xref: /openbmc/linux/fs/inode.c (revision d236d361)
1 /*
2  * (C) 1997 Linus Torvalds
3  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4  */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <trace/events/writeback.h>
22 #include "internal.h"
23 
24 /*
25  * Inode locking rules:
26  *
27  * inode->i_lock protects:
28  *   inode->i_state, inode->i_hash, __iget()
29  * Inode LRU list locks protect:
30  *   inode->i_sb->s_inode_lru, inode->i_lru
31  * inode->i_sb->s_inode_list_lock protects:
32  *   inode->i_sb->s_inodes, inode->i_sb_list
33  * bdi->wb.list_lock protects:
34  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
35  * inode_hash_lock protects:
36  *   inode_hashtable, inode->i_hash
37  *
38  * Lock ordering:
39  *
40  * inode->i_sb->s_inode_list_lock
41  *   inode->i_lock
42  *     Inode LRU list locks
43  *
44  * bdi->wb.list_lock
45  *   inode->i_lock
46  *
47  * inode_hash_lock
48  *   inode->i_sb->s_inode_list_lock
49  *   inode->i_lock
50  *
51  * iunique_lock
52  *   inode_hash_lock
53  */
54 
55 static unsigned int i_hash_mask __read_mostly;
56 static unsigned int i_hash_shift __read_mostly;
57 static struct hlist_head *inode_hashtable __read_mostly;
58 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
59 
60 /*
61  * Empty aops. Can be used for the cases where the user does not
62  * define any of the address_space operations.
63  */
64 const struct address_space_operations empty_aops = {
65 };
66 EXPORT_SYMBOL(empty_aops);
67 
68 /*
69  * Statistics gathering..
70  */
71 struct inodes_stat_t inodes_stat;
72 
73 static DEFINE_PER_CPU(unsigned long, nr_inodes);
74 static DEFINE_PER_CPU(unsigned long, nr_unused);
75 
76 static struct kmem_cache *inode_cachep __read_mostly;
77 
78 static long get_nr_inodes(void)
79 {
80 	int i;
81 	long sum = 0;
82 	for_each_possible_cpu(i)
83 		sum += per_cpu(nr_inodes, i);
84 	return sum < 0 ? 0 : sum;
85 }
86 
87 static inline long get_nr_inodes_unused(void)
88 {
89 	int i;
90 	long sum = 0;
91 	for_each_possible_cpu(i)
92 		sum += per_cpu(nr_unused, i);
93 	return sum < 0 ? 0 : sum;
94 }
95 
96 long get_nr_dirty_inodes(void)
97 {
98 	/* not actually dirty inodes, but a wild approximation */
99 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
100 	return nr_dirty > 0 ? nr_dirty : 0;
101 }
102 
103 /*
104  * Handle nr_inode sysctl
105  */
106 #ifdef CONFIG_SYSCTL
107 int proc_nr_inodes(struct ctl_table *table, int write,
108 		   void __user *buffer, size_t *lenp, loff_t *ppos)
109 {
110 	inodes_stat.nr_inodes = get_nr_inodes();
111 	inodes_stat.nr_unused = get_nr_inodes_unused();
112 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
113 }
114 #endif
115 
116 static int no_open(struct inode *inode, struct file *file)
117 {
118 	return -ENXIO;
119 }
120 
121 /**
122  * inode_init_always - perform inode structure initialisation
123  * @sb: superblock inode belongs to
124  * @inode: inode to initialise
125  *
126  * These are initializations that need to be done on every inode
127  * allocation as the fields are not initialised by slab allocation.
128  */
129 int inode_init_always(struct super_block *sb, struct inode *inode)
130 {
131 	static const struct inode_operations empty_iops;
132 	static const struct file_operations no_open_fops = {.open = no_open};
133 	struct address_space *const mapping = &inode->i_data;
134 
135 	inode->i_sb = sb;
136 	inode->i_blkbits = sb->s_blocksize_bits;
137 	inode->i_flags = 0;
138 	atomic_set(&inode->i_count, 1);
139 	inode->i_op = &empty_iops;
140 	inode->i_fop = &no_open_fops;
141 	inode->__i_nlink = 1;
142 	inode->i_opflags = 0;
143 	if (sb->s_xattr)
144 		inode->i_opflags |= IOP_XATTR;
145 	i_uid_write(inode, 0);
146 	i_gid_write(inode, 0);
147 	atomic_set(&inode->i_writecount, 0);
148 	inode->i_size = 0;
149 	inode->i_blocks = 0;
150 	inode->i_bytes = 0;
151 	inode->i_generation = 0;
152 	inode->i_pipe = NULL;
153 	inode->i_bdev = NULL;
154 	inode->i_cdev = NULL;
155 	inode->i_link = NULL;
156 	inode->i_dir_seq = 0;
157 	inode->i_rdev = 0;
158 	inode->dirtied_when = 0;
159 
160 #ifdef CONFIG_CGROUP_WRITEBACK
161 	inode->i_wb_frn_winner = 0;
162 	inode->i_wb_frn_avg_time = 0;
163 	inode->i_wb_frn_history = 0;
164 #endif
165 
166 	if (security_inode_alloc(inode))
167 		goto out;
168 	spin_lock_init(&inode->i_lock);
169 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
170 
171 	init_rwsem(&inode->i_rwsem);
172 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
173 
174 	atomic_set(&inode->i_dio_count, 0);
175 
176 	mapping->a_ops = &empty_aops;
177 	mapping->host = inode;
178 	mapping->flags = 0;
179 	atomic_set(&mapping->i_mmap_writable, 0);
180 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
181 	mapping->private_data = NULL;
182 	mapping->writeback_index = 0;
183 	inode->i_private = NULL;
184 	inode->i_mapping = mapping;
185 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
186 #ifdef CONFIG_FS_POSIX_ACL
187 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
188 #endif
189 
190 #ifdef CONFIG_FSNOTIFY
191 	inode->i_fsnotify_mask = 0;
192 #endif
193 	inode->i_flctx = NULL;
194 	this_cpu_inc(nr_inodes);
195 
196 	return 0;
197 out:
198 	return -ENOMEM;
199 }
200 EXPORT_SYMBOL(inode_init_always);
201 
202 static struct inode *alloc_inode(struct super_block *sb)
203 {
204 	struct inode *inode;
205 
206 	if (sb->s_op->alloc_inode)
207 		inode = sb->s_op->alloc_inode(sb);
208 	else
209 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
210 
211 	if (!inode)
212 		return NULL;
213 
214 	if (unlikely(inode_init_always(sb, inode))) {
215 		if (inode->i_sb->s_op->destroy_inode)
216 			inode->i_sb->s_op->destroy_inode(inode);
217 		else
218 			kmem_cache_free(inode_cachep, inode);
219 		return NULL;
220 	}
221 
222 	return inode;
223 }
224 
225 void free_inode_nonrcu(struct inode *inode)
226 {
227 	kmem_cache_free(inode_cachep, inode);
228 }
229 EXPORT_SYMBOL(free_inode_nonrcu);
230 
231 void __destroy_inode(struct inode *inode)
232 {
233 	BUG_ON(inode_has_buffers(inode));
234 	inode_detach_wb(inode);
235 	security_inode_free(inode);
236 	fsnotify_inode_delete(inode);
237 	locks_free_lock_context(inode);
238 	if (!inode->i_nlink) {
239 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
240 		atomic_long_dec(&inode->i_sb->s_remove_count);
241 	}
242 
243 #ifdef CONFIG_FS_POSIX_ACL
244 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
245 		posix_acl_release(inode->i_acl);
246 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
247 		posix_acl_release(inode->i_default_acl);
248 #endif
249 	this_cpu_dec(nr_inodes);
250 }
251 EXPORT_SYMBOL(__destroy_inode);
252 
253 static void i_callback(struct rcu_head *head)
254 {
255 	struct inode *inode = container_of(head, struct inode, i_rcu);
256 	kmem_cache_free(inode_cachep, inode);
257 }
258 
259 static void destroy_inode(struct inode *inode)
260 {
261 	BUG_ON(!list_empty(&inode->i_lru));
262 	__destroy_inode(inode);
263 	if (inode->i_sb->s_op->destroy_inode)
264 		inode->i_sb->s_op->destroy_inode(inode);
265 	else
266 		call_rcu(&inode->i_rcu, i_callback);
267 }
268 
269 /**
270  * drop_nlink - directly drop an inode's link count
271  * @inode: inode
272  *
273  * This is a low-level filesystem helper to replace any
274  * direct filesystem manipulation of i_nlink.  In cases
275  * where we are attempting to track writes to the
276  * filesystem, a decrement to zero means an imminent
277  * write when the file is truncated and actually unlinked
278  * on the filesystem.
