * process of removing the last page (in __delete_from_page_cache())
496 	 * and we must not free mapping under it.
497 	 */
498 	spin_lock_irq(&inode->i_data.tree_lock);
499 	BUG_ON(inode->i_data.nrpages);
500 	BUG_ON(inode->i_data.nrshadows);
501 	spin_unlock_irq(&inode->i_data.tree_lock);
502 	BUG_ON(!list_empty(&inode->i_data.private_list));
503 	BUG_ON(!(inode->i_state & I_FREEING));
504 	BUG_ON(inode->i_state & I_CLEAR);
505 	/* don't need i_lock here, no concurrent mods to i_state */
506 	inode->i_state = I_FREEING | I_CLEAR;
507 }
508 EXPORT_SYMBOL(clear_inode);
509 
510 /*
511  * Free the inode passed in, removing it from the lists it is still connected
512  * to. We remove any pages still attached to the inode and wait for any IO that
513  * is still in progress before finally destroying the inode.
514  *
515  * An inode must already be marked I_FREEING so that we avoid the inode being
516  * moved back onto lists if we race with other code that manipulates the lists
517  * (e.g. writeback_single_inode). The caller is responsible for setting this.
518  *
519  * An inode must already be removed from the LRU list before being evicted from
520  * the cache. This should occur atomically with setting the I_FREEING state
521  * flag, so no inodes here should ever be on the LRU when being evicted.
522  */
523 static void evict(struct inode *inode)
524 {
525 	const struct super_operations *op = inode->i_sb->s_op;
526 
527 	BUG_ON(!(inode->i_state & I_FREEING));
528 	BUG_ON(!list_empty(&inode->i_lru));
529 
530 	if (!list_empty(&inode->i_wb_list))
531 		inode_wb_list_del(inode);
532 
533 	inode_sb_list_del(inode);
534 
535 	/*
536 	 * Wait for flusher thread to be done with the inode so that filesystem
537 	 * does not start destroying it while writeback is still running. Since
538 	 * the inode has I_FREEING set, flusher thread won't start new work on
539 	 * the inode.  We just have to wait for running writeback to finish.
540 	 */
541 	inode_wait_for_writeback(inode);
542 
543 	if (op->evict_inode) {
544 		op->evict_inode(inode);
545 	} else {
546 		truncate_inode_pages_final(&inode->i_data);
547 		clear_inode(inode);
548 	}
549 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
550 		bd_forget(inode);
551 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
552 		cd_forget(inode);
553 
554 	remove_inode_hash(inode);
555 
556 	spin_lock(&inode->i_lock);
557 	wake_up_bit(&inode->i_state, __I_NEW);
558 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
559 	spin_unlock(&inode->i_lock);
560 
561 	destroy_inode(inode);
562 }
563 
564 /*
565  * dispose_list - dispose of the contents of a local list
566  * @head: the head of the list to free
567  *
568  * Dispose-list gets a local list with local inodes in it, so it doesn't
569  * need to worry about list corruption and SMP locks.
570  */
571 static void dispose_list(struct list_head *head)
572 {
573 	while (!list_empty(head)) {
574 		struct inode *inode;
575 
576 		inode = list_first_entry(head, struct inode, i_lru);
577 		list_del_init(&inode->i_lru);
578 
579 		evict(inode);
580 	}
581 }
582 
583 /**
584  * evict_inodes	- evict all evictable inodes for a superblock
585  * @sb:		superblock to operate on
586  *
587  * Make sure that no inodes with zero refcount are retained.  This is
588  * called by superblock shutdown after having MS_ACTIVE flag removed,
589  * so any inode reaching zero refcount during or after that call will
590  * be immediately evicted.
591  */
592 void evict_inodes(struct super_block *sb)
593 {
594 	struct inode *inode, *next;
595 	LIST_HEAD(dispose);
596 
597 	spin_lock(&inode_sb_list_lock);
598 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
599 		if (atomic_read(&inode->i_count))
600 			continue;
601 
602 		spin_lock(&inode->i_lock);
603 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
604 			spin_unlock(&inode->i_lock);
605 			continue;
606 		}
607 
608 		inode->i_state |= I_FREEING;
609 		inode_lru_list_del(inode);
610 		spin_unlock(&inode->i_lock);
611 		list_add(&inode->i_lru, &dispose);
612 	}
613 	spin_unlock(&inode_sb_list_lock);
614 
615 	dispose_list(&dispose);
616 }
617 
618 /**
619  * invalidate_inodes	- attempt to free all inodes on a superblock
620  * @sb:		superblock to operate on
621  * @kill_dirty: flag to guide handling of dirty inodes
622  *
623  * Attempts to free all inodes for a given superblock.  If there were any
624  * busy inodes return a non-zero value, else zero.
625  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
626  * them as busy.
627  */
628 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
629 {
630 	int busy = 0;
631 	struct inode *inode, *next;
632 	LIST_HEAD(dispose);
633 
634 	spin_lock(&inode_sb_list_lock);
635 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
636 		spin_lock(&inode->i_lock);
637 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
638 			spin_unlock(&inode->i_lock);
639 			continue;
640 		}
641 		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
642 			spin_unlock(&inode->i_lock);
643 			busy = 1;
644 			continue;
645 		}
646 		if (atomic_read(&inode->i_count)) {
647 			spin_unlock(&inode->i_lock);
648 			busy = 1;
649 			continue;
650 		}
651 
652 		inode->i_state |= I_FREEING;
653 		inode_lru_list_del(inode);
654 		spin_unlock(&inode->i_lock);
655 		list_add(&inode->i_lru, &dispose);
656 	}
657 	spin_unlock(&inode_sb_list_lock);
658 
659 	dispose_list(&dispose);
660 
661 	return busy;
662 }
663 
664 /*
665  * Isolate the inode from the LRU in preparation for freeing it.
666  *
667  * Any inodes which are pinned purely because of attached pagecache have their
668  * pagecache removed.  If the inode has metadata buffers attached to
669  * mapping->private_list then try to remove them.
670  *
671  * If the inode has the I_REFERENCED flag set, then it means that it has been
672  * used recently - the flag is set in iput_final(). When we encounter such an
673  * inode, clear the flag and move it to the back of the LRU so it gets another
674  * pass through the LRU before it gets reclaimed. This is necessary because of
675  * the fact we are doing lazy LRU updates to minimise lock contention so the
676  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
677  * with this flag set because they are the inodes that are out of order.
