xref: /openbmc/linux/fs/inode.c (revision cfdfc14e)
1 /*
2  * (C) 1997 Linus Torvalds
3  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4  */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <linux/iversion.h>
22 #include <trace/events/writeback.h>
23 #include "internal.h"
24 
25 /*
26  * Inode locking rules:
27  *
28  * inode->i_lock protects:
29  *   inode->i_state, inode->i_hash, __iget()
30  * Inode LRU list locks protect:
31  *   inode->i_sb->s_inode_lru, inode->i_lru
32  * inode->i_sb->s_inode_list_lock protects:
33  *   inode->i_sb->s_inodes, inode->i_sb_list
34  * bdi->wb.list_lock protects:
35  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
36  * inode_hash_lock protects:
37  *   inode_hashtable, inode->i_hash
38  *
39  * Lock ordering:
40  *
41  * inode->i_sb->s_inode_list_lock
42  *   inode->i_lock
43  *     Inode LRU list locks
44  *
45  * bdi->wb.list_lock
46  *   inode->i_lock
47  *
48  * inode_hash_lock
49  *   inode->i_sb->s_inode_list_lock
50  *   inode->i_lock
51  *
52  * iunique_lock
53  *   inode_hash_lock
54  */
55 
56 static unsigned int i_hash_mask __read_mostly;
57 static unsigned int i_hash_shift __read_mostly;
58 static struct hlist_head *inode_hashtable __read_mostly;
59 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
60 
61 /*
62  * Empty aops. Can be used for the cases where the user does not
63  * define any of the address_space operations.
64  */
65 const struct address_space_operations empty_aops = {
66 };
67 EXPORT_SYMBOL(empty_aops);
68 
69 /*
70  * Statistics gathering..
71  */
72 struct inodes_stat_t inodes_stat;
73 
74 static DEFINE_PER_CPU(unsigned long, nr_inodes);
75 static DEFINE_PER_CPU(unsigned long, nr_unused);
76 
77 static struct kmem_cache *inode_cachep __read_mostly;
78 
79 static long get_nr_inodes(void)
80 {
81 	int i;
82 	long sum = 0;
83 	for_each_possible_cpu(i)
84 		sum += per_cpu(nr_inodes, i);
85 	return sum < 0 ? 0 : sum;
86 }
87 
88 static inline long get_nr_inodes_unused(void)
89 {
90 	int i;
91 	long sum = 0;
92 	for_each_possible_cpu(i)
93 		sum += per_cpu(nr_unused, i);
94 	return sum < 0 ? 0 : sum;
95 }
96 
97 long get_nr_dirty_inodes(void)
98 {
99 	/* not actually dirty inodes, but a wild approximation */
100 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
101 	return nr_dirty > 0 ? nr_dirty : 0;
102 }
103 
104 /*
105  * Handle nr_inode sysctl
106  */
107 #ifdef CONFIG_SYSCTL
108 int proc_nr_inodes(struct ctl_table *table, int write,
109 		   void __user *buffer, size_t *lenp, loff_t *ppos)
110 {
111 	inodes_stat.nr_inodes = get_nr_inodes();
112 	inodes_stat.nr_unused = get_nr_inodes_unused();
113 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
114 }
115 #endif
116 
117 static int no_open(struct inode *inode, struct file *file)
118 {
119 	return -ENXIO;
120 }
121 
122 /**
123  * inode_init_always - perform inode structure initialisation
124  * @sb: superblock inode belongs to
125  * @inode: inode to initialise
126  *
127  * These are initializations that need to be done on every inode
128  * allocation as the fields are not initialised by slab allocation.
129  */
130 int inode_init_always(struct super_block *sb, struct inode *inode)
131 {
132 	static const struct inode_operations empty_iops;
133 	static const struct file_operations no_open_fops = {.open = no_open};
134 	struct address_space *const mapping = &inode->i_data;
135 
136 	inode->i_sb = sb;
137 	inode->i_blkbits = sb->s_blocksize_bits;
138 	inode->i_flags = 0;
139 	atomic_set(&inode->i_count, 1);
140 	inode->i_op = &empty_iops;
141 	inode->i_fop = &no_open_fops;
142 	inode->__i_nlink = 1;
143 	inode->i_opflags = 0;
144 	if (sb->s_xattr)
145 		inode->i_opflags |= IOP_XATTR;
146 	i_uid_write(inode, 0);
147 	i_gid_write(inode, 0);
148 	atomic_set(&inode->i_writecount, 0);
149 	inode->i_size = 0;
150 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
151 	inode->i_blocks = 0;
152 	inode->i_bytes = 0;
153 	inode->i_generation = 0;
154 	inode->i_pipe = NULL;
155 	inode->i_bdev = NULL;
156 	inode->i_cdev = NULL;
157 	inode->i_link = NULL;
158 	inode->i_dir_seq = 0;
159 	inode->i_rdev = 0;
160 	inode->dirtied_when = 0;
161 
162 #ifdef CONFIG_CGROUP_WRITEBACK
163 	inode->i_wb_frn_winner = 0;
164 	inode->i_wb_frn_avg_time = 0;
165 	inode->i_wb_frn_history = 0;
166 #endif
167 
168 	if (security_inode_alloc(inode))
169 		goto out;
170 	spin_lock_init(&inode->i_lock);
171 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
172 
173 	init_rwsem(&inode->i_rwsem);
174 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
175 
176 	atomic_set(&inode->i_dio_count, 0);
177 
178 	mapping->a_ops = &empty_aops;
179 	mapping->host = inode;
180 	mapping->flags = 0;
181 	mapping->wb_err = 0;
182 	atomic_set(&mapping->i_mmap_writable, 0);
183 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
184 	mapping->private_data = NULL;
185 	mapping->writeback_index = 0;
186 	inode->i_private = NULL;
187 	inode->i_mapping = mapping;
188 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
189 #ifdef CONFIG_FS_POSIX_ACL
190 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
191 #endif
192 
193 #ifdef CONFIG_FSNOTIFY
194 	inode->i_fsnotify_mask = 0;
195 #endif
196 	inode->i_flctx = NULL;
197 	this_cpu_inc(nr_inodes);
198 
199 	return 0;
200 out:
201 	return -ENOMEM;
202 }
203 EXPORT_SYMBOL(inode_init_always);
204 
205 static struct inode *alloc_inode(struct super_block *sb)
206 {
207 	struct inode *inode;
208 
209 	if (sb->s_op->alloc_inode)
210 		inode = sb->s_op->alloc_inode(sb);
211 	else
212 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
213 
214 	if (!inode)
215 		return NULL;
216 
217 	if (unlikely(inode_init_always(sb, inode))) {
218 		if (inode->i_sb->s_op->destroy_inode)
219 			inode->i_sb->s_op->destroy_inode(inode);
220 		else
221 			kmem_cache_free(inode_cachep, inode);
222 		return NULL;
223 	}
224 
225 	return inode;
226 }
227 
228 void free_inode_nonrcu(struct inode *inode)
229 {
230 	kmem_cache_free(inode_cachep, inode);
231 }
232 EXPORT_SYMBOL(free_inode_nonrcu);
233 
234 void __destroy_inode(struct inode *inode)
235 {
236 	BUG_ON(inode_has_buffers(inode));
237 	inode_detach_wb(inode);
238 	security_inode_free(inode);
239 	fsnotify_inode_delete(inode);
240 	locks_free_lock_context(inode);
241 	if (!inode->i_nlink) {
242 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
243 		atomic_long_dec(&inode->i_sb->s_remove_count);
244 	}
245 
246 #ifdef CONFIG_FS_POSIX_ACL
247 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
248 		posix_acl_release(inode->i_acl);
249 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
250 		posix_acl_release(inode->i_default_acl);
251 #endif
252 	this_cpu_dec(nr_inodes);
253 }
254 EXPORT_SYMBOL(__destroy_inode);
255 
256 static void i_callback(struct rcu_head *head)
257 {
258 	struct inode *inode = container_of(head, struct inode, i_rcu);
259 	kmem_cache_free(inode_cachep, inode);
260 }
261 
262 static void destroy_inode(struct inode *inode)
263 {
264 	BUG_ON(!list_empty(&inode->i_lru));
265 	__destroy_inode(inode);
266 	if (inode->i_sb->s_op->destroy_inode)
267 		inode->i_sb->s_op->destroy_inode(inode);
268 	else
269 		call_rcu(&inode->i_rcu, i_callback);
270 }
271 
272 /**
273  * drop_nlink - directly drop an inode's link count
274  * @inode: inode
275  *
276  * This is a low-level filesystem helper to replace any
277  * direct filesystem manipulation of i_nlink.  In cases
278  * where we are attempting to track writes to the
279  * filesystem, a decrement to zero means an imminent
280  * write when the file is truncated and actually unlinked
281  * on the filesystem.