279  */
280 void drop_nlink(struct inode *inode)
281 {
282 	WARN_ON(inode->i_nlink == 0);
283 	inode->__i_nlink--;
284 	if (!inode->i_nlink)
285 		atomic_long_inc(&inode->i_sb->s_remove_count);
286 }
287 EXPORT_SYMBOL(drop_nlink);
288 
289 /**
290  * clear_nlink - directly zero an inode's link count
291  * @inode: inode
292  *
293  * This is a low-level filesystem helper to replace any
294  * direct filesystem manipulation of i_nlink.  See
295  * drop_nlink() for why we care about i_nlink hitting zero.
296  */
297 void clear_nlink(struct inode *inode)
298 {
299 	if (inode->i_nlink) {
300 		inode->__i_nlink = 0;
301 		atomic_long_inc(&inode->i_sb->s_remove_count);
302 	}
303 }
304 EXPORT_SYMBOL(clear_nlink);
305 
306 /**
307  * set_nlink - directly set an inode's link count
308  * @inode: inode
309  * @nlink: new nlink (should be non-zero)
310  *
311  * This is a low-level filesystem helper to replace any
312  * direct filesystem manipulation of i_nlink.
313  */
314 void set_nlink(struct inode *inode, unsigned int nlink)
315 {
316 	if (!nlink) {
317 		clear_nlink(inode);
318 	} else {
319 		/* Yes, some filesystems do change nlink from zero to one */
320 		if (inode->i_nlink == 0)
321 			atomic_long_dec(&inode->i_sb->s_remove_count);
322 
323 		inode->__i_nlink = nlink;
324 	}
325 }
326 EXPORT_SYMBOL(set_nlink);
327 
328 /**
329  * inc_nlink - directly increment an inode's link count
330  * @inode: inode
331  *
332  * This is a low-level filesystem helper to replace any
333  * direct filesystem manipulation of i_nlink.  Currently,
334  * it is only here for parity with dec_nlink().
335  */
336 void inc_nlink(struct inode *inode)
337 {
338 	if (unlikely(inode->i_nlink == 0)) {
339 		WARN_ON(!(inode->i_state & I_LINKABLE));
340 		atomic_long_dec(&inode->i_sb->s_remove_count);
341 	}
342 
343 	inode->__i_nlink++;
344 }
345 EXPORT_SYMBOL(inc_nlink);
346 
347 void address_space_init_once(struct address_space *mapping)
348 {
349 	memset(mapping, 0, sizeof(*mapping));
350 	INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC | __GFP_ACCOUNT);
351 	spin_lock_init(&mapping->tree_lock);
352 	init_rwsem(&mapping->i_mmap_rwsem);
353 	INIT_LIST_HEAD(&mapping->private_list);
354 	spin_lock_init(&mapping->private_lock);
355 	mapping->i_mmap = RB_ROOT;
356 }
357 EXPORT_SYMBOL(address_space_init_once);
358 
359 /*
360  * These are initializations that only need to be done
361  * once, because the fields are idempotent across use
362  * of the inode, so let the slab aware of that.
363  */
364 void inode_init_once(struct inode *inode)
365 {
366 	memset(inode, 0, sizeof(*inode));
367 	INIT_HLIST_NODE(&inode->i_hash);
368 	INIT_LIST_HEAD(&inode->i_devices);
369 	INIT_LIST_HEAD(&inode->i_io_list);
370 	INIT_LIST_HEAD(&inode->i_wb_list);
371 	INIT_LIST_HEAD(&inode->i_lru);
372 	address_space_init_once(&inode->i_data);
373 	i_size_ordered_init(inode);
374 }
375 EXPORT_SYMBOL(inode_init_once);
376 
377 static void init_once(void *foo)
378 {
379 	struct inode *inode = (struct inode *) foo;
380 
381 	inode_init_once(inode);
382 }
383 
384 /*
385  * inode->i_lock must be held
386  */
387 void __iget(struct inode *inode)
388 {
389 	atomic_inc(&inode->i_count);
390 }
391 
392 /*
393  * get additional reference to inode; caller must already hold one.
394  */
395 void ihold(struct inode *inode)
396 {
397 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
398 }
399 EXPORT_SYMBOL(ihold);
400 
401 static void inode_lru_list_add(struct inode *inode)
402 {
403 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
404 		this_cpu_inc(nr_unused);
405 	else
406 		inode->i_state |= I_REFERENCED;
407 }
408 
409 /*
410  * Add inode to LRU if needed (inode is unused and clean).
411  *
412  * Needs inode->i_lock held.
413  */
414 void inode_add_lru(struct inode *inode)
415 {
416 	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
417 				I_FREEING | I_WILL_FREE)) &&
418 	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
419 		inode_lru_list_add(inode);
420 }
421 
422 
423 static void inode_lru_list_del(struct inode *inode)
424 {
425 
426 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
427 		this_cpu_dec(nr_unused);
428 }
429 
430 /**
431  * inode_sb_list_add - add inode to the superblock list of inodes
432  * @inode: inode to add
433  */
434 void inode_sb_list_add(struct inode *inode)
435 {
436 	spin_lock(&inode->i_sb->s_inode_list_lock);
437 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
438 	spin_unlock(&inode->i_sb->s_inode_list_lock);
439 }
440 EXPORT_SYMBOL_GPL(inode_sb_list_add);
441 
442 static inline void inode_sb_list_del(struct inode *inode)
443 {
444 	if (!list_empty(&inode->i_sb_list)) {
445 		spin_lock(&inode->i_sb->s_inode_list_lock);
446 		list_del_init(&inode->i_sb_list);
447 		spin_unlock(&inode->i_sb->s_inode_list_lock);
448 	}
449 }
450 
451 static unsigned long hash(struct super_block *sb, unsigned long hashval)
452 {
453 	unsigned long tmp;
454 
455 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
456 			L1_CACHE_BYTES;
457 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
458 	return tmp & i_hash_mask;
459 }
460 
461 /**
462  *	__insert_inode_hash - hash an inode
463  *	@inode: unhashed inode
464  *	@hashval: unsigned long value used to locate this object in the
465  *		inode_hashtable.
466  *
467  *	Add an inode to the inode hash for this superblock.
468  */
469 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
470 {
471 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
472 
473 	spin_lock(&inode_hash_lock);
474 	spin_lock(&inode->i_lock);
475 	hlist_add_head(&inode->i_hash, b);
476 	spin_unlock(&inode->i_lock);
477 	spin_unlock(&inode_hash_lock);
478 }
479 EXPORT_SYMBOL(__insert_inode_hash);
480 
481 /**
482  *	__remove_inode_hash - remove an inode from the hash
483  *	@inode: inode to unhash
484  *
485  *	Remove an inode from the superblock.
486  */
487 void __remove_inode_hash(struct inode *inode)
488 {
489 	spin_lock(&inode_hash_lock);
490 	spin_lock(&inode->i_lock);
491 	hlist_del_init(&inode->i_hash);
492 	spin_unlock(&inode->i_lock);
493 	spin_unlock(&inode_hash_lock);
494 }
495 EXPORT_SYMBOL(__remove_inode_hash);
496 
497 void clear_inode(struct inode *inode)
498 {
499 	might_sleep();
500 	/*
501 	 * We have to cycle tree_lock here because reclaim can be still in the
502 	 * process of removing the last page (in __delete_from_page_cache())
503 	 * and we must not free mapping under it.
504 	 */
505 	spin_lock_irq(&inode->i_data.tree_lock);
506 	BUG_ON(inode->i_data.nrpages);
507 	BUG_ON(inode->i_data.nrexceptional);
508 	spin_unlock_irq(&inode->i_data.tree_lock);
509 	BUG_ON(!list_empty(&inode->i_data.private_list));
510 	BUG_ON(!(inode->i_state & I_FREEING));
511 	BUG_ON(inode->i_state & I_CLEAR);
512 	BUG_ON(!list_empty(&inode->i_wb_list));
513 	/* don't need i_lock here, no concurrent mods to i_state */
514 	inode->i_state = I_FREEING | I_CLEAR;
515 }
516 EXPORT_SYMBOL(clear_inode);
517 
518 /*
519  * Free the inode passed in, removing it from the lists it is still connected
520  * to. We remove any pages still attached to the inode and wait for any IO that
521  * is still in progress before finally destroying the inode.
522  *
523  * An inode must already be marked I_FREEING so that we avoid the inode being
524  * moved back onto lists if we race with other code that manipulates the lists
525  * (e.g. writeback_single_inode). The caller is responsible for setting this.
526  *
527  * An inode must already be removed from the LRU list before being evicted from
528  * the cache. This should occur atomically with setting the I_FREEING state
529  * flag, so no inodes here should ever be on the LRU when being evicted.
