1 /* 2 * (C) 1997 Linus Torvalds 3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 4 */ 5 #include <linux/export.h> 6 #include <linux/fs.h> 7 #include <linux/mm.h> 8 #include <linux/backing-dev.h> 9 #include <linux/hash.h> 10 #include <linux/swap.h> 11 #include <linux/security.h> 12 #include <linux/cdev.h> 13 #include <linux/bootmem.h> 14 #include <linux/fsnotify.h> 15 #include <linux/mount.h> 16 #include <linux/posix_acl.h> 17 #include <linux/prefetch.h> 18 #include <linux/buffer_head.h> /* for inode_has_buffers */ 19 #include <linux/ratelimit.h> 20 #include <linux/list_lru.h> 21 #include <trace/events/writeback.h> 22 #include "internal.h" 23 24 /* 25 * Inode locking rules: 26 * 27 * inode->i_lock protects: 28 * inode->i_state, inode->i_hash, __iget() 29 * Inode LRU list locks protect: 30 * inode->i_sb->s_inode_lru, inode->i_lru 31 * inode_sb_list_lock protects: 32 * sb->s_inodes, inode->i_sb_list 33 * bdi->wb.list_lock protects: 34 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_wb_list 35 * inode_hash_lock protects: 36 * inode_hashtable, inode->i_hash 37 * 38 * Lock ordering: 39 * 40 * inode_sb_list_lock 41 * inode->i_lock 42 * Inode LRU list locks 43 * 44 * bdi->wb.list_lock 45 * inode->i_lock 46 * 47 * inode_hash_lock 48 * inode_sb_list_lock 49 * inode->i_lock 50 * 51 * iunique_lock 52 * inode_hash_lock 53 */ 54 55 static unsigned int i_hash_mask __read_mostly; 56 static unsigned int i_hash_shift __read_mostly; 57 static struct hlist_head *inode_hashtable __read_mostly; 58 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 59 60 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock); 61 62 /* 63 * Empty aops. Can be used for the cases where the user does not 64 * define any of the address_space operations. 65 */ 66 const struct address_space_operations empty_aops = { 67 }; 68 EXPORT_SYMBOL(empty_aops); 69 70 /* 71 * Statistics gathering.. 72 */ 73 struct inodes_stat_t inodes_stat; 74 75 static DEFINE_PER_CPU(unsigned long, nr_inodes); 76 static DEFINE_PER_CPU(unsigned long, nr_unused); 77 78 static struct kmem_cache *inode_cachep __read_mostly; 79 80 static long get_nr_inodes(void) 81 { 82 int i; 83 long sum = 0; 84 for_each_possible_cpu(i) 85 sum += per_cpu(nr_inodes, i); 86 return sum < 0 ? 0 : sum; 87 } 88 89 static inline long get_nr_inodes_unused(void) 90 { 91 int i; 92 long sum = 0; 93 for_each_possible_cpu(i) 94 sum += per_cpu(nr_unused, i); 95 return sum < 0 ? 0 : sum; 96 } 97 98 long get_nr_dirty_inodes(void) 99 { 100 /* not actually dirty inodes, but a wild approximation */ 101 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 102 return nr_dirty > 0 ? nr_dirty : 0; 103 } 104 105 /* 106 * Handle nr_inode sysctl 107 */ 108 #ifdef CONFIG_SYSCTL 109 int proc_nr_inodes(struct ctl_table *table, int write, 110 void __user *buffer, size_t *lenp, loff_t *ppos) 111 { 112 inodes_stat.nr_inodes = get_nr_inodes(); 113 inodes_stat.nr_unused = get_nr_inodes_unused(); 114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 115 } 116 #endif 117 118 static int no_open(struct inode *inode, struct file *file) 119 { 120 return -ENXIO; 121 } 122 123 /** 124 * inode_init_always - perform inode structure intialisation 125 * @sb: superblock inode belongs to 126 * @inode: inode to initialise 127 * 128 * These are initializations that need to be done on every inode 129 * allocation as the fields are not initialised by slab allocation. 130 */ 131 int inode_init_always(struct super_block *sb, struct inode *inode) 132 { 133 static const struct inode_operations empty_iops; 134 static const struct file_operations no_open_fops = {.open = no_open}; 135 struct address_space *const mapping = &inode->i_data; 136 137 inode->i_sb = sb; 138 inode->i_blkbits = sb->s_blocksize_bits; 139 inode->i_flags = 0; 140 atomic_set(&inode->i_count, 1); 141 inode->i_op = &empty_iops; 142 inode->i_fop = &no_open_fops; 143 inode->__i_nlink = 1; 144 inode->i_opflags = 0; 145 i_uid_write(inode, 0); 146 i_gid_write(inode, 0); 147 atomic_set(&inode->i_writecount, 0); 148 inode->i_size = 0; 149 inode->i_blocks = 0; 150 inode->i_bytes = 0; 151 inode->i_generation = 0; 152 inode->i_pipe = NULL; 153 inode->i_bdev = NULL; 154 inode->i_cdev = NULL; 155 inode->i_link = NULL; 156 inode->i_rdev = 0; 157 inode->dirtied_when = 0; 158 159 if (security_inode_alloc(inode)) 160 goto out; 161 spin_lock_init(&inode->i_lock); 162 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 163 164 mutex_init(&inode->i_mutex); 165 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key); 166 167 atomic_set(&inode->i_dio_count, 0); 168 169 mapping->a_ops = &empty_aops; 170 mapping->host = inode; 171 mapping->flags = 0; 172 atomic_set(&mapping->i_mmap_writable, 0); 173 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 174 mapping->private_data = NULL; 175 mapping->writeback_index = 0; 176 inode->i_private = NULL; 177 inode->i_mapping = mapping; 178 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 179 #ifdef CONFIG_FS_POSIX_ACL 180 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 181 #endif 182 183 #ifdef CONFIG_FSNOTIFY 184 inode->i_fsnotify_mask = 0; 185 #endif 186 inode->i_flctx = NULL; 187 this_cpu_inc(nr_inodes); 188 189 return 0; 190 out: 191 return -ENOMEM; 192 } 193 EXPORT_SYMBOL(inode_init_always); 194 195 static struct inode *alloc_inode(struct super_block *sb) 196 { 197 struct inode *inode; 198 199 if (sb->s_op->alloc_inode) 200 inode = sb->s_op->alloc_inode(sb); 201 else 202 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 203 204 if (!inode) 205 return NULL; 206 207 if (unlikely(inode_init_always(sb, inode))) { 208 if (inode->i_sb->s_op->destroy_inode) 209 inode->i_sb->s_op->destroy_inode(inode); 210 else 211 kmem_cache_free(inode_cachep, inode); 212 return NULL; 213 } 214 215 return inode; 216 } 217 218 void free_inode_nonrcu(struct inode *inode) 219 { 220 kmem_cache_free(inode_cachep, inode); 221 } 222 EXPORT_SYMBOL(free_inode_nonrcu); 223 224 void __destroy_inode(struct inode *inode) 225 { 226 BUG_ON(inode_has_buffers(inode)); 227 inode_detach_wb(inode); 228 security_inode_free(inode); 229 fsnotify_inode_delete(inode); 230 locks_free_lock_context(inode->i_flctx); 231 if (!inode->i_nlink) { 232 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 233 atomic_long_dec(&inode->i_sb->s_remove_count); 234 } 235 236 #ifdef CONFIG_FS_POSIX_ACL 237 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED) 238 posix_acl_release(inode->i_acl); 239 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED) 240 posix_acl_release(inode->i_default_acl); 241 #endif 242 this_cpu_dec(nr_inodes); 243 } 244 EXPORT_SYMBOL(__destroy_inode); 245 246 static void i_callback(struct rcu_head *head) 247 { 248 struct inode *inode = container_of(head, struct inode, i_rcu); 249 kmem_cache_free(inode_cachep, inode); 250 } 251 252 static void destroy_inode(struct inode *inode) 253 { 254 BUG_ON(!list_empty(&inode->i_lru)); 255 __destroy_inode(inode); 256 if (inode->i_sb->s_op->destroy_inode) 257 inode->i_sb->s_op->destroy_inode(inode); 258 else 259 call_rcu(&inode->i_rcu, i_callback); 260 } 261 262 /** 263 * drop_nlink - directly drop an inode's link count 264 * @inode: inode 265 * 266 * This is a low-level filesystem helper to replace any 267 * direct filesystem manipulation of i_nlink. In cases 268 * where we are attempting to track writes to the 269 * filesystem, a decrement to zero means an imminent 270 * write when the file is truncated and actually unlinked 271 * on the filesystem. 