282  */
283 void drop_nlink(struct inode *inode)
284 {
285 	WARN_ON(inode->i_nlink == 0);
286 	inode->__i_nlink--;
287 	if (!inode->i_nlink)
288 		atomic_long_inc(&inode->i_sb->s_remove_count);
289 }
290 EXPORT_SYMBOL(drop_nlink);
291 
292 /**
293  * clear_nlink - directly zero an inode's link count
294  * @inode: inode
295  *
296  * This is a low-level filesystem helper to replace any
297  * direct filesystem manipulation of i_nlink.  See
298  * drop_nlink() for why we care about i_nlink hitting zero.
299  */
300 void clear_nlink(struct inode *inode)
301 {
302 	if (inode->i_nlink) {
303 		inode->__i_nlink = 0;
304 		atomic_long_inc(&inode->i_sb->s_remove_count);
305 	}
306 }
307 EXPORT_SYMBOL(clear_nlink);
308 
309 /**
310  * set_nlink - directly set an inode's link count
311  * @inode: inode
312  * @nlink: new nlink (should be non-zero)
313  *
314  * This is a low-level filesystem helper to replace any
315  * direct filesystem manipulation of i_nlink.
316  */
317 void set_nlink(struct inode *inode, unsigned int nlink)
318 {
319 	if (!nlink) {
320 		clear_nlink(inode);
321 	} else {
322 		/* Yes, some filesystems do change nlink from zero to one */
323 		if (inode->i_nlink == 0)
324 			atomic_long_dec(&inode->i_sb->s_remove_count);
325 
326 		inode->__i_nlink = nlink;
327 	}
328 }
329 EXPORT_SYMBOL(set_nlink);
330 
331 /**
332  * inc_nlink - directly increment an inode's link count
333  * @inode: inode
334  *
335  * This is a low-level filesystem helper to replace any
336  * direct filesystem manipulation of i_nlink.  Currently,
337  * it is only here for parity with dec_nlink().
338  */
339 void inc_nlink(struct inode *inode)
340 {
341 	if (unlikely(inode->i_nlink == 0)) {
342 		WARN_ON(!(inode->i_state & I_LINKABLE));
343 		atomic_long_dec(&inode->i_sb->s_remove_count);
344 	}
345 
346 	inode->__i_nlink++;
347 }
348 EXPORT_SYMBOL(inc_nlink);
349 
350 static void __address_space_init_once(struct address_space *mapping)
351 {
352 	INIT_RADIX_TREE(&mapping->i_pages, GFP_ATOMIC | __GFP_ACCOUNT);
353 	init_rwsem(&mapping->i_mmap_rwsem);
354 	INIT_LIST_HEAD(&mapping->private_list);
355 	spin_lock_init(&mapping->private_lock);
356 	mapping->i_mmap = RB_ROOT_CACHED;
357 }
358 
359 void address_space_init_once(struct address_space *mapping)
360 {
361 	memset(mapping, 0, sizeof(*mapping));
362 	__address_space_init_once(mapping);
363 }
364 EXPORT_SYMBOL(address_space_init_once);
365 
366 /*
367  * These are initializations that only need to be done
368  * once, because the fields are idempotent across use
369  * of the inode, so let the slab aware of that.
370  */
371 void inode_init_once(struct inode *inode)
372 {
373 	memset(inode, 0, sizeof(*inode));
374 	INIT_HLIST_NODE(&inode->i_hash);
375 	INIT_LIST_HEAD(&inode->i_devices);
376 	INIT_LIST_HEAD(&inode->i_io_list);
377 	INIT_LIST_HEAD(&inode->i_wb_list);
378 	INIT_LIST_HEAD(&inode->i_lru);
379 	__address_space_init_once(&inode->i_data);
380 	i_size_ordered_init(inode);
381 }
382 EXPORT_SYMBOL(inode_init_once);
383 
384 static void init_once(void *foo)
385 {
386 	struct inode *inode = (struct inode *) foo;
387 
388 	inode_init_once(inode);
389 }
390 
391 /*
392  * inode->i_lock must be held
393  */
394 void __iget(struct inode *inode)
395 {
396 	atomic_inc(&inode->i_count);
397 }
398 
399 /*
400  * get additional reference to inode; caller must already hold one.
401  */
402 void ihold(struct inode *inode)
403 {
404 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
405 }
406 EXPORT_SYMBOL(ihold);
407 
408 static void inode_lru_list_add(struct inode *inode)
409 {
410 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
411 		this_cpu_inc(nr_unused);
412 	else
413 		inode->i_state |= I_REFERENCED;
414 }
415 
416 /*
417  * Add inode to LRU if needed (inode is unused and clean).
418  *
419  * Needs inode->i_lock held.
420  */
421 void inode_add_lru(struct inode *inode)
422 {
423 	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
424 				I_FREEING | I_WILL_FREE)) &&
425 	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
426 		inode_lru_list_add(inode);
427 }
428 
429 
430 static void inode_lru_list_del(struct inode *inode)
431 {
432 
433 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
434 		this_cpu_dec(nr_unused);
435 }
436 
437 /**
438  * inode_sb_list_add - add inode to the superblock list of inodes
439  * @inode: inode to add
440  */
441 void inode_sb_list_add(struct inode *inode)
442 {
443 	spin_lock(&inode->i_sb->s_inode_list_lock);
444 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
445 	spin_unlock(&inode->i_sb->s_inode_list_lock);
446 }
447 EXPORT_SYMBOL_GPL(inode_sb_list_add);
448 
449 static inline void inode_sb_list_del(struct inode *inode)
450 {
451 	if (!list_empty(&inode->i_sb_list)) {
452 		spin_lock(&inode->i_sb->s_inode_list_lock);
453 		list_del_init(&inode->i_sb_list);
454 		spin_unlock(&inode->i_sb->s_inode_list_lock);
455 	}
456 }
457 
458 static unsigned long hash(struct super_block *sb, unsigned long hashval)
459 {
460 	unsigned long tmp;
461 
462 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
463 			L1_CACHE_BYTES;
464 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
465 	return tmp & i_hash_mask;
466 }
467 
468 /**
469  *	__insert_inode_hash - hash an inode
470  *	@inode: unhashed inode
471  *	@hashval: unsigned long value used to locate this object in the
472  *		inode_hashtable.
473  *
474  *	Add an inode to the inode hash for this superblock.
475  */
476 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
477 {
478 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
479 
480 	spin_lock(&inode_hash_lock);
481 	spin_lock(&inode->i_lock);
482 	hlist_add_head(&inode->i_hash, b);
483 	spin_unlock(&inode->i_lock);
484 	spin_unlock(&inode_hash_lock);
485 }
486 EXPORT_SYMBOL(__insert_inode_hash);
487 
488 /**
489  *	__remove_inode_hash - remove an inode from the hash
490  *	@inode: inode to unhash
491  *
492  *	Remove an inode from the superblock.
493  */
494 void __remove_inode_hash(struct inode *inode)
495 {
496 	spin_lock(&inode_hash_lock);
497 	spin_lock(&inode->i_lock);
498 	hlist_del_init(&inode->i_hash);
499 	spin_unlock(&inode->i_lock);
500 	spin_unlock(&inode_hash_lock);
501 }
502 EXPORT_SYMBOL(__remove_inode_hash);
503 
504 void clear_inode(struct inode *inode)
505 {
506 	/*
507 	 * We have to cycle the i_pages lock here because reclaim can be in the
508 	 * process of removing the last page (in __delete_from_page_cache())
509 	 * and we must not free the mapping under it.
510 	 */
511 	xa_lock_irq(&inode->i_data.i_pages);
512 	BUG_ON(inode->i_data.nrpages);
513 	BUG_ON(inode->i_data.nrexceptional);
514 	xa_unlock_irq(&inode->i_data.i_pages);
515 	BUG_ON(!list_empty(&inode->i_data.private_list));
516 	BUG_ON(!(inode->i_state & I_FREEING));
517 	BUG_ON(inode->i_state & I_CLEAR);
518 	BUG_ON(!list_empty(&inode->i_wb_list));
519 	/* don't need i_lock here, no concurrent mods to i_state */
520 	inode->i_state = I_FREEING | I_CLEAR;
521 }
522 EXPORT_SYMBOL(clear_inode);
523 
524 /*
525  * Free the inode passed in, removing it from the lists it is still connected
526  * to. We remove any pages still attached to the inode and wait for any IO that
527  * is still in progress before finally destroying the inode.
528  *
529  * An inode must already be marked I_FREEING so that we avoid the inode being
530  * moved back onto lists if we race with other code that manipulates the lists
531  * (e.g. writeback_single_inode). The caller is responsible for setting this.
532  *
533  * An inode must already be removed from the LRU list before being evicted from
534  * the cache. This should occur atomically with setting the I_FREEING state
535  * flag, so no inodes here should ever be on the LRU when being evicted.
