1 /* 2 * (C) 1997 Linus Torvalds 3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 4 */ 5 #include <linux/export.h> 6 #include <linux/fs.h> 7 #include <linux/mm.h> 8 #include <linux/backing-dev.h> 9 #include <linux/hash.h> 10 #include <linux/swap.h> 11 #include <linux/security.h> 12 #include <linux/cdev.h> 13 #include <linux/bootmem.h> 14 #include <linux/fsnotify.h> 15 #include <linux/mount.h> 16 #include <linux/posix_acl.h> 17 #include <linux/prefetch.h> 18 #include <linux/buffer_head.h> /* for inode_has_buffers */ 19 #include <linux/ratelimit.h> 20 #include <linux/list_lru.h> 21 #include <linux/iversion.h> 22 #include <trace/events/writeback.h> 23 #include "internal.h" 24 25 /* 26 * Inode locking rules: 27 * 28 * inode->i_lock protects: 29 * inode->i_state, inode->i_hash, __iget() 30 * Inode LRU list locks protect: 31 * inode->i_sb->s_inode_lru, inode->i_lru 32 * inode->i_sb->s_inode_list_lock protects: 33 * inode->i_sb->s_inodes, inode->i_sb_list 34 * bdi->wb.list_lock protects: 35 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 36 * inode_hash_lock protects: 37 * inode_hashtable, inode->i_hash 38 * 39 * Lock ordering: 40 * 41 * inode->i_sb->s_inode_list_lock 42 * inode->i_lock 43 * Inode LRU list locks 44 * 45 * bdi->wb.list_lock 46 * inode->i_lock 47 * 48 * inode_hash_lock 49 * inode->i_sb->s_inode_list_lock 50 * inode->i_lock 51 * 52 * iunique_lock 53 * inode_hash_lock 54 */ 55 56 static unsigned int i_hash_mask __read_mostly; 57 static unsigned int i_hash_shift __read_mostly; 58 static struct hlist_head *inode_hashtable __read_mostly; 59 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 60 61 /* 62 * Empty aops. Can be used for the cases where the user does not 63 * define any of the address_space operations. 64 */ 65 const struct address_space_operations empty_aops = { 66 }; 67 EXPORT_SYMBOL(empty_aops); 68 69 /* 70 * Statistics gathering.. 71 */ 72 struct inodes_stat_t inodes_stat; 73 74 static DEFINE_PER_CPU(unsigned long, nr_inodes); 75 static DEFINE_PER_CPU(unsigned long, nr_unused); 76 77 static struct kmem_cache *inode_cachep __read_mostly; 78 79 static long get_nr_inodes(void) 80 { 81 int i; 82 long sum = 0; 83 for_each_possible_cpu(i) 84 sum += per_cpu(nr_inodes, i); 85 return sum < 0 ? 0 : sum; 86 } 87 88 static inline long get_nr_inodes_unused(void) 89 { 90 int i; 91 long sum = 0; 92 for_each_possible_cpu(i) 93 sum += per_cpu(nr_unused, i); 94 return sum < 0 ? 0 : sum; 95 } 96 97 long get_nr_dirty_inodes(void) 98 { 99 /* not actually dirty inodes, but a wild approximation */ 100 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 101 return nr_dirty > 0 ? nr_dirty : 0; 102 } 103 104 /* 105 * Handle nr_inode sysctl 106 */ 107 #ifdef CONFIG_SYSCTL 108 int proc_nr_inodes(struct ctl_table *table, int write, 109 void __user *buffer, size_t *lenp, loff_t *ppos) 110 { 111 inodes_stat.nr_inodes = get_nr_inodes(); 112 inodes_stat.nr_unused = get_nr_inodes_unused(); 113 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 114 } 115 #endif 116 117 static int no_open(struct inode *inode, struct file *file) 118 { 119 return -ENXIO; 120 } 121 122 /** 123 * inode_init_always - perform inode structure initialisation 124 * @sb: superblock inode belongs to 125 * @inode: inode to initialise 126 * 127 * These are initializations that need to be done on every inode 128 * allocation as the fields are not initialised by slab allocation. 129 */ 130 int inode_init_always(struct super_block *sb, struct inode *inode) 131 { 132 static const struct inode_operations empty_iops; 133 static const struct file_operations no_open_fops = {.open = no_open}; 134 struct address_space *const mapping = &inode->i_data; 135 136 inode->i_sb = sb; 137 inode->i_blkbits = sb->s_blocksize_bits; 138 inode->i_flags = 0; 139 atomic_set(&inode->i_count, 1); 140 inode->i_op = &empty_iops; 141 inode->i_fop = &no_open_fops; 142 inode->__i_nlink = 1; 143 inode->i_opflags = 0; 144 if (sb->s_xattr) 145 inode->i_opflags |= IOP_XATTR; 146 i_uid_write(inode, 0); 147 i_gid_write(inode, 0); 148 atomic_set(&inode->i_writecount, 0); 149 inode->i_size = 0; 150 inode->i_write_hint = WRITE_LIFE_NOT_SET; 151 inode->i_blocks = 0; 152 inode->i_bytes = 0; 153 inode->i_generation = 0; 154 inode->i_pipe = NULL; 155 inode->i_bdev = NULL; 156 inode->i_cdev = NULL; 157 inode->i_link = NULL; 158 inode->i_dir_seq = 0; 159 inode->i_rdev = 0; 160 inode->dirtied_when = 0; 161 162 #ifdef CONFIG_CGROUP_WRITEBACK 163 inode->i_wb_frn_winner = 0; 164 inode->i_wb_frn_avg_time = 0; 165 inode->i_wb_frn_history = 0; 166 #endif 167 168 if (security_inode_alloc(inode)) 169 goto out; 170 spin_lock_init(&inode->i_lock); 171 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 172 173 init_rwsem(&inode->i_rwsem); 174 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 175 176 atomic_set(&inode->i_dio_count, 0); 177 178 mapping->a_ops = &empty_aops; 179 mapping->host = inode; 180 mapping->flags = 0; 181 atomic_set(&mapping->i_mmap_writable, 0); 182 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 183 mapping->private_data = NULL; 184 mapping->writeback_index = 0; 185 inode->i_private = NULL; 186 inode->i_mapping = mapping; 187 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 188 #ifdef CONFIG_FS_POSIX_ACL 189 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 190 #endif 191 192 #ifdef CONFIG_FSNOTIFY 193 inode->i_fsnotify_mask = 0; 194 #endif 195 inode->i_flctx = NULL; 196 this_cpu_inc(nr_inodes); 197 198 return 0; 199 out: 200 return -ENOMEM; 201 } 202 EXPORT_SYMBOL(inode_init_always); 203 204 static struct inode *alloc_inode(struct super_block *sb) 205 { 206 struct inode *inode; 207 208 if (sb->s_op->alloc_inode) 209 inode = sb->s_op->alloc_inode(sb); 210 else 211 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 212 213 if (!inode) 214 return NULL; 215 216 if (unlikely(inode_init_always(sb, inode))) { 217 if (inode->i_sb->s_op->destroy_inode) 218 inode->i_sb->s_op->destroy_inode(inode); 219 else 220 kmem_cache_free(inode_cachep, inode); 221 return NULL; 222 } 223 224 return inode; 225 } 226 227 void free_inode_nonrcu(struct inode *inode) 228 { 229 kmem_cache_free(inode_cachep, inode); 230 } 231 EXPORT_SYMBOL(free_inode_nonrcu); 232 233 void __destroy_inode(struct inode *inode) 234 { 235 BUG_ON(inode_has_buffers(inode)); 236 inode_detach_wb(inode); 237 security_inode_free(inode); 238 fsnotify_inode_delete(inode); 239 locks_free_lock_context(inode); 240 if (!inode->i_nlink) { 241 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 242 atomic_long_dec(&inode->i_sb->s_remove_count); 243 } 244 245 #ifdef CONFIG_FS_POSIX_ACL 246 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 247 posix_acl_release(inode->i_acl); 248 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 249 posix_acl_release(inode->i_default_acl); 250 #endif 251 this_cpu_dec(nr_inodes); 252 } 253 EXPORT_SYMBOL(__destroy_inode); 254 255 static void i_callback(struct rcu_head *head) 256 { 257 struct inode *inode = container_of(head, struct inode, i_rcu); 258 kmem_cache_free(inode_cachep, inode); 259 } 260 261 static void destroy_inode(struct inode *inode) 262 { 263 BUG_ON(!list_empty(&inode->i_lru)); 264 __destroy_inode(inode); 265 if (inode->i_sb->s_op->destroy_inode) 266 inode->i_sb->s_op->destroy_inode(inode); 267 else 268 call_rcu(&inode->i_rcu, i_callback); 269 } 270 271 /** 272 * drop_nlink - directly drop an inode's link count 273 * @inode: inode 274 * 275 * This is a low-level filesystem helper to replace any 276 * direct filesystem manipulation of i_nlink. In cases 277 * where we are attempting to track writes to the 278 * filesystem, a decrement to zero means an imminent 279 * write when the file is truncated and actually unlinked 280 * on the filesystem. 