272 */ 273 void drop_nlink(struct inode *inode) 274 { 275 WARN_ON(inode->i_nlink == 0); 276 inode->__i_nlink--; 277 if (!inode->i_nlink) 278 atomic_long_inc(&inode->i_sb->s_remove_count); 279 } 280 EXPORT_SYMBOL(drop_nlink); 281 282 /** 283 * clear_nlink - directly zero an inode's link count 284 * @inode: inode 285 * 286 * This is a low-level filesystem helper to replace any 287 * direct filesystem manipulation of i_nlink. See 288 * drop_nlink() for why we care about i_nlink hitting zero. 289 */ 290 void clear_nlink(struct inode *inode) 291 { 292 if (inode->i_nlink) { 293 inode->__i_nlink = 0; 294 atomic_long_inc(&inode->i_sb->s_remove_count); 295 } 296 } 297 EXPORT_SYMBOL(clear_nlink); 298 299 /** 300 * set_nlink - directly set an inode's link count 301 * @inode: inode 302 * @nlink: new nlink (should be non-zero) 303 * 304 * This is a low-level filesystem helper to replace any 305 * direct filesystem manipulation of i_nlink. 306 */ 307 void set_nlink(struct inode *inode, unsigned int nlink) 308 { 309 if (!nlink) { 310 clear_nlink(inode); 311 } else { 312 /* Yes, some filesystems do change nlink from zero to one */ 313 if (inode->i_nlink == 0) 314 atomic_long_dec(&inode->i_sb->s_remove_count); 315 316 inode->__i_nlink = nlink; 317 } 318 } 319 EXPORT_SYMBOL(set_nlink); 320 321 /** 322 * inc_nlink - directly increment an inode's link count 323 * @inode: inode 324 * 325 * This is a low-level filesystem helper to replace any 326 * direct filesystem manipulation of i_nlink. Currently, 327 * it is only here for parity with dec_nlink(). 328 */ 329 void inc_nlink(struct inode *inode) 330 { 331 if (unlikely(inode->i_nlink == 0)) { 332 WARN_ON(!(inode->i_state & I_LINKABLE)); 333 atomic_long_dec(&inode->i_sb->s_remove_count); 334 } 335 336 inode->__i_nlink++; 337 } 338 EXPORT_SYMBOL(inc_nlink); 339 340 void address_space_init_once(struct address_space *mapping) 341 { 342 memset(mapping, 0, sizeof(*mapping)); 343 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC); 344 spin_lock_init(&mapping->tree_lock); 345 init_rwsem(&mapping->i_mmap_rwsem); 346 INIT_LIST_HEAD(&mapping->private_list); 347 spin_lock_init(&mapping->private_lock); 348 mapping->i_mmap = RB_ROOT; 349 } 350 EXPORT_SYMBOL(address_space_init_once); 351 352 /* 353 * These are initializations that only need to be done 354 * once, because the fields are idempotent across use 355 * of the inode, so let the slab aware of that. 356 */ 357 void inode_init_once(struct inode *inode) 358 { 359 memset(inode, 0, sizeof(*inode)); 360 INIT_HLIST_NODE(&inode->i_hash); 361 INIT_LIST_HEAD(&inode->i_devices); 362 INIT_LIST_HEAD(&inode->i_wb_list); 363 INIT_LIST_HEAD(&inode->i_lru); 364 address_space_init_once(&inode->i_data); 365 i_size_ordered_init(inode); 366 #ifdef CONFIG_FSNOTIFY 367 INIT_HLIST_HEAD(&inode->i_fsnotify_marks); 368 #endif 369 } 370 EXPORT_SYMBOL(inode_init_once); 371 372 static void init_once(void *foo) 373 { 374 struct inode *inode = (struct inode *) foo; 375 376 inode_init_once(inode); 377 } 378 379 /* 380 * inode->i_lock must be held 381 */ 382 void __iget(struct inode *inode) 383 { 384 atomic_inc(&inode->i_count); 385 } 386 387 /* 388 * get additional reference to inode; caller must already hold one. 389 */ 390 void ihold(struct inode *inode) 391 { 392 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 393 } 394 EXPORT_SYMBOL(ihold); 395 396 static void inode_lru_list_add(struct inode *inode) 397 { 398 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru)) 399 this_cpu_inc(nr_unused); 400 } 401 402 /* 403 * Add inode to LRU if needed (inode is unused and clean). 404 * 405 * Needs inode->i_lock held. 406 */ 407 void inode_add_lru(struct inode *inode) 408 { 409 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC | 410 I_FREEING | I_WILL_FREE)) && 411 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE) 412 inode_lru_list_add(inode); 413 } 414 415 416 static void inode_lru_list_del(struct inode *inode) 417 { 418 419 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru)) 420 this_cpu_dec(nr_unused); 421 } 422 423 /** 424 * inode_sb_list_add - add inode to the superblock list of inodes 425 * @inode: inode to add 426 */ 427 void inode_sb_list_add(struct inode *inode) 428 { 429 spin_lock(&inode_sb_list_lock); 430 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 431 spin_unlock(&inode_sb_list_lock); 432 } 433 EXPORT_SYMBOL_GPL(inode_sb_list_add); 434 435 static inline void inode_sb_list_del(struct inode *inode) 436 { 437 if (!list_empty(&inode->i_sb_list)) { 438 spin_lock(&inode_sb_list_lock); 439 list_del_init(&inode->i_sb_list); 440 spin_unlock(&inode_sb_list_lock); 441 } 442 } 443 444 static unsigned long hash(struct super_block *sb, unsigned long hashval) 445 { 446 unsigned long tmp; 447 448 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 449 L1_CACHE_BYTES; 450 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 451 return tmp & i_hash_mask; 452 } 453 454 /** 455 * __insert_inode_hash - hash an inode 456 * @inode: unhashed inode 457 * @hashval: unsigned long value used to locate this object in the 458 * inode_hashtable. 459 * 460 * Add an inode to the inode hash for this superblock. 461 */ 462 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 463 { 464 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 465 466 spin_lock(&inode_hash_lock); 467 spin_lock(&inode->i_lock); 468 hlist_add_head(&inode->i_hash, b); 469 spin_unlock(&inode->i_lock); 470 spin_unlock(&inode_hash_lock); 471 } 472 EXPORT_SYMBOL(__insert_inode_hash); 473 474 /** 475 * __remove_inode_hash - remove an inode from the hash 476 * @inode: inode to unhash 477 * 478 * Remove an inode from the superblock. 479 */ 480 void __remove_inode_hash(struct inode *inode) 481 { 482 spin_lock(&inode_hash_lock); 483 spin_lock(&inode->i_lock); 484 hlist_del_init(&inode->i_hash); 485 spin_unlock(&inode->i_lock); 486 spin_unlock(&inode_hash_lock); 487 } 488 EXPORT_SYMBOL(__remove_inode_hash); 489 490 void clear_inode(struct inode *inode) 491 { 492 might_sleep(); 493 /* 494 * We have to cycle tree_lock here because reclaim can be still in the 495 * process of removing the last page (in __delete_from_page_cache()) 496 * and we must not free mapping under it. 497 */ 498 spin_lock_irq(&inode->i_data.tree_lock); 499 BUG_ON(inode->i_data.nrpages); 500 BUG_ON(inode->i_data.nrshadows); 501 spin_unlock_irq(&inode->i_data.tree_lock); 502 BUG_ON(!list_empty(&inode->i_data.private_list)); 503 BUG_ON(!(inode->i_state & I_FREEING)); 504 BUG_ON(inode->i_state & I_CLEAR); 505 /* don't need i_lock here, no concurrent mods to i_state */ 506 inode->i_state = I_FREEING | I_CLEAR; 507 } 508 EXPORT_SYMBOL(clear_inode); 509 510 /* 511 * Free the inode passed in, removing it from the lists it is still connected 512 * to. We remove any pages still attached to the inode and wait for any IO that 513 * is still in progress before finally destroying the inode. 514 * 515 * An inode must already be marked I_FREEING so that we avoid the inode being 516 * moved back onto lists if we race with other code that manipulates the lists 517 * (e.g. writeback_single_inode). The caller is responsible for setting this. 518 * 519 * An inode must already be removed from the LRU list before being evicted from 520 * the cache. This should occur atomically with setting the I_FREEING state 521 * flag, so no inodes here should ever be on the LRU when being evicted. 