678  */
679 static enum lru_status inode_lru_isolate(struct list_head *item,
680 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
681 {
682 	struct list_head *freeable = arg;
683 	struct inode	*inode = container_of(item, struct inode, i_lru);
684 
685 	/*
686 	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
687 	 * If we fail to get the lock, just skip it.
688 	 */
689 	if (!spin_trylock(&inode->i_lock))
690 		return LRU_SKIP;
691 
692 	/*
693 	 * Referenced or dirty inodes are still in use. Give them another pass
694 	 * through the LRU as we canot reclaim them now.
695 	 */
696 	if (atomic_read(&inode->i_count) ||
697 	    (inode->i_state & ~I_REFERENCED)) {
698 		list_lru_isolate(lru, &inode->i_lru);
699 		spin_unlock(&inode->i_lock);
700 		this_cpu_dec(nr_unused);
701 		return LRU_REMOVED;
702 	}
703 
704 	/* recently referenced inodes get one more pass */
705 	if (inode->i_state & I_REFERENCED) {
706 		inode->i_state &= ~I_REFERENCED;
707 		spin_unlock(&inode->i_lock);
708 		return LRU_ROTATE;
709 	}
710 
711 	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
712 		__iget(inode);
713 		spin_unlock(&inode->i_lock);
714 		spin_unlock(lru_lock);
715 		if (remove_inode_buffers(inode)) {
716 			unsigned long reap;
717 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
718 			if (current_is_kswapd())
719 				__count_vm_events(KSWAPD_INODESTEAL, reap);
720 			else
721 				__count_vm_events(PGINODESTEAL, reap);
722 			if (current->reclaim_state)
723 				current->reclaim_state->reclaimed_slab += reap;
724 		}
725 		iput(inode);
726 		spin_lock(lru_lock);
727 		return LRU_RETRY;
728 	}
729 
730 	WARN_ON(inode->i_state & I_NEW);
731 	inode->i_state |= I_FREEING;
732 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
733 	spin_unlock(&inode->i_lock);
734 
735 	this_cpu_dec(nr_unused);
736 	return LRU_REMOVED;
737 }
738 
739 /*
740  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
741  * This is called from the superblock shrinker function with a number of inodes
742  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
743  * then are freed outside inode_lock by dispose_list().
744  */
745 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
746 {
747 	LIST_HEAD(freeable);
748 	long freed;
749 
750 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
751 				     inode_lru_isolate, &freeable);
752 	dispose_list(&freeable);
753 	return freed;
754 }
755 
756 static void __wait_on_freeing_inode(struct inode *inode);
757 /*
758  * Called with the inode lock held.
759  */
760 static struct inode *find_inode(struct super_block *sb,
761 				struct hlist_head *head,
762 				int (*test)(struct inode *, void *),
763 				void *data)
764 {
765 	struct inode *inode = NULL;
766 
767 repeat:
768 	hlist_for_each_entry(inode, head, i_hash) {
769 		if (inode->i_sb != sb)
770 			continue;
771 		if (!test(inode, data))
772 			continue;
773 		spin_lock(&inode->i_lock);
774 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
775 			__wait_on_freeing_inode(inode);
776 			goto repeat;
777 		}
778 		__iget(inode);
779 		spin_unlock(&inode->i_lock);
780 		return inode;
781 	}
782 	return NULL;
783 }
784 
785 /*
786  * find_inode_fast is the fast path version of find_inode, see the comment at
787  * iget_locked for details.
788  */
789 static struct inode *find_inode_fast(struct super_block *sb,
790 				struct hlist_head *head, unsigned long ino)
791 {
792 	struct inode *inode = NULL;
793 
794 repeat:
795 	hlist_for_each_entry(inode, head, i_hash) {
796 		if (inode->i_ino != ino)
797 			continue;
798 		if (inode->i_sb != sb)
799 			continue;
800 		spin_lock(&inode->i_lock);
801 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
802 			__wait_on_freeing_inode(inode);
803 			goto repeat;
804 		}
805 		__iget(inode);
806 		spin_unlock(&inode->i_lock);
807 		return inode;
808 	}
809 	return NULL;
810 }
811 
812 /*
813  * Each cpu owns a range of LAST_INO_BATCH numbers.
814  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
815  * to renew the exhausted range.
816  *
817  * This does not significantly increase overflow rate because every CPU can
818  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
819  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
820  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
821  * overflow rate by 2x, which does not seem too significant.
822  *
823  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
824  * error if st_ino won't fit in target struct field. Use 32bit counter
825  * here to attempt to avoid that.
826  */
827 #define LAST_INO_BATCH 1024
828 static DEFINE_PER_CPU(unsigned int, last_ino);
829 
830 unsigned int get_next_ino(void)
831 {
832 	unsigned int *p = &get_cpu_var(last_ino);
833 	unsigned int res = *p;
834 
835 #ifdef CONFIG_SMP
836 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
837 		static atomic_t shared_last_ino;
838 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
839 
840 		res = next - LAST_INO_BATCH;
841 	}
842 #endif
843 
844 	*p = ++res;
845 	put_cpu_var(last_ino);
846 	return res;
847 }
848 EXPORT_SYMBOL(get_next_ino);
849 
850 /**
851  *	new_inode_pseudo 	- obtain an inode
852  *	@sb: superblock
853  *
854  *	Allocates a new inode for given superblock.