536  */
537 static void evict(struct inode *inode)
538 {
539 	const struct super_operations *op = inode->i_sb->s_op;
540 
541 	BUG_ON(!(inode->i_state & I_FREEING));
542 	BUG_ON(!list_empty(&inode->i_lru));
543 
544 	if (!list_empty(&inode->i_io_list))
545 		inode_io_list_del(inode);
546 
547 	inode_sb_list_del(inode);
548 
549 	/*
550 	 * Wait for flusher thread to be done with the inode so that filesystem
551 	 * does not start destroying it while writeback is still running. Since
552 	 * the inode has I_FREEING set, flusher thread won't start new work on
553 	 * the inode.  We just have to wait for running writeback to finish.
554 	 */
555 	inode_wait_for_writeback(inode);
556 
557 	if (op->evict_inode) {
558 		op->evict_inode(inode);
559 	} else {
560 		truncate_inode_pages_final(&inode->i_data);
561 		clear_inode(inode);
562 	}
563 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
564 		bd_forget(inode);
565 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
566 		cd_forget(inode);
567 
568 	remove_inode_hash(inode);
569 
570 	spin_lock(&inode->i_lock);
571 	wake_up_bit(&inode->i_state, __I_NEW);
572 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
573 	spin_unlock(&inode->i_lock);
574 
575 	destroy_inode(inode);
576 }
577 
578 /*
579  * dispose_list - dispose of the contents of a local list
580  * @head: the head of the list to free
581  *
582  * Dispose-list gets a local list with local inodes in it, so it doesn't
583  * need to worry about list corruption and SMP locks.
584  */
585 static void dispose_list(struct list_head *head)
586 {
587 	while (!list_empty(head)) {
588 		struct inode *inode;
589 
590 		inode = list_first_entry(head, struct inode, i_lru);
591 		list_del_init(&inode->i_lru);
592 
593 		evict(inode);
594 		cond_resched();
595 	}
596 }
597 
598 /**
599  * evict_inodes	- evict all evictable inodes for a superblock
600  * @sb:		superblock to operate on
601  *
602  * Make sure that no inodes with zero refcount are retained.  This is
603  * called by superblock shutdown after having SB_ACTIVE flag removed,
604  * so any inode reaching zero refcount during or after that call will
605  * be immediately evicted.
606  */
607 void evict_inodes(struct super_block *sb)
608 {
609 	struct inode *inode, *next;
610 	LIST_HEAD(dispose);
611 
612 again:
613 	spin_lock(&sb->s_inode_list_lock);
614 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
615 		if (atomic_read(&inode->i_count))
616 			continue;
617 
618 		spin_lock(&inode->i_lock);
619 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
620 			spin_unlock(&inode->i_lock);
621 			continue;
622 		}
623 
624 		inode->i_state |= I_FREEING;
625 		inode_lru_list_del(inode);
626 		spin_unlock(&inode->i_lock);
627 		list_add(&inode->i_lru, &dispose);
628 
629 		/*
630 		 * We can have a ton of inodes to evict at unmount time given
631 		 * enough memory, check to see if we need to go to sleep for a
632 		 * bit so we don't livelock.
633 		 */
634 		if (need_resched()) {
635 			spin_unlock(&sb->s_inode_list_lock);
636 			cond_resched();
637 			dispose_list(&dispose);
638 			goto again;
639 		}
640 	}
641 	spin_unlock(&sb->s_inode_list_lock);
642 
643 	dispose_list(&dispose);
644 }
645 EXPORT_SYMBOL_GPL(evict_inodes);
646 
647 /**
648  * invalidate_inodes	- attempt to free all inodes on a superblock
649  * @sb:		superblock to operate on
650  * @kill_dirty: flag to guide handling of dirty inodes
651  *
652  * Attempts to free all inodes for a given superblock.  If there were any
653  * busy inodes return a non-zero value, else zero.
654  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
655  * them as busy.
656  */
657 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
658 {
659 	int busy = 0;
660 	struct inode *inode, *next;
661 	LIST_HEAD(dispose);
662 
663 	spin_lock(&sb->s_inode_list_lock);
664 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
665 		spin_lock(&inode->i_lock);
666 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
667 			spin_unlock(&inode->i_lock);
668 			continue;
669 		}
670 		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
671 			spin_unlock(&inode->i_lock);
672 			busy = 1;
673 			continue;
674 		}
675 		if (atomic_read(&inode->i_count)) {
676 			spin_unlock(&inode->i_lock);
677 			busy = 1;
678 			continue;
679 		}
680 
681 		inode->i_state |= I_FREEING;
682 		inode_lru_list_del(inode);
683 		spin_unlock(&inode->i_lock);
684 		list_add(&inode->i_lru, &dispose);
685 	}
686 	spin_unlock(&sb->s_inode_list_lock);
687 
688 	dispose_list(&dispose);
689 
690 	return busy;
691 }
692 
693 /*
694  * Isolate the inode from the LRU in preparation for freeing it.
695  *
696  * Any inodes which are pinned purely because of attached pagecache have their
697  * pagecache removed.  If the inode has metadata buffers attached to
698  * mapping->private_list then try to remove them.
699  *
700  * If the inode has the I_REFERENCED flag set, then it means that it has been
701  * used recently - the flag is set in iput_final(). When we encounter such an
702  * inode, clear the flag and move it to the back of the LRU so it gets another
703  * pass through the LRU before it gets reclaimed. This is necessary because of
704  * the fact we are doing lazy LRU updates to minimise lock contention so the
705  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
706  * with this flag set because they are the inodes that are out of order.
707  */
708 static enum lru_status inode_lru_isolate(struct list_head *item,
709 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
710 {
711 	struct list_head *freeable = arg;
712 	struct inode	*inode = container_of(item, struct inode, i_lru);
713 
714 	/*
715 	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
716 	 * If we fail to get the lock, just skip it.
717 	 */
718 	if (!spin_trylock(&inode->i_lock))
719 		return LRU_SKIP;
720 
721 	/*
722 	 * Referenced or dirty inodes are still in use. Give them another pass
723 	 * through the LRU as we canot reclaim them now.
724 	 */
725 	if (atomic_read(&inode->i_count) ||
726 	    (inode->i_state & ~I_REFERENCED)) {
727 		list_lru_isolate(lru, &inode->i_lru);
728 		spin_unlock(&inode->i_lock);
729 		this_cpu_dec(nr_unused);
730 		return LRU_REMOVED;
731 	}
732 
733 	/* recently referenced inodes get one more pass */
734 	if (inode->i_state & I_REFERENCED) {
735 		inode->i_state &= ~I_REFERENCED;
736 		spin_unlock(&inode->i_lock);
737 		return LRU_ROTATE;
738 	}
739 
740 	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
741 		__iget(inode);
742 		spin_unlock(&inode->i_lock);
743 		spin_unlock(lru_lock);
744 		if (remove_inode_buffers(inode)) {
745 			unsigned long reap;
746 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
747 			if (current_is_kswapd())
748 				__count_vm_events(KSWAPD_INODESTEAL, reap);
749 			else
750 				__count_vm_events(PGINODESTEAL, reap);
751 			if (current->reclaim_state)
752 				current->reclaim_state->reclaimed_slab += reap;
753 		}
754 		iput(inode);
755 		spin_lock(lru_lock);
756 		return LRU_RETRY;
757 	}
758 
759 	WARN_ON(inode->i_state & I_NEW);
760 	inode->i_state |= I_FREEING;
761 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
762 	spin_unlock(&inode->i_lock);
763 
764 	this_cpu_dec(nr_unused);
765 	return LRU_REMOVED;
766 }
767 
768 /*
769  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
770  * This is called from the superblock shrinker function with a number of inodes
771  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
772  * then are freed outside inode_lock by dispose_list().
773  */
774 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
775 {
776 	LIST_HEAD(freeable);
777 	long freed;
778 
779 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
780 				     inode_lru_isolate, &freeable);
781 	dispose_list(&freeable);
782 	return freed;
783 }
784 
785 static void __wait_on_freeing_inode(struct inode *inode);
786 /*
787  * Called with the inode lock held.
788  */
789 static struct inode *find_inode(struct super_block *sb,
790 				struct hlist_head *head,
791 				int (*test)(struct inode *, void *),
792 				void *data)
793 {
794 	struct inode *inode = NULL;
795 
796 repeat:
797 	hlist_for_each_entry(inode, head, i_hash) {
798 		if (inode->i_sb != sb)
799 			continue;
800 		if (!test(inode, data))
801 			continue;
802 		spin_lock(&inode->i_lock);
803 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
804 			__wait_on_freeing_inode(inode);
805 			goto repeat;
806 		}
807 		__iget(inode);
808 		spin_unlock(&inode->i_lock);
809 		return inode;
810 	}
811 	return NULL;
812 }
813 
814 /*
815  * find_inode_fast is the fast path version of find_inode, see the comment at
816  * iget_locked for details.