522 */ 523 static void evict(struct inode *inode) 524 { 525 const struct super_operations *op = inode->i_sb->s_op; 526 527 BUG_ON(!(inode->i_state & I_FREEING)); 528 BUG_ON(!list_empty(&inode->i_lru)); 529 530 if (!list_empty(&inode->i_wb_list)) 531 inode_wb_list_del(inode); 532 533 inode_sb_list_del(inode); 534 535 /* 536 * Wait for flusher thread to be done with the inode so that filesystem 537 * does not start destroying it while writeback is still running. Since 538 * the inode has I_FREEING set, flusher thread won't start new work on 539 * the inode. We just have to wait for running writeback to finish. 540 */ 541 inode_wait_for_writeback(inode); 542 543 if (op->evict_inode) { 544 op->evict_inode(inode); 545 } else { 546 truncate_inode_pages_final(&inode->i_data); 547 clear_inode(inode); 548 } 549 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 550 bd_forget(inode); 551 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 552 cd_forget(inode); 553 554 remove_inode_hash(inode); 555 556 spin_lock(&inode->i_lock); 557 wake_up_bit(&inode->i_state, __I_NEW); 558 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 559 spin_unlock(&inode->i_lock); 560 561 destroy_inode(inode); 562 } 563 564 /* 565 * dispose_list - dispose of the contents of a local list 566 * @head: the head of the list to free 567 * 568 * Dispose-list gets a local list with local inodes in it, so it doesn't 569 * need to worry about list corruption and SMP locks. 570 */ 571 static void dispose_list(struct list_head *head) 572 { 573 while (!list_empty(head)) { 574 struct inode *inode; 575 576 inode = list_first_entry(head, struct inode, i_lru); 577 list_del_init(&inode->i_lru); 578 579 evict(inode); 580 } 581 } 582 583 /** 584 * evict_inodes - evict all evictable inodes for a superblock 585 * @sb: superblock to operate on 586 * 587 * Make sure that no inodes with zero refcount are retained. This is 588 * called by superblock shutdown after having MS_ACTIVE flag removed, 589 * so any inode reaching zero refcount during or after that call will 590 * be immediately evicted. 591 */ 592 void evict_inodes(struct super_block *sb) 593 { 594 struct inode *inode, *next; 595 LIST_HEAD(dispose); 596 597 spin_lock(&inode_sb_list_lock); 598 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 599 if (atomic_read(&inode->i_count)) 600 continue; 601 602 spin_lock(&inode->i_lock); 603 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 604 spin_unlock(&inode->i_lock); 605 continue; 606 } 607 608 inode->i_state |= I_FREEING; 609 inode_lru_list_del(inode); 610 spin_unlock(&inode->i_lock); 611 list_add(&inode->i_lru, &dispose); 612 } 613 spin_unlock(&inode_sb_list_lock); 614 615 dispose_list(&dispose); 616 } 617 618 /** 619 * invalidate_inodes - attempt to free all inodes on a superblock 620 * @sb: superblock to operate on 621 * @kill_dirty: flag to guide handling of dirty inodes 622 * 623 * Attempts to free all inodes for a given superblock. If there were any 624 * busy inodes return a non-zero value, else zero. 625 * If @kill_dirty is set, discard dirty inodes too, otherwise treat 626 * them as busy. 627 */ 628 int invalidate_inodes(struct super_block *sb, bool kill_dirty) 629 { 630 int busy = 0; 631 struct inode *inode, *next; 632 LIST_HEAD(dispose); 633 634 spin_lock(&inode_sb_list_lock); 635 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 636 spin_lock(&inode->i_lock); 637 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 638 spin_unlock(&inode->i_lock); 639 continue; 640 } 641 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) { 642 spin_unlock(&inode->i_lock); 643 busy = 1; 644 continue; 645 } 646 if (atomic_read(&inode->i_count)) { 647 spin_unlock(&inode->i_lock); 648 busy = 1; 649 continue; 650 } 651 652 inode->i_state |= I_FREEING; 653 inode_lru_list_del(inode); 654 spin_unlock(&inode->i_lock); 655 list_add(&inode->i_lru, &dispose); 656 } 657 spin_unlock(&inode_sb_list_lock); 658 659 dispose_list(&dispose); 660 661 return busy; 662 } 663 664 /* 665 * Isolate the inode from the LRU in preparation for freeing it. 666 * 667 * Any inodes which are pinned purely because of attached pagecache have their 668 * pagecache removed. If the inode has metadata buffers attached to 669 * mapping->private_list then try to remove them. 670 * 671 * If the inode has the I_REFERENCED flag set, then it means that it has been 672 * used recently - the flag is set in iput_final(). When we encounter such an 673 * inode, clear the flag and move it to the back of the LRU so it gets another 674 * pass through the LRU before it gets reclaimed. This is necessary because of 675 * the fact we are doing lazy LRU updates to minimise lock contention so the 676 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 677 * with this flag set because they are the inodes that are out of order. 678 */ 679 static enum lru_status inode_lru_isolate(struct list_head *item, 680 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 681 { 682 struct list_head *freeable = arg; 683 struct inode *inode = container_of(item, struct inode, i_lru); 684 685 /* 686 * we are inverting the lru lock/inode->i_lock here, so use a trylock. 687 * If we fail to get the lock, just skip it. 688 */ 689 if (!spin_trylock(&inode->i_lock)) 690 return LRU_SKIP; 691 692 /* 693 * Referenced or dirty inodes are still in use. Give them another pass 694 * through the LRU as we canot reclaim them now. 695 */ 696 if (atomic_read(&inode->i_count) || 697 (inode->i_state & ~I_REFERENCED)) { 698 list_lru_isolate(lru, &inode->i_lru); 699 spin_unlock(&inode->i_lock); 700 this_cpu_dec(nr_unused); 701 return LRU_REMOVED; 702 } 703 704 /* recently referenced inodes get one more pass */ 705 if (inode->i_state & I_REFERENCED) { 706 inode->i_state &= ~I_REFERENCED; 707 spin_unlock(&inode->i_lock); 708 return LRU_ROTATE; 709 } 710 711 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 712 __iget(inode); 713 spin_unlock(&inode->i_lock); 714 spin_unlock(lru_lock); 715 if (remove_inode_buffers(inode)) { 716 unsigned long reap; 717 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 718 if (current_is_kswapd()) 719 __count_vm_events(KSWAPD_INODESTEAL, reap); 720 else 721 __count_vm_events(PGINODESTEAL, reap); 722 if (current->reclaim_state) 723 current->reclaim_state->reclaimed_slab += reap; 724 } 725 iput(inode); 726 spin_lock(lru_lock); 727 return LRU_RETRY; 728 } 729 730 WARN_ON(inode->i_state & I_NEW); 731 inode->i_state |= I_FREEING; 732 list_lru_isolate_move(lru, &inode->i_lru, freeable); 733 spin_unlock(&inode->i_lock); 734 735 this_cpu_dec(nr_unused); 736 return LRU_REMOVED; 737 } 738 739 /* 740 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 741 * This is called from the superblock shrinker function with a number of inodes 742 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 743 * then are freed outside inode_lock by dispose_list(). 