530  */
531 static void evict(struct inode *inode)
532 {
533 	const struct super_operations *op = inode->i_sb->s_op;
534 
535 	BUG_ON(!(inode->i_state & I_FREEING));
536 	BUG_ON(!list_empty(&inode->i_lru));
537 
538 	if (!list_empty(&inode->i_io_list))
539 		inode_io_list_del(inode);
540 
541 	inode_sb_list_del(inode);
542 
543 	/*
544 	 * Wait for flusher thread to be done with the inode so that filesystem
545 	 * does not start destroying it while writeback is still running. Since
546 	 * the inode has I_FREEING set, flusher thread won't start new work on
547 	 * the inode.  We just have to wait for running writeback to finish.
548 	 */
549 	inode_wait_for_writeback(inode);
550 
551 	if (op->evict_inode) {
552 		op->evict_inode(inode);
553 	} else {
554 		truncate_inode_pages_final(&inode->i_data);
555 		clear_inode(inode);
556 	}
557 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
558 		bd_forget(inode);
559 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
560 		cd_forget(inode);
561 
562 	remove_inode_hash(inode);
563 
564 	spin_lock(&inode->i_lock);
565 	wake_up_bit(&inode->i_state, __I_NEW);
566 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
567 	spin_unlock(&inode->i_lock);
568 
569 	destroy_inode(inode);
570 }
571 
572 /*
573  * dispose_list - dispose of the contents of a local list
574  * @head: the head of the list to free
575  *
576  * Dispose-list gets a local list with local inodes in it, so it doesn't
577  * need to worry about list corruption and SMP locks.
578  */
579 static void dispose_list(struct list_head *head)
580 {
581 	while (!list_empty(head)) {
582 		struct inode *inode;
583 
584 		inode = list_first_entry(head, struct inode, i_lru);
585 		list_del_init(&inode->i_lru);
586 
587 		evict(inode);
588 		cond_resched();
589 	}
590 }
591 
592 /**
593  * evict_inodes	- evict all evictable inodes for a superblock
594  * @sb:		superblock to operate on
595  *
596  * Make sure that no inodes with zero refcount are retained.  This is
597  * called by superblock shutdown after having MS_ACTIVE flag removed,
598  * so any inode reaching zero refcount during or after that call will
599  * be immediately evicted.
600  */
601 void evict_inodes(struct super_block *sb)
602 {
603 	struct inode *inode, *next;
604 	LIST_HEAD(dispose);
605 
606 again:
607 	spin_lock(&sb->s_inode_list_lock);
608 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
609 		if (atomic_read(&inode->i_count))
610 			continue;
611 
612 		spin_lock(&inode->i_lock);
613 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
614 			spin_unlock(&inode->i_lock);
615 			continue;
616 		}
617 
618 		inode->i_state |= I_FREEING;
619 		inode_lru_list_del(inode);
620 		spin_unlock(&inode->i_lock);
621 		list_add(&inode->i_lru, &dispose);
622 
623 		/*
624 		 * We can have a ton of inodes to evict at unmount time given
625 		 * enough memory, check to see if we need to go to sleep for a
626 		 * bit so we don't livelock.
627 		 */
628 		if (need_resched()) {
629 			spin_unlock(&sb->s_inode_list_lock);
630 			cond_resched();
631 			dispose_list(&dispose);
632 			goto again;
633 		}
634 	}
635 	spin_unlock(&sb->s_inode_list_lock);
636 
637 	dispose_list(&dispose);
638 }
639 
640 /**
641  * invalidate_inodes	- attempt to free all inodes on a superblock
642  * @sb:		superblock to operate on
643  * @kill_dirty: flag to guide handling of dirty inodes
644  *
645  * Attempts to free all inodes for a given superblock.  If there were any
646  * busy inodes return a non-zero value, else zero.
647  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
648  * them as busy.
649  */
650 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
651 {
652 	int busy = 0;
653 	struct inode *inode, *next;
654 	LIST_HEAD(dispose);
655 
656 	spin_lock(&sb->s_inode_list_lock);
657 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
658 		spin_lock(&inode->i_lock);
659 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
660 			spin_unlock(&inode->i_lock);
661 			continue;
662 		}
663 		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
664 			spin_unlock(&inode->i_lock);
665 			busy = 1;
666 			continue;
667 		}
668 		if (atomic_read(&inode->i_count)) {
669 			spin_unlock(&inode->i_lock);
670 			busy = 1;
671 			continue;
672 		}
673 
674 		inode->i_state |= I_FREEING;
675 		inode_lru_list_del(inode);
676 		spin_unlock(&inode->i_lock);
677 		list_add(&inode->i_lru, &dispose);
678 	}
679 	spin_unlock(&sb->s_inode_list_lock);
680 
681 	dispose_list(&dispose);
682 
683 	return busy;
684 }
685 
686 /*
687  * Isolate the inode from the LRU in preparation for freeing it.
688  *
689  * Any inodes which are pinned purely because of attached pagecache have their
690  * pagecache removed.  If the inode has metadata buffers attached to
691  * mapping->private_list then try to remove them.
692  *
693  * If the inode has the I_REFERENCED flag set, then it means that it has been
694  * used recently - the flag is set in iput_final(). When we encounter such an
695  * inode, clear the flag and move it to the back of the LRU so it gets another
696  * pass through the LRU before it gets reclaimed. This is necessary because of
697  * the fact we are doing lazy LRU updates to minimise lock contention so the
698  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
699  * with this flag set because they are the inodes that are out of order.
700  */
701 static enum lru_status inode_lru_isolate(struct list_head *item,
702 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
703 {
704 	struct list_head *freeable = arg;
705 	struct inode	*inode = container_of(item, struct inode, i_lru);
706 
707 	/*
708 	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
709 	 * If we fail to get the lock, just skip it.
710 	 */
711 	if (!spin_trylock(&inode->i_lock))
712 		return LRU_SKIP;
713 
714 	/*
715 	 * Referenced or dirty inodes are still in use. Give them another pass
716 	 * through the LRU as we canot reclaim them now.
717 	 */
718 	if (atomic_read(&inode->i_count) ||
719 	    (inode->i_state & ~I_REFERENCED)) {
720 		list_lru_isolate(lru, &inode->i_lru);
721 		spin_unlock(&inode->i_lock);
722 		this_cpu_dec(nr_unused);
723 		return LRU_REMOVED;
724 	}
725 
726 	/* recently referenced inodes get one more pass */
727 	if (inode->i_state & I_REFERENCED) {
728 		inode->i_state &= ~I_REFERENCED;
729 		spin_unlock(&inode->i_lock);
730 		return LRU_ROTATE;
731 	}
732 
733 	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
734 		__iget(inode);
735 		spin_unlock(&inode->i_lock);
736 		spin_unlock(lru_lock);
737 		if (remove_inode_buffers(inode)) {
738 			unsigned long reap;
739 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
740 			if (current_is_kswapd())
741 				__count_vm_events(KSWAPD_INODESTEAL, reap);
742 			else
743 				__count_vm_events(PGINODESTEAL, reap);
744 			if (current->reclaim_state)
745 				current->reclaim_state->reclaimed_slab += reap;
746 		}
747 		iput(inode);
748 		spin_lock(lru_lock);
749 		return LRU_RETRY;
750 	}
751 
752 	WARN_ON(inode->i_state & I_NEW);
753 	inode->i_state |= I_FREEING;
754 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
755 	spin_unlock(&inode->i_lock);
756 
757 	this_cpu_dec(nr_unused);
758 	return LRU_REMOVED;
759 }
760 
761 /*
762  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
763  * This is called from the superblock shrinker function with a number of inodes
764  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
765  * then are freed outside inode_lock by dispose_list().
766  */
767 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
768 {
769 	LIST_HEAD(freeable);
770 	long freed;
771 
772 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
773 				     inode_lru_isolate, &freeable);
774 	dispose_list(&freeable);
775 	return freed;
776 }
777 
778 static void __wait_on_freeing_inode(struct inode *inode);
779 /*
780  * Called with the inode lock held.
781  */
782 static struct inode *find_inode(struct super_block *sb,
783 				struct hlist_head *head,
784 				int (*test)(struct inode *, void *),
785 				void *data)
786 {
787 	struct inode *inode = NULL;
788 
789 repeat:
790 	hlist_for_each_entry(inode, head, i_hash) {
791 		if (inode->i_sb != sb)
792 			continue;
793 		if (!test(inode, data))
794 			continue;
795 		spin_lock(&inode->i_lock);
796 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
797 			__wait_on_freeing_inode(inode);
798 			goto repeat;
799 		}
800 		__iget(inode);
801 		spin_unlock(&inode->i_lock);
802 		return inode;
803 	}
804 	return NULL;
805 }
806 
807 /*
808  * find_inode_fast is the fast path version of find_inode, see the comment at
809  * iget_locked for details.