817  */
818 static struct inode *find_inode_fast(struct super_block *sb,
819 				struct hlist_head *head, unsigned long ino)
820 {
821 	struct inode *inode = NULL;
822 
823 repeat:
824 	hlist_for_each_entry(inode, head, i_hash) {
825 		if (inode->i_ino != ino)
826 			continue;
827 		if (inode->i_sb != sb)
828 			continue;
829 		spin_lock(&inode->i_lock);
830 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
831 			__wait_on_freeing_inode(inode);
832 			goto repeat;
833 		}
834 		__iget(inode);
835 		spin_unlock(&inode->i_lock);
836 		return inode;
837 	}
838 	return NULL;
839 }
840 
841 /*
842  * Each cpu owns a range of LAST_INO_BATCH numbers.
843  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
844  * to renew the exhausted range.
845  *
846  * This does not significantly increase overflow rate because every CPU can
847  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
848  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
849  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
850  * overflow rate by 2x, which does not seem too significant.
851  *
852  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
853  * error if st_ino won't fit in target struct field. Use 32bit counter
854  * here to attempt to avoid that.
855  */
856 #define LAST_INO_BATCH 1024
857 static DEFINE_PER_CPU(unsigned int, last_ino);
858 
859 unsigned int get_next_ino(void)
860 {
861 	unsigned int *p = &get_cpu_var(last_ino);
862 	unsigned int res = *p;
863 
864 #ifdef CONFIG_SMP
865 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
866 		static atomic_t shared_last_ino;
867 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
868 
869 		res = next - LAST_INO_BATCH;
870 	}
871 #endif
872 
873 	res++;
874 	/* get_next_ino should not provide a 0 inode number */
875 	if (unlikely(!res))
876 		res++;
877 	*p = res;
878 	put_cpu_var(last_ino);
879 	return res;
880 }
881 EXPORT_SYMBOL(get_next_ino);
882 
883 /**
884  *	new_inode_pseudo 	- obtain an inode
885  *	@sb: superblock
886  *
887  *	Allocates a new inode for given superblock.
888  *	Inode wont be chained in superblock s_inodes list
889  *	This means :
890  *	- fs can't be unmount
891  *	- quotas, fsnotify, writeback can't work
892  */
893 struct inode *new_inode_pseudo(struct super_block *sb)
894 {
895 	struct inode *inode = alloc_inode(sb);
896 
897 	if (inode) {
898 		spin_lock(&inode->i_lock);
899 		inode->i_state = 0;
900 		spin_unlock(&inode->i_lock);
901 		INIT_LIST_HEAD(&inode->i_sb_list);
902 	}
903 	return inode;
904 }
905 
906 /**
907  *	new_inode 	- obtain an inode
908  *	@sb: superblock
909  *
910  *	Allocates a new inode for given superblock. The default gfp_mask
911  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
912  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
913  *	for the page cache are not reclaimable or migratable,
914  *	mapping_set_gfp_mask() must be called with suitable flags on the
915  *	newly created inode's mapping
916  *
917  */
918 struct inode *new_inode(struct super_block *sb)
919 {
920 	struct inode *inode;
921 
922 	spin_lock_prefetch(&sb->s_inode_list_lock);
923 
924 	inode = new_inode_pseudo(sb);
925 	if (inode)
926 		inode_sb_list_add(inode);
927 	return inode;
928 }
929 EXPORT_SYMBOL(new_inode);
930 
931 #ifdef CONFIG_DEBUG_LOCK_ALLOC
932 void lockdep_annotate_inode_mutex_key(struct inode *inode)
933 {
934 	if (S_ISDIR(inode->i_mode)) {
935 		struct file_system_type *type = inode->i_sb->s_type;
936 
937 		/* Set new key only if filesystem hasn't already changed it */
938 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
939 			/*
940 			 * ensure nobody is actually holding i_mutex
941 			 */
942 			// mutex_destroy(&inode->i_mutex);
943 			init_rwsem(&inode->i_rwsem);
944 			lockdep_set_class(&inode->i_rwsem,
945 					  &type->i_mutex_dir_key);
946 		}
947 	}
948 }
949 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
950 #endif
951 
952 /**
953  * unlock_new_inode - clear the I_NEW state and wake up any waiters
954  * @inode:	new inode to unlock
955  *
956  * Called when the inode is fully initialised to clear the new state of the
957  * inode and wake up anyone waiting for the inode to finish initialisation.
958  */
959 void unlock_new_inode(struct inode *inode)
960 {
961 	lockdep_annotate_inode_mutex_key(inode);
962 	spin_lock(&inode->i_lock);
963 	WARN_ON(!(inode->i_state & I_NEW));
964 	inode->i_state &= ~I_NEW;
965 	smp_mb();
966 	wake_up_bit(&inode->i_state, __I_NEW);
967 	spin_unlock(&inode->i_lock);
968 }
969 EXPORT_SYMBOL(unlock_new_inode);
970 
971 /**
972  * lock_two_nondirectories - take two i_mutexes on non-directory objects
973  *
974  * Lock any non-NULL argument that is not a directory.
975  * Zero, one or two objects may be locked by this function.
976  *
977  * @inode1: first inode to lock
978  * @inode2: second inode to lock
979  */
980 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
981 {
982 	if (inode1 > inode2)
983 		swap(inode1, inode2);
984 
985 	if (inode1 && !S_ISDIR(inode1->i_mode))
986 		inode_lock(inode1);
987 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
988 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
989 }
990 EXPORT_SYMBOL(lock_two_nondirectories);
991 
992 /**
993  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
994  * @inode1: first inode to unlock
995  * @inode2: second inode to unlock
996  */
997 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
998 {
999 	if (inode1 && !S_ISDIR(inode1->i_mode))
1000 		inode_unlock(inode1);
1001 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1002 		inode_unlock(inode2);
1003 }
1004 EXPORT_SYMBOL(unlock_two_nondirectories);
1005 
1006 /**
1007  * inode_insert5 - obtain an inode from a mounted file system
1008  * @inode:	pre-allocated inode to use for insert to cache
1009  * @hashval:	hash value (usually inode number) to get
1010  * @test:	callback used for comparisons between inodes
1011  * @set:	callback used to initialize a new struct inode
1012  * @data:	opaque data pointer to pass to @test and @set
1013  *
1014  * Search for the inode specified by @hashval and @data in the inode cache,
1015  * and if present it is return it with an increased reference count. This is
1016  * a variant of iget5_locked() for callers that don't want to fail on memory
1017  * allocation of inode.
1018  *
1019  * If the inode is not in cache, insert the pre-allocated inode to cache and
1020  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1021  * to fill it in before unlocking it via unlock_new_inode().
1022  *
1023  * Note both @test and @set are called with the inode_hash_lock held, so can't
1024  * sleep.
1025  */
1026 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1027 			    int (*test)(struct inode *, void *),
1028 			    int (*set)(struct inode *, void *), void *data)
1029 {
1030 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1031 	struct inode *old;
1032 
1033 again:
1034 	spin_lock(&inode_hash_lock);
1035 	old = find_inode(inode->i_sb, head, test, data);
1036 	if (unlikely(old)) {
1037 		/*
1038 		 * Uhhuh, somebody else created the same inode under us.
1039 		 * Use the old inode instead of the preallocated one.
1040 		 */
1041 		spin_unlock(&inode_hash_lock);
1042 		wait_on_inode(old);
1043 		if (unlikely(inode_unhashed(old))) {
1044 			iput(old);
1045 			goto again;
1046 		}
1047 		return old;
1048 	}
1049 
1050 	if (set && unlikely(set(inode, data))) {
1051 		inode = NULL;
1052 		goto unlock;
1053 	}
1054 
1055 	/*
1056 	 * Return the locked inode with I_NEW set, the
1057 	 * caller is responsible for filling in the contents
1058 	 */
1059 	spin_lock(&inode->i_lock);
1060 	inode->i_state |= I_NEW;
1061 	hlist_add_head(&inode->i_hash, head);
1062 	spin_unlock(&inode->i_lock);
1063 unlock:
1064 	spin_unlock(&inode_hash_lock);
1065 
1066 	return inode;
1067 }
1068 EXPORT_SYMBOL(inode_insert5);
1069 
1070 /**
1071  * iget5_locked - obtain an inode from a mounted file system
1072  * @sb:		super block of file system
1073  * @hashval:	hash value (usually inode number) to get
1074  * @test:	callback used for comparisons between inodes
1075  * @set:	callback used to initialize a new struct inode
1076  * @data:	opaque data pointer to pass to @test and @set
1077  *
1078  * Search for the inode specified by @hashval and @data in the inode cache,
1079  * and if present it is return it with an increased reference count. This is
1080  * a generalized version of iget_locked() for file systems where the inode
1081  * number is not sufficient for unique identification of an inode.
1082  *
1083  * If the inode is not in cache, allocate a new inode and return it locked,
1084  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1085  * before unlocking it via unlock_new_inode().
1086  *
1087  * Note both @test and @set are called with the inode_hash_lock held, so can't
1088  * sleep.