744 */ 745 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 746 { 747 LIST_HEAD(freeable); 748 long freed; 749 750 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 751 inode_lru_isolate, &freeable); 752 dispose_list(&freeable); 753 return freed; 754 } 755 756 static void __wait_on_freeing_inode(struct inode *inode); 757 /* 758 * Called with the inode lock held. 759 */ 760 static struct inode *find_inode(struct super_block *sb, 761 struct hlist_head *head, 762 int (*test)(struct inode *, void *), 763 void *data) 764 { 765 struct inode *inode = NULL; 766 767 repeat: 768 hlist_for_each_entry(inode, head, i_hash) { 769 if (inode->i_sb != sb) 770 continue; 771 if (!test(inode, data)) 772 continue; 773 spin_lock(&inode->i_lock); 774 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 775 __wait_on_freeing_inode(inode); 776 goto repeat; 777 } 778 __iget(inode); 779 spin_unlock(&inode->i_lock); 780 return inode; 781 } 782 return NULL; 783 } 784 785 /* 786 * find_inode_fast is the fast path version of find_inode, see the comment at 787 * iget_locked for details. 788 */ 789 static struct inode *find_inode_fast(struct super_block *sb, 790 struct hlist_head *head, unsigned long ino) 791 { 792 struct inode *inode = NULL; 793 794 repeat: 795 hlist_for_each_entry(inode, head, i_hash) { 796 if (inode->i_ino != ino) 797 continue; 798 if (inode->i_sb != sb) 799 continue; 800 spin_lock(&inode->i_lock); 801 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 802 __wait_on_freeing_inode(inode); 803 goto repeat; 804 } 805 __iget(inode); 806 spin_unlock(&inode->i_lock); 807 return inode; 808 } 809 return NULL; 810 } 811 812 /* 813 * Each cpu owns a range of LAST_INO_BATCH numbers. 814 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 815 * to renew the exhausted range. 816 * 817 * This does not significantly increase overflow rate because every CPU can 818 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 819 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 820 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 821 * overflow rate by 2x, which does not seem too significant. 822 * 823 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 824 * error if st_ino won't fit in target struct field. Use 32bit counter 825 * here to attempt to avoid that. 826 */ 827 #define LAST_INO_BATCH 1024 828 static DEFINE_PER_CPU(unsigned int, last_ino); 829 830 unsigned int get_next_ino(void) 831 { 832 unsigned int *p = &get_cpu_var(last_ino); 833 unsigned int res = *p; 834 835 #ifdef CONFIG_SMP 836 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 837 static atomic_t shared_last_ino; 838 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 839 840 res = next - LAST_INO_BATCH; 841 } 842 #endif 843 844 *p = ++res; 845 put_cpu_var(last_ino); 846 return res; 847 } 848 EXPORT_SYMBOL(get_next_ino); 849 850 /** 851 * new_inode_pseudo - obtain an inode 852 * @sb: superblock 853 * 854 * Allocates a new inode for given superblock. 855 * Inode wont be chained in superblock s_inodes list 856 * This means : 857 * - fs can't be unmount 858 * - quotas, fsnotify, writeback can't work 859 */ 860 struct inode *new_inode_pseudo(struct super_block *sb) 861 { 862 struct inode *inode = alloc_inode(sb); 863 864 if (inode) { 865 spin_lock(&inode->i_lock); 866 inode->i_state = 0; 867 spin_unlock(&inode->i_lock); 868 INIT_LIST_HEAD(&inode->i_sb_list); 869 } 870 return inode; 871 } 872 873 /** 874 * new_inode - obtain an inode 875 * @sb: superblock 876 * 877 * Allocates a new inode for given superblock. The default gfp_mask 878 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 879 * If HIGHMEM pages are unsuitable or it is known that pages allocated 880 * for the page cache are not reclaimable or migratable, 881 * mapping_set_gfp_mask() must be called with suitable flags on the 882 * newly created inode's mapping 883 * 884 */ 885 struct inode *new_inode(struct super_block *sb) 886 { 887 struct inode *inode; 888 889 spin_lock_prefetch(&inode_sb_list_lock); 890 891 inode = new_inode_pseudo(sb); 892 if (inode) 893 inode_sb_list_add(inode); 894 return inode; 895 } 896 EXPORT_SYMBOL(new_inode); 897 898 #ifdef CONFIG_DEBUG_LOCK_ALLOC 899 void lockdep_annotate_inode_mutex_key(struct inode *inode) 900 { 901 if (S_ISDIR(inode->i_mode)) { 902 struct file_system_type *type = inode->i_sb->s_type; 903 904 /* Set new key only if filesystem hasn't already changed it */ 905 if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) { 906 /* 907 * ensure nobody is actually holding i_mutex 908 */ 909 mutex_destroy(&inode->i_mutex); 910 mutex_init(&inode->i_mutex); 911 lockdep_set_class(&inode->i_mutex, 912 &type->i_mutex_dir_key); 913 } 914 } 915 } 916 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 917 #endif 918 919 /** 920 * unlock_new_inode - clear the I_NEW state and wake up any waiters 921 * @inode: new inode to unlock 922 * 923 * Called when the inode is fully initialised to clear the new state of the 924 * inode and wake up anyone waiting for the inode to finish initialisation. 925 */ 926 void unlock_new_inode(struct inode *inode) 927 { 928 lockdep_annotate_inode_mutex_key(inode); 929 spin_lock(&inode->i_lock); 930 WARN_ON(!(inode->i_state & I_NEW)); 931 inode->i_state &= ~I_NEW; 932 smp_mb(); 933 wake_up_bit(&inode->i_state, __I_NEW); 934 spin_unlock(&inode->i_lock); 935 } 936 EXPORT_SYMBOL(unlock_new_inode); 937 938 /** 939 * lock_two_nondirectories - take two i_mutexes on non-directory objects 940 * 941 * Lock any non-NULL argument that is not a directory. 942 * Zero, one or two objects may be locked by this function. 943 * 944 * @inode1: first inode to lock 945 * @inode2: second inode to lock 946 */ 947 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 948 { 949 if (inode1 > inode2) 950 swap(inode1, inode2); 951 952 if (inode1 && !S_ISDIR(inode1->i_mode)) 953 mutex_lock(&inode1->i_mutex); 954 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 955 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_NONDIR2); 956 } 957 EXPORT_SYMBOL(lock_two_nondirectories); 958 959 /** 960 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 961 * @inode1: first inode to unlock 962 * @inode2: second inode to unlock 963 */ 964 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 965 { 966 if (inode1 && !S_ISDIR(inode1->i_mode)) 967 mutex_unlock(&inode1->i_mutex); 968 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 969 mutex_unlock(&inode2->i_mutex); 970 } 971 EXPORT_SYMBOL(unlock_two_nondirectories); 972 973 /** 974 * iget5_locked - obtain an inode from a mounted file system 975 * @sb: super block of file system 976 * @hashval: hash value (usually inode number) to get 977 * @test: callback used for comparisons between inodes 978 * @set: callback used to initialize a new struct inode 979 * @data: opaque data pointer to pass to @test and @set 980 * 981 * Search for the inode specified by @hashval and @data in the inode cache, 982 * and if present it is return it with an increased reference count. This is 983 * a generalized version of iget_locked() for file systems where the inode 984 * number is not sufficient for unique identification of an inode. 985 * 986 * If the inode is not in cache, allocate a new inode and return it locked, 987 * hashed, and with the I_NEW flag set. The file system gets to fill it in 988 * before unlocking it via unlock_new_inode(). 989 * 990 * Note both @test and @set are called with the inode_hash_lock held, so can't 991 * sleep. 