855  *	Inode wont be chained in superblock s_inodes list
856  *	This means :
857  *	- fs can't be unmount
858  *	- quotas, fsnotify, writeback can't work
859  */
860 struct inode *new_inode_pseudo(struct super_block *sb)
861 {
862 	struct inode *inode = alloc_inode(sb);
863 
864 	if (inode) {
865 		spin_lock(&inode->i_lock);
866 		inode->i_state = 0;
867 		spin_unlock(&inode->i_lock);
868 		INIT_LIST_HEAD(&inode->i_sb_list);
869 	}
870 	return inode;
871 }
872 
873 /**
874  *	new_inode 	- obtain an inode
875  *	@sb: superblock
876  *
877  *	Allocates a new inode for given superblock. The default gfp_mask
878  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
879  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
880  *	for the page cache are not reclaimable or migratable,
881  *	mapping_set_gfp_mask() must be called with suitable flags on the
882  *	newly created inode's mapping
883  *
884  */
885 struct inode *new_inode(struct super_block *sb)
886 {
887 	struct inode *inode;
888 
889 	spin_lock_prefetch(&inode_sb_list_lock);
890 
891 	inode = new_inode_pseudo(sb);
892 	if (inode)
893 		inode_sb_list_add(inode);
894 	return inode;
895 }
896 EXPORT_SYMBOL(new_inode);
897 
898 #ifdef CONFIG_DEBUG_LOCK_ALLOC
899 void lockdep_annotate_inode_mutex_key(struct inode *inode)
900 {
901 	if (S_ISDIR(inode->i_mode)) {
902 		struct file_system_type *type = inode->i_sb->s_type;
903 
904 		/* Set new key only if filesystem hasn't already changed it */
905 		if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
906 			/*
907 			 * ensure nobody is actually holding i_mutex
908 			 */
909 			mutex_destroy(&inode->i_mutex);
910 			mutex_init(&inode->i_mutex);
911 			lockdep_set_class(&inode->i_mutex,
912 					  &type->i_mutex_dir_key);
913 		}
914 	}
915 }
916 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
917 #endif
918 
919 /**
920  * unlock_new_inode - clear the I_NEW state and wake up any waiters
921  * @inode:	new inode to unlock
922  *
923  * Called when the inode is fully initialised to clear the new state of the
924  * inode and wake up anyone waiting for the inode to finish initialisation.
925  */
926 void unlock_new_inode(struct inode *inode)
927 {
928 	lockdep_annotate_inode_mutex_key(inode);
929 	spin_lock(&inode->i_lock);
930 	WARN_ON(!(inode->i_state & I_NEW));
931 	inode->i_state &= ~I_NEW;
932 	smp_mb();
933 	wake_up_bit(&inode->i_state, __I_NEW);
934 	spin_unlock(&inode->i_lock);
935 }
936 EXPORT_SYMBOL(unlock_new_inode);
937 
938 /**
939  * lock_two_nondirectories - take two i_mutexes on non-directory objects
940  *
941  * Lock any non-NULL argument that is not a directory.
942  * Zero, one or two objects may be locked by this function.
943  *
944  * @inode1: first inode to lock
945  * @inode2: second inode to lock
946  */
947 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
948 {
949 	if (inode1 > inode2)
950 		swap(inode1, inode2);
951 
952 	if (inode1 && !S_ISDIR(inode1->i_mode))
953 		mutex_lock(&inode1->i_mutex);
954 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
955 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_NONDIR2);
956 }
957 EXPORT_SYMBOL(lock_two_nondirectories);
958 
959 /**
960  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
961  * @inode1: first inode to unlock
962  * @inode2: second inode to unlock
963  */
964 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
965 {
966 	if (inode1 && !S_ISDIR(inode1->i_mode))
967 		mutex_unlock(&inode1->i_mutex);
968 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
969 		mutex_unlock(&inode2->i_mutex);
970 }
971 EXPORT_SYMBOL(unlock_two_nondirectories);
972 
973 /**
974  * iget5_locked - obtain an inode from a mounted file system
975  * @sb:		super block of file system
976  * @hashval:	hash value (usually inode number) to get
977  * @test:	callback used for comparisons between inodes
978  * @set:	callback used to initialize a new struct inode
979  * @data:	opaque data pointer to pass to @test and @set
980  *
981  * Search for the inode specified by @hashval and @data in the inode cache,
982  * and if present it is return it with an increased reference count. This is
983  * a generalized version of iget_locked() for file systems where the inode
984  * number is not sufficient for unique identification of an inode.
985  *
986  * If the inode is not in cache, allocate a new inode and return it locked,
987  * hashed, and with the I_NEW flag set. The file system gets to fill it in
988  * before unlocking it via unlock_new_inode().
989  *
990  * Note both @test and @set are called with the inode_hash_lock held, so can't
991  * sleep.
992  */
993 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
994 		int (*test)(struct inode *, void *),
995 		int (*set)(struct inode *, void *), void *data)
996 {
997 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
998 	struct inode *inode;
999 
1000 	spin_lock(&inode_hash_lock);
1001 	inode = find_inode(sb, head, test, data);
1002 	spin_unlock(&inode_hash_lock);
1003 
1004 	if (inode) {
1005 		wait_on_inode(inode);
1006 		return inode;
1007 	}
1008 
1009 	inode = alloc_inode(sb);
1010 	if (inode) {
1011 		struct inode *old;
1012 
1013 		spin_lock(&inode_hash_lock);
1014 		/* We released the lock, so.. */
1015 		old = find_inode(sb, head, test, data);
1016 		if (!old) {
1017 			if (set(inode, data))
1018 				goto set_failed;
1019 
1020 			spin_lock(&inode->i_lock);
1021 			inode->i_state = I_NEW;
1022 			hlist_add_head(&inode->i_hash, head);
1023 			spin_unlock(&inode->i_lock);
1024 			inode_sb_list_add(inode);
1025 			spin_unlock(&inode_hash_lock);
1026 
1027 			/* Return the locked inode with I_NEW set, the
1028 			 * caller is responsible for filling in the contents
1029 			 */
1030 			return inode;
1031 		}
1032 
1033 		/*
1034 		 * Uhhuh, somebody else created the same inode under
1035 		 * us. Use the old inode instead of the one we just
1036 		 * allocated.
1037 		 */
1038 		spin_unlock(&inode_hash_lock);
1039 		destroy_inode(inode);
1040 		inode = old;
1041 		wait_on_inode(inode);
1042 	}
1043 	return inode;
1044 
1045 set_failed:
1046 	spin_unlock(&inode_hash_lock);
1047 	destroy_inode(inode);
1048 	return NULL;
1049 }
1050 EXPORT_SYMBOL(iget5_locked);
1051 
1052 /**
1053  * iget_locked - obtain an inode from a mounted file system
1054  * @sb:		super block of file system
1055  * @ino:	inode number to get
1056  *
1057  * Search for the inode specified by @ino in the inode cache and if present
1058  * return it with an increased reference count. This is for file systems
1059  * where the inode number is sufficient for unique identification of an inode.
1060  *
1061  * If the inode is not in cache, allocate a new inode and return it locked,
1062  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1063  * before unlocking it via unlock_new_inode().