810  */
811 static struct inode *find_inode_fast(struct super_block *sb,
812 				struct hlist_head *head, unsigned long ino)
813 {
814 	struct inode *inode = NULL;
815 
816 repeat:
817 	hlist_for_each_entry(inode, head, i_hash) {
818 		if (inode->i_ino != ino)
819 			continue;
820 		if (inode->i_sb != sb)
821 			continue;
822 		spin_lock(&inode->i_lock);
823 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
824 			__wait_on_freeing_inode(inode);
825 			goto repeat;
826 		}
827 		__iget(inode);
828 		spin_unlock(&inode->i_lock);
829 		return inode;
830 	}
831 	return NULL;
832 }
833 
834 /*
835  * Each cpu owns a range of LAST_INO_BATCH numbers.
836  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
837  * to renew the exhausted range.
838  *
839  * This does not significantly increase overflow rate because every CPU can
840  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
841  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
842  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
843  * overflow rate by 2x, which does not seem too significant.
844  *
845  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
846  * error if st_ino won't fit in target struct field. Use 32bit counter
847  * here to attempt to avoid that.
848  */
849 #define LAST_INO_BATCH 1024
850 static DEFINE_PER_CPU(unsigned int, last_ino);
851 
852 unsigned int get_next_ino(void)
853 {
854 	unsigned int *p = &get_cpu_var(last_ino);
855 	unsigned int res = *p;
856 
857 #ifdef CONFIG_SMP
858 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
859 		static atomic_t shared_last_ino;
860 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
861 
862 		res = next - LAST_INO_BATCH;
863 	}
864 #endif
865 
866 	res++;
867 	/* get_next_ino should not provide a 0 inode number */
868 	if (unlikely(!res))
869 		res++;
870 	*p = res;
871 	put_cpu_var(last_ino);
872 	return res;
873 }
874 EXPORT_SYMBOL(get_next_ino);
875 
876 /**
877  *	new_inode_pseudo 	- obtain an inode
878  *	@sb: superblock
879  *
880  *	Allocates a new inode for given superblock.
881  *	Inode wont be chained in superblock s_inodes list
882  *	This means :
883  *	- fs can't be unmount
884  *	- quotas, fsnotify, writeback can't work
885  */
886 struct inode *new_inode_pseudo(struct super_block *sb)
887 {
888 	struct inode *inode = alloc_inode(sb);
889 
890 	if (inode) {
891 		spin_lock(&inode->i_lock);
892 		inode->i_state = 0;
893 		spin_unlock(&inode->i_lock);
894 		INIT_LIST_HEAD(&inode->i_sb_list);
895 	}
896 	return inode;
897 }
898 
899 /**
900  *	new_inode 	- obtain an inode
901  *	@sb: superblock
902  *
903  *	Allocates a new inode for given superblock. The default gfp_mask
904  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
905  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
906  *	for the page cache are not reclaimable or migratable,
907  *	mapping_set_gfp_mask() must be called with suitable flags on the
908  *	newly created inode's mapping
909  *
910  */
911 struct inode *new_inode(struct super_block *sb)
912 {
913 	struct inode *inode;
914 
915 	spin_lock_prefetch(&sb->s_inode_list_lock);
916 
917 	inode = new_inode_pseudo(sb);
918 	if (inode)
919 		inode_sb_list_add(inode);
920 	return inode;
921 }
922 EXPORT_SYMBOL(new_inode);
923 
924 #ifdef CONFIG_DEBUG_LOCK_ALLOC
925 void lockdep_annotate_inode_mutex_key(struct inode *inode)
926 {
927 	if (S_ISDIR(inode->i_mode)) {
928 		struct file_system_type *type = inode->i_sb->s_type;
929 
930 		/* Set new key only if filesystem hasn't already changed it */
931 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
932 			/*
933 			 * ensure nobody is actually holding i_mutex
934 			 */
935 			// mutex_destroy(&inode->i_mutex);
936 			init_rwsem(&inode->i_rwsem);
937 			lockdep_set_class(&inode->i_rwsem,
938 					  &type->i_mutex_dir_key);
939 		}
940 	}
941 }
942 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
943 #endif
944 
945 /**
946  * unlock_new_inode - clear the I_NEW state and wake up any waiters
947  * @inode:	new inode to unlock
948  *
949  * Called when the inode is fully initialised to clear the new state of the
950  * inode and wake up anyone waiting for the inode to finish initialisation.
951  */
952 void unlock_new_inode(struct inode *inode)
953 {
954 	lockdep_annotate_inode_mutex_key(inode);
955 	spin_lock(&inode->i_lock);
956 	WARN_ON(!(inode->i_state & I_NEW));
957 	inode->i_state &= ~I_NEW;
958 	smp_mb();
959 	wake_up_bit(&inode->i_state, __I_NEW);
960 	spin_unlock(&inode->i_lock);
961 }
962 EXPORT_SYMBOL(unlock_new_inode);
963 
964 /**
965  * lock_two_nondirectories - take two i_mutexes on non-directory objects
966  *
967  * Lock any non-NULL argument that is not a directory.
968  * Zero, one or two objects may be locked by this function.
969  *
970  * @inode1: first inode to lock
971  * @inode2: second inode to lock
972  */
973 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
974 {
975 	if (inode1 > inode2)
976 		swap(inode1, inode2);
977 
978 	if (inode1 && !S_ISDIR(inode1->i_mode))
979 		inode_lock(inode1);
980 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
981 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
982 }
983 EXPORT_SYMBOL(lock_two_nondirectories);
984 
985 /**
986  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
987  * @inode1: first inode to unlock
988  * @inode2: second inode to unlock
989  */
990 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
991 {
992 	if (inode1 && !S_ISDIR(inode1->i_mode))
993 		inode_unlock(inode1);
994 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
995 		inode_unlock(inode2);
996 }
997 EXPORT_SYMBOL(unlock_two_nondirectories);
998 
999 /**
1000  * iget5_locked - obtain an inode from a mounted file system
1001  * @sb:		super block of file system
1002  * @hashval:	hash value (usually inode number) to get
1003  * @test:	callback used for comparisons between inodes
1004  * @set:	callback used to initialize a new struct inode
1005  * @data:	opaque data pointer to pass to @test and @set
1006  *
1007  * Search for the inode specified by @hashval and @data in the inode cache,
1008  * and if present it is return it with an increased reference count. This is
1009  * a generalized version of iget_locked() for file systems where the inode
1010  * number is not sufficient for unique identification of an inode.
1011  *
1012  * If the inode is not in cache, allocate a new inode and return it locked,
1013  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1014  * before unlocking it via unlock_new_inode().
1015  *
1016  * Note both @test and @set are called with the inode_hash_lock held, so can't
1017  * sleep.
1018  */
1019 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1020 		int (*test)(struct inode *, void *),
1021 		int (*set)(struct inode *, void *), void *data)
1022 {
1023 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1024 	struct inode *inode;
1025 again:
1026 	spin_lock(&inode_hash_lock);
1027 	inode = find_inode(sb, head, test, data);
1028 	spin_unlock(&inode_hash_lock);
1029 
1030 	if (inode) {
1031 		wait_on_inode(inode);
1032 		if (unlikely(inode_unhashed(inode))) {
1033 			iput(inode);
1034 			goto again;
1035 		}
1036 		return inode;
1037 	}
1038 
1039 	inode = alloc_inode(sb);
1040 	if (inode) {
1041 		struct inode *old;
1042 
1043 		spin_lock(&inode_hash_lock);
1044 		/* We released the lock, so.. */
1045 		old = find_inode(sb, head, test, data);
1046 		if (!old) {
1047 			if (set(inode, data))
1048 				goto set_failed;
1049 
1050 			spin_lock(&inode->i_lock);
1051 			inode->i_state = I_NEW;
1052 			hlist_add_head(&inode->i_hash, head);
1053 			spin_unlock(&inode->i_lock);
1054 			inode_sb_list_add(inode);
1055 			spin_unlock(&inode_hash_lock);
1056 
1057 			/* Return the locked inode with I_NEW set, the
1058 			 * caller is responsible for filling in the contents
1059 			 */
1060 			return inode;
1061 		}
1062 
1063 		/*
1064 		 * Uhhuh, somebody else created the same inode under
1065 		 * us. Use the old inode instead of the one we just
1066 		 * allocated.