281 */ 282 void drop_nlink(struct inode *inode) 283 { 284 WARN_ON(inode->i_nlink == 0); 285 inode->__i_nlink--; 286 if (!inode->i_nlink) 287 atomic_long_inc(&inode->i_sb->s_remove_count); 288 } 289 EXPORT_SYMBOL(drop_nlink); 290 291 /** 292 * clear_nlink - directly zero an inode's link count 293 * @inode: inode 294 * 295 * This is a low-level filesystem helper to replace any 296 * direct filesystem manipulation of i_nlink. See 297 * drop_nlink() for why we care about i_nlink hitting zero. 298 */ 299 void clear_nlink(struct inode *inode) 300 { 301 if (inode->i_nlink) { 302 inode->__i_nlink = 0; 303 atomic_long_inc(&inode->i_sb->s_remove_count); 304 } 305 } 306 EXPORT_SYMBOL(clear_nlink); 307 308 /** 309 * set_nlink - directly set an inode's link count 310 * @inode: inode 311 * @nlink: new nlink (should be non-zero) 312 * 313 * This is a low-level filesystem helper to replace any 314 * direct filesystem manipulation of i_nlink. 315 */ 316 void set_nlink(struct inode *inode, unsigned int nlink) 317 { 318 if (!nlink) { 319 clear_nlink(inode); 320 } else { 321 /* Yes, some filesystems do change nlink from zero to one */ 322 if (inode->i_nlink == 0) 323 atomic_long_dec(&inode->i_sb->s_remove_count); 324 325 inode->__i_nlink = nlink; 326 } 327 } 328 EXPORT_SYMBOL(set_nlink); 329 330 /** 331 * inc_nlink - directly increment an inode's link count 332 * @inode: inode 333 * 334 * This is a low-level filesystem helper to replace any 335 * direct filesystem manipulation of i_nlink. Currently, 336 * it is only here for parity with dec_nlink(). 337 */ 338 void inc_nlink(struct inode *inode) 339 { 340 if (unlikely(inode->i_nlink == 0)) { 341 WARN_ON(!(inode->i_state & I_LINKABLE)); 342 atomic_long_dec(&inode->i_sb->s_remove_count); 343 } 344 345 inode->__i_nlink++; 346 } 347 EXPORT_SYMBOL(inc_nlink); 348 349 void address_space_init_once(struct address_space *mapping) 350 { 351 memset(mapping, 0, sizeof(*mapping)); 352 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC | __GFP_ACCOUNT); 353 spin_lock_init(&mapping->tree_lock); 354 init_rwsem(&mapping->i_mmap_rwsem); 355 INIT_LIST_HEAD(&mapping->private_list); 356 spin_lock_init(&mapping->private_lock); 357 mapping->i_mmap = RB_ROOT_CACHED; 358 } 359 EXPORT_SYMBOL(address_space_init_once); 360 361 /* 362 * These are initializations that only need to be done 363 * once, because the fields are idempotent across use 364 * of the inode, so let the slab aware of that. 365 */ 366 void inode_init_once(struct inode *inode) 367 { 368 memset(inode, 0, sizeof(*inode)); 369 INIT_HLIST_NODE(&inode->i_hash); 370 INIT_LIST_HEAD(&inode->i_devices); 371 INIT_LIST_HEAD(&inode->i_io_list); 372 INIT_LIST_HEAD(&inode->i_wb_list); 373 INIT_LIST_HEAD(&inode->i_lru); 374 address_space_init_once(&inode->i_data); 375 i_size_ordered_init(inode); 376 } 377 EXPORT_SYMBOL(inode_init_once); 378 379 static void init_once(void *foo) 380 { 381 struct inode *inode = (struct inode *) foo; 382 383 inode_init_once(inode); 384 } 385 386 /* 387 * inode->i_lock must be held 388 */ 389 void __iget(struct inode *inode) 390 { 391 atomic_inc(&inode->i_count); 392 } 393 394 /* 395 * get additional reference to inode; caller must already hold one. 396 */ 397 void ihold(struct inode *inode) 398 { 399 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 400 } 401 EXPORT_SYMBOL(ihold); 402 403 static void inode_lru_list_add(struct inode *inode) 404 { 405 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru)) 406 this_cpu_inc(nr_unused); 407 else 408 inode->i_state |= I_REFERENCED; 409 } 410 411 /* 412 * Add inode to LRU if needed (inode is unused and clean). 413 * 414 * Needs inode->i_lock held. 415 */ 416 void inode_add_lru(struct inode *inode) 417 { 418 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC | 419 I_FREEING | I_WILL_FREE)) && 420 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE) 421 inode_lru_list_add(inode); 422 } 423 424 425 static void inode_lru_list_del(struct inode *inode) 426 { 427 428 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru)) 429 this_cpu_dec(nr_unused); 430 } 431 432 /** 433 * inode_sb_list_add - add inode to the superblock list of inodes 434 * @inode: inode to add 435 */ 436 void inode_sb_list_add(struct inode *inode) 437 { 438 spin_lock(&inode->i_sb->s_inode_list_lock); 439 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 440 spin_unlock(&inode->i_sb->s_inode_list_lock); 441 } 442 EXPORT_SYMBOL_GPL(inode_sb_list_add); 443 444 static inline void inode_sb_list_del(struct inode *inode) 445 { 446 if (!list_empty(&inode->i_sb_list)) { 447 spin_lock(&inode->i_sb->s_inode_list_lock); 448 list_del_init(&inode->i_sb_list); 449 spin_unlock(&inode->i_sb->s_inode_list_lock); 450 } 451 } 452 453 static unsigned long hash(struct super_block *sb, unsigned long hashval) 454 { 455 unsigned long tmp; 456 457 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 458 L1_CACHE_BYTES; 459 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 460 return tmp & i_hash_mask; 461 } 462 463 /** 464 * __insert_inode_hash - hash an inode 465 * @inode: unhashed inode 466 * @hashval: unsigned long value used to locate this object in the 467 * inode_hashtable. 468 * 469 * Add an inode to the inode hash for this superblock. 470 */ 471 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 472 { 473 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 474 475 spin_lock(&inode_hash_lock); 476 spin_lock(&inode->i_lock); 477 hlist_add_head(&inode->i_hash, b); 478 spin_unlock(&inode->i_lock); 479 spin_unlock(&inode_hash_lock); 480 } 481 EXPORT_SYMBOL(__insert_inode_hash); 482 483 /** 484 * __remove_inode_hash - remove an inode from the hash 485 * @inode: inode to unhash 486 * 487 * Remove an inode from the superblock. 488 */ 489 void __remove_inode_hash(struct inode *inode) 490 { 491 spin_lock(&inode_hash_lock); 492 spin_lock(&inode->i_lock); 493 hlist_del_init(&inode->i_hash); 494 spin_unlock(&inode->i_lock); 495 spin_unlock(&inode_hash_lock); 496 } 497 EXPORT_SYMBOL(__remove_inode_hash); 498 499 void clear_inode(struct inode *inode) 500 { 501 /* 502 * We have to cycle tree_lock here because reclaim can be still in the 503 * process of removing the last page (in __delete_from_page_cache()) 504 * and we must not free mapping under it. 505 */ 506 spin_lock_irq(&inode->i_data.tree_lock); 507 BUG_ON(inode->i_data.nrpages); 508 BUG_ON(inode->i_data.nrexceptional); 509 spin_unlock_irq(&inode->i_data.tree_lock); 510 BUG_ON(!list_empty(&inode->i_data.private_list)); 511 BUG_ON(!(inode->i_state & I_FREEING)); 512 BUG_ON(inode->i_state & I_CLEAR); 513 BUG_ON(!list_empty(&inode->i_wb_list)); 514 /* don't need i_lock here, no concurrent mods to i_state */ 515 inode->i_state = I_FREEING | I_CLEAR; 516 } 517 EXPORT_SYMBOL(clear_inode); 518 519 /* 520 * Free the inode passed in, removing it from the lists it is still connected 521 * to. We remove any pages still attached to the inode and wait for any IO that 522 * is still in progress before finally destroying the inode. 523 * 524 * An inode must already be marked I_FREEING so that we avoid the inode being 525 * moved back onto lists if we race with other code that manipulates the lists 526 * (e.g. writeback_single_inode). The caller is responsible for setting this. 527 * 528 * An inode must already be removed from the LRU list before being evicted from 529 * the cache. This should occur atomically with setting the I_FREEING state 530 * flag, so no inodes here should ever be on the LRU when being evicted. 531 */ 532 static void evict(struct inode *inode) 533 { 534 const struct super_operations *op = inode->i_sb->s_op; 535 536 BUG_ON(!(inode->i_state & I_FREEING)); 537 BUG_ON(!list_empty(&inode->i_lru)); 538 539 if (!list_empty(&inode->i_io_list)) 540 inode_io_list_del(inode); 541 542 inode_sb_list_del(inode); 543 544 /* 545 * Wait for flusher thread to be done with the inode so that filesystem 546 * does not start destroying it while writeback is still running. Since 547 * the inode has I_FREEING set, flusher thread won't start new work on 548 * the inode. We just have to wait for running writeback to finish. 