1064  */
1065 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1066 {
1067 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1068 	struct inode *inode;
1069 
1070 	spin_lock(&inode_hash_lock);
1071 	inode = find_inode_fast(sb, head, ino);
1072 	spin_unlock(&inode_hash_lock);
1073 	if (inode) {
1074 		wait_on_inode(inode);
1075 		return inode;
1076 	}
1077 
1078 	inode = alloc_inode(sb);
1079 	if (inode) {
1080 		struct inode *old;
1081 
1082 		spin_lock(&inode_hash_lock);
1083 		/* We released the lock, so.. */
1084 		old = find_inode_fast(sb, head, ino);
1085 		if (!old) {
1086 			inode->i_ino = ino;
1087 			spin_lock(&inode->i_lock);
1088 			inode->i_state = I_NEW;
1089 			hlist_add_head(&inode->i_hash, head);
1090 			spin_unlock(&inode->i_lock);
1091 			inode_sb_list_add(inode);
1092 			spin_unlock(&inode_hash_lock);
1093 
1094 			/* Return the locked inode with I_NEW set, the
1095 			 * caller is responsible for filling in the contents
1096 			 */
1097 			return inode;
1098 		}
1099 
1100 		/*
1101 		 * Uhhuh, somebody else created the same inode under
1102 		 * us. Use the old inode instead of the one we just
1103 		 * allocated.
1104 		 */
1105 		spin_unlock(&inode_hash_lock);
1106 		destroy_inode(inode);
1107 		inode = old;
1108 		wait_on_inode(inode);
1109 	}
1110 	return inode;
1111 }
1112 EXPORT_SYMBOL(iget_locked);
1113 
1114 /*
1115  * search the inode cache for a matching inode number.
1116  * If we find one, then the inode number we are trying to
1117  * allocate is not unique and so we should not use it.
1118  *
1119  * Returns 1 if the inode number is unique, 0 if it is not.
1120  */
1121 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1122 {
1123 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1124 	struct inode *inode;
1125 
1126 	spin_lock(&inode_hash_lock);
1127 	hlist_for_each_entry(inode, b, i_hash) {
1128 		if (inode->i_ino == ino && inode->i_sb == sb) {
1129 			spin_unlock(&inode_hash_lock);
1130 			return 0;
1131 		}
1132 	}
1133 	spin_unlock(&inode_hash_lock);
1134 
1135 	return 1;
1136 }
1137 
1138 /**
1139  *	iunique - get a unique inode number
1140  *	@sb: superblock
1141  *	@max_reserved: highest reserved inode number
1142  *
1143  *	Obtain an inode number that is unique on the system for a given
1144  *	superblock. This is used by file systems that have no natural
1145  *	permanent inode numbering system. An inode number is returned that
1146  *	is higher than the reserved limit but unique.
1147  *
1148  *	BUGS:
1149  *	With a large number of inodes live on the file system this function
1150  *	currently becomes quite slow.
1151  */
1152 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1153 {
1154 	/*
1155 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1156 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1157 	 * here to attempt to avoid that.
1158 	 */
1159 	static DEFINE_SPINLOCK(iunique_lock);
1160 	static unsigned int counter;
1161 	ino_t res;
1162 
1163 	spin_lock(&iunique_lock);
1164 	do {
1165 		if (counter <= max_reserved)
1166 			counter = max_reserved + 1;
1167 		res = counter++;
1168 	} while (!test_inode_iunique(sb, res));
1169 	spin_unlock(&iunique_lock);
1170 
1171 	return res;
1172 }
1173 EXPORT_SYMBOL(iunique);
1174 
1175 struct inode *igrab(struct inode *inode)
1176 {
1177 	spin_lock(&inode->i_lock);
1178 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1179 		__iget(inode);
1180 		spin_unlock(&inode->i_lock);
1181 	} else {
1182 		spin_unlock(&inode->i_lock);
1183 		/*
1184 		 * Handle the case where s_op->clear_inode is not been
1185 		 * called yet, and somebody is calling igrab
1186 		 * while the inode is getting freed.
1187 		 */
1188 		inode = NULL;
1189 	}
1190 	return inode;
1191 }
1192 EXPORT_SYMBOL(igrab);
1193 
1194 /**
1195  * ilookup5_nowait - search for an inode in the inode cache
1196  * @sb:		super block of file system to search
1197  * @hashval:	hash value (usually inode number) to search for
1198  * @test:	callback used for comparisons between inodes
1199  * @data:	opaque data pointer to pass to @test
1200  *
1201  * Search for the inode specified by @hashval and @data in the inode cache.
1202  * If the inode is in the cache, the inode is returned with an incremented
1203  * reference count.
1204  *
1205  * Note: I_NEW is not waited upon so you have to be very careful what you do
1206  * with the returned inode.  You probably should be using ilookup5() instead.
1207  *
1208  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1209  */
1210 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1211 		int (*test)(struct inode *, void *), void *data)
1212 {
1213 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1214 	struct inode *inode;
1215 
1216 	spin_lock(&inode_hash_lock);
1217 	inode = find_inode(sb, head, test, data);
1218 	spin_unlock(&inode_hash_lock);
1219 
1220 	return inode;
1221 }
1222 EXPORT_SYMBOL(ilookup5_nowait);
1223 
1224 /**
1225  * ilookup5 - search for an inode in the inode cache
1226  * @sb:		super block of file system to search
1227  * @hashval:	hash value (usually inode number) to search for
1228  * @test:	callback used for comparisons between inodes
1229  * @data:	opaque data pointer to pass to @test
1230  *
1231  * Search for the inode specified by @hashval and @data in the inode cache,
1232  * and if the inode is in the cache, return the inode with an incremented
1233  * reference count.  Waits on I_NEW before returning the inode.
1234  * returned with an incremented reference count.
1235  *
1236  * This is a generalized version of ilookup() for file systems where the
1237  * inode number is not sufficient for unique identification of an inode.
1238  *
1239  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1240  */
1241 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1242 		int (*test)(struct inode *, void *), void *data)
1243 {
1244 	struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1245 
1246 	if (inode)
1247 		wait_on_inode(inode);
1248 	return inode;
1249 }
1250 EXPORT_SYMBOL(ilookup5);
1251 
1252 /**
1253  * ilookup - search for an inode in the inode cache
1254  * @sb:		super block of file system to search
1255  * @ino:	inode number to search for
1256  *
1257  * Search for the inode @ino in the inode cache, and if the inode is in the
1258  * cache, the inode is returned with an incremented reference count.