1067 		 */
1068 		spin_unlock(&inode_hash_lock);
1069 		destroy_inode(inode);
1070 		inode = old;
1071 		wait_on_inode(inode);
1072 		if (unlikely(inode_unhashed(inode))) {
1073 			iput(inode);
1074 			goto again;
1075 		}
1076 	}
1077 	return inode;
1078 
1079 set_failed:
1080 	spin_unlock(&inode_hash_lock);
1081 	destroy_inode(inode);
1082 	return NULL;
1083 }
1084 EXPORT_SYMBOL(iget5_locked);
1085 
1086 /**
1087  * iget_locked - obtain an inode from a mounted file system
1088  * @sb:		super block of file system
1089  * @ino:	inode number to get
1090  *
1091  * Search for the inode specified by @ino in the inode cache and if present
1092  * return it with an increased reference count. This is for file systems
1093  * where the inode number is sufficient for unique identification of an inode.
1094  *
1095  * If the inode is not in cache, allocate a new inode and return it locked,
1096  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1097  * before unlocking it via unlock_new_inode().
1098  */
1099 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1100 {
1101 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1102 	struct inode *inode;
1103 again:
1104 	spin_lock(&inode_hash_lock);
1105 	inode = find_inode_fast(sb, head, ino);
1106 	spin_unlock(&inode_hash_lock);
1107 	if (inode) {
1108 		wait_on_inode(inode);
1109 		if (unlikely(inode_unhashed(inode))) {
1110 			iput(inode);
1111 			goto again;
1112 		}
1113 		return inode;
1114 	}
1115 
1116 	inode = alloc_inode(sb);
1117 	if (inode) {
1118 		struct inode *old;
1119 
1120 		spin_lock(&inode_hash_lock);
1121 		/* We released the lock, so.. */
1122 		old = find_inode_fast(sb, head, ino);
1123 		if (!old) {
1124 			inode->i_ino = ino;
1125 			spin_lock(&inode->i_lock);
1126 			inode->i_state = I_NEW;
1127 			hlist_add_head(&inode->i_hash, head);
1128 			spin_unlock(&inode->i_lock);
1129 			inode_sb_list_add(inode);
1130 			spin_unlock(&inode_hash_lock);
1131 
1132 			/* Return the locked inode with I_NEW set, the
1133 			 * caller is responsible for filling in the contents
1134 			 */
1135 			return inode;
1136 		}
1137 
1138 		/*
1139 		 * Uhhuh, somebody else created the same inode under
1140 		 * us. Use the old inode instead of the one we just
1141 		 * allocated.
1142 		 */
1143 		spin_unlock(&inode_hash_lock);
1144 		destroy_inode(inode);
1145 		inode = old;
1146 		wait_on_inode(inode);
1147 		if (unlikely(inode_unhashed(inode))) {
1148 			iput(inode);
1149 			goto again;
1150 		}
1151 	}
1152 	return inode;
1153 }
1154 EXPORT_SYMBOL(iget_locked);
1155 
1156 /*
1157  * search the inode cache for a matching inode number.
1158  * If we find one, then the inode number we are trying to
1159  * allocate is not unique and so we should not use it.
1160  *
1161  * Returns 1 if the inode number is unique, 0 if it is not.
1162  */
1163 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1164 {
1165 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1166 	struct inode *inode;
1167 
1168 	spin_lock(&inode_hash_lock);
1169 	hlist_for_each_entry(inode, b, i_hash) {
1170 		if (inode->i_ino == ino && inode->i_sb == sb) {
1171 			spin_unlock(&inode_hash_lock);
1172 			return 0;
1173 		}
1174 	}
1175 	spin_unlock(&inode_hash_lock);
1176 
1177 	return 1;
1178 }
1179 
1180 /**
1181  *	iunique - get a unique inode number
1182  *	@sb: superblock
1183  *	@max_reserved: highest reserved inode number
1184  *
1185  *	Obtain an inode number that is unique on the system for a given
1186  *	superblock. This is used by file systems that have no natural
1187  *	permanent inode numbering system. An inode number is returned that
1188  *	is higher than the reserved limit but unique.
1189  *
1190  *	BUGS:
1191  *	With a large number of inodes live on the file system this function
1192  *	currently becomes quite slow.
1193  */
1194 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1195 {
1196 	/*
1197 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1198 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1199 	 * here to attempt to avoid that.
1200 	 */
1201 	static DEFINE_SPINLOCK(iunique_lock);
1202 	static unsigned int counter;
1203 	ino_t res;
1204 
1205 	spin_lock(&iunique_lock);
1206 	do {
1207 		if (counter <= max_reserved)
1208 			counter = max_reserved + 1;
1209 		res = counter++;
1210 	} while (!test_inode_iunique(sb, res));
1211 	spin_unlock(&iunique_lock);
1212 
1213 	return res;
1214 }
1215 EXPORT_SYMBOL(iunique);
1216 
1217 struct inode *igrab(struct inode *inode)
1218 {
1219 	spin_lock(&inode->i_lock);
1220 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1221 		__iget(inode);
1222 		spin_unlock(&inode->i_lock);
1223 	} else {
1224 		spin_unlock(&inode->i_lock);
1225 		/*
1226 		 * Handle the case where s_op->clear_inode is not been
1227 		 * called yet, and somebody is calling igrab
1228 		 * while the inode is getting freed.
1229 		 */
1230 		inode = NULL;
1231 	}
1232 	return inode;
1233 }
1234 EXPORT_SYMBOL(igrab);
1235 
1236 /**
1237  * ilookup5_nowait - search for an inode in the inode cache
1238  * @sb:		super block of file system to search
1239  * @hashval:	hash value (usually inode number) to search for
1240  * @test:	callback used for comparisons between inodes
1241  * @data:	opaque data pointer to pass to @test
1242  *
1243  * Search for the inode specified by @hashval and @data in the inode cache.
1244  * If the inode is in the cache, the inode is returned with an incremented
1245  * reference count.
1246  *
1247  * Note: I_NEW is not waited upon so you have to be very careful what you do
1248  * with the returned inode.  You probably should be using ilookup5() instead.
1249  *
1250  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1251  */
1252 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1253 		int (*test)(struct inode *, void *), void *data)
1254 {
1255 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1256 	struct inode *inode;
1257 
1258 	spin_lock(&inode_hash_lock);
1259 	inode = find_inode(sb, head, test, data);
1260 	spin_unlock(&inode_hash_lock);
1261 
1262 	return inode;
1263 }
1264 EXPORT_SYMBOL(ilookup5_nowait);
1265 
1266 /**
1267  * ilookup5 - search for an inode in the inode cache
1268  * @sb:		super block of file system to search
1269  * @hashval:	hash value (usually inode number) to search for
1270  * @test:	callback used for comparisons between inodes
1271  * @data:	opaque data pointer to pass to @test
1272  *
1273  * Search for the inode specified by @hashval and @data in the inode cache,
1274  * and if the inode is in the cache, return the inode with an incremented
1275  * reference count.  Waits on I_NEW before returning the inode.
1276  * returned with an incremented reference count.
1277  *
1278  * This is a generalized version of ilookup() for file systems where the
1279  * inode number is not sufficient for unique identification of an inode.
1280  *
1281  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1282  */
1283 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1284 		int (*test)(struct inode *, void *), void *data)
1285 {
1286 	struct inode *inode;
1287 again:
1288 	inode = ilookup5_nowait(sb, hashval, test, data);
1289 	if (inode) {
1290 		wait_on_inode(inode);
1291 		if (unlikely(inode_unhashed(inode))) {
1292 			iput(inode);
1293 			goto again;
1294 		}
1295 	}
1296 	return inode;
1297 }
1298 EXPORT_SYMBOL(ilookup5);
1299 
1300 /**
1301  * ilookup - search for an inode in the inode cache
1302  * @sb:		super block of file system to search
1303  * @ino:	inode number to search for
1304  *
1305  * Search for the inode @ino in the inode cache, and if the inode is in the
1306  * cache, the inode is returned with an incremented reference count.
1307  */
1308 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1309 {
1310 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1311 	struct inode *inode;
1312 again:
1313 	spin_lock(&inode_hash_lock);
1314 	inode = find_inode_fast(sb, head, ino);
1315 	spin_unlock(&inode_hash_lock);
1316 
1317 	if (inode) {
1318 		wait_on_inode(inode);
1319 		if (unlikely(inode_unhashed(inode))) {
1320 			iput(inode);
1321 			goto again;
1322 		}
1323 	}
1324 	return inode;
1325 }
1326 EXPORT_SYMBOL(ilookup);
1327 
1328 /**
1329  * find_inode_nowait - find an inode in the inode cache
1330  * @sb:		super block of file system to search
1331  * @hashval:	hash value (usually inode number) to search for
1332  * @match:	callback used for comparisons between inodes
1333  * @data:	opaque data pointer to pass to @match
1334  *
1335  * Search for the inode specified by @hashval and @data in the inode
1336  * cache, where the helper function @match will return 0 if the inode
1337  * does not match, 1 if the inode does match, and -1 if the search
1338  * should be stopped.  The @match function must be responsible for
1339  * taking the i_lock spin_lock and checking i_state for an inode being
1340  * freed or being initialized, and incrementing the reference count
1341  * before returning 1.  It also must not sleep, since it is called with
1342  * the inode_hash_lock spinlock held.