992 */ 993 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 994 int (*test)(struct inode *, void *), 995 int (*set)(struct inode *, void *), void *data) 996 { 997 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 998 struct inode *inode; 999 1000 spin_lock(&inode_hash_lock); 1001 inode = find_inode(sb, head, test, data); 1002 spin_unlock(&inode_hash_lock); 1003 1004 if (inode) { 1005 wait_on_inode(inode); 1006 return inode; 1007 } 1008 1009 inode = alloc_inode(sb); 1010 if (inode) { 1011 struct inode *old; 1012 1013 spin_lock(&inode_hash_lock); 1014 /* We released the lock, so.. */ 1015 old = find_inode(sb, head, test, data); 1016 if (!old) { 1017 if (set(inode, data)) 1018 goto set_failed; 1019 1020 spin_lock(&inode->i_lock); 1021 inode->i_state = I_NEW; 1022 hlist_add_head(&inode->i_hash, head); 1023 spin_unlock(&inode->i_lock); 1024 inode_sb_list_add(inode); 1025 spin_unlock(&inode_hash_lock); 1026 1027 /* Return the locked inode with I_NEW set, the 1028 * caller is responsible for filling in the contents 1029 */ 1030 return inode; 1031 } 1032 1033 /* 1034 * Uhhuh, somebody else created the same inode under 1035 * us. Use the old inode instead of the one we just 1036 * allocated. 1037 */ 1038 spin_unlock(&inode_hash_lock); 1039 destroy_inode(inode); 1040 inode = old; 1041 wait_on_inode(inode); 1042 } 1043 return inode; 1044 1045 set_failed: 1046 spin_unlock(&inode_hash_lock); 1047 destroy_inode(inode); 1048 return NULL; 1049 } 1050 EXPORT_SYMBOL(iget5_locked); 1051 1052 /** 1053 * iget_locked - obtain an inode from a mounted file system 1054 * @sb: super block of file system 1055 * @ino: inode number to get 1056 * 1057 * Search for the inode specified by @ino in the inode cache and if present 1058 * return it with an increased reference count. This is for file systems 1059 * where the inode number is sufficient for unique identification of an inode. 1060 * 1061 * If the inode is not in cache, allocate a new inode and return it locked, 1062 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1063 * before unlocking it via unlock_new_inode(). 1064 */ 1065 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1066 { 1067 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1068 struct inode *inode; 1069 1070 spin_lock(&inode_hash_lock); 1071 inode = find_inode_fast(sb, head, ino); 1072 spin_unlock(&inode_hash_lock); 1073 if (inode) { 1074 wait_on_inode(inode); 1075 return inode; 1076 } 1077 1078 inode = alloc_inode(sb); 1079 if (inode) { 1080 struct inode *old; 1081 1082 spin_lock(&inode_hash_lock); 1083 /* We released the lock, so.. */ 1084 old = find_inode_fast(sb, head, ino); 1085 if (!old) { 1086 inode->i_ino = ino; 1087 spin_lock(&inode->i_lock); 1088 inode->i_state = I_NEW; 1089 hlist_add_head(&inode->i_hash, head); 1090 spin_unlock(&inode->i_lock); 1091 inode_sb_list_add(inode); 1092 spin_unlock(&inode_hash_lock); 1093 1094 /* Return the locked inode with I_NEW set, the 1095 * caller is responsible for filling in the contents 1096 */ 1097 return inode; 1098 } 1099 1100 /* 1101 * Uhhuh, somebody else created the same inode under 1102 * us. Use the old inode instead of the one we just 1103 * allocated. 1104 */ 1105 spin_unlock(&inode_hash_lock); 1106 destroy_inode(inode); 1107 inode = old; 1108 wait_on_inode(inode); 1109 } 1110 return inode; 1111 } 1112 EXPORT_SYMBOL(iget_locked); 1113 1114 /* 1115 * search the inode cache for a matching inode number. 1116 * If we find one, then the inode number we are trying to 1117 * allocate is not unique and so we should not use it. 1118 * 1119 * Returns 1 if the inode number is unique, 0 if it is not. 1120 */ 1121 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1122 { 1123 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1124 struct inode *inode; 1125 1126 spin_lock(&inode_hash_lock); 1127 hlist_for_each_entry(inode, b, i_hash) { 1128 if (inode->i_ino == ino && inode->i_sb == sb) { 1129 spin_unlock(&inode_hash_lock); 1130 return 0; 1131 } 1132 } 1133 spin_unlock(&inode_hash_lock); 1134 1135 return 1; 1136 } 1137 1138 /** 1139 * iunique - get a unique inode number 1140 * @sb: superblock 1141 * @max_reserved: highest reserved inode number 1142 * 1143 * Obtain an inode number that is unique on the system for a given 1144 * superblock. This is used by file systems that have no natural 1145 * permanent inode numbering system. An inode number is returned that 1146 * is higher than the reserved limit but unique. 1147 * 1148 * BUGS: 1149 * With a large number of inodes live on the file system this function 1150 * currently becomes quite slow. 1151 */ 1152 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1153 { 1154 /* 1155 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1156 * error if st_ino won't fit in target struct field. Use 32bit counter 1157 * here to attempt to avoid that. 1158 */ 1159 static DEFINE_SPINLOCK(iunique_lock); 1160 static unsigned int counter; 1161 ino_t res; 1162 1163 spin_lock(&iunique_lock); 1164 do { 1165 if (counter <= max_reserved) 1166 counter = max_reserved + 1; 1167 res = counter++; 1168 } while (!test_inode_iunique(sb, res)); 1169 spin_unlock(&iunique_lock); 1170 1171 return res; 1172 } 1173 EXPORT_SYMBOL(iunique); 1174 1175 struct inode *igrab(struct inode *inode) 1176 { 1177 spin_lock(&inode->i_lock); 1178 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1179 __iget(inode); 1180 spin_unlock(&inode->i_lock); 1181 } else { 1182 spin_unlock(&inode->i_lock); 1183 /* 1184 * Handle the case where s_op->clear_inode is not been 1185 * called yet, and somebody is calling igrab 1186 * while the inode is getting freed. 1187 */ 1188 inode = NULL; 1189 } 1190 return inode; 1191 } 1192 EXPORT_SYMBOL(igrab); 1193 1194 /** 1195 * ilookup5_nowait - search for an inode in the inode cache 1196 * @sb: super block of file system to search 1197 * @hashval: hash value (usually inode number) to search for 1198 * @test: callback used for comparisons between inodes 1199 * @data: opaque data pointer to pass to @test 1200 * 1201 * Search for the inode specified by @hashval and @data in the inode cache. 1202 * If the inode is in the cache, the inode is returned with an incremented 1203 * reference count. 1204 * 1205 * Note: I_NEW is not waited upon so you have to be very careful what you do 1206 * with the returned inode. You probably should be using ilookup5() instead. 1207 * 1208 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1209 */ 1210 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1211 int (*test)(struct inode *, void *), void *data) 1212 { 1213 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1214 struct inode *inode; 1215 1216 spin_lock(&inode_hash_lock); 1217 inode = find_inode(sb, head, test, data); 1218 spin_unlock(&inode_hash_lock); 1219 1220 return inode; 1221 } 1222 EXPORT_SYMBOL(ilookup5_nowait); 1223 1224 /** 1225 * ilookup5 - search for an inode in the inode cache 1226 * @sb: super block of file system to search 1227 * @hashval: hash value (usually inode number) to search for 1228 * @test: callback used for comparisons between inodes 1229 * @data: opaque data pointer to pass to @test 1230 * 1231 * Search for the inode specified by @hashval and @data in the inode cache, 1232 * and if the inode is in the cache, return the inode with an incremented 1233 * reference count. Waits on I_NEW before returning the inode. 1234 * returned with an incremented reference count. 1235 * 1236 * This is a generalized version of ilookup() for file systems where the 1237 * inode number is not sufficient for unique identification of an inode. 