549 */ 550 inode_wait_for_writeback(inode); 551 552 if (op->evict_inode) { 553 op->evict_inode(inode); 554 } else { 555 truncate_inode_pages_final(&inode->i_data); 556 clear_inode(inode); 557 } 558 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 559 bd_forget(inode); 560 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 561 cd_forget(inode); 562 563 remove_inode_hash(inode); 564 565 spin_lock(&inode->i_lock); 566 wake_up_bit(&inode->i_state, __I_NEW); 567 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 568 spin_unlock(&inode->i_lock); 569 570 destroy_inode(inode); 571 } 572 573 /* 574 * dispose_list - dispose of the contents of a local list 575 * @head: the head of the list to free 576 * 577 * Dispose-list gets a local list with local inodes in it, so it doesn't 578 * need to worry about list corruption and SMP locks. 579 */ 580 static void dispose_list(struct list_head *head) 581 { 582 while (!list_empty(head)) { 583 struct inode *inode; 584 585 inode = list_first_entry(head, struct inode, i_lru); 586 list_del_init(&inode->i_lru); 587 588 evict(inode); 589 cond_resched(); 590 } 591 } 592 593 /** 594 * evict_inodes - evict all evictable inodes for a superblock 595 * @sb: superblock to operate on 596 * 597 * Make sure that no inodes with zero refcount are retained. This is 598 * called by superblock shutdown after having SB_ACTIVE flag removed, 599 * so any inode reaching zero refcount during or after that call will 600 * be immediately evicted. 601 */ 602 void evict_inodes(struct super_block *sb) 603 { 604 struct inode *inode, *next; 605 LIST_HEAD(dispose); 606 607 again: 608 spin_lock(&sb->s_inode_list_lock); 609 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 610 if (atomic_read(&inode->i_count)) 611 continue; 612 613 spin_lock(&inode->i_lock); 614 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 615 spin_unlock(&inode->i_lock); 616 continue; 617 } 618 619 inode->i_state |= I_FREEING; 620 inode_lru_list_del(inode); 621 spin_unlock(&inode->i_lock); 622 list_add(&inode->i_lru, &dispose); 623 624 /* 625 * We can have a ton of inodes to evict at unmount time given 626 * enough memory, check to see if we need to go to sleep for a 627 * bit so we don't livelock. 628 */ 629 if (need_resched()) { 630 spin_unlock(&sb->s_inode_list_lock); 631 cond_resched(); 632 dispose_list(&dispose); 633 goto again; 634 } 635 } 636 spin_unlock(&sb->s_inode_list_lock); 637 638 dispose_list(&dispose); 639 } 640 EXPORT_SYMBOL_GPL(evict_inodes); 641 642 /** 643 * invalidate_inodes - attempt to free all inodes on a superblock 644 * @sb: superblock to operate on 645 * @kill_dirty: flag to guide handling of dirty inodes 646 * 647 * Attempts to free all inodes for a given superblock. If there were any 648 * busy inodes return a non-zero value, else zero. 649 * If @kill_dirty is set, discard dirty inodes too, otherwise treat 650 * them as busy. 651 */ 652 int invalidate_inodes(struct super_block *sb, bool kill_dirty) 653 { 654 int busy = 0; 655 struct inode *inode, *next; 656 LIST_HEAD(dispose); 657 658 spin_lock(&sb->s_inode_list_lock); 659 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 660 spin_lock(&inode->i_lock); 661 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 662 spin_unlock(&inode->i_lock); 663 continue; 664 } 665 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) { 666 spin_unlock(&inode->i_lock); 667 busy = 1; 668 continue; 669 } 670 if (atomic_read(&inode->i_count)) { 671 spin_unlock(&inode->i_lock); 672 busy = 1; 673 continue; 674 } 675 676 inode->i_state |= I_FREEING; 677 inode_lru_list_del(inode); 678 spin_unlock(&inode->i_lock); 679 list_add(&inode->i_lru, &dispose); 680 } 681 spin_unlock(&sb->s_inode_list_lock); 682 683 dispose_list(&dispose); 684 685 return busy; 686 } 687 688 /* 689 * Isolate the inode from the LRU in preparation for freeing it. 690 * 691 * Any inodes which are pinned purely because of attached pagecache have their 692 * pagecache removed. If the inode has metadata buffers attached to 693 * mapping->private_list then try to remove them. 694 * 695 * If the inode has the I_REFERENCED flag set, then it means that it has been 696 * used recently - the flag is set in iput_final(). When we encounter such an 697 * inode, clear the flag and move it to the back of the LRU so it gets another 698 * pass through the LRU before it gets reclaimed. This is necessary because of 699 * the fact we are doing lazy LRU updates to minimise lock contention so the 700 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 701 * with this flag set because they are the inodes that are out of order. 702 */ 703 static enum lru_status inode_lru_isolate(struct list_head *item, 704 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 705 { 706 struct list_head *freeable = arg; 707 struct inode *inode = container_of(item, struct inode, i_lru); 708 709 /* 710 * we are inverting the lru lock/inode->i_lock here, so use a trylock. 711 * If we fail to get the lock, just skip it. 712 */ 713 if (!spin_trylock(&inode->i_lock)) 714 return LRU_SKIP; 715 716 /* 717 * Referenced or dirty inodes are still in use. Give them another pass 718 * through the LRU as we canot reclaim them now. 719 */ 720 if (atomic_read(&inode->i_count) || 721 (inode->i_state & ~I_REFERENCED)) { 722 list_lru_isolate(lru, &inode->i_lru); 723 spin_unlock(&inode->i_lock); 724 this_cpu_dec(nr_unused); 725 return LRU_REMOVED; 726 } 727 728 /* recently referenced inodes get one more pass */ 729 if (inode->i_state & I_REFERENCED) { 730 inode->i_state &= ~I_REFERENCED; 731 spin_unlock(&inode->i_lock); 732 return LRU_ROTATE; 733 } 734 735 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 736 __iget(inode); 737 spin_unlock(&inode->i_lock); 738 spin_unlock(lru_lock); 739 if (remove_inode_buffers(inode)) { 740 unsigned long reap; 741 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 742 if (current_is_kswapd()) 743 __count_vm_events(KSWAPD_INODESTEAL, reap); 744 else 745 __count_vm_events(PGINODESTEAL, reap); 746 if (current->reclaim_state) 747 current->reclaim_state->reclaimed_slab += reap; 748 } 749 iput(inode); 750 spin_lock(lru_lock); 751 return LRU_RETRY; 752 } 753 754 WARN_ON(inode->i_state & I_NEW); 755 inode->i_state |= I_FREEING; 756 list_lru_isolate_move(lru, &inode->i_lru, freeable); 757 spin_unlock(&inode->i_lock); 758 759 this_cpu_dec(nr_unused); 760 return LRU_REMOVED; 761 } 762 763 /* 764 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 765 * This is called from the superblock shrinker function with a number of inodes 766 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 767 * then are freed outside inode_lock by dispose_list(). 768 */ 769 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 770 { 771 LIST_HEAD(freeable); 772 long freed; 773 774 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 775 inode_lru_isolate, &freeable); 776 dispose_list(&freeable); 777 return freed; 778 } 779 780 static void __wait_on_freeing_inode(struct inode *inode); 781 /* 782 * Called with the inode lock held. 783 */ 784 static struct inode *find_inode(struct super_block *sb, 785 struct hlist_head *head, 786 int (*test)(struct inode *, void *), 787 void *data) 788 { 789 struct inode *inode = NULL; 790 791 repeat: 792 hlist_for_each_entry(inode, head, i_hash) { 793 if (inode->i_sb != sb) 794 continue; 795 if (!test(inode, data)) 796 continue; 797 spin_lock(&inode->i_lock); 798 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 799 __wait_on_freeing_inode(inode); 800 goto repeat; 801 } 802 __iget(inode); 803 spin_unlock(&inode->i_lock); 804 return inode; 805 } 806 return NULL; 807 } 808 809 /* 810 * find_inode_fast is the fast path version of find_inode, see the comment at 811 * iget_locked for details. 