1343  *
1344  * This is a even more generalized version of ilookup5() when the
1345  * function must never block --- find_inode() can block in
1346  * __wait_on_freeing_inode() --- or when the caller can not increment
1347  * the reference count because the resulting iput() might cause an
1348  * inode eviction.  The tradeoff is that the @match funtion must be
1349  * very carefully implemented.
1350  */
1351 struct inode *find_inode_nowait(struct super_block *sb,
1352 				unsigned long hashval,
1353 				int (*match)(struct inode *, unsigned long,
1354 					     void *),
1355 				void *data)
1356 {
1357 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1358 	struct inode *inode, *ret_inode = NULL;
1359 	int mval;
1360 
1361 	spin_lock(&inode_hash_lock);
1362 	hlist_for_each_entry(inode, head, i_hash) {
1363 		if (inode->i_sb != sb)
1364 			continue;
1365 		mval = match(inode, hashval, data);
1366 		if (mval == 0)
1367 			continue;
1368 		if (mval == 1)
1369 			ret_inode = inode;
1370 		goto out;
1371 	}
1372 out:
1373 	spin_unlock(&inode_hash_lock);
1374 	return ret_inode;
1375 }
1376 EXPORT_SYMBOL(find_inode_nowait);
1377 
1378 int insert_inode_locked(struct inode *inode)
1379 {
1380 	struct super_block *sb = inode->i_sb;
1381 	ino_t ino = inode->i_ino;
1382 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1383 
1384 	while (1) {
1385 		struct inode *old = NULL;
1386 		spin_lock(&inode_hash_lock);
1387 		hlist_for_each_entry(old, head, i_hash) {
1388 			if (old->i_ino != ino)
1389 				continue;
1390 			if (old->i_sb != sb)
1391 				continue;
1392 			spin_lock(&old->i_lock);
1393 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1394 				spin_unlock(&old->i_lock);
1395 				continue;
1396 			}
1397 			break;
1398 		}
1399 		if (likely(!old)) {
1400 			spin_lock(&inode->i_lock);
1401 			inode->i_state |= I_NEW;
1402 			hlist_add_head(&inode->i_hash, head);
1403 			spin_unlock(&inode->i_lock);
1404 			spin_unlock(&inode_hash_lock);
1405 			return 0;
1406 		}
1407 		__iget(old);
1408 		spin_unlock(&old->i_lock);
1409 		spin_unlock(&inode_hash_lock);
1410 		wait_on_inode(old);
1411 		if (unlikely(!inode_unhashed(old))) {
1412 			iput(old);
1413 			return -EBUSY;
1414 		}
1415 		iput(old);
1416 	}
1417 }
1418 EXPORT_SYMBOL(insert_inode_locked);
1419 
1420 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1421 		int (*test)(struct inode *, void *), void *data)
1422 {
1423 	struct super_block *sb = inode->i_sb;
1424 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1425 
1426 	while (1) {
1427 		struct inode *old = NULL;
1428 
1429 		spin_lock(&inode_hash_lock);
1430 		hlist_for_each_entry(old, head, i_hash) {
1431 			if (old->i_sb != sb)
1432 				continue;
1433 			if (!test(old, data))
1434 				continue;
1435 			spin_lock(&old->i_lock);
1436 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1437 				spin_unlock(&old->i_lock);
1438 				continue;
1439 			}
1440 			break;
1441 		}
1442 		if (likely(!old)) {
1443 			spin_lock(&inode->i_lock);
1444 			inode->i_state |= I_NEW;
1445 			hlist_add_head(&inode->i_hash, head);
1446 			spin_unlock(&inode->i_lock);
1447 			spin_unlock(&inode_hash_lock);
1448 			return 0;
1449 		}
1450 		__iget(old);
1451 		spin_unlock(&old->i_lock);
1452 		spin_unlock(&inode_hash_lock);
1453 		wait_on_inode(old);
1454 		if (unlikely(!inode_unhashed(old))) {
1455 			iput(old);
1456 			return -EBUSY;
1457 		}
1458 		iput(old);
1459 	}
1460 }
1461 EXPORT_SYMBOL(insert_inode_locked4);
1462 
1463 
1464 int generic_delete_inode(struct inode *inode)
1465 {
1466 	return 1;
1467 }
1468 EXPORT_SYMBOL(generic_delete_inode);
1469 
1470 /*
1471  * Called when we're dropping the last reference
1472  * to an inode.
1473  *
1474  * Call the FS "drop_inode()" function, defaulting to
1475  * the legacy UNIX filesystem behaviour.  If it tells
1476  * us to evict inode, do so.  Otherwise, retain inode
1477  * in cache if fs is alive, sync and evict if fs is
1478  * shutting down.
1479  */
1480 static void iput_final(struct inode *inode)
1481 {
1482 	struct super_block *sb = inode->i_sb;
1483 	const struct super_operations *op = inode->i_sb->s_op;
1484 	int drop;
1485 
1486 	WARN_ON(inode->i_state & I_NEW);
1487 
1488 	if (op->drop_inode)
1489 		drop = op->drop_inode(inode);
1490 	else
1491 		drop = generic_drop_inode(inode);
1492 
1493 	if (!drop && (sb->s_flags & MS_ACTIVE)) {
1494 		inode_add_lru(inode);
1495 		spin_unlock(&inode->i_lock);
1496 		return;
1497 	}
1498 
1499 	if (!drop) {
1500 		inode->i_state |= I_WILL_FREE;
1501 		spin_unlock(&inode->i_lock);
1502 		write_inode_now(inode, 1);
1503 		spin_lock(&inode->i_lock);
1504 		WARN_ON(inode->i_state & I_NEW);
1505 		inode->i_state &= ~I_WILL_FREE;
1506 	}
1507 
1508 	inode->i_state |= I_FREEING;
1509 	if (!list_empty(&inode->i_lru))
1510 		inode_lru_list_del(inode);
1511 	spin_unlock(&inode->i_lock);
1512 
1513 	evict(inode);
1514 }
1515 
1516 /**
1517  *	iput	- put an inode
1518  *	@inode: inode to put
1519  *
1520  *	Puts an inode, dropping its usage count. If the inode use count hits
1521  *	zero, the inode is then freed and may also be destroyed.
1522  *
1523  *	Consequently, iput() can sleep.
1524  */
1525 void iput(struct inode *inode)
1526 {
1527 	if (!inode)
1528 		return;
1529 	BUG_ON(inode->i_state & I_CLEAR);
1530 retry:
1531 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1532 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1533 			atomic_inc(&inode->i_count);
1534 			inode->i_state &= ~I_DIRTY_TIME;
1535 			spin_unlock(&inode->i_lock);
1536 			trace_writeback_lazytime_iput(inode);
1537 			mark_inode_dirty_sync(inode);
1538 			goto retry;
1539 		}
1540 		iput_final(inode);
1541 	}
1542 }
1543 EXPORT_SYMBOL(iput);
1544 
1545 /**
1546  *	bmap	- find a block number in a file
1547  *	@inode: inode of file
1548  *	@block: block to find
1549  *
1550  *	Returns the block number on the device holding the inode that
1551  *	is the disk block number for the block of the file requested.
1552  *	That is, asked for block 4 of inode 1 the function will return the
1553  *	disk block relative to the disk start that holds that block of the
1554  *	file.
1555  */
1556 sector_t bmap(struct inode *inode, sector_t block)
1557 {
1558 	sector_t res = 0;
1559 	if (inode->i_mapping->a_ops->bmap)
1560 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1561 	return res;
1562 }
1563 EXPORT_SYMBOL(bmap);
1564 
1565 /*
1566  * Update times in overlayed inode from underlying real inode
1567  */
1568 static void update_ovl_inode_times(struct dentry *dentry, struct inode *inode,
1569 			       bool rcu)
1570 {
1571 	if (!rcu) {
1572 		struct inode *realinode = d_real_inode(dentry);
1573 
1574 		if (unlikely(inode != realinode) &&
1575 		    (!timespec_equal(&inode->i_mtime, &realinode->i_mtime) ||
1576 		     !timespec_equal(&inode->i_ctime, &realinode->i_ctime))) {
1577 			inode->i_mtime = realinode->i_mtime;
1578 			inode->i_ctime = realinode->i_ctime;
1579 		}
1580 	}
1581 }
1582 
1583 /*
1584  * With relative atime, only update atime if the previous atime is
1585  * earlier than either the ctime or mtime or if at least a day has
1586  * passed since the last atime update.