1089  */
1090 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1091 		int (*test)(struct inode *, void *),
1092 		int (*set)(struct inode *, void *), void *data)
1093 {
1094 	struct inode *inode = ilookup5(sb, hashval, test, data);
1095 
1096 	if (!inode) {
1097 		struct inode *new = new_inode(sb);
1098 
1099 		if (new) {
1100 			inode = inode_insert5(new, hashval, test, set, data);
1101 			if (unlikely(inode != new))
1102 				iput(new);
1103 		}
1104 	}
1105 	return inode;
1106 }
1107 EXPORT_SYMBOL(iget5_locked);
1108 
1109 /**
1110  * iget_locked - obtain an inode from a mounted file system
1111  * @sb:		super block of file system
1112  * @ino:	inode number to get
1113  *
1114  * Search for the inode specified by @ino in the inode cache and if present
1115  * return it with an increased reference count. This is for file systems
1116  * where the inode number is sufficient for unique identification of an inode.
1117  *
1118  * If the inode is not in cache, allocate a new inode and return it locked,
1119  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1120  * before unlocking it via unlock_new_inode().
1121  */
1122 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1123 {
1124 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1125 	struct inode *inode;
1126 again:
1127 	spin_lock(&inode_hash_lock);
1128 	inode = find_inode_fast(sb, head, ino);
1129 	spin_unlock(&inode_hash_lock);
1130 	if (inode) {
1131 		wait_on_inode(inode);
1132 		if (unlikely(inode_unhashed(inode))) {
1133 			iput(inode);
1134 			goto again;
1135 		}
1136 		return inode;
1137 	}
1138 
1139 	inode = alloc_inode(sb);
1140 	if (inode) {
1141 		struct inode *old;
1142 
1143 		spin_lock(&inode_hash_lock);
1144 		/* We released the lock, so.. */
1145 		old = find_inode_fast(sb, head, ino);
1146 		if (!old) {
1147 			inode->i_ino = ino;
1148 			spin_lock(&inode->i_lock);
1149 			inode->i_state = I_NEW;
1150 			hlist_add_head(&inode->i_hash, head);
1151 			spin_unlock(&inode->i_lock);
1152 			inode_sb_list_add(inode);
1153 			spin_unlock(&inode_hash_lock);
1154 
1155 			/* Return the locked inode with I_NEW set, the
1156 			 * caller is responsible for filling in the contents
1157 			 */
1158 			return inode;
1159 		}
1160 
1161 		/*
1162 		 * Uhhuh, somebody else created the same inode under
1163 		 * us. Use the old inode instead of the one we just
1164 		 * allocated.
1165 		 */
1166 		spin_unlock(&inode_hash_lock);
1167 		destroy_inode(inode);
1168 		inode = old;
1169 		wait_on_inode(inode);
1170 		if (unlikely(inode_unhashed(inode))) {
1171 			iput(inode);
1172 			goto again;
1173 		}
1174 	}
1175 	return inode;
1176 }
1177 EXPORT_SYMBOL(iget_locked);
1178 
1179 /*
1180  * search the inode cache for a matching inode number.
1181  * If we find one, then the inode number we are trying to
1182  * allocate is not unique and so we should not use it.
1183  *
1184  * Returns 1 if the inode number is unique, 0 if it is not.
1185  */
1186 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1187 {
1188 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1189 	struct inode *inode;
1190 
1191 	spin_lock(&inode_hash_lock);
1192 	hlist_for_each_entry(inode, b, i_hash) {
1193 		if (inode->i_ino == ino && inode->i_sb == sb) {
1194 			spin_unlock(&inode_hash_lock);
1195 			return 0;
1196 		}
1197 	}
1198 	spin_unlock(&inode_hash_lock);
1199 
1200 	return 1;
1201 }
1202 
1203 /**
1204  *	iunique - get a unique inode number
1205  *	@sb: superblock
1206  *	@max_reserved: highest reserved inode number
1207  *
1208  *	Obtain an inode number that is unique on the system for a given
1209  *	superblock. This is used by file systems that have no natural
1210  *	permanent inode numbering system. An inode number is returned that
1211  *	is higher than the reserved limit but unique.
1212  *
1213  *	BUGS:
1214  *	With a large number of inodes live on the file system this function
1215  *	currently becomes quite slow.
1216  */
1217 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1218 {
1219 	/*
1220 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1221 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1222 	 * here to attempt to avoid that.
1223 	 */
1224 	static DEFINE_SPINLOCK(iunique_lock);
1225 	static unsigned int counter;
1226 	ino_t res;
1227 
1228 	spin_lock(&iunique_lock);
1229 	do {
1230 		if (counter <= max_reserved)
1231 			counter = max_reserved + 1;
1232 		res = counter++;
1233 	} while (!test_inode_iunique(sb, res));
1234 	spin_unlock(&iunique_lock);
1235 
1236 	return res;
1237 }
1238 EXPORT_SYMBOL(iunique);
1239 
1240 struct inode *igrab(struct inode *inode)
1241 {
1242 	spin_lock(&inode->i_lock);
1243 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1244 		__iget(inode);
1245 		spin_unlock(&inode->i_lock);
1246 	} else {
1247 		spin_unlock(&inode->i_lock);
1248 		/*
1249 		 * Handle the case where s_op->clear_inode is not been
1250 		 * called yet, and somebody is calling igrab
1251 		 * while the inode is getting freed.
1252 		 */
1253 		inode = NULL;
1254 	}
1255 	return inode;
1256 }
1257 EXPORT_SYMBOL(igrab);
1258 
1259 /**
1260  * ilookup5_nowait - search for an inode in the inode cache
1261  * @sb:		super block of file system to search
1262  * @hashval:	hash value (usually inode number) to search for
1263  * @test:	callback used for comparisons between inodes
1264  * @data:	opaque data pointer to pass to @test
1265  *
1266  * Search for the inode specified by @hashval and @data in the inode cache.
1267  * If the inode is in the cache, the inode is returned with an incremented
1268  * reference count.
1269  *
1270  * Note: I_NEW is not waited upon so you have to be very careful what you do
1271  * with the returned inode.  You probably should be using ilookup5() instead.
1272  *
1273  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1274  */
1275 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1276 		int (*test)(struct inode *, void *), void *data)
1277 {
1278 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1279 	struct inode *inode;
1280 
1281 	spin_lock(&inode_hash_lock);
1282 	inode = find_inode(sb, head, test, data);
1283 	spin_unlock(&inode_hash_lock);
1284 
1285 	return inode;
1286 }
1287 EXPORT_SYMBOL(ilookup5_nowait);
1288 
1289 /**
1290  * ilookup5 - search for an inode in the inode cache
1291  * @sb:		super block of file system to search
1292  * @hashval:	hash value (usually inode number) to search for
1293  * @test:	callback used for comparisons between inodes
1294  * @data:	opaque data pointer to pass to @test
1295  *
1296  * Search for the inode specified by @hashval and @data in the inode cache,
1297  * and if the inode is in the cache, return the inode with an incremented
1298  * reference count.  Waits on I_NEW before returning the inode.
1299  * returned with an incremented reference count.
1300  *
1301  * This is a generalized version of ilookup() for file systems where the
1302  * inode number is not sufficient for unique identification of an inode.
1303  *
1304  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1305  */
1306 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1307 		int (*test)(struct inode *, void *), void *data)
1308 {
1309 	struct inode *inode;
1310 again:
1311 	inode = ilookup5_nowait(sb, hashval, test, data);
1312 	if (inode) {
1313 		wait_on_inode(inode);
1314 		if (unlikely(inode_unhashed(inode))) {
1315 			iput(inode);
1316 			goto again;
1317 		}
1318 	}
1319 	return inode;
1320 }
1321 EXPORT_SYMBOL(ilookup5);
1322 
1323 /**
1324  * ilookup - search for an inode in the inode cache
1325  * @sb:		super block of file system to search
1326  * @ino:	inode number to search for
1327  *
1328  * Search for the inode @ino in the inode cache, and if the inode is in the
1329  * cache, the inode is returned with an incremented reference count.
1330  */
1331 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1332 {
1333 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1334 	struct inode *inode;
1335 again:
1336 	spin_lock(&inode_hash_lock);
1337 	inode = find_inode_fast(sb, head, ino);
1338 	spin_unlock(&inode_hash_lock);
1339 
1340 	if (inode) {
1341 		wait_on_inode(inode);
1342 		if (unlikely(inode_unhashed(inode))) {
1343 			iput(inode);
1344 			goto again;
1345 		}
1346 	}
1347 	return inode;
1348 }
1349 EXPORT_SYMBOL(ilookup);
1350 
1351 /**
1352  * find_inode_nowait - find an inode in the inode cache
1353  * @sb:		super block of file system to search
1354  * @hashval:	hash value (usually inode number) to search for
1355  * @match:	callback used for comparisons between inodes
1356  * @data:	opaque data pointer to pass to @match
1357  *
1358  * Search for the inode specified by @hashval and @data in the inode
1359  * cache, where the helper function @match will return 0 if the inode
1360  * does not match, 1 if the inode does match, and -1 if the search
1361  * should be stopped.  The @match function must be responsible for
1362  * taking the i_lock spin_lock and checking i_state for an inode being
1363  * freed or being initialized, and incrementing the reference count
1364  * before returning 1.  It also must not sleep, since it is called with
1365  * the inode_hash_lock spinlock held.