1238 * 1239 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1240 */ 1241 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1242 int (*test)(struct inode *, void *), void *data) 1243 { 1244 struct inode *inode = ilookup5_nowait(sb, hashval, test, data); 1245 1246 if (inode) 1247 wait_on_inode(inode); 1248 return inode; 1249 } 1250 EXPORT_SYMBOL(ilookup5); 1251 1252 /** 1253 * ilookup - search for an inode in the inode cache 1254 * @sb: super block of file system to search 1255 * @ino: inode number to search for 1256 * 1257 * Search for the inode @ino in the inode cache, and if the inode is in the 1258 * cache, the inode is returned with an incremented reference count. 1259 */ 1260 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1261 { 1262 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1263 struct inode *inode; 1264 1265 spin_lock(&inode_hash_lock); 1266 inode = find_inode_fast(sb, head, ino); 1267 spin_unlock(&inode_hash_lock); 1268 1269 if (inode) 1270 wait_on_inode(inode); 1271 return inode; 1272 } 1273 EXPORT_SYMBOL(ilookup); 1274 1275 /** 1276 * find_inode_nowait - find an inode in the inode cache 1277 * @sb: super block of file system to search 1278 * @hashval: hash value (usually inode number) to search for 1279 * @match: callback used for comparisons between inodes 1280 * @data: opaque data pointer to pass to @match 1281 * 1282 * Search for the inode specified by @hashval and @data in the inode 1283 * cache, where the helper function @match will return 0 if the inode 1284 * does not match, 1 if the inode does match, and -1 if the search 1285 * should be stopped. The @match function must be responsible for 1286 * taking the i_lock spin_lock and checking i_state for an inode being 1287 * freed or being initialized, and incrementing the reference count 1288 * before returning 1. It also must not sleep, since it is called with 1289 * the inode_hash_lock spinlock held. 1290 * 1291 * This is a even more generalized version of ilookup5() when the 1292 * function must never block --- find_inode() can block in 1293 * __wait_on_freeing_inode() --- or when the caller can not increment 1294 * the reference count because the resulting iput() might cause an 1295 * inode eviction. The tradeoff is that the @match funtion must be 1296 * very carefully implemented. 1297 */ 1298 struct inode *find_inode_nowait(struct super_block *sb, 1299 unsigned long hashval, 1300 int (*match)(struct inode *, unsigned long, 1301 void *), 1302 void *data) 1303 { 1304 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1305 struct inode *inode, *ret_inode = NULL; 1306 int mval; 1307 1308 spin_lock(&inode_hash_lock); 1309 hlist_for_each_entry(inode, head, i_hash) { 1310 if (inode->i_sb != sb) 1311 continue; 1312 mval = match(inode, hashval, data); 1313 if (mval == 0) 1314 continue; 1315 if (mval == 1) 1316 ret_inode = inode; 1317 goto out; 1318 } 1319 out: 1320 spin_unlock(&inode_hash_lock); 1321 return ret_inode; 1322 } 1323 EXPORT_SYMBOL(find_inode_nowait); 1324 1325 int insert_inode_locked(struct inode *inode) 1326 { 1327 struct super_block *sb = inode->i_sb; 1328 ino_t ino = inode->i_ino; 1329 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1330 1331 while (1) { 1332 struct inode *old = NULL; 1333 spin_lock(&inode_hash_lock); 1334 hlist_for_each_entry(old, head, i_hash) { 1335 if (old->i_ino != ino) 1336 continue; 1337 if (old->i_sb != sb) 1338 continue; 1339 spin_lock(&old->i_lock); 1340 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1341 spin_unlock(&old->i_lock); 1342 continue; 1343 } 1344 break; 1345 } 1346 if (likely(!old)) { 1347 spin_lock(&inode->i_lock); 1348 inode->i_state |= I_NEW; 1349 hlist_add_head(&inode->i_hash, head); 1350 spin_unlock(&inode->i_lock); 1351 spin_unlock(&inode_hash_lock); 1352 return 0; 1353 } 1354 __iget(old); 1355 spin_unlock(&old->i_lock); 1356 spin_unlock(&inode_hash_lock); 1357 wait_on_inode(old); 1358 if (unlikely(!inode_unhashed(old))) { 1359 iput(old); 1360 return -EBUSY; 1361 } 1362 iput(old); 1363 } 1364 } 1365 EXPORT_SYMBOL(insert_inode_locked); 1366 1367 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1368 int (*test)(struct inode *, void *), void *data) 1369 { 1370 struct super_block *sb = inode->i_sb; 1371 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1372 1373 while (1) { 1374 struct inode *old = NULL; 1375 1376 spin_lock(&inode_hash_lock); 1377 hlist_for_each_entry(old, head, i_hash) { 1378 if (old->i_sb != sb) 1379 continue; 1380 if (!test(old, data)) 1381 continue; 1382 spin_lock(&old->i_lock); 1383 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1384 spin_unlock(&old->i_lock); 1385 continue; 1386 } 1387 break; 1388 } 1389 if (likely(!old)) { 1390 spin_lock(&inode->i_lock); 1391 inode->i_state |= I_NEW; 1392 hlist_add_head(&inode->i_hash, head); 1393 spin_unlock(&inode->i_lock); 1394 spin_unlock(&inode_hash_lock); 1395 return 0; 1396 } 1397 __iget(old); 1398 spin_unlock(&old->i_lock); 1399 spin_unlock(&inode_hash_lock); 1400 wait_on_inode(old); 1401 if (unlikely(!inode_unhashed(old))) { 1402 iput(old); 1403 return -EBUSY; 1404 } 1405 iput(old); 1406 } 1407 } 1408 EXPORT_SYMBOL(insert_inode_locked4); 1409 1410 1411 int generic_delete_inode(struct inode *inode) 1412 { 1413 return 1; 1414 } 1415 EXPORT_SYMBOL(generic_delete_inode); 1416 1417 /* 1418 * Called when we're dropping the last reference 1419 * to an inode. 1420 * 1421 * Call the FS "drop_inode()" function, defaulting to 1422 * the legacy UNIX filesystem behaviour. If it tells 1423 * us to evict inode, do so. Otherwise, retain inode 1424 * in cache if fs is alive, sync and evict if fs is 1425 * shutting down. 1426 */ 1427 static void iput_final(struct inode *inode) 1428 { 1429 struct super_block *sb = inode->i_sb; 1430 const struct super_operations *op = inode->i_sb->s_op; 1431 int drop; 1432 1433 WARN_ON(inode->i_state & I_NEW); 1434 1435 if (op->drop_inode) 1436 drop = op->drop_inode(inode); 1437 else 1438 drop = generic_drop_inode(inode); 1439 1440 if (!drop && (sb->s_flags & MS_ACTIVE)) { 1441 inode->i_state |= I_REFERENCED; 1442 inode_add_lru(inode); 1443 spin_unlock(&inode->i_lock); 1444 return; 1445 } 1446 1447 if (!drop) { 1448 inode->i_state |= I_WILL_FREE; 1449 spin_unlock(&inode->i_lock); 1450 write_inode_now(inode, 1); 1451 spin_lock(&inode->i_lock); 1452 WARN_ON(inode->i_state & I_NEW); 1453 inode->i_state &= ~I_WILL_FREE; 1454 } 1455 1456 inode->i_state |= I_FREEING; 1457 if (!list_empty(&inode->i_lru)) 1458 inode_lru_list_del(inode); 1459 spin_unlock(&inode->i_lock); 1460 1461 evict(inode); 1462 } 1463 1464 /** 1465 * iput - put an inode 1466 * @inode: inode to put 1467 * 1468 * Puts an inode, dropping its usage count. If the inode use count hits 1469 * zero, the inode is then freed and may also be destroyed. 1470 * 1471 * Consequently, iput() can sleep. 1472 */ 1473 void iput(struct inode *inode) 1474 { 1475 if (!inode) 1476 return; 1477 BUG_ON(inode->i_state & I_CLEAR); 1478 retry: 1479 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { 1480 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { 1481 atomic_inc(&inode->i_count); 1482 inode->i_state &= ~I_DIRTY_TIME; 1483 spin_unlock(&inode->i_lock); 1484 trace_writeback_lazytime_iput(inode); 1485 mark_inode_dirty_sync(inode); 1486 goto retry; 1487 } 1488 iput_final(inode); 1489 } 1490 } 1491 EXPORT_SYMBOL(iput); 1492 1493 /** 1494 * bmap - find a block number in a file 1495 * @inode: inode of file 1496 * @block: block to find 1497 * 1498 * Returns the block number on the device holding the inode that 1499 * is the disk block number for the block of the file requested. 