1587  */
1588 static int relatime_need_update(const struct path *path, struct inode *inode,
1589 				struct timespec now, bool rcu)
1590 {
1591 
1592 	if (!(path->mnt->mnt_flags & MNT_RELATIME))
1593 		return 1;
1594 
1595 	update_ovl_inode_times(path->dentry, inode, rcu);
1596 	/*
1597 	 * Is mtime younger than atime? If yes, update atime:
1598 	 */
1599 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1600 		return 1;
1601 	/*
1602 	 * Is ctime younger than atime? If yes, update atime:
1603 	 */
1604 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1605 		return 1;
1606 
1607 	/*
1608 	 * Is the previous atime value older than a day? If yes,
1609 	 * update atime:
1610 	 */
1611 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1612 		return 1;
1613 	/*
1614 	 * Good, we can skip the atime update:
1615 	 */
1616 	return 0;
1617 }
1618 
1619 int generic_update_time(struct inode *inode, struct timespec *time, int flags)
1620 {
1621 	int iflags = I_DIRTY_TIME;
1622 
1623 	if (flags & S_ATIME)
1624 		inode->i_atime = *time;
1625 	if (flags & S_VERSION)
1626 		inode_inc_iversion(inode);
1627 	if (flags & S_CTIME)
1628 		inode->i_ctime = *time;
1629 	if (flags & S_MTIME)
1630 		inode->i_mtime = *time;
1631 
1632 	if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION))
1633 		iflags |= I_DIRTY_SYNC;
1634 	__mark_inode_dirty(inode, iflags);
1635 	return 0;
1636 }
1637 EXPORT_SYMBOL(generic_update_time);
1638 
1639 /*
1640  * This does the actual work of updating an inodes time or version.  Must have
1641  * had called mnt_want_write() before calling this.
1642  */
1643 static int update_time(struct inode *inode, struct timespec *time, int flags)
1644 {
1645 	int (*update_time)(struct inode *, struct timespec *, int);
1646 
1647 	update_time = inode->i_op->update_time ? inode->i_op->update_time :
1648 		generic_update_time;
1649 
1650 	return update_time(inode, time, flags);
1651 }
1652 
1653 /**
1654  *	touch_atime	-	update the access time
1655  *	@path: the &struct path to update
1656  *	@inode: inode to update
1657  *
1658  *	Update the accessed time on an inode and mark it for writeback.
1659  *	This function automatically handles read only file systems and media,
1660  *	as well as the "noatime" flag and inode specific "noatime" markers.
1661  */
1662 bool __atime_needs_update(const struct path *path, struct inode *inode,
1663 			  bool rcu)
1664 {
1665 	struct vfsmount *mnt = path->mnt;
1666 	struct timespec now;
1667 
1668 	if (inode->i_flags & S_NOATIME)
1669 		return false;
1670 
1671 	/* Atime updates will likely cause i_uid and i_gid to be written
1672 	 * back improprely if their true value is unknown to the vfs.
1673 	 */
1674 	if (HAS_UNMAPPED_ID(inode))
1675 		return false;
1676 
1677 	if (IS_NOATIME(inode))
1678 		return false;
1679 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1680 		return false;
1681 
1682 	if (mnt->mnt_flags & MNT_NOATIME)
1683 		return false;
1684 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1685 		return false;
1686 
1687 	now = current_time(inode);
1688 
1689 	if (!relatime_need_update(path, inode, now, rcu))
1690 		return false;
1691 
1692 	if (timespec_equal(&inode->i_atime, &now))
1693 		return false;
1694 
1695 	return true;
1696 }
1697 
1698 void touch_atime(const struct path *path)
1699 {
1700 	struct vfsmount *mnt = path->mnt;
1701 	struct inode *inode = d_inode(path->dentry);
1702 	struct timespec now;
1703 
1704 	if (!__atime_needs_update(path, inode, false))
1705 		return;
1706 
1707 	if (!sb_start_write_trylock(inode->i_sb))
1708 		return;
1709 
1710 	if (__mnt_want_write(mnt) != 0)
1711 		goto skip_update;
1712 	/*
1713 	 * File systems can error out when updating inodes if they need to
1714 	 * allocate new space to modify an inode (such is the case for
1715 	 * Btrfs), but since we touch atime while walking down the path we
1716 	 * really don't care if we failed to update the atime of the file,
1717 	 * so just ignore the return value.
1718 	 * We may also fail on filesystems that have the ability to make parts
1719 	 * of the fs read only, e.g. subvolumes in Btrfs.
1720 	 */
1721 	now = current_time(inode);
1722 	update_time(inode, &now, S_ATIME);
1723 	__mnt_drop_write(mnt);
1724 skip_update:
1725 	sb_end_write(inode->i_sb);
1726 }
1727 EXPORT_SYMBOL(touch_atime);
1728 
1729 /*
1730  * The logic we want is
1731  *
1732  *	if suid or (sgid and xgrp)
1733  *		remove privs
1734  */
1735 int should_remove_suid(struct dentry *dentry)
1736 {
1737 	umode_t mode = d_inode(dentry)->i_mode;
1738 	int kill = 0;
1739 
1740 	/* suid always must be killed */
1741 	if (unlikely(mode & S_ISUID))
1742 		kill = ATTR_KILL_SUID;
1743 
1744 	/*
1745 	 * sgid without any exec bits is just a mandatory locking mark; leave
1746 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1747 	 */
1748 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1749 		kill |= ATTR_KILL_SGID;
1750 
1751 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1752 		return kill;
1753 
1754 	return 0;
1755 }
1756 EXPORT_SYMBOL(should_remove_suid);
1757 
1758 /*
1759  * Return mask of changes for notify_change() that need to be done as a
1760  * response to write or truncate. Return 0 if nothing has to be changed.
1761  * Negative value on error (change should be denied).
1762  */
1763 int dentry_needs_remove_privs(struct dentry *dentry)
1764 {
1765 	struct inode *inode = d_inode(dentry);
1766 	int mask = 0;
1767 	int ret;
1768 
1769 	if (IS_NOSEC(inode))
1770 		return 0;
1771 
1772 	mask = should_remove_suid(dentry);
1773 	ret = security_inode_need_killpriv(dentry);
1774 	if (ret < 0)
1775 		return ret;
1776 	if (ret)
1777 		mask |= ATTR_KILL_PRIV;
1778 	return mask;
1779 }
1780 
1781 static int __remove_privs(struct dentry *dentry, int kill)
1782 {
1783 	struct iattr newattrs;
1784 
1785 	newattrs.ia_valid = ATTR_FORCE | kill;
1786 	/*
1787 	 * Note we call this on write, so notify_change will not
1788 	 * encounter any conflicting delegations:
1789 	 */
1790 	return notify_change(dentry, &newattrs, NULL);
1791 }
1792 
1793 /*
1794  * Remove special file priviledges (suid, capabilities) when file is written
1795  * to or truncated.
1796  */
1797 int file_remove_privs(struct file *file)
1798 {
1799 	struct dentry *dentry = file_dentry(file);
1800 	struct inode *inode = file_inode(file);
1801 	int kill;
1802 	int error = 0;
1803 
1804 	/* Fast path for nothing security related */
1805 	if (IS_NOSEC(inode))
1806 		return 0;
1807 
1808 	kill = dentry_needs_remove_privs(dentry);
1809 	if (kill < 0)
1810 		return kill;
1811 	if (kill)
1812 		error = __remove_privs(dentry, kill);
1813 	if (!error)
1814 		inode_has_no_xattr(inode);
1815 
1816 	return error;
1817 }
1818 EXPORT_SYMBOL(file_remove_privs);
1819 
1820 /**
1821  *	file_update_time	-	update mtime and ctime time
1822  *	@file: file accessed
1823  *
1824  *	Update the mtime and ctime members of an inode and mark the inode
1825  *	for writeback.  Note that this function is meant exclusively for
1826  *	usage in the file write path of filesystems, and filesystems may
1827  *	choose to explicitly ignore update via this function with the
1828  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1829  *	timestamps are handled by the server.  This can return an error for
1830  *	file systems who need to allocate space in order to update an inode.