1366  *
1367  * This is a even more generalized version of ilookup5() when the
1368  * function must never block --- find_inode() can block in
1369  * __wait_on_freeing_inode() --- or when the caller can not increment
1370  * the reference count because the resulting iput() might cause an
1371  * inode eviction.  The tradeoff is that the @match funtion must be
1372  * very carefully implemented.
1373  */
1374 struct inode *find_inode_nowait(struct super_block *sb,
1375 				unsigned long hashval,
1376 				int (*match)(struct inode *, unsigned long,
1377 					     void *),
1378 				void *data)
1379 {
1380 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1381 	struct inode *inode, *ret_inode = NULL;
1382 	int mval;
1383 
1384 	spin_lock(&inode_hash_lock);
1385 	hlist_for_each_entry(inode, head, i_hash) {
1386 		if (inode->i_sb != sb)
1387 			continue;
1388 		mval = match(inode, hashval, data);
1389 		if (mval == 0)
1390 			continue;
1391 		if (mval == 1)
1392 			ret_inode = inode;
1393 		goto out;
1394 	}
1395 out:
1396 	spin_unlock(&inode_hash_lock);
1397 	return ret_inode;
1398 }
1399 EXPORT_SYMBOL(find_inode_nowait);
1400 
1401 int insert_inode_locked(struct inode *inode)
1402 {
1403 	struct super_block *sb = inode->i_sb;
1404 	ino_t ino = inode->i_ino;
1405 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1406 
1407 	while (1) {
1408 		struct inode *old = NULL;
1409 		spin_lock(&inode_hash_lock);
1410 		hlist_for_each_entry(old, head, i_hash) {
1411 			if (old->i_ino != ino)
1412 				continue;
1413 			if (old->i_sb != sb)
1414 				continue;
1415 			spin_lock(&old->i_lock);
1416 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1417 				spin_unlock(&old->i_lock);
1418 				continue;
1419 			}
1420 			break;
1421 		}
1422 		if (likely(!old)) {
1423 			spin_lock(&inode->i_lock);
1424 			inode->i_state |= I_NEW;
1425 			hlist_add_head(&inode->i_hash, head);
1426 			spin_unlock(&inode->i_lock);
1427 			spin_unlock(&inode_hash_lock);
1428 			return 0;
1429 		}
1430 		__iget(old);
1431 		spin_unlock(&old->i_lock);
1432 		spin_unlock(&inode_hash_lock);
1433 		wait_on_inode(old);
1434 		if (unlikely(!inode_unhashed(old))) {
1435 			iput(old);
1436 			return -EBUSY;
1437 		}
1438 		iput(old);
1439 	}
1440 }
1441 EXPORT_SYMBOL(insert_inode_locked);
1442 
1443 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1444 		int (*test)(struct inode *, void *), void *data)
1445 {
1446 	struct inode *old = inode_insert5(inode, hashval, test, NULL, data);
1447 
1448 	if (old != inode) {
1449 		iput(old);
1450 		return -EBUSY;
1451 	}
1452 	return 0;
1453 }
1454 EXPORT_SYMBOL(insert_inode_locked4);
1455 
1456 
1457 int generic_delete_inode(struct inode *inode)
1458 {
1459 	return 1;
1460 }
1461 EXPORT_SYMBOL(generic_delete_inode);
1462 
1463 /*
1464  * Called when we're dropping the last reference
1465  * to an inode.
1466  *
1467  * Call the FS "drop_inode()" function, defaulting to
1468  * the legacy UNIX filesystem behaviour.  If it tells
1469  * us to evict inode, do so.  Otherwise, retain inode
1470  * in cache if fs is alive, sync and evict if fs is
1471  * shutting down.
1472  */
1473 static void iput_final(struct inode *inode)
1474 {
1475 	struct super_block *sb = inode->i_sb;
1476 	const struct super_operations *op = inode->i_sb->s_op;
1477 	int drop;
1478 
1479 	WARN_ON(inode->i_state & I_NEW);
1480 
1481 	if (op->drop_inode)
1482 		drop = op->drop_inode(inode);
1483 	else
1484 		drop = generic_drop_inode(inode);
1485 
1486 	if (!drop && (sb->s_flags & SB_ACTIVE)) {
1487 		inode_add_lru(inode);
1488 		spin_unlock(&inode->i_lock);
1489 		return;
1490 	}
1491 
1492 	if (!drop) {
1493 		inode->i_state |= I_WILL_FREE;
1494 		spin_unlock(&inode->i_lock);
1495 		write_inode_now(inode, 1);
1496 		spin_lock(&inode->i_lock);
1497 		WARN_ON(inode->i_state & I_NEW);
1498 		inode->i_state &= ~I_WILL_FREE;
1499 	}
1500 
1501 	inode->i_state |= I_FREEING;
1502 	if (!list_empty(&inode->i_lru))
1503 		inode_lru_list_del(inode);
1504 	spin_unlock(&inode->i_lock);
1505 
1506 	evict(inode);
1507 }
1508 
1509 /**
1510  *	iput	- put an inode
1511  *	@inode: inode to put
1512  *
1513  *	Puts an inode, dropping its usage count. If the inode use count hits
1514  *	zero, the inode is then freed and may also be destroyed.
1515  *
1516  *	Consequently, iput() can sleep.
1517  */
1518 void iput(struct inode *inode)
1519 {
1520 	if (!inode)
1521 		return;
1522 	BUG_ON(inode->i_state & I_CLEAR);
1523 retry:
1524 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1525 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1526 			atomic_inc(&inode->i_count);
1527 			spin_unlock(&inode->i_lock);
1528 			trace_writeback_lazytime_iput(inode);
1529 			mark_inode_dirty_sync(inode);
1530 			goto retry;
1531 		}
1532 		iput_final(inode);
1533 	}
1534 }
1535 EXPORT_SYMBOL(iput);
1536 
1537 /**
1538  *	bmap	- find a block number in a file
1539  *	@inode: inode of file
1540  *	@block: block to find
1541  *
1542  *	Returns the block number on the device holding the inode that
1543  *	is the disk block number for the block of the file requested.
1544  *	That is, asked for block 4 of inode 1 the function will return the
1545  *	disk block relative to the disk start that holds that block of the
1546  *	file.
1547  */
1548 sector_t bmap(struct inode *inode, sector_t block)
1549 {
1550 	sector_t res = 0;
1551 	if (inode->i_mapping->a_ops->bmap)
1552 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1553 	return res;
1554 }
1555 EXPORT_SYMBOL(bmap);
1556 
1557 /*
1558  * Update times in overlayed inode from underlying real inode
1559  */
1560 static void update_ovl_inode_times(struct dentry *dentry, struct inode *inode,
1561 			       bool rcu)
1562 {
1563 	struct dentry *upperdentry;
1564 
1565 	/*
1566 	 * Nothing to do if in rcu or if non-overlayfs
1567 	 */
1568 	if (rcu || likely(!(dentry->d_flags & DCACHE_OP_REAL)))
1569 		return;
1570 
1571 	upperdentry = d_real(dentry, NULL, 0, D_REAL_UPPER);
1572 
1573 	/*
1574 	 * If file is on lower then we can't update atime, so no worries about
1575 	 * stale mtime/ctime.
1576 	 */
1577 	if (upperdentry) {
1578 		struct inode *realinode = d_inode(upperdentry);
1579 
1580 		if ((!timespec64_equal(&inode->i_mtime, &realinode->i_mtime) ||
1581 		     !timespec64_equal(&inode->i_ctime, &realinode->i_ctime))) {
1582 			inode->i_mtime = realinode->i_mtime;
1583 			inode->i_ctime = realinode->i_ctime;
1584 		}
1585 	}
1586 }
1587 
1588 /*
1589  * With relative atime, only update atime if the previous atime is
1590  * earlier than either the ctime or mtime or if at least a day has
1591  * passed since the last atime update.