812 */ 813 static struct inode *find_inode_fast(struct super_block *sb, 814 struct hlist_head *head, unsigned long ino) 815 { 816 struct inode *inode = NULL; 817 818 repeat: 819 hlist_for_each_entry(inode, head, i_hash) { 820 if (inode->i_ino != ino) 821 continue; 822 if (inode->i_sb != sb) 823 continue; 824 spin_lock(&inode->i_lock); 825 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 826 __wait_on_freeing_inode(inode); 827 goto repeat; 828 } 829 __iget(inode); 830 spin_unlock(&inode->i_lock); 831 return inode; 832 } 833 return NULL; 834 } 835 836 /* 837 * Each cpu owns a range of LAST_INO_BATCH numbers. 838 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 839 * to renew the exhausted range. 840 * 841 * This does not significantly increase overflow rate because every CPU can 842 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 843 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 844 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 845 * overflow rate by 2x, which does not seem too significant. 846 * 847 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 848 * error if st_ino won't fit in target struct field. Use 32bit counter 849 * here to attempt to avoid that. 850 */ 851 #define LAST_INO_BATCH 1024 852 static DEFINE_PER_CPU(unsigned int, last_ino); 853 854 unsigned int get_next_ino(void) 855 { 856 unsigned int *p = &get_cpu_var(last_ino); 857 unsigned int res = *p; 858 859 #ifdef CONFIG_SMP 860 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 861 static atomic_t shared_last_ino; 862 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 863 864 res = next - LAST_INO_BATCH; 865 } 866 #endif 867 868 res++; 869 /* get_next_ino should not provide a 0 inode number */ 870 if (unlikely(!res)) 871 res++; 872 *p = res; 873 put_cpu_var(last_ino); 874 return res; 875 } 876 EXPORT_SYMBOL(get_next_ino); 877 878 /** 879 * new_inode_pseudo - obtain an inode 880 * @sb: superblock 881 * 882 * Allocates a new inode for given superblock. 883 * Inode wont be chained in superblock s_inodes list 884 * This means : 885 * - fs can't be unmount 886 * - quotas, fsnotify, writeback can't work 887 */ 888 struct inode *new_inode_pseudo(struct super_block *sb) 889 { 890 struct inode *inode = alloc_inode(sb); 891 892 if (inode) { 893 spin_lock(&inode->i_lock); 894 inode->i_state = 0; 895 spin_unlock(&inode->i_lock); 896 INIT_LIST_HEAD(&inode->i_sb_list); 897 } 898 return inode; 899 } 900 901 /** 902 * new_inode - obtain an inode 903 * @sb: superblock 904 * 905 * Allocates a new inode for given superblock. The default gfp_mask 906 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 907 * If HIGHMEM pages are unsuitable or it is known that pages allocated 908 * for the page cache are not reclaimable or migratable, 909 * mapping_set_gfp_mask() must be called with suitable flags on the 910 * newly created inode's mapping 911 * 912 */ 913 struct inode *new_inode(struct super_block *sb) 914 { 915 struct inode *inode; 916 917 spin_lock_prefetch(&sb->s_inode_list_lock); 918 919 inode = new_inode_pseudo(sb); 920 if (inode) 921 inode_sb_list_add(inode); 922 return inode; 923 } 924 EXPORT_SYMBOL(new_inode); 925 926 #ifdef CONFIG_DEBUG_LOCK_ALLOC 927 void lockdep_annotate_inode_mutex_key(struct inode *inode) 928 { 929 if (S_ISDIR(inode->i_mode)) { 930 struct file_system_type *type = inode->i_sb->s_type; 931 932 /* Set new key only if filesystem hasn't already changed it */ 933 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 934 /* 935 * ensure nobody is actually holding i_mutex 936 */ 937 // mutex_destroy(&inode->i_mutex); 938 init_rwsem(&inode->i_rwsem); 939 lockdep_set_class(&inode->i_rwsem, 940 &type->i_mutex_dir_key); 941 } 942 } 943 } 944 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 945 #endif 946 947 /** 948 * unlock_new_inode - clear the I_NEW state and wake up any waiters 949 * @inode: new inode to unlock 950 * 951 * Called when the inode is fully initialised to clear the new state of the 952 * inode and wake up anyone waiting for the inode to finish initialisation. 953 */ 954 void unlock_new_inode(struct inode *inode) 955 { 956 lockdep_annotate_inode_mutex_key(inode); 957 spin_lock(&inode->i_lock); 958 WARN_ON(!(inode->i_state & I_NEW)); 959 inode->i_state &= ~I_NEW; 960 smp_mb(); 961 wake_up_bit(&inode->i_state, __I_NEW); 962 spin_unlock(&inode->i_lock); 963 } 964 EXPORT_SYMBOL(unlock_new_inode); 965 966 /** 967 * lock_two_nondirectories - take two i_mutexes on non-directory objects 968 * 969 * Lock any non-NULL argument that is not a directory. 970 * Zero, one or two objects may be locked by this function. 971 * 972 * @inode1: first inode to lock 973 * @inode2: second inode to lock 974 */ 975 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 976 { 977 if (inode1 > inode2) 978 swap(inode1, inode2); 979 980 if (inode1 && !S_ISDIR(inode1->i_mode)) 981 inode_lock(inode1); 982 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 983 inode_lock_nested(inode2, I_MUTEX_NONDIR2); 984 } 985 EXPORT_SYMBOL(lock_two_nondirectories); 986 987 /** 988 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 989 * @inode1: first inode to unlock 990 * @inode2: second inode to unlock 991 */ 992 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 993 { 994 if (inode1 && !S_ISDIR(inode1->i_mode)) 995 inode_unlock(inode1); 996 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 997 inode_unlock(inode2); 998 } 999 EXPORT_SYMBOL(unlock_two_nondirectories); 1000 1001 /** 1002 * iget5_locked - obtain an inode from a mounted file system 1003 * @sb: super block of file system 1004 * @hashval: hash value (usually inode number) to get 1005 * @test: callback used for comparisons between inodes 1006 * @set: callback used to initialize a new struct inode 1007 * @data: opaque data pointer to pass to @test and @set 1008 * 1009 * Search for the inode specified by @hashval and @data in the inode cache, 1010 * and if present it is return it with an increased reference count. This is 1011 * a generalized version of iget_locked() for file systems where the inode 1012 * number is not sufficient for unique identification of an inode. 1013 * 1014 * If the inode is not in cache, allocate a new inode and return it locked, 1015 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1016 * before unlocking it via unlock_new_inode(). 1017 * 1018 * Note both @test and @set are called with the inode_hash_lock held, so can't 1019 * sleep. 1020 */ 1021 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1022 int (*test)(struct inode *, void *), 1023 int (*set)(struct inode *, void *), void *data) 1024 { 1025 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1026 struct inode *inode; 1027 again: 1028 spin_lock(&inode_hash_lock); 1029 inode = find_inode(sb, head, test, data); 1030 spin_unlock(&inode_hash_lock); 1031 1032 if (inode) { 1033 wait_on_inode(inode); 1034 if (unlikely(inode_unhashed(inode))) { 1035 iput(inode); 1036 goto again; 1037 } 1038 return inode; 1039 } 1040 1041 inode = alloc_inode(sb); 1042 if (inode) { 1043 struct inode *old; 1044 1045 spin_lock(&inode_hash_lock); 1046 /* We released the lock, so.. */ 1047 old = find_inode(sb, head, test, data); 1048 if (!old) { 1049 if (set(inode, data)) 1050 goto set_failed; 1051 1052 spin_lock(&inode->i_lock); 1053 inode->i_state = I_NEW; 1054 hlist_add_head(&inode->i_hash, head); 1055 spin_unlock(&inode->i_lock); 1056 inode_sb_list_add(inode); 1057 spin_unlock(&inode_hash_lock); 1058 1059 /* Return the locked inode with I_NEW set, the 1060 * caller is responsible for filling in the contents 1061 */ 1062 return inode; 1063 } 1064 1065 /* 1066 * Uhhuh, somebody else created the same inode under 1067 * us. Use the old inode instead of the one we just 1068 * allocated. 