1259  */
1260 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1261 {
1262 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1263 	struct inode *inode;
1264 
1265 	spin_lock(&inode_hash_lock);
1266 	inode = find_inode_fast(sb, head, ino);
1267 	spin_unlock(&inode_hash_lock);
1268 
1269 	if (inode)
1270 		wait_on_inode(inode);
1271 	return inode;
1272 }
1273 EXPORT_SYMBOL(ilookup);
1274 
1275 /**
1276  * find_inode_nowait - find an inode in the inode cache
1277  * @sb:		super block of file system to search
1278  * @hashval:	hash value (usually inode number) to search for
1279  * @match:	callback used for comparisons between inodes
1280  * @data:	opaque data pointer to pass to @match
1281  *
1282  * Search for the inode specified by @hashval and @data in the inode
1283  * cache, where the helper function @match will return 0 if the inode
1284  * does not match, 1 if the inode does match, and -1 if the search
1285  * should be stopped.  The @match function must be responsible for
1286  * taking the i_lock spin_lock and checking i_state for an inode being
1287  * freed or being initialized, and incrementing the reference count
1288  * before returning 1.  It also must not sleep, since it is called with
1289  * the inode_hash_lock spinlock held.
1290  *
1291  * This is a even more generalized version of ilookup5() when the
1292  * function must never block --- find_inode() can block in
1293  * __wait_on_freeing_inode() --- or when the caller can not increment
1294  * the reference count because the resulting iput() might cause an
1295  * inode eviction.  The tradeoff is that the @match funtion must be
1296  * very carefully implemented.
1297  */
1298 struct inode *find_inode_nowait(struct super_block *sb,
1299 				unsigned long hashval,
1300 				int (*match)(struct inode *, unsigned long,
1301 					     void *),
1302 				void *data)
1303 {
1304 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1305 	struct inode *inode, *ret_inode = NULL;
1306 	int mval;
1307 
1308 	spin_lock(&inode_hash_lock);
1309 	hlist_for_each_entry(inode, head, i_hash) {
1310 		if (inode->i_sb != sb)
1311 			continue;
1312 		mval = match(inode, hashval, data);
1313 		if (mval == 0)
1314 			continue;
1315 		if (mval == 1)
1316 			ret_inode = inode;
1317 		goto out;
1318 	}
1319 out:
1320 	spin_unlock(&inode_hash_lock);
1321 	return ret_inode;
1322 }
1323 EXPORT_SYMBOL(find_inode_nowait);
1324 
1325 int insert_inode_locked(struct inode *inode)
1326 {
1327 	struct super_block *sb = inode->i_sb;
1328 	ino_t ino = inode->i_ino;
1329 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1330 
1331 	while (1) {
1332 		struct inode *old = NULL;
1333 		spin_lock(&inode_hash_lock);
1334 		hlist_for_each_entry(old, head, i_hash) {
1335 			if (old->i_ino != ino)
1336 				continue;
1337 			if (old->i_sb != sb)
1338 				continue;
1339 			spin_lock(&old->i_lock);
1340 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1341 				spin_unlock(&old->i_lock);
1342 				continue;
1343 			}
1344 			break;
1345 		}
1346 		if (likely(!old)) {
1347 			spin_lock(&inode->i_lock);
1348 			inode->i_state |= I_NEW;
1349 			hlist_add_head(&inode->i_hash, head);
1350 			spin_unlock(&inode->i_lock);
1351 			spin_unlock(&inode_hash_lock);
1352 			return 0;
1353 		}
1354 		__iget(old);
1355 		spin_unlock(&old->i_lock);
1356 		spin_unlock(&inode_hash_lock);
1357 		wait_on_inode(old);
1358 		if (unlikely(!inode_unhashed(old))) {
1359 			iput(old);
1360 			return -EBUSY;
1361 		}
1362 		iput(old);
1363 	}
1364 }
1365 EXPORT_SYMBOL(insert_inode_locked);
1366 
1367 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1368 		int (*test)(struct inode *, void *), void *data)
1369 {
1370 	struct super_block *sb = inode->i_sb;
1371 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1372 
1373 	while (1) {
1374 		struct inode *old = NULL;
1375 
1376 		spin_lock(&inode_hash_lock);
1377 		hlist_for_each_entry(old, head, i_hash) {
1378 			if (old->i_sb != sb)
1379 				continue;
1380 			if (!test(old, data))
1381 				continue;
1382 			spin_lock(&old->i_lock);
1383 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1384 				spin_unlock(&old->i_lock);
1385 				continue;
1386 			}
1387 			break;
1388 		}
1389 		if (likely(!old)) {
1390 			spin_lock(&inode->i_lock);
1391 			inode->i_state |= I_NEW;
1392 			hlist_add_head(&inode->i_hash, head);
1393 			spin_unlock(&inode->i_lock);
1394 			spin_unlock(&inode_hash_lock);
1395 			return 0;
1396 		}
1397 		__iget(old);
1398 		spin_unlock(&old->i_lock);
1399 		spin_unlock(&inode_hash_lock);
1400 		wait_on_inode(old);
1401 		if (unlikely(!inode_unhashed(old))) {
1402 			iput(old);
1403 			return -EBUSY;
1404 		}
1405 		iput(old);
1406 	}
1407 }
1408 EXPORT_SYMBOL(insert_inode_locked4);
1409 
1410 
1411 int generic_delete_inode(struct inode *inode)
1412 {
1413 	return 1;
1414 }
1415 EXPORT_SYMBOL(generic_delete_inode);
1416 
1417 /*
1418  * Called when we're dropping the last reference
1419  * to an inode.
1420  *
1421  * Call the FS "drop_inode()" function, defaulting to
1422  * the legacy UNIX filesystem behaviour.  If it tells
1423  * us to evict inode, do so.  Otherwise, retain inode
1424  * in cache if fs is alive, sync and evict if fs is
1425  * shutting down.