1592  */
1593 static int relatime_need_update(const struct path *path, struct inode *inode,
1594 				struct timespec now, bool rcu)
1595 {
1596 
1597 	if (!(path->mnt->mnt_flags & MNT_RELATIME))
1598 		return 1;
1599 
1600 	update_ovl_inode_times(path->dentry, inode, rcu);
1601 	/*
1602 	 * Is mtime younger than atime? If yes, update atime:
1603 	 */
1604 	if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1605 		return 1;
1606 	/*
1607 	 * Is ctime younger than atime? If yes, update atime:
1608 	 */
1609 	if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1610 		return 1;
1611 
1612 	/*
1613 	 * Is the previous atime value older than a day? If yes,
1614 	 * update atime:
1615 	 */
1616 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1617 		return 1;
1618 	/*
1619 	 * Good, we can skip the atime update:
1620 	 */
1621 	return 0;
1622 }
1623 
1624 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1625 {
1626 	int iflags = I_DIRTY_TIME;
1627 	bool dirty = false;
1628 
1629 	if (flags & S_ATIME)
1630 		inode->i_atime = *time;
1631 	if (flags & S_VERSION)
1632 		dirty = inode_maybe_inc_iversion(inode, false);
1633 	if (flags & S_CTIME)
1634 		inode->i_ctime = *time;
1635 	if (flags & S_MTIME)
1636 		inode->i_mtime = *time;
1637 	if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1638 	    !(inode->i_sb->s_flags & SB_LAZYTIME))
1639 		dirty = true;
1640 
1641 	if (dirty)
1642 		iflags |= I_DIRTY_SYNC;
1643 	__mark_inode_dirty(inode, iflags);
1644 	return 0;
1645 }
1646 EXPORT_SYMBOL(generic_update_time);
1647 
1648 /*
1649  * This does the actual work of updating an inodes time or version.  Must have
1650  * had called mnt_want_write() before calling this.
1651  */
1652 static int update_time(struct inode *inode, struct timespec64 *time, int flags)
1653 {
1654 	int (*update_time)(struct inode *, struct timespec64 *, int);
1655 
1656 	update_time = inode->i_op->update_time ? inode->i_op->update_time :
1657 		generic_update_time;
1658 
1659 	return update_time(inode, time, flags);
1660 }
1661 
1662 /**
1663  *	touch_atime	-	update the access time
1664  *	@path: the &struct path to update
1665  *	@inode: inode to update
1666  *
1667  *	Update the accessed time on an inode and mark it for writeback.
1668  *	This function automatically handles read only file systems and media,
1669  *	as well as the "noatime" flag and inode specific "noatime" markers.
1670  */
1671 bool __atime_needs_update(const struct path *path, struct inode *inode,
1672 			  bool rcu)
1673 {
1674 	struct vfsmount *mnt = path->mnt;
1675 	struct timespec64 now;
1676 
1677 	if (inode->i_flags & S_NOATIME)
1678 		return false;
1679 
1680 	/* Atime updates will likely cause i_uid and i_gid to be written
1681 	 * back improprely if their true value is unknown to the vfs.
1682 	 */
1683 	if (HAS_UNMAPPED_ID(inode))
1684 		return false;
1685 
1686 	if (IS_NOATIME(inode))
1687 		return false;
1688 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1689 		return false;
1690 
1691 	if (mnt->mnt_flags & MNT_NOATIME)
1692 		return false;
1693 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1694 		return false;
1695 
1696 	now = current_time(inode);
1697 
1698 	if (!relatime_need_update(path, inode, timespec64_to_timespec(now), rcu))
1699 		return false;
1700 
1701 	if (timespec64_equal(&inode->i_atime, &now))
1702 		return false;
1703 
1704 	return true;
1705 }
1706 
1707 void touch_atime(const struct path *path)
1708 {
1709 	struct vfsmount *mnt = path->mnt;
1710 	struct inode *inode = d_inode(path->dentry);
1711 	struct timespec64 now;
1712 
1713 	if (!__atime_needs_update(path, inode, false))
1714 		return;
1715 
1716 	if (!sb_start_write_trylock(inode->i_sb))
1717 		return;
1718 
1719 	if (__mnt_want_write(mnt) != 0)
1720 		goto skip_update;
1721 	/*
1722 	 * File systems can error out when updating inodes if they need to
1723 	 * allocate new space to modify an inode (such is the case for
1724 	 * Btrfs), but since we touch atime while walking down the path we
1725 	 * really don't care if we failed to update the atime of the file,
1726 	 * so just ignore the return value.
1727 	 * We may also fail on filesystems that have the ability to make parts
1728 	 * of the fs read only, e.g. subvolumes in Btrfs.
1729 	 */
1730 	now = current_time(inode);
1731 	update_time(inode, &now, S_ATIME);
1732 	__mnt_drop_write(mnt);
1733 skip_update:
1734 	sb_end_write(inode->i_sb);
1735 }
1736 EXPORT_SYMBOL(touch_atime);
1737 
1738 /*
1739  * The logic we want is
1740  *
1741  *	if suid or (sgid and xgrp)
1742  *		remove privs
1743  */
1744 int should_remove_suid(struct dentry *dentry)
1745 {
1746 	umode_t mode = d_inode(dentry)->i_mode;
1747 	int kill = 0;
1748 
1749 	/* suid always must be killed */
1750 	if (unlikely(mode & S_ISUID))
1751 		kill = ATTR_KILL_SUID;
1752 
1753 	/*
1754 	 * sgid without any exec bits is just a mandatory locking mark; leave
1755 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1756 	 */
1757 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1758 		kill |= ATTR_KILL_SGID;
1759 
1760 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1761 		return kill;
1762 
1763 	return 0;
1764 }
1765 EXPORT_SYMBOL(should_remove_suid);
1766 
1767 /*
1768  * Return mask of changes for notify_change() that need to be done as a
1769  * response to write or truncate. Return 0 if nothing has to be changed.
1770  * Negative value on error (change should be denied).
1771  */
1772 int dentry_needs_remove_privs(struct dentry *dentry)
1773 {
1774 	struct inode *inode = d_inode(dentry);
1775 	int mask = 0;
1776 	int ret;
1777 
1778 	if (IS_NOSEC(inode))
1779 		return 0;
1780 
1781 	mask = should_remove_suid(dentry);
1782 	ret = security_inode_need_killpriv(dentry);
1783 	if (ret < 0)
1784 		return ret;
1785 	if (ret)
1786 		mask |= ATTR_KILL_PRIV;
1787 	return mask;
1788 }
1789 
1790 static int __remove_privs(struct dentry *dentry, int kill)
1791 {
1792 	struct iattr newattrs;
1793 
1794 	newattrs.ia_valid = ATTR_FORCE | kill;
1795 	/*
1796 	 * Note we call this on write, so notify_change will not
1797 	 * encounter any conflicting delegations:
1798 	 */
1799 	return notify_change(dentry, &newattrs, NULL);
1800 }
1801 
1802 /*
1803  * Remove special file priviledges (suid, capabilities) when file is written
1804  * to or truncated.
1805  */
1806 int file_remove_privs(struct file *file)
1807 {
1808 	struct dentry *dentry = file_dentry(file);
1809 	struct inode *inode = file_inode(file);
1810 	int kill;
1811 	int error = 0;
1812 
1813 	/* Fast path for nothing security related */
1814 	if (IS_NOSEC(inode))
1815 		return 0;
1816 
1817 	kill = dentry_needs_remove_privs(dentry);
1818 	if (kill < 0)
1819 		return kill;
1820 	if (kill)
1821 		error = __remove_privs(dentry, kill);
1822 	if (!error)
1823 		inode_has_no_xattr(inode);
1824 
1825 	return error;
1826 }
1827 EXPORT_SYMBOL(file_remove_privs);
1828 
1829 /**
1830  *	file_update_time	-	update mtime and ctime time
1831  *	@file: file accessed
1832  *
1833  *	Update the mtime and ctime members of an inode and mark the inode
1834  *	for writeback.  Note that this function is meant exclusively for
1835  *	usage in the file write path of filesystems, and filesystems may
1836  *	choose to explicitly ignore update via this function with the
1837  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1838  *	timestamps are handled by the server.  This can return an error for
1839  *	file systems who need to allocate space in order to update an inode.
1840  */
1841 
1842 int file_update_time(struct file *file)
1843 {
1844 	struct inode *inode = file_inode(file);
1845 	struct timespec64 now;
1846 	int sync_it = 0;
1847 	int ret;
1848 
1849 	/* First try to exhaust all avenues to not sync */
1850 	if (IS_NOCMTIME(inode))
1851 		return 0;
1852 
1853 	now = current_time(inode);
1854 	if (!timespec64_equal(&inode->i_mtime, &now))
1855 		sync_it = S_MTIME;
1856 
1857 	if (!timespec64_equal(&inode->i_ctime, &now))
1858 		sync_it |= S_CTIME;
1859 
1860 	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1861 		sync_it |= S_VERSION;
1862 
1863 	if (!sync_it)
1864 		return 0;
1865 
1866 	/* Finally allowed to write? Takes lock. */
1867 	if (__mnt_want_write_file(file))
1868 		return 0;
1869 
1870 	ret = update_time(inode, &now, sync_it);
1871 	__mnt_drop_write_file(file);
1872 
1873 	return ret;
1874 }
1875 EXPORT_SYMBOL(file_update_time);
1876 
1877 int inode_needs_sync(struct inode *inode)
1878 {
1879 	if (IS_SYNC(inode))
1880 		return 1;
1881 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1882 		return 1;
1883 	return 0;
1884 }
1885 EXPORT_SYMBOL(inode_needs_sync);
1886 
1887 /*
1888  * If we try to find an inode in the inode hash while it is being
1889  * deleted, we have to wait until the filesystem completes its
1890  * deletion before reporting that it isn't found.  This function waits
1891  * until the deletion _might_ have completed.  Callers are responsible
1892  * to recheck inode state.