1500 * That is, asked for block 4 of inode 1 the function will return the 1501 * disk block relative to the disk start that holds that block of the 1502 * file. 1503 */ 1504 sector_t bmap(struct inode *inode, sector_t block) 1505 { 1506 sector_t res = 0; 1507 if (inode->i_mapping->a_ops->bmap) 1508 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1509 return res; 1510 } 1511 EXPORT_SYMBOL(bmap); 1512 1513 /* 1514 * With relative atime, only update atime if the previous atime is 1515 * earlier than either the ctime or mtime or if at least a day has 1516 * passed since the last atime update. 1517 */ 1518 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1519 struct timespec now) 1520 { 1521 1522 if (!(mnt->mnt_flags & MNT_RELATIME)) 1523 return 1; 1524 /* 1525 * Is mtime younger than atime? If yes, update atime: 1526 */ 1527 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1528 return 1; 1529 /* 1530 * Is ctime younger than atime? If yes, update atime: 1531 */ 1532 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1533 return 1; 1534 1535 /* 1536 * Is the previous atime value older than a day? If yes, 1537 * update atime: 1538 */ 1539 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1540 return 1; 1541 /* 1542 * Good, we can skip the atime update: 1543 */ 1544 return 0; 1545 } 1546 1547 int generic_update_time(struct inode *inode, struct timespec *time, int flags) 1548 { 1549 int iflags = I_DIRTY_TIME; 1550 1551 if (flags & S_ATIME) 1552 inode->i_atime = *time; 1553 if (flags & S_VERSION) 1554 inode_inc_iversion(inode); 1555 if (flags & S_CTIME) 1556 inode->i_ctime = *time; 1557 if (flags & S_MTIME) 1558 inode->i_mtime = *time; 1559 1560 if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION)) 1561 iflags |= I_DIRTY_SYNC; 1562 __mark_inode_dirty(inode, iflags); 1563 return 0; 1564 } 1565 EXPORT_SYMBOL(generic_update_time); 1566 1567 /* 1568 * This does the actual work of updating an inodes time or version. Must have 1569 * had called mnt_want_write() before calling this. 1570 */ 1571 static int update_time(struct inode *inode, struct timespec *time, int flags) 1572 { 1573 int (*update_time)(struct inode *, struct timespec *, int); 1574 1575 update_time = inode->i_op->update_time ? inode->i_op->update_time : 1576 generic_update_time; 1577 1578 return update_time(inode, time, flags); 1579 } 1580 1581 /** 1582 * touch_atime - update the access time 1583 * @path: the &struct path to update 1584 * 1585 * Update the accessed time on an inode and mark it for writeback. 1586 * This function automatically handles read only file systems and media, 1587 * as well as the "noatime" flag and inode specific "noatime" markers. 1588 */ 1589 bool atime_needs_update(const struct path *path, struct inode *inode) 1590 { 1591 struct vfsmount *mnt = path->mnt; 1592 struct timespec now; 1593 1594 if (inode->i_flags & S_NOATIME) 1595 return false; 1596 if (IS_NOATIME(inode)) 1597 return false; 1598 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) 1599 return false; 1600 1601 if (mnt->mnt_flags & MNT_NOATIME) 1602 return false; 1603 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1604 return false; 1605 1606 now = current_fs_time(inode->i_sb); 1607 1608 if (!relatime_need_update(mnt, inode, now)) 1609 return false; 1610 1611 if (timespec_equal(&inode->i_atime, &now)) 1612 return false; 1613 1614 return true; 1615 } 1616 1617 void touch_atime(const struct path *path) 1618 { 1619 struct vfsmount *mnt = path->mnt; 1620 struct inode *inode = d_inode(path->dentry); 1621 struct timespec now; 1622 1623 if (!atime_needs_update(path, inode)) 1624 return; 1625 1626 if (!sb_start_write_trylock(inode->i_sb)) 1627 return; 1628 1629 if (__mnt_want_write(mnt) != 0) 1630 goto skip_update; 1631 /* 1632 * File systems can error out when updating inodes if they need to 1633 * allocate new space to modify an inode (such is the case for 1634 * Btrfs), but since we touch atime while walking down the path we 1635 * really don't care if we failed to update the atime of the file, 1636 * so just ignore the return value. 1637 * We may also fail on filesystems that have the ability to make parts 1638 * of the fs read only, e.g. subvolumes in Btrfs. 1639 */ 1640 now = current_fs_time(inode->i_sb); 1641 update_time(inode, &now, S_ATIME); 1642 __mnt_drop_write(mnt); 1643 skip_update: 1644 sb_end_write(inode->i_sb); 1645 } 1646 EXPORT_SYMBOL(touch_atime); 1647 1648 /* 1649 * The logic we want is 1650 * 1651 * if suid or (sgid and xgrp) 1652 * remove privs 1653 */ 1654 int should_remove_suid(struct dentry *dentry) 1655 { 1656 umode_t mode = d_inode(dentry)->i_mode; 1657 int kill = 0; 1658 1659 /* suid always must be killed */ 1660 if (unlikely(mode & S_ISUID)) 1661 kill = ATTR_KILL_SUID; 1662 1663 /* 1664 * sgid without any exec bits is just a mandatory locking mark; leave 1665 * it alone. If some exec bits are set, it's a real sgid; kill it. 1666 */ 1667 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1668 kill |= ATTR_KILL_SGID; 1669 1670 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) 1671 return kill; 1672 1673 return 0; 1674 } 1675 EXPORT_SYMBOL(should_remove_suid); 1676 1677 static int __remove_suid(struct dentry *dentry, int kill) 1678 { 1679 struct iattr newattrs; 1680 1681 newattrs.ia_valid = ATTR_FORCE | kill; 1682 /* 1683 * Note we call this on write, so notify_change will not 1684 * encounter any conflicting delegations: 1685 */ 1686 return notify_change(dentry, &newattrs, NULL); 1687 } 1688 1689 int file_remove_suid(struct file *file) 1690 { 1691 struct dentry *dentry = file->f_path.dentry; 1692 struct inode *inode = d_inode(dentry); 1693 int killsuid; 1694 int killpriv; 1695 int error = 0; 1696 1697 /* Fast path for nothing security related */ 1698 if (IS_NOSEC(inode)) 1699 return 0; 1700 1701 killsuid = should_remove_suid(dentry); 1702 killpriv = security_inode_need_killpriv(dentry); 1703 1704 if (killpriv < 0) 1705 return killpriv; 1706 if (killpriv) 1707 error = security_inode_killpriv(dentry); 1708 if (!error && killsuid) 1709 error = __remove_suid(dentry, killsuid); 1710 if (!error && (inode->i_sb->s_flags & MS_NOSEC)) 1711 inode->i_flags |= S_NOSEC; 1712 1713 return error; 1714 } 1715 EXPORT_SYMBOL(file_remove_suid); 1716 1717 /** 1718 * file_update_time - update mtime and ctime time 1719 * @file: file accessed 1720 * 1721 * Update the mtime and ctime members of an inode and mark the inode 1722 * for writeback. Note that this function is meant exclusively for 1723 * usage in the file write path of filesystems, and filesystems may 1724 * choose to explicitly ignore update via this function with the 1725 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1726 * timestamps are handled by the server. This can return an error for 1727 * file systems who need to allocate space in order to update an inode. 