1069 */ 1070 spin_unlock(&inode_hash_lock); 1071 destroy_inode(inode); 1072 inode = old; 1073 wait_on_inode(inode); 1074 if (unlikely(inode_unhashed(inode))) { 1075 iput(inode); 1076 goto again; 1077 } 1078 } 1079 return inode; 1080 1081 set_failed: 1082 spin_unlock(&inode_hash_lock); 1083 destroy_inode(inode); 1084 return NULL; 1085 } 1086 EXPORT_SYMBOL(iget5_locked); 1087 1088 /** 1089 * iget_locked - obtain an inode from a mounted file system 1090 * @sb: super block of file system 1091 * @ino: inode number to get 1092 * 1093 * Search for the inode specified by @ino in the inode cache and if present 1094 * return it with an increased reference count. This is for file systems 1095 * where the inode number is sufficient for unique identification of an inode. 1096 * 1097 * If the inode is not in cache, allocate a new inode and return it locked, 1098 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1099 * before unlocking it via unlock_new_inode(). 1100 */ 1101 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1102 { 1103 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1104 struct inode *inode; 1105 again: 1106 spin_lock(&inode_hash_lock); 1107 inode = find_inode_fast(sb, head, ino); 1108 spin_unlock(&inode_hash_lock); 1109 if (inode) { 1110 wait_on_inode(inode); 1111 if (unlikely(inode_unhashed(inode))) { 1112 iput(inode); 1113 goto again; 1114 } 1115 return inode; 1116 } 1117 1118 inode = alloc_inode(sb); 1119 if (inode) { 1120 struct inode *old; 1121 1122 spin_lock(&inode_hash_lock); 1123 /* We released the lock, so.. */ 1124 old = find_inode_fast(sb, head, ino); 1125 if (!old) { 1126 inode->i_ino = ino; 1127 spin_lock(&inode->i_lock); 1128 inode->i_state = I_NEW; 1129 hlist_add_head(&inode->i_hash, head); 1130 spin_unlock(&inode->i_lock); 1131 inode_sb_list_add(inode); 1132 spin_unlock(&inode_hash_lock); 1133 1134 /* Return the locked inode with I_NEW set, the 1135 * caller is responsible for filling in the contents 1136 */ 1137 return inode; 1138 } 1139 1140 /* 1141 * Uhhuh, somebody else created the same inode under 1142 * us. Use the old inode instead of the one we just 1143 * allocated. 1144 */ 1145 spin_unlock(&inode_hash_lock); 1146 destroy_inode(inode); 1147 inode = old; 1148 wait_on_inode(inode); 1149 if (unlikely(inode_unhashed(inode))) { 1150 iput(inode); 1151 goto again; 1152 } 1153 } 1154 return inode; 1155 } 1156 EXPORT_SYMBOL(iget_locked); 1157 1158 /* 1159 * search the inode cache for a matching inode number. 1160 * If we find one, then the inode number we are trying to 1161 * allocate is not unique and so we should not use it. 1162 * 1163 * Returns 1 if the inode number is unique, 0 if it is not. 1164 */ 1165 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1166 { 1167 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1168 struct inode *inode; 1169 1170 spin_lock(&inode_hash_lock); 1171 hlist_for_each_entry(inode, b, i_hash) { 1172 if (inode->i_ino == ino && inode->i_sb == sb) { 1173 spin_unlock(&inode_hash_lock); 1174 return 0; 1175 } 1176 } 1177 spin_unlock(&inode_hash_lock); 1178 1179 return 1; 1180 } 1181 1182 /** 1183 * iunique - get a unique inode number 1184 * @sb: superblock 1185 * @max_reserved: highest reserved inode number 1186 * 1187 * Obtain an inode number that is unique on the system for a given 1188 * superblock. This is used by file systems that have no natural 1189 * permanent inode numbering system. An inode number is returned that 1190 * is higher than the reserved limit but unique. 1191 * 1192 * BUGS: 1193 * With a large number of inodes live on the file system this function 1194 * currently becomes quite slow. 1195 */ 1196 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1197 { 1198 /* 1199 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1200 * error if st_ino won't fit in target struct field. Use 32bit counter 1201 * here to attempt to avoid that. 1202 */ 1203 static DEFINE_SPINLOCK(iunique_lock); 1204 static unsigned int counter; 1205 ino_t res; 1206 1207 spin_lock(&iunique_lock); 1208 do { 1209 if (counter <= max_reserved) 1210 counter = max_reserved + 1; 1211 res = counter++; 1212 } while (!test_inode_iunique(sb, res)); 1213 spin_unlock(&iunique_lock); 1214 1215 return res; 1216 } 1217 EXPORT_SYMBOL(iunique); 1218 1219 struct inode *igrab(struct inode *inode) 1220 { 1221 spin_lock(&inode->i_lock); 1222 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1223 __iget(inode); 1224 spin_unlock(&inode->i_lock); 1225 } else { 1226 spin_unlock(&inode->i_lock); 1227 /* 1228 * Handle the case where s_op->clear_inode is not been 1229 * called yet, and somebody is calling igrab 1230 * while the inode is getting freed. 1231 */ 1232 inode = NULL; 1233 } 1234 return inode; 1235 } 1236 EXPORT_SYMBOL(igrab); 1237 1238 /** 1239 * ilookup5_nowait - search for an inode in the inode cache 1240 * @sb: super block of file system to search 1241 * @hashval: hash value (usually inode number) to search for 1242 * @test: callback used for comparisons between inodes 1243 * @data: opaque data pointer to pass to @test 1244 * 1245 * Search for the inode specified by @hashval and @data in the inode cache. 1246 * If the inode is in the cache, the inode is returned with an incremented 1247 * reference count. 1248 * 1249 * Note: I_NEW is not waited upon so you have to be very careful what you do 1250 * with the returned inode. You probably should be using ilookup5() instead. 1251 * 1252 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1253 */ 1254 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1255 int (*test)(struct inode *, void *), void *data) 1256 { 1257 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1258 struct inode *inode; 1259 1260 spin_lock(&inode_hash_lock); 1261 inode = find_inode(sb, head, test, data); 1262 spin_unlock(&inode_hash_lock); 1263 1264 return inode; 1265 } 1266 EXPORT_SYMBOL(ilookup5_nowait); 1267 1268 /** 1269 * ilookup5 - search for an inode in the inode cache 1270 * @sb: super block of file system to search 1271 * @hashval: hash value (usually inode number) to search for 1272 * @test: callback used for comparisons between inodes 1273 * @data: opaque data pointer to pass to @test 1274 * 1275 * Search for the inode specified by @hashval and @data in the inode cache, 1276 * and if the inode is in the cache, return the inode with an incremented 1277 * reference count. Waits on I_NEW before returning the inode. 1278 * returned with an incremented reference count. 1279 * 1280 * This is a generalized version of ilookup() for file systems where the 1281 * inode number is not sufficient for unique identification of an inode. 1282 * 1283 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1284 */ 1285 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1286 int (*test)(struct inode *, void *), void *data) 1287 { 1288 struct inode *inode; 1289 again: 1290 inode = ilookup5_nowait(sb, hashval, test, data); 1291 if (inode) { 1292 wait_on_inode(inode); 1293 if (unlikely(inode_unhashed(inode))) { 1294 iput(inode); 1295 goto again; 1296 } 1297 } 1298 return inode; 1299 } 1300 EXPORT_SYMBOL(ilookup5); 1301 1302 /** 1303 * ilookup - search for an inode in the inode cache 1304 * @sb: super block of file system to search 1305 * @ino: inode number to search for 1306 * 1307 * Search for the inode @ino in the inode cache, and if the inode is in the 1308 * cache, the inode is returned with an incremented reference count. 