1426  */
1427 static void iput_final(struct inode *inode)
1428 {
1429 	struct super_block *sb = inode->i_sb;
1430 	const struct super_operations *op = inode->i_sb->s_op;
1431 	int drop;
1432 
1433 	WARN_ON(inode->i_state & I_NEW);
1434 
1435 	if (op->drop_inode)
1436 		drop = op->drop_inode(inode);
1437 	else
1438 		drop = generic_drop_inode(inode);
1439 
1440 	if (!drop && (sb->s_flags & MS_ACTIVE)) {
1441 		inode->i_state |= I_REFERENCED;
1442 		inode_add_lru(inode);
1443 		spin_unlock(&inode->i_lock);
1444 		return;
1445 	}
1446 
1447 	if (!drop) {
1448 		inode->i_state |= I_WILL_FREE;
1449 		spin_unlock(&inode->i_lock);
1450 		write_inode_now(inode, 1);
1451 		spin_lock(&inode->i_lock);
1452 		WARN_ON(inode->i_state & I_NEW);
1453 		inode->i_state &= ~I_WILL_FREE;
1454 	}
1455 
1456 	inode->i_state |= I_FREEING;
1457 	if (!list_empty(&inode->i_lru))
1458 		inode_lru_list_del(inode);
1459 	spin_unlock(&inode->i_lock);
1460 
1461 	evict(inode);
1462 }
1463 
1464 /**
1465  *	iput	- put an inode
1466  *	@inode: inode to put
1467  *
1468  *	Puts an inode, dropping its usage count. If the inode use count hits
1469  *	zero, the inode is then freed and may also be destroyed.
1470  *
1471  *	Consequently, iput() can sleep.
1472  */
1473 void iput(struct inode *inode)
1474 {
1475 	if (!inode)
1476 		return;
1477 	BUG_ON(inode->i_state & I_CLEAR);
1478 retry:
1479 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1480 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1481 			atomic_inc(&inode->i_count);
1482 			inode->i_state &= ~I_DIRTY_TIME;
1483 			spin_unlock(&inode->i_lock);
1484 			trace_writeback_lazytime_iput(inode);
1485 			mark_inode_dirty_sync(inode);
1486 			goto retry;
1487 		}
1488 		iput_final(inode);
1489 	}
1490 }
1491 EXPORT_SYMBOL(iput);
1492 
1493 /**
1494  *	bmap	- find a block number in a file
1495  *	@inode: inode of file
1496  *	@block: block to find
1497  *
1498  *	Returns the block number on the device holding the inode that
1499  *	is the disk block number for the block of the file requested.
1500  *	That is, asked for block 4 of inode 1 the function will return the
1501  *	disk block relative to the disk start that holds that block of the
1502  *	file.
1503  */
1504 sector_t bmap(struct inode *inode, sector_t block)
1505 {
1506 	sector_t res = 0;
1507 	if (inode->i_mapping->a_ops->bmap)
1508 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1509 	return res;
1510 }
1511 EXPORT_SYMBOL(bmap);
1512 
1513 /*
1514  * With relative atime, only update atime if the previous atime is
1515  * earlier than either the ctime or mtime or if at least a day has
1516  * passed since the last atime update.
1517  */
1518 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1519 			     struct timespec now)
1520 {
1521 
1522 	if (!(mnt->mnt_flags & MNT_RELATIME))
1523 		return 1;
1524 	/*
1525 	 * Is mtime younger than atime? If yes, update atime:
1526 	 */
1527 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1528 		return 1;
1529 	/*
1530 	 * Is ctime younger than atime? If yes, update atime:
1531 	 */
1532 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1533 		return 1;
1534 
1535 	/*
1536 	 * Is the previous atime value older than a day? If yes,
1537 	 * update atime:
1538 	 */
1539 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1540 		return 1;
1541 	/*
1542 	 * Good, we can skip the atime update:
1543 	 */
1544 	return 0;
1545 }
1546 
1547 int generic_update_time(struct inode *inode, struct timespec *time, int flags)
1548 {
1549 	int iflags = I_DIRTY_TIME;
1550 
1551 	if (flags & S_ATIME)
1552 		inode->i_atime = *time;
1553 	if (flags & S_VERSION)
1554 		inode_inc_iversion(inode);
1555 	if (flags & S_CTIME)
1556 		inode->i_ctime = *time;
1557 	if (flags & S_MTIME)
1558 		inode->i_mtime = *time;
1559 
1560 	if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION))
1561 		iflags |= I_DIRTY_SYNC;
1562 	__mark_inode_dirty(inode, iflags);
1563 	return 0;
1564 }
1565 EXPORT_SYMBOL(generic_update_time);
1566 
1567 /*
1568  * This does the actual work of updating an inodes time or version.  Must have
1569  * had called mnt_want_write() before calling this.
1570  */
1571 static int update_time(struct inode *inode, struct timespec *time, int flags)
1572 {
1573 	int (*update_time)(struct inode *, struct timespec *, int);
1574 
1575 	update_time = inode->i_op->update_time ? inode->i_op->update_time :
1576 		generic_update_time;
1577 
1578 	return update_time(inode, time, flags);
1579 }
1580 
1581 /**
1582  *	touch_atime	-	update the access time
1583  *	@path: the &struct path to update
1584  *
1585  *	Update the accessed time on an inode and mark it for writeback.
1586  *	This function automatically handles read only file systems and media,
1587  *	as well as the "noatime" flag and inode specific "noatime" markers.
1588  */
1589 bool atime_needs_update(const struct path *path, struct inode *inode)
1590 {
1591 	struct vfsmount *mnt = path->mnt;
1592 	struct timespec now;
1593 
1594 	if (inode->i_flags & S_NOATIME)
1595 		return false;
1596 	if (IS_NOATIME(inode))
1597 		return false;
1598 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1599 		return false;
1600 
1601 	if (mnt->mnt_flags & MNT_NOATIME)
1602 		return false;
1603 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1604 		return false;
1605 
1606 	now = current_fs_time(inode->i_sb);
1607 
1608 	if (!relatime_need_update(mnt, inode, now))
1609 		return false;
1610 
1611 	if (timespec_equal(&inode->i_atime, &now))
1612 		return false;
1613 
1614 	return true;
1615 }
1616 
1617 void touch_atime(const struct path *path)
1618 {
1619 	struct vfsmount *mnt = path->mnt;
1620 	struct inode *inode = d_inode(path->dentry);
1621 	struct timespec now;
1622 
1623 	if (!atime_needs_update(path, inode))
1624 		return;
1625 
1626 	if (!sb_start_write_trylock(inode->i_sb))
1627 		return;
1628 
1629 	if (__mnt_want_write(mnt) != 0)
1630 		goto skip_update;
1631 	/*
1632 	 * File systems can error out when updating inodes if they need to
1633 	 * allocate new space to modify an inode (such is the case for
1634 	 * Btrfs), but since we touch atime while walking down the path we
1635 	 * really don't care if we failed to update the atime of the file,
1636 	 * so just ignore the return value.