1728 */ 1729 1730 int file_update_time(struct file *file) 1731 { 1732 struct inode *inode = file_inode(file); 1733 struct timespec now; 1734 int sync_it = 0; 1735 int ret; 1736 1737 /* First try to exhaust all avenues to not sync */ 1738 if (IS_NOCMTIME(inode)) 1739 return 0; 1740 1741 now = current_fs_time(inode->i_sb); 1742 if (!timespec_equal(&inode->i_mtime, &now)) 1743 sync_it = S_MTIME; 1744 1745 if (!timespec_equal(&inode->i_ctime, &now)) 1746 sync_it |= S_CTIME; 1747 1748 if (IS_I_VERSION(inode)) 1749 sync_it |= S_VERSION; 1750 1751 if (!sync_it) 1752 return 0; 1753 1754 /* Finally allowed to write? Takes lock. */ 1755 if (__mnt_want_write_file(file)) 1756 return 0; 1757 1758 ret = update_time(inode, &now, sync_it); 1759 __mnt_drop_write_file(file); 1760 1761 return ret; 1762 } 1763 EXPORT_SYMBOL(file_update_time); 1764 1765 int inode_needs_sync(struct inode *inode) 1766 { 1767 if (IS_SYNC(inode)) 1768 return 1; 1769 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1770 return 1; 1771 return 0; 1772 } 1773 EXPORT_SYMBOL(inode_needs_sync); 1774 1775 /* 1776 * If we try to find an inode in the inode hash while it is being 1777 * deleted, we have to wait until the filesystem completes its 1778 * deletion before reporting that it isn't found. This function waits 1779 * until the deletion _might_ have completed. Callers are responsible 1780 * to recheck inode state. 1781 * 1782 * It doesn't matter if I_NEW is not set initially, a call to 1783 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 1784 * will DTRT. 1785 */ 1786 static void __wait_on_freeing_inode(struct inode *inode) 1787 { 1788 wait_queue_head_t *wq; 1789 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 1790 wq = bit_waitqueue(&inode->i_state, __I_NEW); 1791 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1792 spin_unlock(&inode->i_lock); 1793 spin_unlock(&inode_hash_lock); 1794 schedule(); 1795 finish_wait(wq, &wait.wait); 1796 spin_lock(&inode_hash_lock); 1797 } 1798 1799 static __initdata unsigned long ihash_entries; 1800 static int __init set_ihash_entries(char *str) 1801 { 1802 if (!str) 1803 return 0; 1804 ihash_entries = simple_strtoul(str, &str, 0); 1805 return 1; 1806 } 1807 __setup("ihash_entries=", set_ihash_entries); 1808 1809 /* 1810 * Initialize the waitqueues and inode hash table. 1811 */ 1812 void __init inode_init_early(void) 1813 { 1814 unsigned int loop; 1815 1816 /* If hashes are distributed across NUMA nodes, defer 1817 * hash allocation until vmalloc space is available. 1818 */ 1819 if (hashdist) 1820 return; 1821 1822 inode_hashtable = 1823 alloc_large_system_hash("Inode-cache", 1824 sizeof(struct hlist_head), 1825 ihash_entries, 1826 14, 1827 HASH_EARLY, 1828 &i_hash_shift, 1829 &i_hash_mask, 1830 0, 1831 0); 1832 1833 for (loop = 0; loop < (1U << i_hash_shift); loop++) 1834 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1835 } 1836 1837 void __init inode_init(void) 1838 { 1839 unsigned int loop; 1840 1841 /* inode slab cache */ 1842 inode_cachep = kmem_cache_create("inode_cache", 1843 sizeof(struct inode), 1844 0, 1845 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1846 SLAB_MEM_SPREAD), 1847 init_once); 1848 1849 /* Hash may have been set up in inode_init_early */ 1850 if (!hashdist) 1851 return; 1852 1853 inode_hashtable = 1854 alloc_large_system_hash("Inode-cache", 1855 sizeof(struct hlist_head), 1856 ihash_entries, 1857 14, 1858 0, 1859 &i_hash_shift, 1860 &i_hash_mask, 1861 0, 1862 0); 1863 1864 for (loop = 0; loop < (1U << i_hash_shift); loop++) 1865 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1866 } 1867 1868 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1869 { 1870 inode->i_mode = mode; 1871 if (S_ISCHR(mode)) { 1872 inode->i_fop = &def_chr_fops; 1873 inode->i_rdev = rdev; 1874 } else if (S_ISBLK(mode)) { 1875 inode->i_fop = &def_blk_fops; 1876 inode->i_rdev = rdev; 1877 } else if (S_ISFIFO(mode)) 1878 inode->i_fop = &pipefifo_fops; 1879 else if (S_ISSOCK(mode)) 1880 ; /* leave it no_open_fops */ 1881 else 1882 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 1883 " inode %s:%lu\n", mode, inode->i_sb->s_id, 1884 inode->i_ino); 1885 } 1886 EXPORT_SYMBOL(init_special_inode); 1887 1888 /** 1889 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 1890 * @inode: New inode 1891 * @dir: Directory inode 1892 * @mode: mode of the new inode 1893 */ 1894 void inode_init_owner(struct inode *inode, const struct inode *dir, 1895 umode_t mode) 1896 { 1897 inode->i_uid = current_fsuid(); 1898 if (dir && dir->i_mode & S_ISGID) { 1899 inode->i_gid = dir->i_gid; 1900 if (S_ISDIR(mode)) 1901 mode |= S_ISGID; 1902 } else 1903 inode->i_gid = current_fsgid(); 1904 inode->i_mode = mode; 1905 } 1906 EXPORT_SYMBOL(inode_init_owner); 1907 1908 /** 1909 * inode_owner_or_capable - check current task permissions to inode 1910 * @inode: inode being checked 1911 * 1912 * Return true if current either has CAP_FOWNER in a namespace with the 1913 * inode owner uid mapped, or owns the file. 1914 */ 1915 bool inode_owner_or_capable(const struct inode *inode) 1916 { 1917 struct user_namespace *ns; 1918 1919 if (uid_eq(current_fsuid(), inode->i_uid)) 1920 return true; 1921 1922 ns = current_user_ns(); 1923 if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid)) 1924 return true; 1925 return false; 1926 } 1927 EXPORT_SYMBOL(inode_owner_or_capable); 1928 1929 /* 1930 * Direct i/o helper functions 1931 */ 1932 static void __inode_dio_wait(struct inode *inode) 1933 { 1934 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 1935 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 1936 1937 do { 1938 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE); 1939 if (atomic_read(&inode->i_dio_count)) 1940 schedule(); 1941 } while (atomic_read(&inode->i_dio_count)); 1942 finish_wait(wq, &q.wait); 1943 } 1944 1945 /** 1946 * inode_dio_wait - wait for outstanding DIO requests to finish 1947 * @inode: inode to wait for 1948 * 1949 * Waits for all pending direct I/O requests to finish so that we can 1950 * proceed with a truncate or equivalent operation. 1951 * 1952 * Must be called under a lock that serializes taking new references 1953 * to i_dio_count, usually by inode->i_mutex. 1954 */ 1955 void inode_dio_wait(struct inode *inode) 1956 { 1957 if (atomic_read(&inode->i_dio_count)) 1958 __inode_dio_wait(inode); 1959 } 1960 EXPORT_SYMBOL(inode_dio_wait); 1961 1962 /* 1963 * inode_set_flags - atomically set some inode flags 1964 * 1965 * Note: the caller should be holding i_mutex, or else be sure that 1966 * they have exclusive access to the inode structure (i.e., while the 1967 * inode is being instantiated). The reason for the cmpxchg() loop 1968 * --- which wouldn't be necessary if all code paths which modify 1969 * i_flags actually followed this rule, is that there is at least one 1970 * code path which doesn't today --- for example, 1971 * __generic_file_aio_write() calls file_remove_suid() without holding 1972 * i_mutex --- so we use cmpxchg() out of an abundance of caution. 1973 * 1974 * In the long run, i_mutex is overkill, and we should probably look 1975 * at using the i_lock spinlock to protect i_flags, and then make sure 1976 * it is so documented in include/linux/fs.h and that all code follows 1977 * the locking convention!! 1978 */ 1979 void inode_set_flags(struct inode *inode, unsigned int flags, 1980 unsigned int mask) 1981 { 1982 unsigned int old_flags, new_flags; 1983 1984 WARN_ON_ONCE(flags & ~mask); 1985 do { 1986 old_flags = ACCESS_ONCE(inode->i_flags); 1987 new_flags = (old_flags & ~mask) | flags; 1988 } while (unlikely(cmpxchg(&inode->i_flags, old_flags, 1989 new_flags) != old_flags)); 1990 } 1991 EXPORT_SYMBOL(inode_set_flags); 1992