1309 */ 1310 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1311 { 1312 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1313 struct inode *inode; 1314 again: 1315 spin_lock(&inode_hash_lock); 1316 inode = find_inode_fast(sb, head, ino); 1317 spin_unlock(&inode_hash_lock); 1318 1319 if (inode) { 1320 wait_on_inode(inode); 1321 if (unlikely(inode_unhashed(inode))) { 1322 iput(inode); 1323 goto again; 1324 } 1325 } 1326 return inode; 1327 } 1328 EXPORT_SYMBOL(ilookup); 1329 1330 /** 1331 * find_inode_nowait - find an inode in the inode cache 1332 * @sb: super block of file system to search 1333 * @hashval: hash value (usually inode number) to search for 1334 * @match: callback used for comparisons between inodes 1335 * @data: opaque data pointer to pass to @match 1336 * 1337 * Search for the inode specified by @hashval and @data in the inode 1338 * cache, where the helper function @match will return 0 if the inode 1339 * does not match, 1 if the inode does match, and -1 if the search 1340 * should be stopped. The @match function must be responsible for 1341 * taking the i_lock spin_lock and checking i_state for an inode being 1342 * freed or being initialized, and incrementing the reference count 1343 * before returning 1. It also must not sleep, since it is called with 1344 * the inode_hash_lock spinlock held. 1345 * 1346 * This is a even more generalized version of ilookup5() when the 1347 * function must never block --- find_inode() can block in 1348 * __wait_on_freeing_inode() --- or when the caller can not increment 1349 * the reference count because the resulting iput() might cause an 1350 * inode eviction. The tradeoff is that the @match funtion must be 1351 * very carefully implemented. 1352 */ 1353 struct inode *find_inode_nowait(struct super_block *sb, 1354 unsigned long hashval, 1355 int (*match)(struct inode *, unsigned long, 1356 void *), 1357 void *data) 1358 { 1359 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1360 struct inode *inode, *ret_inode = NULL; 1361 int mval; 1362 1363 spin_lock(&inode_hash_lock); 1364 hlist_for_each_entry(inode, head, i_hash) { 1365 if (inode->i_sb != sb) 1366 continue; 1367 mval = match(inode, hashval, data); 1368 if (mval == 0) 1369 continue; 1370 if (mval == 1) 1371 ret_inode = inode; 1372 goto out; 1373 } 1374 out: 1375 spin_unlock(&inode_hash_lock); 1376 return ret_inode; 1377 } 1378 EXPORT_SYMBOL(find_inode_nowait); 1379 1380 int insert_inode_locked(struct inode *inode) 1381 { 1382 struct super_block *sb = inode->i_sb; 1383 ino_t ino = inode->i_ino; 1384 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1385 1386 while (1) { 1387 struct inode *old = NULL; 1388 spin_lock(&inode_hash_lock); 1389 hlist_for_each_entry(old, head, i_hash) { 1390 if (old->i_ino != ino) 1391 continue; 1392 if (old->i_sb != sb) 1393 continue; 1394 spin_lock(&old->i_lock); 1395 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1396 spin_unlock(&old->i_lock); 1397 continue; 1398 } 1399 break; 1400 } 1401 if (likely(!old)) { 1402 spin_lock(&inode->i_lock); 1403 inode->i_state |= I_NEW; 1404 hlist_add_head(&inode->i_hash, head); 1405 spin_unlock(&inode->i_lock); 1406 spin_unlock(&inode_hash_lock); 1407 return 0; 1408 } 1409 __iget(old); 1410 spin_unlock(&old->i_lock); 1411 spin_unlock(&inode_hash_lock); 1412 wait_on_inode(old); 1413 if (unlikely(!inode_unhashed(old))) { 1414 iput(old); 1415 return -EBUSY; 1416 } 1417 iput(old); 1418 } 1419 } 1420 EXPORT_SYMBOL(insert_inode_locked); 1421 1422 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1423 int (*test)(struct inode *, void *), void *data) 1424 { 1425 struct super_block *sb = inode->i_sb; 1426 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1427 1428 while (1) { 1429 struct inode *old = NULL; 1430 1431 spin_lock(&inode_hash_lock); 1432 hlist_for_each_entry(old, head, i_hash) { 1433 if (old->i_sb != sb) 1434 continue; 1435 if (!test(old, data)) 1436 continue; 1437 spin_lock(&old->i_lock); 1438 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1439 spin_unlock(&old->i_lock); 1440 continue; 1441 } 1442 break; 1443 } 1444 if (likely(!old)) { 1445 spin_lock(&inode->i_lock); 1446 inode->i_state |= I_NEW; 1447 hlist_add_head(&inode->i_hash, head); 1448 spin_unlock(&inode->i_lock); 1449 spin_unlock(&inode_hash_lock); 1450 return 0; 1451 } 1452 __iget(old); 1453 spin_unlock(&old->i_lock); 1454 spin_unlock(&inode_hash_lock); 1455 wait_on_inode(old); 1456 if (unlikely(!inode_unhashed(old))) { 1457 iput(old); 1458 return -EBUSY; 1459 } 1460 iput(old); 1461 } 1462 } 1463 EXPORT_SYMBOL(insert_inode_locked4); 1464 1465 1466 int generic_delete_inode(struct inode *inode) 1467 { 1468 return 1; 1469 } 1470 EXPORT_SYMBOL(generic_delete_inode); 1471 1472 /* 1473 * Called when we're dropping the last reference 1474 * to an inode. 1475 * 1476 * Call the FS "drop_inode()" function, defaulting to 1477 * the legacy UNIX filesystem behaviour. If it tells 1478 * us to evict inode, do so. Otherwise, retain inode 1479 * in cache if fs is alive, sync and evict if fs is 1480 * shutting down. 1481 */ 1482 static void iput_final(struct inode *inode) 1483 { 1484 struct super_block *sb = inode->i_sb; 1485 const struct super_operations *op = inode->i_sb->s_op; 1486 int drop; 1487 1488 WARN_ON(inode->i_state & I_NEW); 1489 1490 if (op->drop_inode) 1491 drop = op->drop_inode(inode); 1492 else 1493 drop = generic_drop_inode(inode); 1494 1495 if (!drop && (sb->s_flags & SB_ACTIVE)) { 1496 inode_add_lru(inode); 1497 spin_unlock(&inode->i_lock); 1498 return; 1499 } 1500 1501 if (!drop) { 1502 inode->i_state |= I_WILL_FREE; 1503 spin_unlock(&inode->i_lock); 1504 write_inode_now(inode, 1); 1505 spin_lock(&inode->i_lock); 1506 WARN_ON(inode->i_state & I_NEW); 1507 inode->i_state &= ~I_WILL_FREE; 1508 } 1509 1510 inode->i_state |= I_FREEING; 1511 if (!list_empty(&inode->i_lru)) 1512 inode_lru_list_del(inode); 1513 spin_unlock(&inode->i_lock); 1514 1515 evict(inode); 1516 } 1517 1518 /** 1519 * iput - put an inode 1520 * @inode: inode to put 1521 * 1522 * Puts an inode, dropping its usage count. If the inode use count hits 1523 * zero, the inode is then freed and may also be destroyed. 1524 * 1525 * Consequently, iput() can sleep. 1526 */ 1527 void iput(struct inode *inode) 1528 { 1529 if (!inode) 1530 return; 1531 BUG_ON(inode->i_state & I_CLEAR); 1532 retry: 1533 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { 1534 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { 1535 atomic_inc(&inode->i_count); 1536 inode->i_state &= ~I_DIRTY_TIME; 1537 spin_unlock(&inode->i_lock); 1538 trace_writeback_lazytime_iput(inode); 1539 mark_inode_dirty_sync(inode); 1540 goto retry; 1541 } 1542 iput_final(inode); 1543 } 1544 } 1545 EXPORT_SYMBOL(iput); 1546 1547 /** 1548 * bmap - find a block number in a file 1549 * @inode: inode of file 1550 * @block: block to find 1551 * 1552 * Returns the block number on the device holding the inode that 1553 * is the disk block number for the block of the file requested. 1554 * That is, asked for block 4 of inode 1 the function will return the 1555 * disk block relative to the disk start that holds that block of the 1556 * file. 1557 */ 1558 sector_t bmap(struct inode *inode, sector_t block) 1559 { 1560 sector_t res = 0; 1561 if (inode->i_mapping->a_ops->bmap) 1562 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1563 return res; 1564 } 1565 EXPORT_SYMBOL(bmap); 1566 1567 /* 1568 * Update times in overlayed inode from underlying real inode 1569 */ 1570 static void update_ovl_inode_times(struct dentry *dentry, struct inode *inode, 1571 bool rcu) 1572 { 1573 struct dentry *upperdentry; 1574 1575 /* 1576 * Nothing to do if in rcu or if non-overlayfs 1577 */ 1578 if (rcu || likely(!(dentry->d_flags & DCACHE_OP_REAL))) 1579 return; 1580 1581 upperdentry = d_real(dentry, NULL, 0, D_REAL_UPPER); 1582 1583 /* 1584 * If file is on lower then we can't update atime, so no worries about 1585 * stale mtime/ctime. 1586 */ 1587 if (upperdentry) { 1588 struct inode *realinode = d_inode(upperdentry); 1589 1590 if ((!timespec_equal(&inode->i_mtime, &realinode->i_mtime) || 1591 !timespec_equal(&inode->i_ctime, &realinode->i_ctime))) { 1592 inode->i_mtime = realinode->i_mtime; 1593 inode->i_ctime = realinode->i_ctime; 1594 } 1595 } 1596 } 1597 1598 /* 1599 * With relative atime, only update atime if the previous atime is 1600 * earlier than either the ctime or mtime or if at least a day has 1601 * passed since the last atime update. 