1637 	 * We may also fail on filesystems that have the ability to make parts
1638 	 * of the fs read only, e.g. subvolumes in Btrfs.
1639 	 */
1640 	now = current_fs_time(inode->i_sb);
1641 	update_time(inode, &now, S_ATIME);
1642 	__mnt_drop_write(mnt);
1643 skip_update:
1644 	sb_end_write(inode->i_sb);
1645 }
1646 EXPORT_SYMBOL(touch_atime);
1647 
1648 /*
1649  * The logic we want is
1650  *
1651  *	if suid or (sgid and xgrp)
1652  *		remove privs
1653  */
1654 int should_remove_suid(struct dentry *dentry)
1655 {
1656 	umode_t mode = d_inode(dentry)->i_mode;
1657 	int kill = 0;
1658 
1659 	/* suid always must be killed */
1660 	if (unlikely(mode & S_ISUID))
1661 		kill = ATTR_KILL_SUID;
1662 
1663 	/*
1664 	 * sgid without any exec bits is just a mandatory locking mark; leave
1665 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1666 	 */
1667 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1668 		kill |= ATTR_KILL_SGID;
1669 
1670 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1671 		return kill;
1672 
1673 	return 0;
1674 }
1675 EXPORT_SYMBOL(should_remove_suid);
1676 
1677 static int __remove_suid(struct dentry *dentry, int kill)
1678 {
1679 	struct iattr newattrs;
1680 
1681 	newattrs.ia_valid = ATTR_FORCE | kill;
1682 	/*
1683 	 * Note we call this on write, so notify_change will not
1684 	 * encounter any conflicting delegations:
1685 	 */
1686 	return notify_change(dentry, &newattrs, NULL);
1687 }
1688 
1689 int file_remove_suid(struct file *file)
1690 {
1691 	struct dentry *dentry = file->f_path.dentry;
1692 	struct inode *inode = d_inode(dentry);
1693 	int killsuid;
1694 	int killpriv;
1695 	int error = 0;
1696 
1697 	/* Fast path for nothing security related */
1698 	if (IS_NOSEC(inode))
1699 		return 0;
1700 
1701 	killsuid = should_remove_suid(dentry);
1702 	killpriv = security_inode_need_killpriv(dentry);
1703 
1704 	if (killpriv < 0)
1705 		return killpriv;
1706 	if (killpriv)
1707 		error = security_inode_killpriv(dentry);
1708 	if (!error && killsuid)
1709 		error = __remove_suid(dentry, killsuid);
1710 	if (!error && (inode->i_sb->s_flags & MS_NOSEC))
1711 		inode->i_flags |= S_NOSEC;
1712 
1713 	return error;
1714 }
1715 EXPORT_SYMBOL(file_remove_suid);
1716 
1717 /**
1718  *	file_update_time	-	update mtime and ctime time
1719  *	@file: file accessed
1720  *
1721  *	Update the mtime and ctime members of an inode and mark the inode
1722  *	for writeback.  Note that this function is meant exclusively for
1723  *	usage in the file write path of filesystems, and filesystems may
1724  *	choose to explicitly ignore update via this function with the
1725  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1726  *	timestamps are handled by the server.  This can return an error for
1727  *	file systems who need to allocate space in order to update an inode.
1728  */
1729 
1730 int file_update_time(struct file *file)
1731 {
1732 	struct inode *inode = file_inode(file);
1733 	struct timespec now;
1734 	int sync_it = 0;
1735 	int ret;
1736 
1737 	/* First try to exhaust all avenues to not sync */
1738 	if (IS_NOCMTIME(inode))
1739 		return 0;
1740 
1741 	now = current_fs_time(inode->i_sb);
1742 	if (!timespec_equal(&inode->i_mtime, &now))
1743 		sync_it = S_MTIME;
1744 
1745 	if (!timespec_equal(&inode->i_ctime, &now))
1746 		sync_it |= S_CTIME;
1747 
1748 	if (IS_I_VERSION(inode))
1749 		sync_it |= S_VERSION;
1750 
1751 	if (!sync_it)
1752 		return 0;
1753 
1754 	/* Finally allowed to write? Takes lock. */
1755 	if (__mnt_want_write_file(file))
1756 		return 0;
1757 
1758 	ret = update_time(inode, &now, sync_it);
1759 	__mnt_drop_write_file(file);
1760 
1761 	return ret;
1762 }
1763 EXPORT_SYMBOL(file_update_time);
1764 
1765 int inode_needs_sync(struct inode *inode)
1766 {
1767 	if (IS_SYNC(inode))
1768 		return 1;
1769 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1770 		return 1;
1771 	return 0;
1772 }
1773 EXPORT_SYMBOL(inode_needs_sync);
1774 
1775 /*
1776  * If we try to find an inode in the inode hash while it is being
1777  * deleted, we have to wait until the filesystem completes its
1778  * deletion before reporting that it isn't found.  This function waits
1779  * until the deletion _might_ have completed.  Callers are responsible
1780  * to recheck inode state.
1781  *
1782  * It doesn't matter if I_NEW is not set initially, a call to
1783  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1784  * will DTRT.
1785  */
1786 static void __wait_on_freeing_inode(struct inode *inode)
1787 {
1788 	wait_queue_head_t *wq;
1789 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1790 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1791 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1792 	spin_unlock(&inode->i_lock);
1793 	spin_unlock(&inode_hash_lock);
1794 	schedule();
1795 	finish_wait(wq, &wait.wait);
1796 	spin_lock(&inode_hash_lock);
1797 }
1798 
1799 static __initdata unsigned long ihash_entries;
1800 static int __init set_ihash_entries(char *str)
1801 {
1802 	if (!str)
1803 		return 0;
1804 	ihash_entries = simple_strtoul(str, &str, 0);
1805 	return 1;
1806 }
1807 __setup("ihash_entries=", set_ihash_entries);
1808 
1809 /*
1810  * Initialize the waitqueues and inode hash table.