1893  *
1894  * It doesn't matter if I_NEW is not set initially, a call to
1895  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1896  * will DTRT.
1897  */
1898 static void __wait_on_freeing_inode(struct inode *inode)
1899 {
1900 	wait_queue_head_t *wq;
1901 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1902 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1903 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1904 	spin_unlock(&inode->i_lock);
1905 	spin_unlock(&inode_hash_lock);
1906 	schedule();
1907 	finish_wait(wq, &wait.wq_entry);
1908 	spin_lock(&inode_hash_lock);
1909 }
1910 
1911 static __initdata unsigned long ihash_entries;
1912 static int __init set_ihash_entries(char *str)
1913 {
1914 	if (!str)
1915 		return 0;
1916 	ihash_entries = simple_strtoul(str, &str, 0);
1917 	return 1;
1918 }
1919 __setup("ihash_entries=", set_ihash_entries);
1920 
1921 /*
1922  * Initialize the waitqueues and inode hash table.
1923  */
1924 void __init inode_init_early(void)
1925 {
1926 	/* If hashes are distributed across NUMA nodes, defer
1927 	 * hash allocation until vmalloc space is available.
1928 	 */
1929 	if (hashdist)
1930 		return;
1931 
1932 	inode_hashtable =
1933 		alloc_large_system_hash("Inode-cache",
1934 					sizeof(struct hlist_head),
1935 					ihash_entries,
1936 					14,
1937 					HASH_EARLY | HASH_ZERO,
1938 					&i_hash_shift,
1939 					&i_hash_mask,
1940 					0,
1941 					0);
1942 }
1943 
1944 void __init inode_init(void)
1945 {
1946 	/* inode slab cache */
1947 	inode_cachep = kmem_cache_create("inode_cache",
1948 					 sizeof(struct inode),
1949 					 0,
1950 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1951 					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1952 					 init_once);
1953 
1954 	/* Hash may have been set up in inode_init_early */
1955 	if (!hashdist)
1956 		return;
1957 
1958 	inode_hashtable =
1959 		alloc_large_system_hash("Inode-cache",
1960 					sizeof(struct hlist_head),
1961 					ihash_entries,
1962 					14,
1963 					HASH_ZERO,
1964 					&i_hash_shift,
1965 					&i_hash_mask,
1966 					0,
1967 					0);
1968 }
1969 
1970 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1971 {
1972 	inode->i_mode = mode;
1973 	if (S_ISCHR(mode)) {
1974 		inode->i_fop = &def_chr_fops;
1975 		inode->i_rdev = rdev;
1976 	} else if (S_ISBLK(mode)) {
1977 		inode->i_fop = &def_blk_fops;
1978 		inode->i_rdev = rdev;
1979 	} else if (S_ISFIFO(mode))
1980 		inode->i_fop = &pipefifo_fops;
1981 	else if (S_ISSOCK(mode))
1982 		;	/* leave it no_open_fops */
1983 	else
1984 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1985 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1986 				  inode->i_ino);
1987 }
1988 EXPORT_SYMBOL(init_special_inode);
1989 
1990 /**
1991  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1992  * @inode: New inode
1993  * @dir: Directory inode
1994  * @mode: mode of the new inode
1995  */
1996 void inode_init_owner(struct inode *inode, const struct inode *dir,
1997 			umode_t mode)
1998 {
1999 	inode->i_uid = current_fsuid();
2000 	if (dir && dir->i_mode & S_ISGID) {
2001 		inode->i_gid = dir->i_gid;
2002 		if (S_ISDIR(mode))
2003 			mode |= S_ISGID;
2004 	} else
2005 		inode->i_gid = current_fsgid();
2006 	inode->i_mode = mode;
2007 }
2008 EXPORT_SYMBOL(inode_init_owner);
2009 
2010 /**
2011  * inode_owner_or_capable - check current task permissions to inode
2012  * @inode: inode being checked
2013  *
2014  * Return true if current either has CAP_FOWNER in a namespace with the
2015  * inode owner uid mapped, or owns the file.
2016  */
2017 bool inode_owner_or_capable(const struct inode *inode)
2018 {
2019 	struct user_namespace *ns;
2020 
2021 	if (uid_eq(current_fsuid(), inode->i_uid))
2022 		return true;
2023 
2024 	ns = current_user_ns();
2025 	if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2026 		return true;
2027 	return false;
2028 }
2029 EXPORT_SYMBOL(inode_owner_or_capable);
2030 
2031 /*
2032  * Direct i/o helper functions
2033  */
2034 static void __inode_dio_wait(struct inode *inode)
2035 {
2036 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2037 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2038 
2039 	do {
2040 		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2041 		if (atomic_read(&inode->i_dio_count))
2042 			schedule();
2043 	} while (atomic_read(&inode->i_dio_count));
2044 	finish_wait(wq, &q.wq_entry);
2045 }
2046 
2047 /**
2048  * inode_dio_wait - wait for outstanding DIO requests to finish
2049  * @inode: inode to wait for
2050  *
2051  * Waits for all pending direct I/O requests to finish so that we can
2052  * proceed with a truncate or equivalent operation.
2053  *
2054  * Must be called under a lock that serializes taking new references
2055  * to i_dio_count, usually by inode->i_mutex.
2056  */
2057 void inode_dio_wait(struct inode *inode)
2058 {
2059 	if (atomic_read(&inode->i_dio_count))
2060 		__inode_dio_wait(inode);
2061 }
2062 EXPORT_SYMBOL(inode_dio_wait);
2063 
2064 /*
2065  * inode_set_flags - atomically set some inode flags
2066  *
2067  * Note: the caller should be holding i_mutex, or else be sure that
2068  * they have exclusive access to the inode structure (i.e., while the
2069  * inode is being instantiated).  The reason for the cmpxchg() loop
2070  * --- which wouldn't be necessary if all code paths which modify
2071  * i_flags actually followed this rule, is that there is at least one
2072  * code path which doesn't today so we use cmpxchg() out of an abundance
2073  * of caution.
2074  *
2075  * In the long run, i_mutex is overkill, and we should probably look
2076  * at using the i_lock spinlock to protect i_flags, and then make sure
2077  * it is so documented in include/linux/fs.h and that all code follows
2078  * the locking convention!!
2079  */
2080 void inode_set_flags(struct inode *inode, unsigned int flags,
2081 		     unsigned int mask)
2082 {
2083 	unsigned int old_flags, new_flags;
2084 
2085 	WARN_ON_ONCE(flags & ~mask);
2086 	do {
2087 		old_flags = READ_ONCE(inode->i_flags);
2088 		new_flags = (old_flags & ~mask) | flags;
2089 	} while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2090 				  new_flags) != old_flags));
2091 }
2092 EXPORT_SYMBOL(inode_set_flags);
2093 
2094 void inode_nohighmem(struct inode *inode)
2095 {
2096 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2097 }
2098 EXPORT_SYMBOL(inode_nohighmem);
2099 
2100 /**
2101  * timespec64_trunc - Truncate timespec64 to a granularity
2102  * @t: Timespec64
2103  * @gran: Granularity in ns.
2104  *
2105  * Truncate a timespec64 to a granularity. Always rounds down. gran must
2106  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2107  */
2108 struct timespec64 timespec64_trunc(struct timespec64 t, unsigned gran)
2109 {
2110 	/* Avoid division in the common cases 1 ns and 1 s. */
2111 	if (gran == 1) {
2112 		/* nothing */
2113 	} else if (gran == NSEC_PER_SEC) {
2114 		t.tv_nsec = 0;
2115 	} else if (gran > 1 && gran < NSEC_PER_SEC) {
2116 		t.tv_nsec -= t.tv_nsec % gran;
2117 	} else {
2118 		WARN(1, "illegal file time granularity: %u", gran);
2119 	}
2120 	return t;
2121 }
2122 EXPORT_SYMBOL(timespec64_trunc);
2123 
2124 /**
2125  * current_time - Return FS time
2126  * @inode: inode.
2127  *
2128  * Return the current time truncated to the time granularity supported by
2129  * the fs.
2130  *
2131  * Note that inode and inode->sb cannot be NULL.
2132  * Otherwise, the function warns and returns time without truncation.
2133  */
2134 struct timespec64 current_time(struct inode *inode)
2135 {
2136 	struct timespec64 now = current_kernel_time64();
2137 
2138 	if (unlikely(!inode->i_sb)) {
2139 		WARN(1, "current_time() called with uninitialized super_block in the inode");
2140 		return now;
2141 	}
2142 
2143 	return timespec64_trunc(now, inode->i_sb->s_time_gran);
2144 }
2145 EXPORT_SYMBOL(current_time);
2146