1602 */ 1603 static int relatime_need_update(const struct path *path, struct inode *inode, 1604 struct timespec now, bool rcu) 1605 { 1606 1607 if (!(path->mnt->mnt_flags & MNT_RELATIME)) 1608 return 1; 1609 1610 update_ovl_inode_times(path->dentry, inode, rcu); 1611 /* 1612 * Is mtime younger than atime? If yes, update atime: 1613 */ 1614 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1615 return 1; 1616 /* 1617 * Is ctime younger than atime? If yes, update atime: 1618 */ 1619 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1620 return 1; 1621 1622 /* 1623 * Is the previous atime value older than a day? If yes, 1624 * update atime: 1625 */ 1626 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1627 return 1; 1628 /* 1629 * Good, we can skip the atime update: 1630 */ 1631 return 0; 1632 } 1633 1634 int generic_update_time(struct inode *inode, struct timespec *time, int flags) 1635 { 1636 int iflags = I_DIRTY_TIME; 1637 bool dirty = false; 1638 1639 if (flags & S_ATIME) 1640 inode->i_atime = *time; 1641 if (flags & S_VERSION) 1642 dirty = inode_maybe_inc_iversion(inode, false); 1643 if (flags & S_CTIME) 1644 inode->i_ctime = *time; 1645 if (flags & S_MTIME) 1646 inode->i_mtime = *time; 1647 if ((flags & (S_ATIME | S_CTIME | S_MTIME)) && 1648 !(inode->i_sb->s_flags & SB_LAZYTIME)) 1649 dirty = true; 1650 1651 if (dirty) 1652 iflags |= I_DIRTY_SYNC; 1653 __mark_inode_dirty(inode, iflags); 1654 return 0; 1655 } 1656 EXPORT_SYMBOL(generic_update_time); 1657 1658 /* 1659 * This does the actual work of updating an inodes time or version. Must have 1660 * had called mnt_want_write() before calling this. 1661 */ 1662 static int update_time(struct inode *inode, struct timespec *time, int flags) 1663 { 1664 int (*update_time)(struct inode *, struct timespec *, int); 1665 1666 update_time = inode->i_op->update_time ? inode->i_op->update_time : 1667 generic_update_time; 1668 1669 return update_time(inode, time, flags); 1670 } 1671 1672 /** 1673 * touch_atime - update the access time 1674 * @path: the &struct path to update 1675 * @inode: inode to update 1676 * 1677 * Update the accessed time on an inode and mark it for writeback. 1678 * This function automatically handles read only file systems and media, 1679 * as well as the "noatime" flag and inode specific "noatime" markers. 1680 */ 1681 bool __atime_needs_update(const struct path *path, struct inode *inode, 1682 bool rcu) 1683 { 1684 struct vfsmount *mnt = path->mnt; 1685 struct timespec now; 1686 1687 if (inode->i_flags & S_NOATIME) 1688 return false; 1689 1690 /* Atime updates will likely cause i_uid and i_gid to be written 1691 * back improprely if their true value is unknown to the vfs. 1692 */ 1693 if (HAS_UNMAPPED_ID(inode)) 1694 return false; 1695 1696 if (IS_NOATIME(inode)) 1697 return false; 1698 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) 1699 return false; 1700 1701 if (mnt->mnt_flags & MNT_NOATIME) 1702 return false; 1703 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1704 return false; 1705 1706 now = current_time(inode); 1707 1708 if (!relatime_need_update(path, inode, now, rcu)) 1709 return false; 1710 1711 if (timespec_equal(&inode->i_atime, &now)) 1712 return false; 1713 1714 return true; 1715 } 1716 1717 void touch_atime(const struct path *path) 1718 { 1719 struct vfsmount *mnt = path->mnt; 1720 struct inode *inode = d_inode(path->dentry); 1721 struct timespec now; 1722 1723 if (!__atime_needs_update(path, inode, false)) 1724 return; 1725 1726 if (!sb_start_write_trylock(inode->i_sb)) 1727 return; 1728 1729 if (__mnt_want_write(mnt) != 0) 1730 goto skip_update; 1731 /* 1732 * File systems can error out when updating inodes if they need to 1733 * allocate new space to modify an inode (such is the case for 1734 * Btrfs), but since we touch atime while walking down the path we 1735 * really don't care if we failed to update the atime of the file, 1736 * so just ignore the return value. 1737 * We may also fail on filesystems that have the ability to make parts 1738 * of the fs read only, e.g. subvolumes in Btrfs. 1739 */ 1740 now = current_time(inode); 1741 update_time(inode, &now, S_ATIME); 1742 __mnt_drop_write(mnt); 1743 skip_update: 1744 sb_end_write(inode->i_sb); 1745 } 1746 EXPORT_SYMBOL(touch_atime); 1747 1748 /* 1749 * The logic we want is 1750 * 1751 * if suid or (sgid and xgrp) 1752 * remove privs 1753 */ 1754 int should_remove_suid(struct dentry *dentry) 1755 { 1756 umode_t mode = d_inode(dentry)->i_mode; 1757 int kill = 0; 1758 1759 /* suid always must be killed */ 1760 if (unlikely(mode & S_ISUID)) 1761 kill = ATTR_KILL_SUID; 1762 1763 /* 1764 * sgid without any exec bits is just a mandatory locking mark; leave 1765 * it alone. If some exec bits are set, it's a real sgid; kill it. 1766 */ 1767 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1768 kill |= ATTR_KILL_SGID; 1769 1770 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) 1771 return kill; 1772 1773 return 0; 1774 } 1775 EXPORT_SYMBOL(should_remove_suid); 1776 1777 /* 1778 * Return mask of changes for notify_change() that need to be done as a 1779 * response to write or truncate. Return 0 if nothing has to be changed. 1780 * Negative value on error (change should be denied). 1781 */ 1782 int dentry_needs_remove_privs(struct dentry *dentry) 1783 { 1784 struct inode *inode = d_inode(dentry); 1785 int mask = 0; 1786 int ret; 1787 1788 if (IS_NOSEC(inode)) 1789 return 0; 1790 1791 mask = should_remove_suid(dentry); 1792 ret = security_inode_need_killpriv(dentry); 1793 if (ret < 0) 1794 return ret; 1795 if (ret) 1796 mask |= ATTR_KILL_PRIV; 1797 return mask; 1798 } 1799 1800 static int __remove_privs(struct dentry *dentry, int kill) 1801 { 1802 struct iattr newattrs; 1803 1804 newattrs.ia_valid = ATTR_FORCE | kill; 1805 /* 1806 * Note we call this on write, so notify_change will not 1807 * encounter any conflicting delegations: 1808 */ 1809 return notify_change(dentry, &newattrs, NULL); 1810 } 1811 1812 /* 1813 * Remove special file priviledges (suid, capabilities) when file is written 1814 * to or truncated. 1815 */ 1816 int file_remove_privs(struct file *file) 1817 { 1818 struct dentry *dentry = file_dentry(file); 1819 struct inode *inode = file_inode(file); 1820 int kill; 1821 int error = 0; 1822 1823 /* Fast path for nothing security related */ 1824 if (IS_NOSEC(inode)) 1825 return 0; 1826 1827 kill = dentry_needs_remove_privs(dentry); 1828 if (kill < 0) 1829 return kill; 1830 if (kill) 1831 error = __remove_privs(dentry, kill); 1832 if (!error) 1833 inode_has_no_xattr(inode); 1834 1835 return error; 1836 } 1837 EXPORT_SYMBOL(file_remove_privs); 1838 1839 /** 1840 * file_update_time - update mtime and ctime time 1841 * @file: file accessed 1842 * 1843 * Update the mtime and ctime members of an inode and mark the inode 1844 * for writeback. Note that this function is meant exclusively for 1845 * usage in the file write path of filesystems, and filesystems may 1846 * choose to explicitly ignore update via this function with the 1847 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1848 * timestamps are handled by the server. This can return an error for 1849 * file systems who need to allocate space in order to update an inode. 