1831  */
1832 
1833 int file_update_time(struct file *file)
1834 {
1835 	struct inode *inode = file_inode(file);
1836 	struct timespec now;
1837 	int sync_it = 0;
1838 	int ret;
1839 
1840 	/* First try to exhaust all avenues to not sync */
1841 	if (IS_NOCMTIME(inode))
1842 		return 0;
1843 
1844 	now = current_time(inode);
1845 	if (!timespec_equal(&inode->i_mtime, &now))
1846 		sync_it = S_MTIME;
1847 
1848 	if (!timespec_equal(&inode->i_ctime, &now))
1849 		sync_it |= S_CTIME;
1850 
1851 	if (IS_I_VERSION(inode))
1852 		sync_it |= S_VERSION;
1853 
1854 	if (!sync_it)
1855 		return 0;
1856 
1857 	/* Finally allowed to write? Takes lock. */
1858 	if (__mnt_want_write_file(file))
1859 		return 0;
1860 
1861 	ret = update_time(inode, &now, sync_it);
1862 	__mnt_drop_write_file(file);
1863 
1864 	return ret;
1865 }
1866 EXPORT_SYMBOL(file_update_time);
1867 
1868 int inode_needs_sync(struct inode *inode)
1869 {
1870 	if (IS_SYNC(inode))
1871 		return 1;
1872 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1873 		return 1;
1874 	return 0;
1875 }
1876 EXPORT_SYMBOL(inode_needs_sync);
1877 
1878 /*
1879  * If we try to find an inode in the inode hash while it is being
1880  * deleted, we have to wait until the filesystem completes its
1881  * deletion before reporting that it isn't found.  This function waits
1882  * until the deletion _might_ have completed.  Callers are responsible
1883  * to recheck inode state.
1884  *
1885  * It doesn't matter if I_NEW is not set initially, a call to
1886  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1887  * will DTRT.
1888  */
1889 static void __wait_on_freeing_inode(struct inode *inode)
1890 {
1891 	wait_queue_head_t *wq;
1892 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1893 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1894 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1895 	spin_unlock(&inode->i_lock);
1896 	spin_unlock(&inode_hash_lock);
1897 	schedule();
1898 	finish_wait(wq, &wait.wait);
1899 	spin_lock(&inode_hash_lock);
1900 }
1901 
1902 static __initdata unsigned long ihash_entries;
1903 static int __init set_ihash_entries(char *str)
1904 {
1905 	if (!str)
1906 		return 0;
1907 	ihash_entries = simple_strtoul(str, &str, 0);
1908 	return 1;
1909 }
1910 __setup("ihash_entries=", set_ihash_entries);
1911 
1912 /*
1913  * Initialize the waitqueues and inode hash table.
1914  */
1915 void __init inode_init_early(void)
1916 {
1917 	unsigned int loop;
1918 
1919 	/* If hashes are distributed across NUMA nodes, defer
1920 	 * hash allocation until vmalloc space is available.
1921 	 */
1922 	if (hashdist)
1923 		return;
1924 
1925 	inode_hashtable =
1926 		alloc_large_system_hash("Inode-cache",
1927 					sizeof(struct hlist_head),
1928 					ihash_entries,
1929 					14,
1930 					HASH_EARLY,
1931 					&i_hash_shift,
1932 					&i_hash_mask,
1933 					0,
1934 					0);
1935 
1936 	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1937 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1938 }
1939 
1940 void __init inode_init(void)
1941 {
1942 	unsigned int loop;
1943 
1944 	/* inode slab cache */
1945 	inode_cachep = kmem_cache_create("inode_cache",
1946 					 sizeof(struct inode),
1947 					 0,
1948 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1949 					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1950 					 init_once);
1951 
1952 	/* Hash may have been set up in inode_init_early */
1953 	if (!hashdist)
1954 		return;
1955 
1956 	inode_hashtable =
1957 		alloc_large_system_hash("Inode-cache",
1958 					sizeof(struct hlist_head),
1959 					ihash_entries,
1960 					14,
1961 					0,
1962 					&i_hash_shift,
1963 					&i_hash_mask,
1964 					0,
1965 					0);
1966 
1967 	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1968 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1969 }
1970 
1971 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1972 {
1973 	inode->i_mode = mode;
1974 	if (S_ISCHR(mode)) {
1975 		inode->i_fop = &def_chr_fops;
1976 		inode->i_rdev = rdev;
1977 	} else if (S_ISBLK(mode)) {
1978 		inode->i_fop = &def_blk_fops;
1979 		inode->i_rdev = rdev;
1980 	} else if (S_ISFIFO(mode))
1981 		inode->i_fop = &pipefifo_fops;
1982 	else if (S_ISSOCK(mode))
1983 		;	/* leave it no_open_fops */
1984 	else
1985 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1986 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1987 				  inode->i_ino);
1988 }
1989 EXPORT_SYMBOL(init_special_inode);
1990 
1991 /**
1992  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1993  * @inode: New inode
1994  * @dir: Directory inode
1995  * @mode: mode of the new inode
1996  */
1997 void inode_init_owner(struct inode *inode, const struct inode *dir,
1998 			umode_t mode)
1999 {
2000 	inode->i_uid = current_fsuid();
2001 	if (dir && dir->i_mode & S_ISGID) {
2002 		inode->i_gid = dir->i_gid;
2003 		if (S_ISDIR(mode))
2004 			mode |= S_ISGID;
2005 	} else
2006 		inode->i_gid = current_fsgid();
2007 	inode->i_mode = mode;
2008 }
2009 EXPORT_SYMBOL(inode_init_owner);
2010 
2011 /**
2012  * inode_owner_or_capable - check current task permissions to inode
2013  * @inode: inode being checked
2014  *
2015  * Return true if current either has CAP_FOWNER in a namespace with the
2016  * inode owner uid mapped, or owns the file.
2017  */
2018 bool inode_owner_or_capable(const struct inode *inode)
2019 {
2020 	struct user_namespace *ns;
2021 
2022 	if (uid_eq(current_fsuid(), inode->i_uid))
2023 		return true;
2024 
2025 	ns = current_user_ns();
2026 	if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
2027 		return true;
2028 	return false;
2029 }
2030 EXPORT_SYMBOL(inode_owner_or_capable);
2031 
2032 /*
2033  * Direct i/o helper functions
2034  */
2035 static void __inode_dio_wait(struct inode *inode)
2036 {
2037 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2038 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2039 
2040 	do {
2041 		prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
2042 		if (atomic_read(&inode->i_dio_count))
2043 			schedule();
2044 	} while (atomic_read(&inode->i_dio_count));
2045 	finish_wait(wq, &q.wait);
2046 }
2047 
2048 /**
2049  * inode_dio_wait - wait for outstanding DIO requests to finish
2050  * @inode: inode to wait for
2051  *
2052  * Waits for all pending direct I/O requests to finish so that we can
2053  * proceed with a truncate or equivalent operation.
2054  *
2055  * Must be called under a lock that serializes taking new references
2056  * to i_dio_count, usually by inode->i_mutex.
2057  */
2058 void inode_dio_wait(struct inode *inode)
2059 {
2060 	if (atomic_read(&inode->i_dio_count))
2061 		__inode_dio_wait(inode);
2062 }
2063 EXPORT_SYMBOL(inode_dio_wait);
2064 
2065 /*
2066  * inode_set_flags - atomically set some inode flags
2067  *
2068  * Note: the caller should be holding i_mutex, or else be sure that
2069  * they have exclusive access to the inode structure (i.e., while the
2070  * inode is being instantiated).  The reason for the cmpxchg() loop
2071  * --- which wouldn't be necessary if all code paths which modify
2072  * i_flags actually followed this rule, is that there is at least one
2073  * code path which doesn't today so we use cmpxchg() out of an abundance
2074  * of caution.
2075  *
2076  * In the long run, i_mutex is overkill, and we should probably look
2077  * at using the i_lock spinlock to protect i_flags, and then make sure
2078  * it is so documented in include/linux/fs.h and that all code follows
2079  * the locking convention!!
2080  */
2081 void inode_set_flags(struct inode *inode, unsigned int flags,
2082 		     unsigned int mask)
2083 {
2084 	unsigned int old_flags, new_flags;
2085 
2086 	WARN_ON_ONCE(flags & ~mask);
2087 	do {
2088 		old_flags = ACCESS_ONCE(inode->i_flags);
2089 		new_flags = (old_flags & ~mask) | flags;
2090 	} while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2091 				  new_flags) != old_flags));
2092 }
2093 EXPORT_SYMBOL(inode_set_flags);
2094 
2095 void inode_nohighmem(struct inode *inode)
2096 {
2097 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2098 }
2099 EXPORT_SYMBOL(inode_nohighmem);
2100 
2101 /**
2102  * current_time - Return FS time
2103  * @inode: inode.
2104  *
2105  * Return the current time truncated to the time granularity supported by
2106  * the fs.
2107  *
2108  * Note that inode and inode->sb cannot be NULL.
2109  * Otherwise, the function warns and returns time without truncation.
2110  */
2111 struct timespec current_time(struct inode *inode)
2112 {
2113 	struct timespec now = current_kernel_time();
2114 
2115 	if (unlikely(!inode->i_sb)) {
2116 		WARN(1, "current_time() called with uninitialized super_block in the inode");
2117 		return now;
2118 	}
2119 
2120 	return timespec_trunc(now, inode->i_sb->s_time_gran);
2121 }
2122 EXPORT_SYMBOL(current_time);
2123