1811  */
1812 void __init inode_init_early(void)
1813 {
1814 	unsigned int loop;
1815 
1816 	/* If hashes are distributed across NUMA nodes, defer
1817 	 * hash allocation until vmalloc space is available.
1818 	 */
1819 	if (hashdist)
1820 		return;
1821 
1822 	inode_hashtable =
1823 		alloc_large_system_hash("Inode-cache",
1824 					sizeof(struct hlist_head),
1825 					ihash_entries,
1826 					14,
1827 					HASH_EARLY,
1828 					&i_hash_shift,
1829 					&i_hash_mask,
1830 					0,
1831 					0);
1832 
1833 	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1834 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1835 }
1836 
1837 void __init inode_init(void)
1838 {
1839 	unsigned int loop;
1840 
1841 	/* inode slab cache */
1842 	inode_cachep = kmem_cache_create("inode_cache",
1843 					 sizeof(struct inode),
1844 					 0,
1845 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1846 					 SLAB_MEM_SPREAD),
1847 					 init_once);
1848 
1849 	/* Hash may have been set up in inode_init_early */
1850 	if (!hashdist)
1851 		return;
1852 
1853 	inode_hashtable =
1854 		alloc_large_system_hash("Inode-cache",
1855 					sizeof(struct hlist_head),
1856 					ihash_entries,
1857 					14,
1858 					0,
1859 					&i_hash_shift,
1860 					&i_hash_mask,
1861 					0,
1862 					0);
1863 
1864 	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1865 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1866 }
1867 
1868 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1869 {
1870 	inode->i_mode = mode;
1871 	if (S_ISCHR(mode)) {
1872 		inode->i_fop = &def_chr_fops;
1873 		inode->i_rdev = rdev;
1874 	} else if (S_ISBLK(mode)) {
1875 		inode->i_fop = &def_blk_fops;
1876 		inode->i_rdev = rdev;
1877 	} else if (S_ISFIFO(mode))
1878 		inode->i_fop = &pipefifo_fops;
1879 	else if (S_ISSOCK(mode))
1880 		;	/* leave it no_open_fops */
1881 	else
1882 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1883 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1884 				  inode->i_ino);
1885 }
1886 EXPORT_SYMBOL(init_special_inode);
1887 
1888 /**
1889  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1890  * @inode: New inode
1891  * @dir: Directory inode
1892  * @mode: mode of the new inode
1893  */
1894 void inode_init_owner(struct inode *inode, const struct inode *dir,
1895 			umode_t mode)
1896 {
1897 	inode->i_uid = current_fsuid();
1898 	if (dir && dir->i_mode & S_ISGID) {
1899 		inode->i_gid = dir->i_gid;
1900 		if (S_ISDIR(mode))
1901 			mode |= S_ISGID;
1902 	} else
1903 		inode->i_gid = current_fsgid();
1904 	inode->i_mode = mode;
1905 }
1906 EXPORT_SYMBOL(inode_init_owner);
1907 
1908 /**
1909  * inode_owner_or_capable - check current task permissions to inode
1910  * @inode: inode being checked
1911  *
1912  * Return true if current either has CAP_FOWNER in a namespace with the
1913  * inode owner uid mapped, or owns the file.
1914  */
1915 bool inode_owner_or_capable(const struct inode *inode)
1916 {
1917 	struct user_namespace *ns;
1918 
1919 	if (uid_eq(current_fsuid(), inode->i_uid))
1920 		return true;
1921 
1922 	ns = current_user_ns();
1923 	if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
1924 		return true;
1925 	return false;
1926 }
1927 EXPORT_SYMBOL(inode_owner_or_capable);
1928 
1929 /*
1930  * Direct i/o helper functions
1931  */
1932 static void __inode_dio_wait(struct inode *inode)
1933 {
1934 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1935 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1936 
1937 	do {
1938 		prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1939 		if (atomic_read(&inode->i_dio_count))
1940 			schedule();
1941 	} while (atomic_read(&inode->i_dio_count));
1942 	finish_wait(wq, &q.wait);
1943 }
1944 
1945 /**
1946  * inode_dio_wait - wait for outstanding DIO requests to finish
1947  * @inode: inode to wait for
1948  *
1949  * Waits for all pending direct I/O requests to finish so that we can
1950  * proceed with a truncate or equivalent operation.
1951  *
1952  * Must be called under a lock that serializes taking new references
1953  * to i_dio_count, usually by inode->i_mutex.
1954  */
1955 void inode_dio_wait(struct inode *inode)
1956 {
1957 	if (atomic_read(&inode->i_dio_count))
1958 		__inode_dio_wait(inode);
1959 }
1960 EXPORT_SYMBOL(inode_dio_wait);
1961 
1962 /*
1963  * inode_set_flags - atomically set some inode flags
1964  *
1965  * Note: the caller should be holding i_mutex, or else be sure that
1966  * they have exclusive access to the inode structure (i.e., while the
1967  * inode is being instantiated).  The reason for the cmpxchg() loop
1968  * --- which wouldn't be necessary if all code paths which modify
1969  * i_flags actually followed this rule, is that there is at least one
1970  * code path which doesn't today --- for example,
1971  * __generic_file_aio_write() calls file_remove_suid() without holding
1972  * i_mutex --- so we use cmpxchg() out of an abundance of caution.
1973  *
1974  * In the long run, i_mutex is overkill, and we should probably look
1975  * at using the i_lock spinlock to protect i_flags, and then make sure
1976  * it is so documented in include/linux/fs.h and that all code follows
1977  * the locking convention!!
1978  */
1979 void inode_set_flags(struct inode *inode, unsigned int flags,
1980 		     unsigned int mask)
1981 {
1982 	unsigned int old_flags, new_flags;
1983 
1984 	WARN_ON_ONCE(flags & ~mask);
1985 	do {
1986 		old_flags = ACCESS_ONCE(inode->i_flags);
1987 		new_flags = (old_flags & ~mask) | flags;
1988 	} while (unlikely(cmpxchg(&inode->i_flags, old_flags,
1989 				  new_flags) != old_flags));
1990 }
1991 EXPORT_SYMBOL(inode_set_flags);
1992