1850 */ 1851 1852 int file_update_time(struct file *file) 1853 { 1854 struct inode *inode = file_inode(file); 1855 struct timespec now; 1856 int sync_it = 0; 1857 int ret; 1858 1859 /* First try to exhaust all avenues to not sync */ 1860 if (IS_NOCMTIME(inode)) 1861 return 0; 1862 1863 now = current_time(inode); 1864 if (!timespec_equal(&inode->i_mtime, &now)) 1865 sync_it = S_MTIME; 1866 1867 if (!timespec_equal(&inode->i_ctime, &now)) 1868 sync_it |= S_CTIME; 1869 1870 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode)) 1871 sync_it |= S_VERSION; 1872 1873 if (!sync_it) 1874 return 0; 1875 1876 /* Finally allowed to write? Takes lock. */ 1877 if (__mnt_want_write_file(file)) 1878 return 0; 1879 1880 ret = update_time(inode, &now, sync_it); 1881 __mnt_drop_write_file(file); 1882 1883 return ret; 1884 } 1885 EXPORT_SYMBOL(file_update_time); 1886 1887 int inode_needs_sync(struct inode *inode) 1888 { 1889 if (IS_SYNC(inode)) 1890 return 1; 1891 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1892 return 1; 1893 return 0; 1894 } 1895 EXPORT_SYMBOL(inode_needs_sync); 1896 1897 /* 1898 * If we try to find an inode in the inode hash while it is being 1899 * deleted, we have to wait until the filesystem completes its 1900 * deletion before reporting that it isn't found. This function waits 1901 * until the deletion _might_ have completed. Callers are responsible 1902 * to recheck inode state. 1903 * 1904 * It doesn't matter if I_NEW is not set initially, a call to 1905 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 1906 * will DTRT. 1907 */ 1908 static void __wait_on_freeing_inode(struct inode *inode) 1909 { 1910 wait_queue_head_t *wq; 1911 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 1912 wq = bit_waitqueue(&inode->i_state, __I_NEW); 1913 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 1914 spin_unlock(&inode->i_lock); 1915 spin_unlock(&inode_hash_lock); 1916 schedule(); 1917 finish_wait(wq, &wait.wq_entry); 1918 spin_lock(&inode_hash_lock); 1919 } 1920 1921 static __initdata unsigned long ihash_entries; 1922 static int __init set_ihash_entries(char *str) 1923 { 1924 if (!str) 1925 return 0; 1926 ihash_entries = simple_strtoul(str, &str, 0); 1927 return 1; 1928 } 1929 __setup("ihash_entries=", set_ihash_entries); 1930 1931 /* 1932 * Initialize the waitqueues and inode hash table. 1933 */ 1934 void __init inode_init_early(void) 1935 { 1936 /* If hashes are distributed across NUMA nodes, defer 1937 * hash allocation until vmalloc space is available. 1938 */ 1939 if (hashdist) 1940 return; 1941 1942 inode_hashtable = 1943 alloc_large_system_hash("Inode-cache", 1944 sizeof(struct hlist_head), 1945 ihash_entries, 1946 14, 1947 HASH_EARLY | HASH_ZERO, 1948 &i_hash_shift, 1949 &i_hash_mask, 1950 0, 1951 0); 1952 } 1953 1954 void __init inode_init(void) 1955 { 1956 /* inode slab cache */ 1957 inode_cachep = kmem_cache_create("inode_cache", 1958 sizeof(struct inode), 1959 0, 1960 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1961 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 1962 init_once); 1963 1964 /* Hash may have been set up in inode_init_early */ 1965 if (!hashdist) 1966 return; 1967 1968 inode_hashtable = 1969 alloc_large_system_hash("Inode-cache", 1970 sizeof(struct hlist_head), 1971 ihash_entries, 1972 14, 1973 HASH_ZERO, 1974 &i_hash_shift, 1975 &i_hash_mask, 1976 0, 1977 0); 1978 } 1979 1980 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1981 { 1982 inode->i_mode = mode; 1983 if (S_ISCHR(mode)) { 1984 inode->i_fop = &def_chr_fops; 1985 inode->i_rdev = rdev; 1986 } else if (S_ISBLK(mode)) { 1987 inode->i_fop = &def_blk_fops; 1988 inode->i_rdev = rdev; 1989 } else if (S_ISFIFO(mode)) 1990 inode->i_fop = &pipefifo_fops; 1991 else if (S_ISSOCK(mode)) 1992 ; /* leave it no_open_fops */ 1993 else 1994 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 1995 " inode %s:%lu\n", mode, inode->i_sb->s_id, 1996 inode->i_ino); 1997 } 1998 EXPORT_SYMBOL(init_special_inode); 1999 2000 /** 2001 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 2002 * @inode: New inode 2003 * @dir: Directory inode 2004 * @mode: mode of the new inode 2005 */ 2006 void inode_init_owner(struct inode *inode, const struct inode *dir, 2007 umode_t mode) 2008 { 2009 inode->i_uid = current_fsuid(); 2010 if (dir && dir->i_mode & S_ISGID) { 2011 inode->i_gid = dir->i_gid; 2012 if (S_ISDIR(mode)) 2013 mode |= S_ISGID; 2014 } else 2015 inode->i_gid = current_fsgid(); 2016 inode->i_mode = mode; 2017 } 2018 EXPORT_SYMBOL(inode_init_owner); 2019 2020 /** 2021 * inode_owner_or_capable - check current task permissions to inode 2022 * @inode: inode being checked 2023 * 2024 * Return true if current either has CAP_FOWNER in a namespace with the 2025 * inode owner uid mapped, or owns the file. 2026 */ 2027 bool inode_owner_or_capable(const struct inode *inode) 2028 { 2029 struct user_namespace *ns; 2030 2031 if (uid_eq(current_fsuid(), inode->i_uid)) 2032 return true; 2033 2034 ns = current_user_ns(); 2035 if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER)) 2036 return true; 2037 return false; 2038 } 2039 EXPORT_SYMBOL(inode_owner_or_capable); 2040 2041 /* 2042 * Direct i/o helper functions 2043 */ 2044 static void __inode_dio_wait(struct inode *inode) 2045 { 2046 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 2047 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 2048 2049 do { 2050 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE); 2051 if (atomic_read(&inode->i_dio_count)) 2052 schedule(); 2053 } while (atomic_read(&inode->i_dio_count)); 2054 finish_wait(wq, &q.wq_entry); 2055 } 2056 2057 /** 2058 * inode_dio_wait - wait for outstanding DIO requests to finish 2059 * @inode: inode to wait for 2060 * 2061 * Waits for all pending direct I/O requests to finish so that we can 2062 * proceed with a truncate or equivalent operation. 2063 * 2064 * Must be called under a lock that serializes taking new references 2065 * to i_dio_count, usually by inode->i_mutex. 2066 */ 2067 void inode_dio_wait(struct inode *inode) 2068 { 2069 if (atomic_read(&inode->i_dio_count)) 2070 __inode_dio_wait(inode); 2071 } 2072 EXPORT_SYMBOL(inode_dio_wait); 2073 2074 /* 2075 * inode_set_flags - atomically set some inode flags 2076 * 2077 * Note: the caller should be holding i_mutex, or else be sure that 2078 * they have exclusive access to the inode structure (i.e., while the 2079 * inode is being instantiated). The reason for the cmpxchg() loop 2080 * --- which wouldn't be necessary if all code paths which modify 2081 * i_flags actually followed this rule, is that there is at least one 2082 * code path which doesn't today so we use cmpxchg() out of an abundance 2083 * of caution. 2084 * 2085 * In the long run, i_mutex is overkill, and we should probably look 2086 * at using the i_lock spinlock to protect i_flags, and then make sure 2087 * it is so documented in include/linux/fs.h and that all code follows 2088 * the locking convention!! 2089 */ 2090 void inode_set_flags(struct inode *inode, unsigned int flags, 2091 unsigned int mask) 2092 { 2093 unsigned int old_flags, new_flags; 2094 2095 WARN_ON_ONCE(flags & ~mask); 2096 do { 2097 old_flags = READ_ONCE(inode->i_flags); 2098 new_flags = (old_flags & ~mask) | flags; 2099 } while (unlikely(cmpxchg(&inode->i_flags, old_flags, 2100 new_flags) != old_flags)); 2101 } 2102 EXPORT_SYMBOL(inode_set_flags); 2103 2104 void inode_nohighmem(struct inode *inode) 2105 { 2106 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2107 } 2108 EXPORT_SYMBOL(inode_nohighmem); 2109 2110 /** 2111 * current_time - Return FS time 2112 * @inode: inode. 2113 * 2114 * Return the current time truncated to the time granularity supported by 2115 * the fs. 2116 * 2117 * Note that inode and inode->sb cannot be NULL. 2118 * Otherwise, the function warns and returns time without truncation. 2119 */ 2120 struct timespec current_time(struct inode *inode) 2121 { 2122 struct timespec now = current_kernel_time(); 2123 2124 if (unlikely(!inode->i_sb)) { 2125 WARN(1, "current_time() called with uninitialized super_block in the inode"); 2126 return now; 2127 } 2128 2129 return timespec_trunc(now, inode->i_sb->s_time_gran); 2130 } 2131 EXPORT_SYMBOL(current_time); 2132